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Abstract. We consider the nonlinear eigenvalue problem Lx+εN(x) = λCx,

‖x‖ = 1, where ε, λ are real parameters, L,C : G → H are bounded linear

operators between separable real Hilbert spaces, andN : S → H is a continuous
map defined on the unit sphere of G. We prove a global persistence result

regarding the set Σ of the solutions (x, ε, λ) ∈ S × R × R of this problem.

Namely, if the operators N and C are compact, under suitable assumptions
on a solution p∗ = (x∗, 0, λ∗) of the unperturbed problem, we prove that the

connected component of Σ containing p∗ is either unbounded or meets a triple

p∗ = (x∗, 0, λ∗) with p∗ 6= p∗. When C is the identity and G = H is finite
dimensional, the assumptions on (x∗, 0, λ∗) mean that x∗ is an eigenvector of L

whose corresponding eigenvalue λ∗ is simple. Therefore, we extend a previous

result obtained by the authors in the finite dimensional setting.
Our work is inspired by a paper of R. Chiappinelli concerning the local

persistence property of the unit eigenvectors of perturbed self-adjoint operators

in a real Hilbert space.

Dedicated to the memory of our dear friend and exceptional mathematician Alfonso Vignoli

1. Introduction

In this paper we study a nonlinear eigenvalue problem of the type

(1.1)

{
Lx+ εN(x) = λCx,

x ∈ S,
where ε, λ ∈ R, L,C : G → H are bounded linear operators between real Hilbert
spaces, and N : S → H is a continuous map defined on the unit sphere of G.

Problem (1.1) can be thought as a nonlinear perturbation of the eigenvalue
problem Lx = λCx, where, as usual, by abuse of terminology, λ∗ ∈ R is said to be
an eigenvalue of (the equation) Lx = λCx if the operator L− λ∗C is not injective.

By a solution of (1.1) we mean a triple (x, ε, λ) which satisfies the system, and
we call (ε, λ) the eigenpair corresponding to the (unit) eigenvector x. The solutions
and the eigenpairs with ε = 0 are said to be trivial. The set of all the solutions is
denoted by Σ, while Σ0 stands for its subset of the trivial ones. Obviously, Σ and
Σ0 are closed in S × R× R.
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Recently, in [3], under the assumptions that G = H = Rn and that C is the
identity I, we obtained a sort of “global persistence” of the solution triples of the
above problem (see Corollary 3.13 below). That is, we proved that, if λ∗ ∈ R
is a simple eigenvalue of L (in the usual sense) and x∗ is any one of the two
corresponding unit eigenvectors, then one gets the following

Assertion 1.1. The set Σ \Σ0 of the nontrivial solutions of (1.1) has a connected
subset whose closure contains p∗ = (x∗, 0, λ∗) and is either unbounded or meets a
trivial solution p∗ = (x∗, 0, λ∗) different from p∗.

Observe that this assertion does not imply that λ∗ is different from λ∗. However,
if λ∗ = λ∗, one necessarily has p∗ = (−x∗, 0, λ∗).

Taking into account that the closure of a connected set is connected, from As-
sertion 1.1 one gets that the component of Σ containing p∗ is either unbounded or
meets a trivial solution p∗ 6= p∗.

We point out that, given any trivial solution p∗ = (x∗, 0, λ∗) of (1.1), this last
statement is meaningful when (and only when) the kernel of L−λ∗C is one dimen-
sional, due to the fact that (only) in this case the sphere of the unit eigenvectors
corresponding to λ∗ is disconnected.

In this paper we extend the global persistence result obtained in [3] to the infinite
dimensional setting (see Theorem 3.10 below). Namely, given a trivial solution
p∗ = (x∗, 0, λ∗) of (1.1), we get Assertion 1.1 under the following assumptions:

• Ker(L− λ∗C) = Rx∗,
• Cx∗ 6= 0,
• Img(L− λ∗C)⊕ C(Ker(L− λ∗C)) = H,
• G and H are separable,
• N and C are compact.

For the sake of simplicity, when a trivial solution (x∗, 0, λ∗) of (1.1) satisfies
the first three of the above assumptions, we say that it is a simple solution. This
terminology is justified by the following Remark, whose easy proof is left to the
reader.

Remark 1.2. Let L : Rn → Rn be a linear operator. Then λ∗ ∈ R is a simple
eigenvalue of L and x∗ a corresponding unit eigenvector if and only if the triple
(x∗, 0, λ∗) is a simple solution of (1.1) in which G = H = Rn and C = I.

Despite the apparent similarity to the case in Rn, the study of the nonlinear
eigenvalue problem (1.1) in the infinite dimensional setting presents several diffi-
culties. First of all, to adapt the topological tools used in [3] to the new context,
we need the sphere S to be a differentiable manifold, and this forces us to work
in Hilbert spaces, since this property of S is generally false in Banach spaces. In
addition, our strategy requires that the nonlinear map N could be approximated by
smooth maps, as can be done in separable Hilbert spaces. This is the main reason
imposing us the separability assumption on G and H. Moreover, thanks to the
separability, we can apply the celebrated Sard–Smale result [18] about the density
of regular values of nonlinear Fredholm maps between separable Hilbert manifolds.
Finally, some results require the linear operator L − λC to be Fredholm of index
zero for any λ ∈ R, and this, based on the first three of the above assumptions, is
ensured by the compactness of C.
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Coming back to Assertion 1.1, we do not know whether or not our assumptions
imply that the eigenvalues λ∗ and λ∗ are different. Nevertheless, in [2], we tackled
the problem of the global persistence of the eigenvalues (more precisely, of the
eigenpairs) of (1.1) and, in particular, by means of the Leray–Schauder degree
theory we obtained the following

Theorem 1.3 (Global continuation of eigenpairs). Regarding problem (1.1), as-
sume that the operator L is Fredholm of index zero, that C and N are compact, and
that, for some λ∗ ∈ R, the kernel of L− λ∗C is odd dimensional and the condition

Img(L− λ∗C) + C(Ker(L− λ∗C)) = H

is satisfied.
Then, in the set of all the eigenpairs (ε, λ) of (1.1), the connected component con-

taining (0, λ∗) is either unbounded or meets a trivial eigenpair (0, λ∗) with λ∗ 6= λ∗.

We wish to point out that extending the above global continuation property,
from eigenpairs (ε, λ), which lie in R×R, to solution triples (x, ε, λ), which belong
to S × R × R ⊆ G × R × R, is a nontrivial issue and requires a different approach
from the one adopted in [2].

Because of Theorem 1.3, we are inclined to believe that our main result (Theorem
3.10) could be sharpened according to the following conjecture that until now we
have not been able to prove or deny:

Conjecture 1.4. Let (x∗, 0, λ∗) be a simple solution of problem (1.1). Suppose
that G and H are separable, and that N and C are compact.

