
GLOBAL CONTINUATION IN EUCLIDEAN SPACES OF THE

PERTURBED UNIT EIGENVECTORS CORRESPONDING TO A

SIMPLE EIGENVALUE

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, MASSIMO FURI,

AND MARIA PATRIZIA PERA

Abstract. In the Euclidean space Rk, we consider the perturbed eigenvalue

problem Lx + εN(x) = λx, ‖x‖ = 1, where ε, λ are real parameters, L is a

linear endomorphism of Rk, and N : Sk−1 → Rk is a continuous map defined
on the unit sphere of Rk.

We prove a sort of global continuation of the solutions (x, ε, λ) of this

problem. Namely, under the assumption that x∗ ∈ Sk−1 is one of the two unit
eigenvectors of L corresponding to a simple eigenvalue λ∗ ∈ R, we show that,

in the set of all the solutions, the connected component containing (x∗, 0, λ∗)

is either unbounded or meets a solution (x∗, 0, λ∗) having x∗ 6= x∗.
Our result is inspired by a paper of R. Chiappinelli regarding the local

persistence property of eigenvalues and eigenvectors of a perturbed self-adjoint

operator in a real Hilbert space.

1. Introduction

Let T : H → H be a self-adjoint bounded operator in a real Hilbert space H, and
N : S → H a Lipschitz continuous map defined on the unit sphere of H. Consider
the nonlinear eigenvalue problem

(1.1)

{
Tx+ εN(x) = λx,

x ∈ S,

where ε and λ are real parameters.
Under the assumption that x∗ ∈ S is an eigenvector of T corresponding to an

isolated simple eigenvalue λ∗ ∈ R, Raffaele Chiappinelli in [4] deduced the so-
called local persistence property of the unit eigenvector x∗ and the eigenvalue λ∗.
More precisely, he proved that, on a neighborhood (−δ, δ) of 0 ∈ R, two Lipschitz
functions, ε 7→ xε ∈ S and ε 7→ λε ∈ R, are defined and satisfy the following
properties:

x0 = x∗, λ0 = λ∗ and Txε + εN(xε) = λεxε, ∀ ε ∈ (−δ, δ).
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Obviously, another pair of similar functions exists if instead of x∗ one considers the
antipodal eigenvector −x∗.

Further results regarding the local persistence of eigenvalues, as well as unit
eigenvectors, have been recently obtained in [2, 5, 7, 8, 9, 10] in the case in which
the eigenvector λ∗ is not necessarily simple. For a general review on nonlinear eigen-
value problems and applications to differential equations, see e.g. [6] and references
therein.

Recently, for problems such as (1.1), in [3] a sort of “global persistence prop-
erty” of the eigenvalues (but not of the unit eigenvectors) has been proved. These
problems include the following one:

(1.2)

{
Lx+ εN(x) = λx,

x ∈ Sk−1,

where L : Rk → Rk is a linear operator and N : Sk−1 → Rk is a continuous map.

A triple (x, ε, λ) ∈ Sk−1 ×R×R is a solution of (1.2) if it satisfies the equation
Lx+εN(x) = λx. The first element x is said to be a unit eigenvector corresponding
to the eigenpair (ε, λ). The set of solutions of (1.2) is denoted by Σ and the set of
the eigenpairs by E .

The solutions of the type (x, 0, λ) will be called trivial, and the set of these
distinguished triples will be denoted by Σ0. So that, whenever Σ0 6= ∅, one has

(1.3) Σ0 =

s⋃
i=1

(
(Ker(L− λiI) ∩ Sk−1)× {0} × {λi}

)
,

where I is the identity in Rk and λi, i = 1 . . . s ≤ k, are the real eigenvalues of L.
Analogously, an eigenpair (ε, λ) is said to be trivial if ε = 0, and in this case λ is a
real eigenvalue of L.

In the finite-dimensional setting, a consequence of a result in [3] is the following

Theorem 1.1. If λ∗ ∈ R is an eigenvalue of L whose geometric and algebraic multi-
plicities coincide and are odd, then the connected component of E containing (0, λ∗)
is either unbounded or includes a trivial eigenpair (0, λ∗) different from (0, λ∗).

