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Abstract. We study the persistence of eigenvalues and eigenvectors of per-

turbed eigenvalue problems in Hilbert spaces. We assume that the unperturbed

problem has a nontrivial kernel of odd dimension and we prove a Rabinowitz-
type global continuation result.

The approach is topological, based on a notion of degree for oriented Fred-

holm maps of index zero between real differentiable Banach manifolds.

1. Introduction

Nonlinear spectral theory is a research field of increasing interest, which finds
application to properties of the structure of the solution set of differential equations,
see e.g. [1, 14]. In this context a nontrivial question consists in studying nonlinear
perturbations of linear problems and in investigating the so-called “persistence” of
eigenvalues and eigenvectors.

More precisely, let G and H denote two real Hilbert spaces. By a “perturbed
eigenvalue problem” we mean a system of the following type:

(1.1)

{
Lx+ sN(x) = λCx

x ∈ S,

where s, λ are real parameters, L,C : G → H are bounded linear operators, S
denotes the unit sphere of G, and N : S→ H is a nonlinear map. We call solution
of (1.1) a triple (s, λ, x) ∈ R×R×S satisfying the above system. The element x ∈ S
is then said a unit eigenvector corresponding to the eigenpair (s, λ) of (4.1), and
the set of solutions of (1.1) will be denoted by Σ ⊆ R×R×S.

To investigate the topological properties of Σ, we consider (1.1) as a (nonlinear)
perturbation of the eigenvalue problem

(1.2)

{
Lx = λCx

x ∈ S,
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where we assume that the operator L−λC ∈ L(G,H) is invertible for some λ ∈ R.
When λ ∈ R is such that Ker(L− λC) is nontrivial, we call λ an eigenvalue of the
equation L = λC or, equivalently, of problem (1.2). A solution (λ, x) of (1.2) will
be called an eigenpoint ; in this case λ and x are, respectively, an eigenvalue and a
unit eigenvector of the equation Lx = λCx.

Let (λ∗, x∗) be an eigenpoint of (1.2) and suppose that the following conditions
hold:

(H1) C is a compact operator,
(H2) Ker(L− λ∗C) is odd dimensional,
(H3) Img(L− λ∗C) ∩ C (Ker(L− λ∗C)) = {0}.

Under assumptions (H1)–(H3) our main result, Theorem 4.4 below, asserts that

• in the set Σ of the solutions of (1.1), the connected component containing
(0, λ∗, x∗) is either unbounded or includes a trivial solution (0, λ∗, x∗) with
λ∗ 6= λ∗.

The proof of Theorem 4.4, which can be thought of as a Rabinowitz-type global
continuation result [21], is based on a preliminary study of the “unperturbed”
problem (1.2). In particular, notice that the eigenpoints of (1.2) coincide with the
solutions of the equation

ψ(λ, x) = 0,

where ψ is the H-valued function (λ, x) 7→ Lx− λCx defined on the cylinder R×S,
which is a smooth 1-codimensional submanifold of the Hilbert space R×G. A crucial
point is then to evaluate the topological degree of the map ψ. Since the domain of
ψ is a manifold, we cannot apply the classical Leary–Schauder degree. Instead, we
use a notion of topological degree for oriented Fredholm maps of index zero between
real differentiable Banach manifolds, developed by two authors of this paper, and
whose construction and properties are summarized in Section 3 for the reader’s
convenience. Such a notion of degree has been introduced in [8] (see also [7, 9, 10]
for additional details).

Taking advantage of the odd multiplicity assumption (H2), of condition (H1) on
the compactness of C, and of the transversality condition (H3), we are then able to
apply a result of [6] concerning the case of simple eigenvalues. Precisely, call λ∗ ∈ R
a simple eigenvalue of (1.2) if there exists x∗ ∈ S such that Ker(L − λ∗C) = Rx∗
and H = Img(L− λ∗C)⊕ RCx∗. In [6] we proved that

• if λ∗ is a simple eigenvalue of (1.2) and x∗ and −x∗ are the two cor-
responding unit eigenvectors, then the “twin” eigenpoints p∗ = (λ∗, x∗) and
p̄∗ = (λ∗,−x∗) are isolated zeros of ψ. Moreover, under the assumption that
the operator C is compact, they give the same contribution to the bf -degree,
which is either 1 or −1, depending on the orientation of ψ.

Such an assertion generalizes, to the infinite dimensional case, an analogous result
in [5] concerning a “classical eigenvalue problem” in Rk. Let us point out that
the result in [5] is based on the notion of Brouwer degree for maps between finite
dimensional oriented manifolds, whereas, as already stressed, the extension to the
infinite-dimensional setting of [6] requires a degree for Fredholm maps of index zero
acting between Banach manifolds, as the one introduced in [8]. To apply this degree
we need the unit sphere S to be a smooth manifold: for this reason, we restrict our
study to Hilbert spaces instead of the more general Banach environment.
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The study of the local [2, 13, 15–19] as well as global [3–7] persistence property
when the eigenvalue λ∗ is not necessarily simple has been performed in recent
papers by the authors, also in collaboration with R. Chiappinelli. In particular
a first pioneering result in this sense is due to Chiappinelli [12], who proved the
existence of the local persistence of eigenvalues and eigenvectors, in Hilbert spaces,
in the case of a simple isolated eigenvalue.

Among others, let us quote our paper [3] in which we tackled a problem very
similar to the one we consider here. The main result of [3] regards, roughly speaking,
the global persistence property of the eigenpairs (s, λ) of (1.1), in the sλ-plane,
under the odd multiplicity assumption. Thus, the result we obtain here on the
global persistence of the solutions (s, λ, x) of (1.1) was, in some sense, implicitly
conjectured in [3].

The present paper generalizes the “global persistence” property of solution triples
which, either in finite-dimensional or infinite-dimensional case, has been studied
in [4–7] in the case of a simple eigenvalue. Since it is known that the persistence
property need not hold if λ∗ is an eigenvalue of even multiplicity, it is natural to
investigate the odd-multiplicity case. However such an extension is not trivial and
is based on advanced degree-theoretical tools.

We close the paper with some illustrating examples showing, in particular, that
the odd dimensionality of Ker(L−λ∗C) cannot be removed, the other assumptions
remaining valid.

2. Preliminaries

In this section we recall some notions that will be used in the sequel. We mainly
summarize some concepts which are needed for the construction of the topological
degree for oriented Fredholm maps of index zero between real differentiable Banach
manifolds introduced in [8], here called bf -degree to distinguish it from the Leray–
Schauder degree, called LS-degree (see [7, 9, 10] for additional details).

It is necessary to begin by focusing on the preliminary concept of orientation for
Fredholm maps of index zero between manifolds. The starting point is an algebraic
notion of orientation for Fredholm linear operators of index zero.