Then, the set of the nontrivial solutions of (1.1) has a connected subset whose
closure contains (x∗, 0, λ∗) and is either unbounded or meets a trivial solution
(x∗, 0, λ∗) with λ∗ 6= λ∗.

Our investigation is mainly inspired by a paper of R. Chiappinelli [4], who ob-
tained a “local persistence” result for problem (1.1). Namely, assuming that

• L is a self-adjoint operator defined on G,
• C = I is the identity of G,
• N : S → G is Lipschitz continuous,
• λ∗ ∈ R is an isolated simple eigenvalue of L,
• x∗ is any one of the two unit eigenvectors corresponding to λ∗,

he proved that, defined in a neighborhood V of 0 ∈ R, there exists a G-valued
Lipschitz curve ε 7→ xε, as well as a real Lipschitz function ε 7→ λε, such that

Lxε + εN(xε) = λεxε, ‖xε‖ = 1,

for any ε ∈ V . Moreover, when ε = 0 one has x0 = x∗ and λ0 = λ∗.

The hypotheses of our Theorem 3.10 seem incompatible with the assumptions of
Chiappinelli’s local persistence result, since, what in (1.1) is the compact operator
C, in Chiappinelli’s case is the identity I, which is not compact when the space is
infinite dimensional. Nevertheless, under some natural conditions on the operator
L, our result applies. This is the case, for example, when L is compact or, more
generally, when it is of the type λ∗I +C, with λ∗ ∈ R and C compact. To see this,
put ε = −σ/µ and λ = λ∗ + 1/µ, and observe that the equation Lx+ εN(x) = λx
becomes x+ σN(x) = µCx, which is as in (1.1) with the identity in place of L.
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Further results regarding the local persistence of eigenvalues, as well as unit
eigenvectors, have been obtained in [1, 5, 7, 8, 9, 10] in the case in which the
eigenvalue λ∗ is not necessarily simple. For a general review on nonlinear eigen-
value problems and applications to differential equations, see e.g. [6] and references
therein.

The proof of Theorem 3.10 does not need any advanced tool (such as Leray-
Schauder degree theory) and mainly requires basic concepts in Differential Topology
and Functional Analysis that can be found in textbooks such as [15, 16, 17].

A crucial result in our investigation is Lemma 3.2, which concerns the unper-
turbed eigenvalue problem: it states that if (x∗, 0, λ∗) is a simple solution of (1.1),
then the map Ψ: S×R→ H, given by (x, λ) 7→ Lx−λCx, establishes a diffeomor-
phism from a neighborhood of (x∗, λ∗) in S × R onto a neighborhood of 0 ∈ H.

We close the paper with some illustrating examples showing situations in which
Theorem 3.10 applies. We also show that, in our main result, the hypothesis that
the “starting” trivial solution is simple cannot be removed.

2. Notation and preliminaries

In this section, in addition to introducing our notation, we will recall some
topological and algebraic concepts that will be needed in the following (for general
reference see e.g. [15, 16, 17]).

Throughout the paper, G, H and G×R×R indicate real Hilbert spaces. In each
one of these spaces, the inner product is denoted by 〈·, ·〉, or by a similar symbol,
such as 〈·, ·〉′, only when a possible misunderstanding regarding the hosting space
may occur. For example, the inner product of two elements p1 = (x1, ε1, λ1) and
p2 = (x2, ε2, λ2) of G× R× R is defined in the most natural way as follows:

〈p1, p2〉 = 〈x1, x2〉′ + ε1ε2 + λ1λ2,

where, here, 〈x1, x2〉′ is the inner product of x1, x2 ∈ G.
The norm in any Hilbert space will be tacitly assumed to be the standard one

associated with the inner product; namely, ‖ · ‖ =
√
〈·, ·〉.

By a manifold we shall always mean a smooth (i.e. C∞) boundaryless subman-
ifold of a real Hilbert space. Given a manifold M in a Hilbert space, say G, and
given a point p ∈M, the tangent space Tp(M) of M at p will be always identified
with a vector subspace of G; so that any v ∈ Tp(M) is the derivative γ′(0) of a
smooth path γ : (−1, 1)→ G whose image is in M and such that γ(0) = p.

Obviously, if M and N are two manifolds such that M ⊆ N and p ∈ M, then
Tp(M) is a subspace of Tp(N ).

By a smooth (i.e. C∞) map f : M → N between two manifolds M ⊆ G and
N ⊆ H we mean the restriction (to M as domain and to N as codomain) of a

smooth map f̂ : U → H defined on an open neighborhood U of M in G.
Throughout this section, M and N denote two manifolds embedded in G and

H respectively, and f is a smooth map from M into N .
Given p ∈ M, the differential dfp : Tp(M) → Tf(p)(N ) is the restriction of the

Fréchet differential df̂p : G → H of any smooth extension f̂ : U → H of f to an
open neighborhood U of M. To check that dfp is well defined, think about the
tangent vectors as derivatives of smooth curves.

If f is bijective and its inverse f−1 : N → M is smooth, then f is said to be a
diffeomorphism (of M onto N ). One also says that f maps M diffeomorphically
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onto N . It is known that f is a diffeomorphism if and only if it is a homeomorphism
with dfp invertible for any p ∈ M. Notice that the function t 7→ t3 from R onto
itself is smooth, is a homeomorphism, but not a diffeomorphism.

Here we will distinguish between differential and derivative. The first one is
always a linear map; the second one, when it makes sense, is a “representative” of
the differential. For example, if f : Rk → Rs and p ∈ Rk, the derivative of f at p,
f ′(p), is the matrix representing the differential dfp (the Jacobian matrix, in this
case); if f is a curve into G and p is in the domain of f , then f ′(p) is a vector of
G, namely f ′(p) = dfp(1).

The following well-known result regarding 1-dimensional manifolds will be crucial
in the next section.

Theorem 2.1 (On the classification of 1-dimensional manifolds). Any connected
(boundaryless) 1-dimensional manifold is either diffeomorphic to an open real in-
terval or to a circle.

The following result concerning diffeomorphisms, known as the “Local Inverse
Function Theorem”, will be useful in the next section.

Theorem 2.2 (On the local diffeomorphism). Let f : M → N be a smooth map
between two manifolds and let p ∈M.

Then f maps diffeomorphically an open neighborhood of p in M onto an open
neighborhood of f(p) in N if and only if the differential dfp : Tp(M)→ Tf(p)(N ) is
invertible.