Observe that Theorem 1.1 cannot be regarded as a global version of Chiappinelli’s
result in the finite-dimensional context, since E is nothing more than the projection
into the ελ-plane of the set Σ of all the solution triples of (1.2); thus, the information
on the eigenvector component is lost in the projection.

The principal motivation of this paper is to fill this gap by proving a result (Theo-
rem 3.8) which, as we shall see (Remark 3.9), implies the following Rabinowitz-type
continuation result:

Proposition 1.2. If x∗ ∈ Sk−1 is a unit eigenvector of L corresponding to a simple
eigenvalue λ∗, then the connected component of Σ containing (x∗, 0, λ∗) is either
unbounded or includes a trivial solution (x∗, 0, λ∗) with x∗ 6= x∗.

We point out that, in some particular cases, it is quite evident that the connected
component C of Σ containing a trivial solution (x∗, 0, λ∗) satisfies one of the alterna-
tives. For instance, if N = 0 or N = I (no matter whether or not λ∗ is simple), the
component C is unbounded, since it includes the connected set {(x∗, ε, λ∗) : ε ∈ R}
or {(x∗, ε, λ∗ + ε) : ε ∈ R}, respectively. Regarding the second alternative (i.e. C
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includes a solution (x∗, 0, λ∗) with x∗ 6= x∗), this is trivially satisfied (whatever
the map N is) if the sphere of the unit eigenvectors corresponding to λ∗ has posi-
tive dimension: in this case C contains infinitely many trivial solutions of the type
(x∗, 0, λ∗), with x∗ 6= x∗ and λ∗ = λ∗ (see formula (1.3)).

In spite of these considerations, the assertion about the two alternatives is sig-
nificant when the eigenvalue λ∗ is simple: it implies that the connected set C ⊆ Σ is
essentially made of nontrivial solutions, consequence of the fact that x∗ is isolated
in the set of the unit eigenvectors.

As previously observed, the equality λ∗ = λ∗ is compatible with the assertion
of Proposition 1.2. However, λ∗ being simple, in this case one necessarily has
x∗ = −x∗. Supported by Theorem 1.1, we believe that Proposition 1.2 could be
sharpened as follows:

Conjecture 1.3. Let x∗ ∈ Sk−1 be a unit eigenvector of L corresponding to a
simple eigenvalue λ∗. Then, the connected component of Σ containing (x∗, 0, λ∗)
is either unbounded or includes a triple (x∗, 0, λ∗) with λ∗ 6= λ∗.

Up to now we were not able to prove or disprove this conjecture. The difficulty
is probably due to the fact that the tools employed to prove Theorem 1.1 are quite
different from those used for Theorem 3.8. They are both topological, but the
first result is mainly based on Leray–Schauder degree theory while the second one
is essentially related to arguments of differential topology, that can be found, for
example, in the books [12, 13, 15].

The proof of Theorem 3.8 rests on a result (Lemma 3.3) which seems to have an
interest in its own right: it regards the classical eigenvalue problem Lx = λx and
states that, if x∗ ∈ Sk−1 is an eigenvector corresponding to a simple eigenvalue
λ∗ ∈ R, then the map (x, λ) ∈ Sk−1 × R 7→ Lx − λx sends diffeomorphically a
neighborhood of (x∗, λ∗) in Sk−1 × R onto a neighborhood of the origin 0 ∈ Rk.

2. Preliminaries

Given any positive integer k, in the Euclidean space Rk the standard inner
product of two vectors x and y is denoted by 〈x, y〉. The norm of an element

x ∈ Rk is the Euclidean one, namely ‖x‖ =
√
〈x, x〉.

By a (differentiable) manifold we shall mean a smooth (i.e. of class C∞) bound-
aryless differentiable manifold, embedded in some Euclidean space.

Given a manifold M and given p ∈ M, the tangent space of M at p will be
denoted by Tp(M). If f : M→N is a C1 map between two manifolds and p ∈M,
the derivative of f at p will be written as dfp. This is a linear operator from Tp(M)
into Tf(p)(N ).

IfM is a submanifold of a manifold N and p ∈M, then Tp(M) will be identified
with the vector subspace Img(dJp) of Tp(N ), where J : M ↪→ N is the inclusion
map. In particular, if p ∈M ⊆ Rk, then Tp(M) is a subspace of Rk.