Consider two real Banach spaces E and F and denote by L(E,F ) the space of the
bounded linear operators from E into F with the usual operator norm. If E = F ,
we write L(E) instead of L(E,E). By Iso(E,F ) we mean the subset of L(E,F ) of
the invertible operators, and we write GL(E) instead of Iso(E,E). The subspace of
L(E,F ) of the compact operators will be denoted by K(E,F ), or simply by K(E)
when F = E. Finally, F(E,F ) will stand for the vector subspace of L(E,F ) of the
operators having finite dimensional image (recall that, in the infinite dimensional
context, F(E,F ) is not closed in L(E,F )). We shall write F(E) when F = E.

Recall that an operator T ∈ L(E,F ) is said to be Fredholm (see e.g. [23]) if its
kernel, KerT , and its cokernel, coKerT = F/T (E), are both finite dimensional.
The index of a Fredholm operator T is the integer

indT = dim(KerT )− dim(coKerT ).

In particular, any invertible linear operator is Fredholm of index zero. Observe also
that, if T ∈ L(Rk,Rs), then indT = k − s.
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The subset of L(E,F ) of the Fredholm operators will be denoted by Φ(E,F );
while Φn(E,F ) will stand for the set {T ∈ Φ(E,F ) : indT = n}. By Φ(E) and
Φn(E) we will designate, respectively, Φ(E,E) and Φn(E,E).

We recall some important properties of Fredholm operators.

(F1) If T ∈ Φ(E,F ), then Img T is closed in F .
(F2) The composition of Fredholm operators is Fredholm and its index is the sum

of the indices of all the composite operators.
(F3) If T ∈ Φn(E,F ) and K ∈ K(E,F ), then T +K ∈ Φn(E,F ).
(F4) For any n ∈ Z, the set Φn(E,F ) is open in L(E,F ).

Let T ∈ L(E) be given. If I − T ∈ F(E), where I ∈ L(E) is the identity, we
say that T is an admissible operator (for the determinant). The symbol A(E) will
stand for the affine subspace of L(E) of the admissible operators.

It is known (see [20]) that the determinant of an operator T ∈ A(E) is well
defined as follows: detT := detT |Ê , where T |Ê is the restriction (as domain and as

codomain) to any finite dimensional subspace Ê of E containing Img(I − T ), with

the understanding that detT |Ê = 1 if Ê = {0}. As one can check, the function
det : A(E) → R inherits most of the properties of the classical determinant. For
more details, see e.g. [11].

Let T ∈ Φ0(E,F ) be given. As in [7], we will say that an operator K ∈ F(E,F )
is a companion1 of T if T +K is invertible.

Observe in particular that any T ∈ Iso(E,F ) has a natural companion: that is,
the zero operator 0 ∈ L(E,F ). This fact was crucial in [8] for the construction of
the bf -degree.

Given T ∈ Φ0(E,F ), we denote by C(T ) the (nonempty) subset of F(E,F ) of
all the companions of T . The following definition establishes a partition of C(T )
in two equivalence classes and is a key step for the definition of orientation given
in [8].

Definition 2.1 (Equivalence relation). Two companions K1 and K2 of an oper-
ator T ∈ Φ0(E,F ) are equivalent (more precisely, T -equivalent) if the admissible
operator (T +K2)−1(T +K1) has positive determinant.

Definition 2.2 (Orientation). An orientation of T ∈ Φ0(E,F ) is one of the two
equivalence classes of C(T ), denoted by C+(T ) and called the class of positive com-
panions of the oriented operator T . The set C−(T ) = C(T ) \C+(T ) of the negative
companions is the opposite orientation of T .

Some further definitions are in order.

Definition 2.3 (Natural orientation). Any T ∈ Iso(E,F ) admits the natural ori-
entation: the one given by considering the trivial operator of L(E,F ) as a positive
companion.

Definition 2.4 (Oriented composition). The oriented composition of two oriented
operators, T1 ∈ Φ0(E1, E2) and T2 ∈ Φ0(E2, E3), is the operator T2T1 with the
orientation given by considering K = (T2 + K2)(T1 + K1) − T2T1 as a positive
companion whenever K1 and K2 are positive companions of T1 and T2, respectively.

1In previous papers, e.g. in [8], it was used the word corrector instead of companion
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Observe that the oriented composition is associative and, consequently, this no-
tion can be extended to the composition of three (or more) oriented operators.

Definition 2.5 (Sign of an oriented operator). Let T ∈ Φ0(E,F ) be an oriented
operator. Its sign is the integer

signT =

 +1 if T is invertible and naturally oriented,
−1 if T is invertible and not naturally oriented,

0 if T is not invertible.

A crucial fact in the definition of oriented map and the consequent construction
of the bf -degree is that

• the orientation of any operator T∗ ∈ Φ0(E,F ) induces an orientation of the
operators in a neighborhood of T∗.

In fact, since Iso(E,F ) is open in L(E,F ), for any companion K of T∗ we have that
T + K is invertible when T is sufficiently close to T∗. Thus, because of property
(F3) of the Fredholm operators, any such T belongs to Φ0(E,F ). Consequently, K
is as well a companion of T .

Definition 2.6. Let Γ: X → Φ0(E,F ) be a continuous map defined on a metric
space X. A pre-orientation of Γ is a function that to any x ∈ X assigns an orient-
ation ω(x) of Γ(x). A pre-orientation (of Γ) is an orientation if it is continuous,
in the sense that, given any x∗ ∈ X, there exist K ∈ ω(x∗) and a neighborhood
W of x∗ such that K ∈ ω(x) for all x ∈ W . The map Γ is said to be orientable if
it admits an orientation, and oriented if an orientation has been chosen. In par-
ticular, a subset Y of Φ0(E,F ) is orientable or oriented if so is the inclusion map
Y ↪→ Φ0(E,F ).

Observe that the set Φ̂0(E,F ) of the oriented operators of Φ0(E,F ) has a natural

topology, and the natural projection π : Φ̂0(E,F ) → Φ0(E,F ) is a 2-fold covering
space (see [9] for details). Therefore, an orientation of a map Γ as in Definition 2.6

could be regarded as a lifting Γ̂ of Γ. This implies that, if the domain X of Γ is
simply connected and locally path connected, then Γ is orientable.

Let f : U → F be a C1-map defined on an open subset of E, and denote by
dfx ∈ L(E,F ) the Fréchet differential of f at a point x ∈ U .