Let, as above, f : M → N be a smooth map between two manifolds. Recall
that p ∈ M is said to be a regular point (of f) if the differential dfp is surjective;
otherwise p is called a critical point. An element q ∈ N is a critical value (of f)
if f−1(q) does not contain critical points; otherwise q is said to be a regular value.
Obviously, if q is not in the image of f , then it is a regular value. Notice that
“points” are in the domain and “values” in the codomain.

An useful consequence of the Implicit Function Theorem is the following

Theorem 2.3 (On regularly defined finite codimensional manifolds). Let f be a
smooth map from M into N . Assume that N is finite dimensional and that q ∈ N
is a regular value for f .

Then f−1(q), if nonempty, is a manifold whose codimension inM is the same as
the dimension of N . Moreover, for any p ∈ f−1(q), one has Tp(f

−1(q)) = Ker dfp.

For example, the unit sphere S of G is a 1-codimensional submanifold of G.
Moreover, given x∗ ∈ S, one has Tx∗(S) = (Rx∗)⊥ = {ẋ ∈ G : 〈x∗, ẋ〉 = 0}. To see
this, define f : G → R by f(x) = ‖x‖2, consider the regular value q = 1 ∈ R, and
apply Theorem 2.3.

Let X and Y denote metric spaces, and let g : X → Y be a continuous map.
One says that g is compact if it sends bounded subsets of X into relatively compact
subsets of Y , and that it is locally compact if, given any x ∈ X, the restriction of g
to a convenient neighborhood of x is a compact map.

The map g is said to be proper if g−1(K) is compact for any compact subset K
of Y . As one can easily check, if g is proper, then is a closed map, in the sense that
g(D) is closed in Y whenever D is closed in X.



6 P. BENEVIERI, A. CALAMAI, M. FURI, AND M.P. PERA

Recall that a subset D of X is called locally compact if any point of D admits
a neighborhood (in D) which is compact. Clearly, any (relatively) closed or (rela-
tively) open subset of a locally compact set is locally compact. Observe that the
union of two locally compact sets could not be locally compact (for example, add
a point to the boundary of the open unit disk in C).

Let hereafter E and F denote real Banach spaces, and let L(E,F ) be the Banach
space of all the bounded linear operators from E into F .

Recall that L ∈ L(E,F ) is said to be a Fredholm operator if both its kernel,
KerL, and its co-kernel, coKerL = F/ ImgL, are finite dimensional. The difference
of these dimensions is called the index of L and denoted by indL.

The following are some useful properties regarding Fredholm operators:

(1) the image of a Fredholm operator L ∈ L(E,F ) is a closed subspace of its
codomain F ;

(2) the index of the Fredholm operators is stable, in the sense that, in L(E,F ),
the set of Fredholm operators of a given index is open;

(3) if L ∈ L(E,F ) is Fredholm and C ∈ L(E,F ) is compact, then L + C is
Fredholm with ind(L+ C) = indL;

(4) the composition of two Fredholm operators is still Fredholm, and its index
is the sum of the indices of the composite operators;

(5) Fredholm operators are proper on bounded closed subsets of their domains.

A smooth map f : M→ N is said to be Fredholm of index n if so is the linear
operator dfp : Tp(M)→ Tf(p)(N ) for any p ∈M.

A fundamental result regarding Fredholm maps is the following infinite dimen-
sional version of the well-known Sard–Brown Lemma.

Theorem 2.4 (On the density of regular values [18]). If f : M→N is a Fredholm
map between two second countable manifolds, then the set of its regular values is
dense in N .

Regarding the notion of Fredholm map one has another useful consequence of
the Implicit Function Theorem.

Theorem 2.5 (On regularly defined finite dimensional manifolds). Let f : M→N
be a Fredholm map and let q ∈ N be a regular value for f .

Then f−1(q), if nonempty, is a manifold whose dimension is the same as the
index of f . Moreover, for any p ∈ f−1(q) one has Tp(f

−1(q)) = Ker dfp.

3. Results

Let G and H be two real Hilbert spaces, and consider the problem

(3.1)

{
Lx+ εN(x) = λCx,

x ∈ S,

where ε, λ ∈ R, L,C : G → H are bounded linear operators, and N : S → H is a
continuous map defined on the unit sphere of G.

A solution of (3.1) is a triple (x, ε, λ) which satisfies the system, and (ε, λ) is
called the eigenpair corresponding to the (unit) eigenvector x. The solutions and
the eigenpairs with ε = 0 are said to be trivial.
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By Σ we denote the set of the solutions of (3.1) and by E we designate its
projection into the ελ-plane. Notice that E coincides with the set of the eigenpairs
of (3.1). By Σ0 and E0 we mean, respectively, the sets of the trivial solutions and
the trivial eigenpairs of (3.1).

In order to simplify some statements, it is convenient to introduce the following

Definition 3.1. A trivial solution (x∗, 0, λ∗) of (3.1), as well as the corresponding
eigenpair (0, λ∗), will be called simple if the associated linear operator A = L−λ∗C
satisfies the following conditions:

(1) KerA = Rx∗,
(2) Cx∗ 6= 0,
(3) ImgA⊕ C(KerA) = H.

To proceed with the analysis of the structure of Σ, we need a result regarding
the linear eigenvalue problem Lx = λCx. Namely

Lemma 3.2. Assume that (x∗, 0, λ∗) is a simple solution of problem (3.1). Then,
the map

Ψ: S × R→ H, (x, λ) 7→ Lx− λCx,
sends, diffeomorphically, a neighborhood of (x∗, λ∗) in S × R onto a neighborhood
of the origin 0 ∈ H.

Proof. Let z∗ = (x∗, λ∗) and observe that the tangent space of S × R at z∗ is the
1-codimensional subspace

Tz∗(S × R) = Tx∗(S)× R = (Rx∗)⊥ × R
of G× R.

Because of the (Local) Inverse Function Theorem, it is enough to prove that the
differential dΨz∗ : Tz∗(S × R)→ H of Ψ at z∗ is an isomorphism.

As in the finite dimensional case (see the proof of Lemma 3.3 in [3]) one can
show that dΨz∗ is injective. Thus, its surjectivity will follow if we prove that it is
Fredholm of index zero.

To this purpose we regard the differential dΨz∗ : (Rx∗)⊥×R→ H as the sum of
two bounded linear operators, A and B, defined by

Aż = (L− λ∗C)ẋ and Bż = −λ̇Cx∗,

with ż = (ẋ, λ̇) ∈ (Rx∗)⊥ × R.
Concerning the operator A, observe that its kernel is the 1-dimensional subspace

{0} × R of (Rx∗)⊥ × R and its image coincides with that of L− λ∗C, whose codi-
mension is one. Thus A is Fredholm of index zero and, consequently, so is dΨz∗ ,
since the operator B is compact. This completes the proof. �

Lemma 3.2 allows us to provide an alternative proof of the result of Chiappinelli
mentioned in the Introduction. In fact, we get the following corollary, whose proof
is omitted, being essentially the same as that given in the finite dimensional setting
(see [3, Corollary 3.4]).

Corollary 3.3. Let (x∗, 0, λ∗) be a simple solution of problem (3.1) and assume
that N : S → H is a Lipschitz continuous map. Then there exists a neighborhood
(−δ, δ) of 0 ∈ R and a Lipschitz curve

ε ∈ (−δ, δ) 7→ (x(ε), λ(ε)) ∈ S × R
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such that (x(0), λ(0)) = (x∗, λ∗) and

Lx(ε) + εN(x(ε)) = λ(ε)Cx(ε), ∀ ε ∈ (−δ, δ).

Before proving our main theorem about global persistence we need some prelim-
inary results regarding some crucial properties of the map

Φ: S × R× R→ H, (x, ε, λ) 7→ Lx+ εN(x)− λCx,

whose set of zeros, Φ−1(0), coincides with Σ.
Incidentally, we observe that the function Ψ: S × R → H defined in Lemma

3.2 is the partial map of Φ corresponding to ε = 0. In other words, Ψ can be, and
occasionally will be, identified with the restriction of Φ to the subset Z = S×{0}×R
of the domain S × R × R of Φ. Because of this identification, the set Σ0 = Z ∩ Σ
of the trivial solutions of (3.1) may be regarded as Ψ−1(0).

We point out that S × R × R is a 1-codimensional submanifold of the Hilbert
space G× R× R and Z is a 1-codimensional submanifold of S × R× R.

The next lemma provides conditions on the operators L, C and N ensuring the
properness of the map Φ on bounded and closed subsets of S × R× R.

Lemma 3.4. Regarding problem (3.1), assume that C and N are compact, and
that L is a Fredholm operator.

Then the map Φ is proper on bounded closed sets.

Proof. Let K be a compact subset of H and D a bounded and closed subset of
S × R× R. We need to show that D ∩ Φ−1(K) is a compact set. To this purpose,
observe that the function Φ is the sum of three maps: L, N and C, given by
L(p) = Lx, N (p) = εN(x) and C(p) = −λCx, where p = (x, ε, λ).

The operator L, being Fredholm, is proper on bounded closed sets. Consequently,
as one can easily check, the map L has the same property. Since, by assumption,
the operators C and N are compact, so are the corresponding maps C and N . Thus,
C(D) and N (D) are relatively compact in H. Hence, the set K − N (D) − C(D)
is contained in a compact subset K of H. The assertion now follows from the fact
that D ∩ Φ−1(K) is a closed subset of the compact set D ∩ L−1(K). �

The next result provides sufficient conditions for the nonlinear map Φ to be
Fredholm. In order to make the statement meaningful, N is assumed to be smooth.

Lemma 3.5. Under the assumptions of Lemma 3.4 suppose, in addition, that N
is smooth and that the index of L is zero.

Then the map Φ is Fredholm of index 1.

Proof. Let L, N , C : S × R × R → H be as in the proof of Lemma 3.4. Since the
smooth maps N and C are compact, so are their differentials at any p ∈ S×R×R.
Therefore, recalling that Φ = L+N + C, it is enough to show that L is Fredholm
of index 1. To this purpose observe that L is the composition of three maps: the
projection P : S × R × R → S, the inclusion J : S ↪→ G and the linear operator
L : G → H. The first two maps, P and J , are Fredholm of index 2 and −1,
respectively. As L has index 0, the composite map L = L ◦ J ◦ P is Fredholm of
index 2− 1 + 0 = 1. �

The next result is crucial in the proof of Theorem 3.10.
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Lemma 3.6. Let p∗ = (x∗, 0, λ∗) be a simple solution of problem (3.1). Assume
that the operator C is compact and that N is compact and smooth.

Then, given a neighborhood U of p∗ in Z = S×{0}×R, there exists a neighbor-
hood V of 0 ∈ H such that, if q ∈ V is a regular value for Φ, the set Φ−1(q) contains
a smooth boundaryless connected curve that intersects U and is either unbounded
or diffeomorphic to a circle containing at least two points of Z.

Proof. Notice that, if the assertion holds for the neighborhood U , then it holds as
well for any W such that U ⊆ W ⊆ Z. Therefore, recalling that the restriction of
Φ to Z can be identified with the map Ψ of Lemma 3.2, we may assume that U is
so small that it is mapped by Φ diffeomorphically onto a neighborhood V of 0 ∈ H.
Moreover, as p∗ is simple, the operator A = L − λ∗C is Fredholm of index zero.
Consequently, so is L, because of the compactness of C.

Let q ∈ V be a regular value for Φ. Since, according to Lemma 3.5, the map Φ
is Fredholm of index 1, the set Φ−1(q) is a smooth (boundaryless) 1-dimensional
submanifold of S×R×R (see Theorem 2.5). Any component of Φ−1(q) is a closed
subset of S × R × R, which is either compact, and therefore diffeomorphic to a
circle, or non-compact, and consequently diffeomorphic to the open interval (0, 1),
according to Theorem 2.1.

Denote by Γ the component of Φ−1(q) containing the unique point p ∈ U such
that Φ(p) = q. In particular the assertion that Γ ∩ U is nonempty is verified.

Now, if Γ is unbounded, the proof is completed. Suppose, on the contrary, that
it is bounded. Then, due to the properness of Φ on bounded and closed sets ensured
by Lemma 3.4, the component Γ is compact and, therefore, diffeomorphic to the
unit circle S1.

Therefore, to complete the proof, it is sufficient to show that Γ intersects Z at
some point different from p. Namely, it is enough to prove that the continuous
function σ : (x, ε, λ) ∈ Γ 7→ ε ∈ R vanishes at some point of Γ \ {p}.

To this purpose we will show that the disjoint open subsets

Γ− = σ−1((−∞, 0)) and Γ+ = σ−1((0,+∞))

of the connected set Γ\{p} are both nonempty; and this will be obvious if we show
that the intersection at p between the curve Γ and the manifold Z is transver-
sal, which implies that σ has a sign-jump at p. Indeed, the transversality is
a consequence of the fact that the point p, apart of being regular for the map
Φ, is as well regular for the restriction of Φ to U , due to the diffeomorphism
Φ|U : U → V . In fact, as p is regular for Φ, one has Tp(Γ) = Ker dΦp (Theorem
2.5); and this 1-dimensional space is not contained in Tp(Z), since the operator
d(Φ|U )p : Tp(Z) → H, which coincides with the restriction of dΦp to Tp(Z), is
injective (it is actually invertible).