We recall that f is said to be Fredholm of index n, called Φn-map and hereafter
also denoted by f ∈ Φn, if dfx ∈ Φn(E,F ) for all x ∈ U . Therefore, if f ∈ Φ0,
Definition 2.6 and the continuity of the differential map df : U → Φ0(E,F ) suggest
the following

Definition 2.7 (Orientation of a Φ0-map in Banach spaces). Let U be an open
subset of E and f : U → F a Fredholm map of index zero. A pre-orientation or an
orientation of f are, respectively, a pre-orientation or an orientation of df , according
to Definition 2.6. The map f is said to be orientable if it admits an orientation,
and oriented if an orientation has been chosen.

Remark 2.8. A very special Φ0-map is given by an operator T ∈ Φ0(E,F ). Thus,
for T there are two different notions of orientations: the algebraic one and that in
which T is seen as a C1-map, according to Definitions 2.2 and 2.7, respectively.
In each case T admits exactly two orientations (in the second one this is due to
the connectedness of the domain E). Hereafter, we shall tacitly assume that the
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two notions agree. Namely, T has an algebraic orientation ω if and only if its
differential dTx : ẋ 7→ T ẋ has the ω orientation for all x ∈ E.

Let us summarize how the notion of orientation can be given for maps acting
between real Banach manifolds. In the sequel, by manifold we shall mean, for short,
a smooth Banach manifold embedded in a real Banach space.

Given a manifold M and a point x ∈ M, the tangent space of M at x will be

denoted by TxM. If M is embedded in a Banach space Ẽ, TxM will be identified

with a closed subspace of Ẽ, for example by regarding any tangent vector of TxM
as the derivative γ′(0) of a smooth curve γ : (−1, 1)→M such that γ(0) = x.

Assume that f : M→ N is a C1-map between two manifolds, respectively em-

bedded in Ẽ and F̃ and modelled on E and F . As in the flat case, f is said to be
Fredholm of index n (written f ∈ Φn) if so is the differential dfx : TxM→ Tf(x)N ,
for any x ∈M (see [22]).

Given f ∈ Φ0, suppose that to any x ∈ M it is assigned an orientation ω(x) of
dfx (also called orientation of f at x). As above, the function ω is called a pre-
orientation of f , and an orientation if it is continuous, in a sense to be specified
(see Definition 2.10).

Definition 2.9. The pre-oriented composition of two (or more) pre-oriented maps
between manifolds is given by assigning, at any point x of the domain of the com-
posite map, the composition of the orientations (according to Definition 2.4) of the
differentials in the chain representing the differential at x of the composite map.

Assume that f : M → N is a C1-diffeomorphism. Thus, for any x ∈ M, we
may take as ω(x) the natural orientation of dfx (recall Definition 2.3). This pre-
orientation of f turns out to be continuous according to Definition 2.10 below (it
is, in some sense, constant). From now on, unless otherwise stated,

• any diffeomorphism will be considered oriented with the natural
orientation.

In particular, in a composition of pre-oriented maps, all charts and parametrizations
of a manifold will be tacitly assumed to be naturally oriented.

Definition 2.10 (Orientation of a Φ0-map between manifolds). Let f : M → N
be a Φ0-map between two manifolds modelled on E and F , respectively. A pre-
orientation of f is an orientation if it is continuous in the sense that, given any two
charts, ϕ : U → E ofM and ζ : V → F of N , such that f(U) ⊆ V , the pre-oriented
composition

ζ ◦ f ◦ ϕ−1 : U → V

is an oriented map according to Definition 2.7.
The map f is said to be orientable if it admits an orientation, and oriented if an

orientation has been chosen.

For example any local diffeomorphism f : M → N admits the natural orienta-
tion, given by assigning the natural orientation to the operator dfx, for any x ∈M
(see Definition 2.3).

In contrast, a very simple example of non-orientable Φ0-map is given by a con-
stant map from the 2-dimensional projective space into R2 (see [9]).



GLOBAL PERSISTENCE OF THE UNIT EIGENVECTORS 7

Notation 2.11. Let D be a subset of the product X×Y of two metric spaces.
Given x ∈ X, we call x-slice of D the set Dx = {y ∈ Y : (x, y) ∈ D}. Moreover, if
f : D → Z is a map into a metric space Z, we denote by fx : Dx → Z the partial
map of f defined by fx = f(x, ·).

Similarly to the case of a single map, one can define a notion of orientation of a
continuous family of Φ0-maps depending on a parameter s ∈ [0, 1]. To be precise,
one has the following

Definition 2.12 (Oriented Φ0-homotopy). A Φ0-homotopy between two Banach
manifolds M and N is a C1-map h : [0, 1]×M → N such that, for any s ∈ [0, 1],
the partial map hs = h(s, ·) is Fredholm of index zero. An orientation of h is a
continuous function ω that to any (s, x) ∈ [0, 1]×M assigns an orientation ω(s, x)
to the differential d(hs)x ∈ Φ0(TxM, Th(s,x)N ), where “continuous” means that,
given any chart ϕ : U → E of M, a subinterval J of [0, 1], and a chart ζ : V → F
of N such that h(J×U) ⊆ V , the pre-orientation of the map Γ: J×U → Φ0(E,F )
that to any (s, x) ∈ J×U assigns the pre-oriented composition

d(ζ ◦ hs ◦ ϕ−1)x = dζh(s,x)d(hs)x(dϕx)−1

is an orientation, according to Definition 2.6.
The homotopy h is said to be orientable if it admits an orientation, and oriented

if an orientation has been chosen.

If a Φ0-homotopy h has an orientation ω, then any partial map hs = h(s, ·) has
a compatible orientation ω(s, ·). Conversely, one has the following

Proposition 2.13 ( [8, 9]). Let h : [0, 1]×M→ N be a Φ0-homotopy, and assume
that one of its partial maps, say hs, has an orientation. Then, there exists and is
unique an orientation of h which is compatible with that of hs. In particular, if
two maps from M to N are Φ0-homotopic, then they are both orientable or both
non-orientable.

As a consequence of Proposition 2.13, one gets that any C1-map f : M → M
which is Φ0-homotopic to the identity is orientable, since so is the identity (even
when M is finite dimensional and not orientable).

The bf -degree, introduced in [8], satisfies the three fundamental properties listed
below: Normalization, Additivity and Homotopy Invariance. In [10], by means of
an axiomatic approach, it is proved that the bf -degree is the only possible integer-
valued function that satisfies these three properties.

More in detail, the bf -degree is defined in a class of admissible triples. Given
an oriented Φ0-map f : M→ N , an open (possibly empty) subset U of M, and a
target value y ∈ N , the triple (f, U, y) is said to be admissible for the bf -degree
provided that U ∩ f−1(y) is compact. From the axiomatic point of view, the bf -
degree is an integer-valued function, degbf , defined on the class of all the admissible
triples, that satisfies the following three fundamental properties.