In conclusion, the union of the open sets Γ− and Γ+ cannot coincide with che
connected set Γ \ {p}. Therefore, the function σ vanishes at some point of Γ \ {p};
and this concludes the proof. �

The next lemma is a Whyburn-type topological result which is crucial in the
proof of Theorem 3.10.

Lemma 3.7 ([12]). Let Y0 be a compact subset of a locally compact metric space Y .
Assume that every compact subset of Y containing Y0 has nonempty boundary.
Then Y \Y0 contains a connected set whose closure in Y is non-compact and inter-
sects Y0.
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Recalling that Σ denotes the set of solutions of problem (3.1) and that Σ0 is its
subset of the trivial ones, the following simple result provides an example of locally
compact space, needed in the proof of Theorem 3.10.

Lemma 3.8. Assume that the operators N and C are compact and that p∗ is a
simple solution of problem (3.1).

Then, the metric subspace Y = (Σ \ Σ0) ∪ {p∗} of Σ is locally compact.

Proof. Observe that Σ0 = Z ∩ Σ, where Z = S × {0} × R. Therefore Σ0 is closed
in the metric space Σ = Φ−1(0), which is locally compact because of Lemma 3.4.
Clearly Y coincides with Σ \ (Σ0 \ {p∗}). Moreover Σ0 \ {p∗} is closed in Σ, the
point p∗ being isolated in the closed set Σ0 because of Lemma 3.2. Thus, the metric
space Y , as an open subset of Σ, is locally compact. �

From Lemmas 3.7 and 3.8 we derive the following

Lemma 3.9. Let the operators N and C be compact, and let p∗ be a simple solution
of problem (3.1). Assume that any compact subset of Y = (Σ\Σ0)∪{p∗} containing
p∗ has nonempty boundary in Y .

Then Σ \ Σ0 has a connected set whose closure in Σ contains p∗ and is either
unbounded or meets a trivial solution p∗ 6= p∗.

Proof. Because of Lemma 3.8 and our assumption, Lemma 3.7 applies to the metric
pair (Y, Y0), Y0 = {p∗}. Consequently, Y \Y0 = Σ\Σ0 has a connected subset, say
D, whose closure D̄ ∩ Y in Y is non-compact and contains p∗ (here D̄ denotes the
closure of D in Σ or, equivalently, in S × R× R).

Since p∗ belongs to the connected set D̄ (actually p∗ ∈ D̄ ∩ Y ), it is sufficient to
show that, if D̄ is bounded (hence compact, because of Lemma 3.4), then it must
intersect Σ0 \ {p∗}, and this is clearly true since otherwise D̄ would coincide with
D̄ ∩ Y , which is non-compact. �

We are now in a position to prove our main result regarding problem (3.1).

Theorem 3.10 (Global continuation of solution triples). Regarding problem (3.1),
assume that the spaces G and H are separable, that the operators N and C are
compact, and that p∗ = (x∗, 0, λ∗) is a simple solution.

Then, the set Σ \ Σ0 of the nontrivial solutions has a connected subset whose
closure in Σ contains p∗ and is either unbounded or meets a trivial solution p∗ 6= p∗.

Proof. Denoting by Y the locally compact metric space (Σ\Σ0)∪{p∗}, it is sufficient
to apply Lemma 3.9 by proving that any compact subset of Y containing p∗ has
nonempty boundary in Y .

By contradiction, assume there exists a compact subset K of Y containing p∗
whose boundary, in Y , is empty. This compact set is open in Y , therefore it is far
away from its (relatively) closed complement Y \K. Actually, it is also far away
from Σ \K = (Y \K)∪ (Σ0 \ {p∗}), this set being disjoint from Σ0 \ {p∗}, which is
closed according to Lemma 3.2. Consequently, there exists a bounded open subset
W of S × R× R such that W ∩ Σ = K and

(3.2) ∂W ∩ Σ = ∅.

Because of Lemma 3.2, we may suppose that the intersection U = Z∩W is mapped
by Φ diffeomorphically onto a neighborhood V of the origin 0 ∈ H.
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Since G is separable, given δ > 0, there exists a smooth map Nδ : S → H with
finite dimensional image and such that ‖N(x)−Nδ(x)‖ < δ for all x ∈ S. In fact, a
well known result in separable Hilbert spaces (see, for example, [11] and references

therein) ensures the existence of a smooth (δ/2)-approximation N̂δ of N , so that

the required map Nδ is obtained by composing N̂δ with the orthogonal projection
of H onto the vector space spanned by a (δ/2)-net of the totally bounded set N(S).
Now, define Φδ : S×R×R→ H by Φδ(x, ε, λ) = (L−λC)x+εNδ(x). This map is a
nonlinear Fredholm operator between two separable Hilbert manifolds. Therefore,
the celebrated Sard–Smale result [18] implies the existence of a regular value qδ ∈ V
of Φδ such that ‖qδ‖ < δ. By Lemma 3.6 we deduce that Φ−1δ (qδ) has a connected
subset Γδ that intersects U and is either unbounded or contains at least two points
of Z. Since Φ maps U diffeomorphically onto V (and coincides with Φδ on U), one
and only one of the points of Γδ lies in U . Therefore, in any of the two cases the
connected set Γδ must have points outside the bounded set W and, consequently,
must contain at least one point pδ ∈ ∂W .

Now, denoting pδ = (xδ, εδ, λδ), we have

‖Φ(pδ)‖ ≤ ‖Φδ(pδ)‖+ ‖Φ(pδ)− Φδ(pδ)‖ = ‖qδ‖+ |εδ|‖N(xδ)−Nδ(xδ)‖ ≤ δ + cδ,

where c = sup{|ε| : (x, ε, λ) ∈ ∂W}.
As a consequence we get inf{‖Φ(p)‖ : p ∈ ∂W} = 0. Thus, the properness of Φ

on ∂W (ensured by Lemma 3.4) implies the existence of a compact subset of ∂W
in which the infimum (and therefore the minimum) of the real functional ‖Φ‖ is
zero (to see this consider a minimizing sequence of ‖Φ‖ in ∂W , then add 0 ∈ H to
the image of this sequence in order to get a compact subset K of H, and take the
set Φ−1(K) ∩ ∂W ).

Hence, we obtain ∂W ∩ Φ−1(0) = ∂W ∩ Σ 6= ∅, contradicting (3.2), so that
Lemma 3.9 applies. �

Remark 3.11. Let p∗ = (x∗, 0, λ∗) be a trivial solution of problem (3.1), and
assume that the connected component of Σ containing p∗, call it Γ, is bounded.