• (Normalization) If f : M→N is a naturally oriented diffeomorphism onto
an open subset of N , then

degbf (f,M, y) = 1, ∀y ∈ f(M).
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• (Additivity) Let (f, U, y) be an admissible triple. If U1 and U2 are two
disjoint open subsets of U such that U ∩ f−1(y) ⊆ U1 ∪ U2, then

degbf (f, U, y) = degbf (f |U1 , U1, y) + degbf (f |U2 , U2, y).

• (Homotopy Invariance) Let h : [0, 1]×M→ N be an oriented Φ0-homotopy,
and γ : [0, 1]→ N a continuous path. If the set{

(s, x) ∈ [0, 1]×M : h(s, x) = γ(s)
}

is compact, then degbf (h(s, ·),M, γ(s)) does not depend on s ∈ [0, 1].

Other useful properties are deduced from the fundamental ones (see [10] for
details). Here we mention some of them.

• (Localization) If (f, U, y) is an admissible triple, then

deg(f, U, y) = deg(f |U , U, y).

• (Existence) If (f, U, y) is admissible and degbf (f, U, y) 6= 0, then the equa-
tion f(x) = y admits at least one solution in U .

• (Excision) If (f, U, y) is admissible and V is an open subset of U such that
f−1(y) ∩ U ⊆ V , then

deg(f, U, y) = deg(f, V, y).

In some sense, given an admissible triple (f, U, y), the integer degbf (f, U, y) is
an algebraic count of the solutions in U of the equation f(x) = y. In fact, from the
fundamental properties one gets the following

• (Computation Formula) If (f, U, y) is admissible and y is a regular value
for f in U , then the set U ∩ f−1(y) is finite and

degbf (f, U, y) =
∑

x∈U∩f−1(y)

sign(dfx).

Another useful property that can be deduced from the fundamental ones is the

• (Topological Invariance) If (f, U, y) is admissible and g : N → O is a nat-
urally oriented diffeomorphism onto a manifold O, then

degbf (f, U, y) = degbf (g ◦ f, U, g(y)).

Some further notation and definitions are in order.

Notation 2.14. Hereafter we will use the shorthand notation degbf (f, U) instead
of degbf (f, U, 0), where f : M → F is an oriented Φ0-map from a manifold into a
Banach space, U is an open subset ofM, and 0 is the null vector of F . Analogously,
degLS(f, U) means the Leray–Schauder degree degLS(f, U, 0), where U is an open
bounded subset of a Banach space E, f : U → E is a compact vector field defined
on the closure of U , and 0 is the null vector of E.

Definition 2.15. Let X be a metric space and K ⊆ A ⊆ X. We shall say that
K is an isolated subset of A if it is compact and relatively open in A. Thus, there
exists an open subset U of X such that U ∩A = K. The set U is called an isolating
neighborhood of K among (the elements of) A.
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Definition 2.16. Let f : M → F be an oriented Φ0-map from a manifold into
a Banach space. If K is an isolated subset of f−1(0), we shall call contribution
of K to the bf -degree of f the integer degbf (f, U), where U ⊆ M is any isolating

neighborhood of K among f−1(0). The excision property of the degree implies that
degbf (f, U) does not depend on the isolating neighborhood U .

Regarding Definition 2.16, we observe that the finite union of isolated subsets of
f−1(0) is still an isolated subset. Moreover, from the excision and the additivity
properties of the bf -degree one gets that the contribution to the bf -degree of this
union is the sum of the single contributions of these subsets.

3. The eigenvalue problem and the associated topological degree

Let, hereafter, G and H denote two real Hilbert spaces and consider the eigen-
value problem

(3.1)

{
Lx = λCx

x ∈ S,

where λ is a real parameter, L,C : G → H are bounded linear operators, and S
denotes the unit sphere of G. To prevent the problem from being meaningless,

• we will always assume that the operator L − λC ∈ L(G,H) is in-
vertible for some λ ∈ R.

When λ ∈ R is such that Ker(L−λC) is nontrivial, then λ is called an eigenvalue
of the equation L = λC or, equivalently, of problem (3.1).

A solution (λ, x) of (3.1) will also be called an eigenpoint. In this case λ and x
are, respectively, an eigenvalue and a unit eigenvector of the equation Lx = λCx.

Notice that the eigenpoints are the solutions of the equation

ψ(λ, x) = 0,

where ψ is the H-valued function (λ, x) 7→ Lx− λCx defined on the cylinder R×S,
which is a smooth 1-codimensional submanifold of the Hilbert space R×G.

By S we will denote the set of the eigenpoints of (3.1). Therefore, given any
λ ∈ R, the λ-slice Sλ = {x ∈ S : (λ, x) ∈ S} of S coincides with S ∩Ker(L− λC).

Thus, Sλ is nonempty if and only if λ is an eigenvalue of problem (3.1). In
this case Sλ will be called the eigensphere of (3.1) corresponding to λ or, simply,
the λ-eigensphere. Observe that Sλ is a sphere whose dimension equals that of
Ker(L − λC) minus one. The nonempty subset {λ}×Sλ of the cylinder R×S will
be called an eigenset of (3.1).

Remark 3.1. The assumption that L − λC is invertible for some λ ∈ R implies
that, for any λ ∈ R, the restriction of C to the (possibly trivial) kernel of L − λC
is injective.

Remark 3.1 can be proved arguing by contradiction. In fact, assume that the
assertion is false. Then, there are λ∗ ∈ R and a nonzero vector

x∗ ∈ Ker(L− λ∗C) ∩KerC.

This implies that, for any λ, the operator L−λC is non-injective and, consequently,
non-invertible, in contrast to the assumption. In fact, for any λ, one has

(L− λC)x∗ = (L− λ∗C)x∗ − (λ− λ∗)Cx∗ = 0.
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Remark 3.2. If the operator C is compact, then, from the assumption that L−λC
is invertible for some λ̂ ∈ R, it follows that L − λC is Fredholm of index zero for
any λ ∈ R and, consequently, the set of the eigenvalues of problem (3.1) is discrete.
Moreover, Ker(L− λC) is always finite dimensional, and so is the intersection

Img(L− λC) ∩ C(Ker(L− λC)).

Consequently, if this intersection is the singleton {0}, taking into account Remark
3.1 and the fact that L− λC ∈ Φ0(G,H), one has

H = Img(L− λC)⊕ C(Ker(L− λC)).

To prove Remark 3.2 notice that, if L − λ̂C is invertible, then it is trivially
Fredholm of index zero. Now, given any λ ∈ R, one has

(L− λC) = (L− λ̂C)− (λ− λ̂)C.

Thus, because of the compactness of C, from property (F3) of Fredholm operators,
one gets that L− λC is also Fredholm of index zero. Finally, the set of the eigen-
values of problem (3.1) is discrete since so is, according to the spectral theory of

linear operators, the set of the characteristic values of (L− λ̂C)−1C.