Under the assumptions of Theorem 3.10, taking into account that the closure of
a connected set is still connected, one gets that

(3.3) Γ meets a point p∗ = (x∗, 0, λ∗) different from p∗.

Consequently, one necessarily has x∗ 6= x∗, since otherwise the condition Cx∗ 6=
0 would imply λ∗ = λ∗, contradicting p∗ 6= p∗. Obviously, one could have λ∗ = λ∗,
but in this case, p∗ being simple, one would obtain x∗ = −x∗.

We point out that assertion (3.3) is trivially satisfied even in most cases in which
p∗ is not simple. Namely, whenever dim(Ker(L−λ∗C)) > 1, since Γ contains (and
possibly coincides with) the geometric sphere(

Ker(L− λ∗C) ∩ S
)
× {(0, λ∗)},

made up of infinitely many trivial solutions, all having the same eigenvalue λ∗.
Neverthless, when p∗ is simple, Lemma 3.2 ensures that it is isolated in the set Σ0

of the trivial solutions; consequently, assertion (3.3) implies that Γ is not contained
in Σ0.

Under the assumptions of our main result, Theorem 1.3 ensures that, in the
set E of all the eigenpairs of (3.1), the connected component containing the simple
eigenpair (0, λ∗) is either unbounded or meets a trivial eigenpair (0, λ∗) with λ∗ 6=
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λ∗. For this reason we are inclined to believe that Theorem 3.10 could be extended
according to Conjecture 1.4.

Sometimes, a bounded linear operator A : G → H acting between real Hilbert
spaces is easily recognized as Fredholm of index zero. For example, this happens
when G and H have the same finite dimension, or when A is a compact linear
perturbation of one of the following operators (see e.g. [17]):

• an invertible operator L : G→ H;
• the restriction L of a surjective operator L̂ : Ĝ → H to a closed subspace
G of Ĝ, whose codimension is finite and the same as Ker L̂ (x ∈ G can be
regarded as a sort of boundary condition).
• a self-adjoint operator L : G→ G for which 0 ∈ R is an isolated eigenvalue

of finite multiplicity.

In these cases, in order to verify that a trivial solution of problem (3.1) is simple,
it may be convenient to take into consideration the following

Proposition 3.12. Let (x∗, 0, λ∗) be a trivial solution of problem (3.1). Assume
that λ∗ ∈ R and x∗ ∈ S are such that

(0) A = L− λ∗C is Fredholm of index zero
(1) KerA = Rx∗.

Then, (x∗, 0, λ∗) is simple if and only if the equation Ax = Cx∗ is unsolvable in G.

Proof. Assume first that the equation Ax = Cx∗ has no solutions. Thus, condi-
tion (2) of Definition 3.1 is satisfied (otherwise the above equation would admit
the trivial solution) and, obviously, Cx∗ 6∈ ImgA. Consequently, since conditions
(0) and (1) imply that ImgA has codimension one, the one-dimensional subspace
RCx∗ = C(KerA) of H intersects ImgA transversally, and this proves that condi-
tion (3) of Definition 3.1 is as well satisfied.

Conversely, since, as already pointed out, ImgA has codimension one, conditions
(1) and (3) of Definition 3.1 imply that Cx∗ 6∈ ImgA; that is, Ax = Cx∗ has no
solutions. �

We close this section with a straightforward consequence of Theorem 3.10 and
Remark 1.2 regarding the perturbed finite dimensional classical eigenvalue problem.

Corollary 3.13 (Global continuation in finite dimension [3]). In problem (3.1), let
G = H be finite dimensional. Suppose that C is the identity I of G, and let x∗ ∈ S
be an eigenvector of L corresponding to a simple eigenvalue λ∗.

Then, the set Σ \ Σ0 has a connected subset whose closure contains p∗ and is
either unbounded or meets a trivial solution p∗ 6= p∗.

4. Examples

In this last section we will see, in some examples, how Theorem 3.10 applies. In
particular we will show that, in our main result, the hypothesis that the “starting”
trivial solution is simple cannot be removed. In each example the real Hilbert
spaces G and H, as well as the operators L, N and C, will be explicitly introduced.
The norm in any Hilbert space will be the standard one associated with the inner
product. By S, Σ and E we shall always mean, respectively, the unit sphere of G,
the set of solutions of the given problem, and the set of the corresponding eigenpairs
(which, we recall, is the projection of Σ into R2). As in the previous section, Σ0 is
the subset of Σ of the trivial solutions.
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We begin with an elementary example regarding a perturbed two-dimensional
classical eigenvalue problem, whose set Σ is a (topological) circle and connects all
the trivial solutions which, in this case, are four (two for each eigenvalue of the
unperturbed problem) and all simple. As one can check, the projection of Σ onto
E is a double covering map.

Example 4.1. Let G = H = R2 and consider the problem

(4.1)

 x1 + εx2 = λx1,
−x2 − εx1 = λx2,
x21 + x22 = 1,

in which the operators L and N are defined by sending x = (x1, x2) ∈ G into
(x1,−x2) and (x2,−x1), respectively, and C is the identity.

The operator L has two simple eigenvalues: λ∗ = 1 and λ∗ = −1. Consequently,
one gets four trivial solutions of the above problem (all of them simple):(

± (1, 0), 0, 1
)

and
(
± (0, 1), 0,−1

)
.

Notice that the set E of the eigenpairs of (4.1) is the unit circle ε2 + λ2 = 1.
Therefore, Σ is necessarily bounded.

The eigenpairs (ε, λ) can be represented, parametrically, as (− sin θ, cos θ), with
θ ∈ [0, 2π] and, as one can check, given θ, the kernel of the linear operator

L− (sin θ)N − (cos θ)C

is spanned by the unit vector

x(θ) = (x1(θ), x2(θ)) = (cos(θ/2), sin(θ/2)).

Thus, Σ can be parametrized as follows:

θ ∈ [0, 4π] 7→ (x(θ),− sin θ, cos θ),

and this shows that Σ is a topological circle.
As one can easily check, Σ encounters all the four trivial solutions of problem

(4.1). Moreover, the set Σ \ Σ0 of the nontrivial solutions has four connected
components, each of them diffeomorphic to an open real interval and satisfying the
assertion of Conjecture 1.4 (and, consequently, the thesis of Theorem 3.10).

Incidentally, we observe that the projection of Σ onto the circle E is a double
covering map.

The following illustrating example regards a problem in which the unperturbed
equation has a unique eigenvalue. Since, as we shall see, the assumptions of The-
orem 3.10 are satisfied, according to Theorem 1.3, the set E of the eigenpairs is
unbounded and, consequently, so is the set Σ of the solution triples.