Because of Remark 3.2,

• from now until the end of this section we assume that the operator
C is compact.

Observe that the function ψ defined above is the restriction to R×S of the
nonlinear smooth map

ψ : R×G→ H, (λ, x) 7→ Lx− λCx.

According to Remark 3.2, any partial map ψλ : G → H of ψ is Fredholm of index
zero. Since the map σ : R×G → G given by σ(λ, x) = x is clearly Φ1, the same
holds true, because of the property (F2) of Fredholm operators, for the composition
ψ = ψλ ◦ σ. Consequently, again because of property (F2), one has that the
restriction ψ of ψ to the 1-codimensional submanifold R×S of R×G is Φ0.

Notice that, if dimG = 1, the cylinder R×S is disconnected: it is the union of
two horizontal lines, R×{−1} and R×{1}. Because of this, to make some statements
simpler,

• from now on, unless otherwise stated, we assume that the dimen-
sion of the space G is greater than 1.

In this case the cylinder R×S is connected, and simply connected if dimG > 2.
It is actually contractible if G is infinite dimensional. Therefore, the Φ0-map ψ,
defined above, is orientable and admits exactly two orientations. We choose one of
them and

• hereafter we assume that ψ is oriented.

Remark 3.3. Let λ̂ ∈ R be such that L − λ̂C is invertible and let Z : H → G
denote its inverse. Then, given any λ ∈ R, the two equations

• ψλ(x) = (L− λC)x = 0 ∈ H,

• ηλ(x) = Zψλ(x) = (I − (λ− λ̂)ZC)x = 0 ∈ G
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are equivalent (I being the identity on G). Therefore, if B denotes the unit ball of G,
the Leray–Schauder degree with target 0 ∈ G, degLS(ηλ, B), of the compact vector
field ηλ is well defined whenever λ is not an eigenvalue of the equation Lx = λCx.

Observe that, as a consequence of the homotopy invariance property of the
Leray–Schauder degree, the function λ 7→ degLS(ηλ, B) is constant on any interval
in which it is defined. Moreover, in these intervals, degLS(ηλ, B) is either 1 or −1,
since the equation ηλ(x) = 0 has only one solution: the regular point 0 ∈ G.

Remark 3.4. Let U be an isolating neighborhood of a compact subset of the set
S of the eigenpoints of (3.1), and let Z : H → G be as in Remark 3.3. Then
degbf (ψ,U) = degbf (η, U), provided that the map η = Zψ is the oriented composi-
tion obtained by considering Z as a naturally oriented diffeomorphism.

Concerning possible relations between the LS-degree of ηλ and the bf -degree of
ψ (or, equivalently, of η = Zψ), we believe that the following is true (but up to
now we were unable to prove or disprove).

Conjecture 3.5. Let [α, β] be a compact (nontrivial) real interval such that the
extremes are not eigenvalues of Lx = λCx. Then the bf -degree of ψ (or, equival-
ently, of η = Zψ) on the open subset U = (α, β)×S of R×S is different from zero
if and only if degLS(ηα, B) 6= degLS(ηβ , B).

In support of the above conjecture we observe that both the conditions

degbf (ψ,U) 6= 0 and degLS(ηα, B) 6= degLS(ηβ , B)

imply the existence of at least one eigenpoint p∗ = (λ∗, x∗) ∈ U . The first one
because of the existence property of the bf -degree and the last one due to the
homotopy invariance property of the LS-degree.

Definition 3.6. An eigenpoint (λ∗, x∗) of (3.1) is said to be simple provided that
the operator T = L− λ∗C is Fredholm of index zero and satisfies the conditions:

(1) KerT = Rx∗,
(2) Cx∗ /∈ Img T .

We point out that, if an eigenpoint p∗ = (λ∗, x∗) is simple, then the correspond-
ing eigenset {λ∗}×Sλ∗ is disconnected. In fact, it has only two elements: p∗ and
its twin eigenpoint p̄∗ = (λ∗,−x∗), which is as well simple.

The following theorem obtained in [7] was essential in the proofs of some results
in [7] concerning perturbations of (3.1), as problem (4.1) in the next section.

Theorem 3.7. In addition to the compactness of C, assume that p∗ = (λ∗, x∗) and
p̄∗ = (λ∗,−x∗) are two simple twin eigenpoints of (3.1). Then, the contributions of
p and p̄ to the bf -degree of ψ are equal: they are both either 1 or −1 depending on
the orientation of ψ. Consequently, if U is an isolating neighborhood of the eigenset
{λ∗}×Sλ∗ , one has degbf (ψ,U) = ±2.

We close this section strictly devoted to the unperturbed eigenvalue problem
(3.1) with a consequence of Theorem 3.7, which will be crucial in the proof of our
main result (Theorem 4.4 in Section 4).

Theorem 3.8. Let λ∗ ∈ R, put T = L− λ∗C, and suppose that

(H1) C is a compact operator,
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(H2) KerT is odd dimensional,
(H3) Img T ∩ C(KerT ) = {0}.

Then, given (in R×S) an isolating neighborhood U of the eigenset {λ∗}×Sλ∗ , one
has degbf (ψ,U) 6= 0.

Proof. Because of the assumption Img T ∩C(KerT ) = {0}, as well as the fact that
T is Fredholm of index zero, we can split the spaces G and H as follows:

G = G1 ⊕G2 with G1 = (KerT )⊥ and G2 = KerT ;

H = H1 ⊕H2 with H1 = Img T and H2 = C(KerT ).

With these splittings, T and C can be represented in block matrix form as follows:

T =

(
T11 0

0 0

)
, C =

(
C11 0

C21 C22

)
.

The operators T11 : G1 → H1 and C22 : G2 → H2 are isomorphisms (the second one
because of Remark 3.1), while C11 : G1 → H1 and C21 : G1 → H2 are, respectively,
compact and finite dimensional.

We can equivalently regard the equation ψ(λ, x) = 0 as Zψ(λ, x) = 0, where
Z : H → G is an isomorphism. We choose Z as follows:

Z =

 T−111 0

0 C−122

 .

Given any λ ∈ R, the operator ψλ = L − λC ∈ L(G,H) can be written as
T − (λ−λ∗)C. Therefore, putting η = Zψ : R×G→ G, the partial map ηλ : G→ G
(see Notation 2.11) can be represented as

ηλ =

 I11 − (λ− λ∗)Ĉ11 0

−(λ− λ∗)Ĉ21 λ∗I22 − λI22

 ,

where I is the identity on G = G1 ⊕ G2 and Ĉ = ZC (observe that Ĉ22 coincides
with the identity I22 ∈ L(G2)).

This shows that, given any λ ∈ R, the endomorphism ηλ : G → G is a compact
vector field. Therefore, its Leray–Schauder degree on the unit ball B of G is well
defined whenever λ is not an eigenvalue of the equation Lx = λCx, and this happens
when λ is close to, but different from, λ∗. Since G2 is odd dimensional and, because
of assumption (H3), the geometric and algebraic multiplicities of λ∗ coincide, the
function λ 7→ degLS(ηλ, B) has a sign-jump crossing λ∗. Therefore, if Conjecture
3.5 were true, we would have done. So we need to proceed differently.

We consider an isolating neighborhood of the eigenset {λ∗}×Sλ∗ of the type
U = (α, β)×S and we approximate the family of operators ηλ, λ ∈ [α, β], with a
family η ελ ∈ L(G), λ ∈ [α, β], having in (α, β) only simple eigenvalues; the number
of them equal to the dimension of G2 = KerT .

First of all we point out that

• the operator I11 − (λ− λ∗)Ĉ11 ∈ L(G1) is invertible for all λ ∈ [α, β],

since otherwise the equation Lx = λCx would have eigenvalues different from λ∗
in the interval [α, β].
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Now, given ε > 0 such that (λ∗ − ε, λ∗ + ε) ⊂ (α, β), we choose a linear operator
Aε ∈ L(G2) with the following properties:

• in the operator norm, the distance between Aε and λ∗I22 is less than ε,

• the eigenvalues of Aε are real and simple,

• any eigenvalue λ of Aε is such that |λ− λ∗| < ε.

For any λ ∈ R we define η ελ ∈ L(G1 ⊕G2) by

η ελ =

 I11 − (λ− λ∗)Ĉ11 0

−(λ− λ∗)Ĉ21 Aε − λI22

 .

Then, any eigenvalue λ of Aε is as well an eigenvalue of the equation η ελ(x) = 0, and
viceversa provided that λ ∈ [α, β]. Therefore, η ελ(x) = 0 has exactly n = dim(G2)
simple eigenvalues in the interval (α, β). Consequently, the function

ηε : R×S→ G, (λ, x) 7→ η ελ(x)

has exactly n eigensets in the open subset U = (α, β)×S of the cylinder R×S, all of
them corresponding to a simple eigenvalue. Therefore, according to Theorem 3.7,
the contribution of each of them to degbf (ηε, U) is either 2 or −2. Consequently,
taking into account that n is odd, one gets degbf (ηε, U) 6= 0.

Let the isomorphism Z be naturally oriented and let the restriction η of η to the
manifold R×S be oriented according to the composition Zψ. Thus, because of the
topological invariance property of the bf -degree, we get

degbf (η, U) = degbf (ψ,U).

Hence, it remains to show that, if ε > 0 is sufficiently small, then

degbf (ηε, U) = degbf (η, U).

In fact, this is a consequence of the homotopy invariance property of the bf -degree.
To see this it is sufficient to show that (if ε is small) the homotopy h : [0, 1]×U → G,
defined by h(t, λ, x) = tηε(λ, x) + (1− t)η(λ, x), is admissible. That is,

h(t, λ, x) 6= 0 for t ∈ [0, 1] and (λ, x) ∈ ∂U = {(λ, x) ∈ [α, β]×S : λ = α or λ = β}.

Let us prove that this is true for the left boundary of U ; that is, for λ = α. The
argument for λ = β will be the same.

We need to show that (if ε is small) the linear operator At = tη εα + (1− t)ηα of
L(G) is invertible for any t ∈ [0, 1]. In fact, since A0 = ηα is invertible, and the set
of the invertible operators of L(G) is open, this holds true for all At provided that
ε is sufficiently small. �

4. The perturbed eigenvalue problem and global continuation

Here, as in Section 3, G and H denote two real Hilbert spaces, L,C : G→ H are
bounded linear operators, S is the unit sphere of G and, as in problem (3.1), the
operator L− λC is invertible for some λ ∈ R.

Consider the perturbed eigenvalue problem

(4.1)

{
Lx+ sN(x) = λCx

x ∈ S,

where N : S→ H is a C1 compact map and s is a real parameter.
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A solution of (4.1) is a triple (s, λ, x) ∈ R×R×S satisfying (4.1). The element
x ∈ S is a unit eigenvector corresponding to the eigenpair (s, λ).

The set of solutions of (4.1) will be denoted by Σ and E is the subset of R2 of
the eigenpairs. Notice that E is the projection of Σ into the sλ-plane and the s = 0
slice Σ0 of Σ is the same as the set S = ψ−1(0) of the eigenpoints of (3.1), where
ψ has been defined in the previous section.

A solution (s, λ, x) of (4.1) is regarded as trivial if s = 0. In this case p = (λ, x)
is the corresponding eigenpoint of problem (3.1). When p is simple, the triple
(0, λ, x) ∈ Σ will be as well said to be simple. A nonempty subset of Σ of the type
{0}×{λ}×Sλ will be called a solution-sphere.

We consider the subset {(s, λ, x) ∈ Σ : s = 0} = {0}×Σ0 = {0}×S of the trivial
solutions of Σ as a distinguished subset. Thus, it makes sense to call a solution
q∗ = (0, λ∗, x∗) of (4.1) a bifurcation point if any neighborhood of q∗ in Σ contains
nontrivial solutions.

We say that a bifurcation point q∗ = (0, λ∗, x∗) is global (in the sense of Ra-
binowitz [21]) if in the set of nontrivial solutions there exists a connected com-
ponent, called global (bifurcating) branch, whose closure in Σ contains q∗ and it is
either unbounded or includes a trivial solution q∗ = (0, λ∗, x∗) with λ∗ 6= λ∗. In
the second case q∗ is as well a global bifurcation point.

A meaningful case is when a bifurcation point q∗ = (0, λ∗, x∗) belongs to a
connected solution-sphere {0}×{λ∗}×Sλ∗ . In this case the dimension of Sλ∗ is
positive and we will simply say that x∗ is a bifurcation point. In fact, 0 and λ∗
being known, x∗ can be regarded as an alias of q∗.

For a necessary condition as well as some sufficient conditions for a point x∗ of
a connected eigensphere to be a bifurcation point see [15]. Other results regarding
the existence of bifurcation points belonging to even-dimensional eigenspheres can
be found in [2–7,16,17,19].

As already pointed out, if the operator C is compact, then ψ : R×S → H is
Fredholm of index zero, and this is crucial for the global results regarding the
perturbed eigenvalue problem (4.1). Because of this,

• from now on, unless otherwise stated, we will tacitly assume that
the linear operator C is compact.