Example 4.2. Let H1([0, 2π],R) denote the space of all the absolutely continuous
functions x : [0, 2π] → R whose derivative is in L2([0, 2π],R). This is a separable
real Hilbert space with inner product

〈x, y〉1 =
1

2π

∫ 2π

0

(
x(s)y(s) + x′(s)y′(s)

)
ds.

Our source space G is the kernel of the continuous functional

x ∈ H1([0, 2π],R) 7→ x(2π)− x(0) =

∫ 2π

0

x′(s) ds.
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So that G is a closed, 1-codimensional subspace of H1([0, 2π],R). The target space
H is L2([0, 2π],R) with inner product

〈x, y〉 =
1

2π

∫ 2π

0

x(s)y(s) ds.

Consider the problem

(4.2)


x′(t) + ε sin t = λx(t),

x(0) = x(2π),

〈x, x〉1 = 1.

In abstract form, this can be written as{
Lx+ εN(x) = λCx,

x ∈ S,

where

• L : G→ H is the derivative x 7→ x′;
• N : G→ H is the (constant) map defined by N(x) = sin(·);
• C is the (compact) inclusion of G into H.

The unperturbed equation Lx = λCx has a unique eigenvalue, λ∗ = 0, whose
corresponding eigenspace, the kernel of L, is the set of constant functions. There-
fore, our problem has only two trivial solutions: (±x∗, 0, 0), where x∗ ∈ S is the
constant function t 7→ 1.

The operator A = L − λ∗C = L is Fredholm of index zero, since it is the
composition of the inclusion G ↪→ H1([0, 2π],R), which is Fredholm of index −1,
with the differential operator x ∈ H1([0, 2π],R) 7→ x′ ∈ H, which is Fredholm
of index 1 (being surjective with 1-dimensional kernel). Therefore, A satisfies the
conditions (0) and (1) of Proposition 3.12. Hence, the trivial solution (x∗, 0, 0) is
simple provided that the problem{

x′(t) = 1,

x(0) = x(2π)

has no solutions, and this is clearly true. Thus, Theorem 3.10 applies. Conse-
quently, according to Remark 3.11, the connected component Γ of Σ containing
(x∗, 0, 0) is either unbounded or meets (−x∗, 0, 0). As we shall see, Γ has both the
properties.

Standard computations show that, given any (ε, λ), the problem

(4.3)

{
x′(t) + ε sin t = λx(t),

x(0) = x(2π)

has a solution

x(t) =
ε

1 + λ2
(
λ sin t+ cos t

)
,

which is unique if and only if λ 6= 0, and its norm is |ε|/
√

1 + λ2.
Regarding the case λ = 0, given any ε, problem (4.3) has infinitely many solu-

tions: x(t) = c+ ε cos t (c ∈ R), with norm
√
c2 + ε2.
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Therefore, the set E of the eigenpairs is the union of three connected sets. One
is the segment [−1, 1] × {0}, corresponding to the case λ = 0. The other two are
the left and right branches of the hyperbola

ε2 − λ2 = 1.

Thus, E is unbounded and, consequently, so is the set Σ of all the solution triples,
E being its projection into R2.

Apart of being unbounded, the set E is connected, since both the branches of the
hyperbola have a point in common with the segment [−1, 1] × {0}. These points
are (−1, 0) for the left branch and (1, 0) for the right one.

Let us show that Σ is as well connected and, consequently, coincides with the
component Γ containing the trivial solution (x∗, 0, 0).

Obviously, Σ is the union of three sets, each of them “over” one of the following
three subsets of E : the segment [−1, 1]×{0}, and the left and right branches of the
hyperbola ε2 − λ2 = 1.

The bounded set over [−1, 1]×{0}, say Γs, regards the solutions x(t) = c+ε cos t,

corresponding to the case λ = 0 and having norm
√
c2 + ε2 = 1. Putting ε = sin θ

and c = cos θ, with θ ∈ [0, 2π], we get the following parametrization of Γs:

θ ∈ [0, 2π] 7→ (cos θ + sin θ cos(·), sin θ, 0),

which shows that this set is a topological circle, which meets the two trivial solutions
(±x∗, 0, 0), both simple and corresponding to the eigenvalue λ∗ = 0 of L.

Notice that, if the bounded and connected set Γs were a component of Σ, then Γ
would coincide with Γs, and this fact, although compatible with Theorem 3.10 (see
Remark 3.11), would contradict Conjecture 1.4. We will show that this is not the
case: as we shall see, Γ is unbounded, in accord with our conjecture.

The unbounded sets over the branches of the hyperbola, call them Γl and Γr, can
be parametrized as follows:

s ∈ R 7→
(
∓ 1√

1 + s2

(
s sin(·) + cos(·)

)
,∓
√

1 + s2, s
)

;

showing that they are both connected (more precisely, diffeomorphic to R).
As one can check, Γs has the point (−1,−1, 0) in common with Γl and the point

(1, 1, 0) in common with Γr. Thus, the set Σ = Γs∪Γl∪Γr turns out to be connected.
Therefore, the component Γ containing the simple solution (x∗, 0, 0) coincides with
the unbounded set Σ, in accord with Remark 3.11.

Finally, we observe that, in accord with Theorem 3.10, the set Σ \ Σ0 is the
union of two connected components, both unbounded, whose closure of each of
them contains the two simple solutions.

The following is an example of a linear system of two coupled differential equa-
tions with periodic boundary conditions whose set Σ has a bounded component Γ,
diffeomorphic to a circle and containing four trivial solutions, all of them simple.

In addition to Γ, the other components of Σ are infinitely many geometric circles
contained in Σ0, each of them corresponding to an isolated trivial eigenpair. This
shows that, in Theorem 3.10, the hypothesis that the “starting” solution (x∗, 0, λ∗)
is simple cannot be removed.
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Example 4.3. Consider the following system of coupled differential equations with
2π-periodic boundary conditions:

(4.4)


x′1(t) + x1(t)− εx1(t) = λx2(t),

x′2(t)− x2(t)− εx2(t) = −λx1(t),

x1(0) = x1(2π), x2(0) = x2(2π).

Let H1([0, 2π],R2) denote the real Hilbert space of the absolutely continuous func-
tions x = (x1, x2) : [0, 2π]→ R2 whose derivative is in L2([0, 2π],R2).

In this example, the source space G is the closed subspace of H1([0, 2π],R2) of
the functions satisfying the periodic condition x(0) = x(2π). The target space H
is L2([0, 2π],R2).

Denoting by a · b the standard dot product of two vectors a = (a1, a2) and
b = (b1, b2) of R2, the inner product of x and y in H is given by

〈x, y〉 =
1

2π

∫ 2π

0

x(t) · y(t) dt,

while the inner product of x and y in G is

〈x, y〉1 =
1

2π

∫ 2π

0

(
x(t) · y(t) + x′(t) · y′(t)

)
dt.

Since G has codimension 2 in H1([0, 2π],R2), the operator L : G → H, given by
(x1, x2) 7→ (x′1+x1, x

′
2−x2), is Fredholm of index zero. In fact, it is the restriction to

G of a surjective operator defined on H1([0, 2π],R2) whose kernel is 2-dimensional.
The operators N and C are defined as (x1, x2) 7→ (−x1,−x2) and (x1, x2) 7→

(x2,−x1), respectively. They are compact, due to the compact inclusion

H1([0, 2π],R2) ↪→ L2([0, 2π],R2).

As in the previous examples we seek for solutions of (4.4) in the sphere S of G.
That is, we consider the problem

(4.5)

{
Lx+ εN(x) = λCx,

x ∈ S.

The system of two coupled differential equations

(4.6)

{
x′1(t) + x1(t)− εx1(t) = λx2(t),

x′2(t)− x2(t)− εx2(t) = −λx1(t)

can be represented in a matrix form as(
x′1(t)

x′2(t)

)
=

(
ε− 1 λ

−λ ε+ 1

)(
x1(t)

x2(t)

)
,

where, given ε and λ, the eigenvalues of the matrix

M(ε, λ) =

(
ε− 1 λ

−λ ε+ 1

)
are ε±

√
1− λ2. Therefore, if |λ| > 1, (4.6) admits non-zero 2π-periodic solutions

if and only if ε = 0 and
√
λ2 − 1 ∈ N; these solutions are oscillating and, with the

addition of the trivial one, they form a two-dimensional subspace of H1([0, 2π],R2).



GLOBAL PERSISTENCE OF EIGENVECTORS 17

While, if |λ| ≤ 1, (4.6) has non-zero 2π-periodic solutions if and only if ε2 +λ2 = 1;
these solutions are constant and, with the trivial one, constitute a one-dimensional
space.

Clearly, the set E of the eigenpairs of (4.5) is{
(ε, λ) ∈ R2 : ε2 + λ2 = 1

}
∪
{

(0, λ) ∈ R2 : λ = ±
√

1 + n2, n ∈ N
}
.

As in the Example 4.1, the eigenpairs of the circle {(ε, λ) ∈ R2 : ε2 + λ2 = 1}
can be represented parametrically. In this case we set (ε, λ) = (cosα, sinα), with
α ∈ [0, 2π]. Thus, as one can show, given any α, the kernel of the linear operator

L+ (cosα)N − (sinα)C

is the straight line Rxα, where xα ∈ G is the constant function

xα : [0, 2π]→ R2, t 7→ xα(t) = (xα1 (t), xα2 (t)) = (cos(α/2), sin(α/2)),

whose norm is one, (xα)′(t) being identically zero. Consequently, in the metric
space Σ, the connected component Γ containing the trivial solution

p∗ = (x∗, 0, λ∗) = (xπ/2, 0, 1) ∈ S × R× R

of (4.5) is diffeomorphic to a circle, as can be seen by means of the parametrization

α ∈ [0, 4π] 7→ (xα, cosα, sinα) ∈ S × R× R,

which encounters four points of the set Σ0 of the trivial solutions: two of them
corresponding to the eigenvalue λ∗ = 1 of the unperturbed operator L − λC and
the others corresponding to λ∗ = −1.

We observe that the projection of Γ onto the circle {(ε, λ) ∈ R2 : ε2 + λ2 = 1} is
a double covering map.

Let us check whether or not the trivial solution p∗ = (x∗, 0, λ∗) is simple. We
have already shown that L is Fredholm of index zero. Hence, so is the operator
A = L − λ∗C, as a compact linear perturbation of L. Moreover, KerA = Rx∗ =
Rxπ/2. Therefore, A satisfies the conditions (0) and (1) of Proposition 3.12 and,
consequently, p∗ is simple if and only if the equation Ax = Cx∗ is unsolvable.

Since Cx∗ = Cxπ/2 is the constant function t 7→ (
√

2/2,−
√

2/2), the trivial
solution p∗ is simple provided that the problem

(4.7)


x′1(t) + x1(t)− x2(t) =

√
2/2,

x′2(t) + x1(t)− x2(t) = −
√

2/2,

x1(0) = x1(2π), x2(0) = x2(2π).

is unsolvable; and this is clearly true since any solution t 7→ (x1(t), x2(t)) of the
first two equations cannot be periodic, the function t 7→ x1(t)−x2(t) being strictly
increasing. Analogously, one can check that all the other three trivial solutions of
Γ are simple. Moreover, Γ \ Σ0 is the disjoint union of four arcs, each of them
satisfying the assertion of Theorem 3.10.

Notice that the solutions which are not in Γ are all trivial and correspond to
the eigenpairs (0,±

√
1 + n2), with n ∈ N. For example, the solutions of the type

(x, 0,
√

2) are the elements of the geometric circle(
Ker(L−

√
2C) ∩ S

)
× {(0,

√
2)},

which is a connected component of Σ contained in Σ0. Consequently, according to
Remark 3.11, none of the solutions of this circle satisfies the assertion of Theorem
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3.10. The fact that they are trivial but not simple shows that, in Theorem 3.10,
the assumption that the solution (x∗, 0, λ∗) is simple cannot be removed.

We close with an elementary example showing that, in Conjecture 1.4, the as-
sumption that (x∗, 0, λ∗) is simple cannot be removed.

Example 4.4. Let G = H = R2 and consider the linear problem

(4.8)

 −εx2 = λx1,
−2x1 + εx1 = λx2,

x21 + x22 = 1.

The operators L and N are (x1, x2) 7→ (0,−2x1) and (x1, x2) 7→ (−x2, x1), respec-
tively, and C = I is the identity. The operator L has a unique eigenvalue, λ∗ = 0,
whose multiplicity is two, and the kernel of L − λ∗I = L is spanned by the unit
eigenvector x∗ = (0, 1).

The set E of the eigenpairs of (4.8) is the circle ε(ε − 2) + λ2 = 0. Therefore,
Σ is necessarily bounded, and so is its connected component containing the trivial
solution p∗ = (x∗, 0, λ∗). This component cannot meet any solution p∗ = (x∗, 0, λ∗)
with λ∗ 6= λ∗, since our unperturbed problem has only one eigenvalue.

Thus, at least one of the following two possibilities holds true: the Conjecture 1.4
is false or the trivial solution p∗ is not simple. e are not sure about the conjecture,
but of course p∗ is not simple, as one can easily check, for example, by means of
Proposition 3.12.
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