We define the C1-map

ψ+ : R×R×S→ H, (s, λ, x) 7→ ψ(λ, x) + sN(x),

in which ψ : R×S→ H, as in Section 3, is given by ψ(λ, x) = Lx−λCx. Therefore
the set (ψ+)−1(0) of the zeros of ψ+ coincides with Σ.

As shown in [7], because of the compactness of C and N , one gets that

• ψ+ is proper on any bounded and closed subset of its domain.

Consequently, any bounded connected component of Σ is compact. This fact will
be useful later.

Notice that ψ+ is the restriction to the manifold R×R×S of the nonlinear map

ψ
+

: R×R×G→ H, (s, λ, x) 7→ ψ(λ, x) + sN(x),

where ψ is as in Section 3 and N is the positively homogeneous extension of N .

The following result of [7] is crucial for proving the existence of global bifurcation
points.
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Theorem 4.1. Given an open subset Ω of R×R×S, let

Ω0 =
{

(λ, x) ∈ R×S : (0, λ, x) ∈ Ω
}

be its 0-slice. If degbf (ψ,Ω0) is well defined and nonzero, then Ω contains a con-
nected set of nontrivial solutions whose closure in Ω is non-compact and meets at
least one trivial solution of (4.1).

Corollary 4.2 below, which was deduced in [7] from Theorem 4.1, asserts that the
contribution to the bf -degree of the 0-slice of any compact (connected) component
of Σ is null. We will need this basic property later.

Corollary 4.2. Let D be a compact component of Σ, and let D0 ⊂ R×S be its
(possibly empty) 0-slice. Then, if U ⊂ R×S is an isolating neighborhood of D0, one
has degbf (ψ,U) = 0.

The following result, obtained in [7, Theorem 4.5], regards the existence of a
global branch of solutions emanating from a trivial solution of problem (4.1) which
corresponds to a simple eigenpoint of (3.1).

Theorem 4.3. If (λ∗, x∗) is a simple eigenpoint of problem (3.1), then, in the set
Σ of the solutions of (4.1), the connected component containing (0, λ∗, x∗) is either
unbounded or includes a trivial solution (0, λ∗, x∗) with λ∗ 6= λ∗.

We are now ready to prove our main result, which extends Theorem 4.3 and
provides a global version of Theorem 3.9 in [19], the latter concerning the existence
of local bifurcation points belonging to even dimensional eigenspheres.

Theorem 4.4. In addition to the compactness of C, let (λ∗, x∗) be an eigenpoint
of (3.1) and denote by T the non-invertible operator L− λ∗C. Assume that

• KerT is odd dimensional,
• Img T ∩ C(KerT ) = {0}.

Then, in the set Σ of the solutions of (4.1), the connected component containing
(0, λ∗, x∗) is either unbounded or includes a trivial solution (0, λ∗, x∗) with λ∗ 6= λ∗.

Proof. Because of the compactness of C, according to Remark 3.2, the operator
L−λC is Fredholm of index zero for all λ ∈ R. Moreover, the set of the eigenvalues
of problem (3.1) is discrete. Consequently, the eigenset {λ∗}×Sλ∗ , which is compact
and nonempty, is relatively open in the set S of the eigenpoints. Thus, it admits
an isolating neighborhood U ⊂ R×S and, therefore, degbf (ψ,U) is well defined.

Denote by D the connected component of Σ containing (0, λ∗, x∗). We may
assume that D is bounded. Thus, it is actually compact, since ψ+ is proper on any
bounded and closed subset of R×R×S. We need to prove that D contains a trivial
solution (0, λ∗, x∗) with λ∗ 6= λ∗.

Assume, by contradiction, that this is not the case. Then the 0-slice D0 of D is
contained in the eigenset {λ∗}×Sλ∗ . We will show that this contradicts Corollary
4.2. We distinguish two cases: n = 1 and n > 1, where n is the dimension of KerT .

Case n = 1. Because of the assumption Img T ∩C(KerT ) = {0}, the eigenpoint
p∗ = (λ∗, x∗) is simple and {λ∗}×Sλ∗ has only two points: p∗ = (λ∗, x∗) and
p̄∗ = (λ∗,−x∗). In this case, according to Theorem 3.7, the contribution to the
bf -degree of any subset of {λ∗}×Sλ∗ is different from zero, and this, having assumed
D0 ⊆ {λ∗}×Sλ∗ , is incompatible with Corollary 4.2.
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Case n > 1. The solution-sphere {0}×{λ∗}×Sλ∗ is connected and, consequently,
it is contained in the component D of Σ. Thus, the eigenset {λ∗}×Sλ∗ is contained
in the slice D0 of D. Having assumed D0 ⊆ {λ∗}×Sλ∗ , we get D0 = {λ∗}×Sλ∗ .
Hence, because of Theorem 3.8, given an isolating neighborhood U of D0, one gets
degbf (ψ,U) 6= 0, and we obtain a contradiction with Corollary 4.2. �

Remark 4.5. Under the notation and assumptions of Theorem 4.4 suppose, in
addition, that dim(KerT ) > 1. Then, the connected component D containing
(0, λ∗, x∗) contains as well the connected solution-sphere D∗ = {0}×{λ∗}×Sλ∗ .

This implies that there exists at least one point q̂ = (0, λ∗, x̂) ∈ D∗ which is

in the closure D \ D∗ of the difference D \ D∗. Thus, q̂ (or, equivalently, its alias
x̂ ∈ Sλ∗) is a global bifurcation point.

5. Some illustrating examples

In this section we provide three examples in `2 concerning Theorem 4.4. The
dimensions of KerT (where T = L−λ∗C) are, respectively, 3, 2, and 1. The second
example, in which KerT is two dimensional, shows that in Theorem 4.4, as well
as in Remark 4.5, the hypothesis of the odd dimensionality of KerT cannot be
removed, the other assumptions remaining valid.

Given a positive integer k, let Tk ∈ L(`2) be the bounded linear operator that
to any x = (ξ1, ξ2, ξ3, . . . ) ∈ `2 associates the element

Tkx = (0, 0, . . . , 0, ξk+1, ξk+2, . . . ),

in which the first k components are 0. Notice that Tk is Fredholm of index zero
and its kernel is the k-dimensional space

KerTk = {x ∈ `2 : x = (ξ1, ξ2, . . . , ξk, 0, 0, . . . )},
which is orthogonal to Img Tk.

Hereafter, C will be the well-known compact linear operator defined by

(ξ1, ξ2, ξ3, . . . ) 7→ (ξ1/1, ξ2/2, ξ3/3, . . . , ξn/n, . . . ).

Given any compact (possibly nonlinear) map N : `2 → `2 of class C1, consider
the perturbed eigenvalue problem

(5.1)

{
Tkx+ sN(x) = λCx,

x ∈ S,

where S is the unit sphere of `2. As before, we denote by Σ the set of solutions
(s, λ, x) of (5.1).

Observe that, for any k ∈ N, k ≥ 1, λ∗ = 0 is an eigenvalue of the unperturbed
equation Tkx = λCx and the condition Img Tk ∩ C(KerTk) = {0} is satisfied.
Therefore, according to Theorem 4.4, given any positive odd integer k, any compact
perturbing map N : `2 → `2 of class C1, and any x∗ ∈ S ∩ KerTk, the connected
component of Σ containing (0, 0, x∗) is either unbounded or encounters a trivial
solution (0, λ∗, x∗) with λ∗ 6= 0.

In the three examples below we will check whether or not the assertions of
Theorem 4.4 and Remark 4.5 hold, by taking, for all of them, the same perturbing
map. Namely,

N : `2 → `2, (ξ1, ξ2, ξ3, ξ4, . . . ) 7→ (−ξ2, ξ1,−ξ4, ξ3, 0, 0, 0, . . . ).
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Example 5.1 (k = 3). The eigenvalues of the unperturbed equation T3x = λCx
are 0, 4, 5, 6, . . . The first one, λ∗ = 0, has geometric and algebraic multiplicity 3
and all the other eigenvalues are simple.

A standard computation shows that, in the sλ-plane, the set E of the eigenpairs
has a connected subset E1 satisfying the equation 3s2+(λ−2)2/4 = 1, corresponding
to eigenvectors of the type (0, 0, ξ3, ξ4, 0, 0, ...). The set E1 is an ellipse with center

(0, 2) and half-axes 1/
√

3 and 2. Observe that it includes the eigenpair (s, λ) =
(0, 0). All the other eigenpairs are the points of the horizontal lines λ = 5, λ = 6,
λ = 7, etc. Thus, the connected component in Σ containing any trivial solution
(0, λ, x) with eigenvalue λ ≥ 5 is unbounded, and this agrees with Theorem 4.4.

The above ellipse can be parametrized by s = (1/
√

3) sin θ, λ = 2(1 − cos θ),
θ ∈ [0, 2π], and for any θ in the open interval (0, 2π), the kernel of the equation

T3x+ (1/
√

3) sin θNx− 2(1− cos θ)Cx = 0

is 1-dimensional and spanned by the vector

x(θ) = (0, 0, (1/
√

3) sin θ,−(2/3)(1− cos θ), 0, 0, . . . ).

Since E1 is bounded, so is the connected component D of Σ containing the
2-dimensional solution-sphere D∗ = {0}×{λ∗}×Sλ∗ (recall that λ∗ = 0). As we
shall see, D includes the twin trivial solutions (0, λ∗,±x∗), where

λ∗ = 4 and x∗ = x(π)/‖x(π)‖ = (0, 0, 0, 1, 0, 0 . . . ).

According to Remark 4.5, there exists at least one bifurcation point x̂ ∈ Sλ∗ .
Actually, in this case one gets exactly two (global) bifurcation points. This is due
to the fact that D \ D∗ has two disjoint “twin” branches whose closures meet the
solution-sphere D∗. The branches can be parametrized with θ ∈ (0, 2π) as follows:

q(θ) =
(
(1/
√

3) sin θ, 2(1− cos θ), x(θ)/‖x(θ)‖
)
,

q̄(θ) =
(
(1/
√

3) sin θ, 2(1− cos θ),−x(θ)/‖x(θ)‖
)
.

Then, if the following limits exist:

lim
θ→0

q(θ) and lim
θ→0

q̄(θ),

we get the bifurcation points (as elements of D∗). Equivalently, to find the aliases
of these points (that is, the corresponding elements in the eigensphere Sλ∗) we
compute

± lim
θ→0

(x(θ)/‖x(θ)‖)

obtaining ±(0, 0, 1, 0, 0, . . . ) ∈ Sλ∗ . In fact, to compute the limits, observe that
sin θ = us(θ)θ and 2(1− cos θ) = uc(θ)θ

2, where us and uc are continuous functions
such that us(0) = uc(0) = 1. Hence, one quickly obtains

lim
θ→0

(1/
√

3) sin θ√
(1/3) sin2 θ + (4/9)(1− cos θ)2

= 1,

lim
θ→0

−(2/3)(1− cos θ)√
(1/3) sin2 θ + (4/9)(1− cos θ)2

= 0.

Example 5.2 (k = 2). The eigenvalues of the unperturbed equation T2x = λCx
are 0, 3, 4, 5, 6, . . . The first one, λ∗ = 0, has geometric and algebraic multiplicity
2 and all the others are simple.
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As in Example 5.1, for any eigenvalue λ ≥ 5, one gets an horizontal line of
eigenpairs containing (0, λ). Moreover, as one can check, the trivial eigenpairs
(0, 3) and (0, 4) are vertices of an ellipse of eigenpairs with center (0, 7/2) and half-

axes 1/
√

48 and 1/2, corresponding, as in Example 5.1, to eigenvectors of the type
(0, 0, ξ3, ξ4, 0, 0, ...). However, in a neighborhood of the origin of the sλ-plane there
are no eigenpairs, except the isolated one (0, 0). This means that the solution-circle
D∗ = {0}×{λ∗}×Sλ∗ is an isolated subset of Σ. Therefore, the assertions of Theorem
4.4 and Remark 4.5 do not hold in this case. Moreover, according to Corollary 4.2,
the contribution of D∗ to the bf -degree of the map ψ is zero.

In conclusion, in Theorem 4.4 and Remark 4.5, the assumption that KerT is
odd dimensional cannot be removed.

Example 5.3 (k = 1). In this case the eigenvalues of the unperturbed problem
are 0, 2, 3, 4, 5, . . . All of them are simple. As in the previous two examples, the
sλ-plane contains infinitely many horizontal lines of eigenpairs. Their equations
are λ = 5, λ = 6, λ = 7, . . .

In addition to the horizontal lines, the set of the eigenpairs has two bounded
components: an ellipse with center (0, 1) and half-axes 1/

√
2 and 1, therefore con-

taining (0, 0) and (0, 2); and, as in Example 5.2, an ellipse joining (0, 3) with (0, 4),

with center (0, 7/2) and half-axes 1/
√

48 and 1/2.
Finally, one can check that, in accord with Theorem 4.4, given any one of the two

points of the 0-dimensional solution-sphere {0}×{0}×S0, its connected component
in Σ is bounded and contains a point of {0}×{2}×S2. This agrees with Theorem 4.4.
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sità degli Studi di Firenze, Via S. Marta 3, I-50139 Florence, Italy - E-mail address:

massimo.furi@unifi.it

Maria Patrizia Pera - Dipartimento di Matematica e Informatica “Ulisse Dini”, Uni-
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