Remember that, if f : M → N is a C1 map, an element p ∈ M is said to be
a regular point (of f) if dfp is surjective. Non-regular points are called critical
(points). The critical values of f are those points of the target manifold N which
lie in the image f(C) of the set C of critical points. Any q ∈ N which is not in
f(C) is a regular value. Therefore, in particular, any element of N which is not in
the image of f is a regular value.
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The well-known Sard’s Lemma implies that the set of regular values of a smooth
map f : M→N between two manifolds is dense in N .

The following famous result (see e.g. [15]) will play an important role in Section 3.

Theorem 2.1 (Regularity of the level set). Let f : M → N be a smooth map
between two manifolds of dimensions m and n, respectively.

If q ∈ N is a regular value for f , then f−1(q), if nonempty, is a manifold of
dimension m− n. Moreover, given p ∈ f−1(q), one has Tp(f−1(q)) = Ker dfp.

For example, in Rk, the unit sphere Sk−1 is a 1-codimensional submanifold of
Rk, and given p ∈ Sk−1 one has

Tp(Sk−1) = {ṗ ∈ Rk : 〈p, ṗ〉 = 0} = (Rp)⊥.

To see this, define f : Rk → R by f(x) = ‖x‖2 and consider the value q = 1, observe
that dfp(ṗ) = 2〈p, ṗ〉, and notice that 0 ∈ R is the unique critical value of f .

We recall that a subset X of a metric space is locally compact if any point of X
admits a compact neighborhood in X. Obviously any compact set, as well as any
relatively open subset of a locally compact set, is locally compact. The union of
two locally compact sets need not be locally compact (think about an open disk in
C and add a point to the boundary).

3. Results

Consider the following nonlinear eigenvalue problem in Rk:

(3.1)

{
Lx+ εN(x) = λx,

x ∈ Sk−1,

where ε, λ ∈ R, L : Rk → Rk is a linear operator and N : Sk−1 → Rk is a continuous
map.

A solution of (3.1) is a triple (x, ε, λ) which satisfies the system. The first element
x is a unit eigenvector of problem (3.1) corresponding to the eigenpair (ε, λ).

The solution triples with ε = 0 are called trivial and, consequently, the other ones
are said to be nontrivial. Obviously, if (x∗, 0, λ∗) is a trivial solution of (3.1), then
x∗ is a unit eigenvector (in the usual sense) of L corresponding to the eigenvalue
λ∗, and viceversa.

We will denote by Σ the set of the solutions of (3.1) and by E its projection into
the ελ-plane, so that E is made up of all the eigenpairs of the problem. By Σ0 we
shall mean the subset of Σ of the trivial solutions.

Remark 3.1. In the particular case in which N is defined on the whole space Rk

and it is linear, the set E of the eigenpairs is given by{
(ε, λ) ∈ R2 : det(L+ εN − λI) = 0

}
.

Clearly, one can find simple examples in which E is empty (and therefore so is
Σ). Obviously, this cannot happen if the dimension k is odd, no matter what is N :
in this case E contains at least one trivial eigenpair (0, λ∗), corresponding to a real
eigenvalue λ∗ of L. However, the following proposition, whose easy proof is left to
the reader, gives more information about the structure of the nonempty set E :
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Proposition 3.2. Assume that in problem (3.1) the dimension k is odd and that
N : Rk → Rk is linear.

Then, if s > 0 is bigger than the norm of L, one has

det(L+ sI) det(L− sI) < 0.

Consequently, (0,−s) and (0, s) belong to different components of the open set R2\E.
In particular, E is unbounded, and so is Σ, the set E being its projection.

Our main result regarding (3.1) is Theorem 3.8 below, which implies, in partic-
ular, that, if x∗ ∈ Sk−1 is an eigenvector of L corresponding to a simple eigenvalue
λ∗, then the connected component in Σ containing (x∗, 0, λ∗) is either unbounded
or meets a trivial solution different from (x∗, 0, λ∗).

Define Φ: Sk−1 × R × R → Rk by Φ(x, ε, λ) = Lx + εN(x) − λx, so that Σ =
Φ−1(0). Notice that the domain of Φ is a (k + 1)-dimensional submanifold of the
Euclidean space Rk × R× R.

We denote by Ψ: Sk−1 × R→ Rk the partial map of Φ corresponding to ε = 0.
Occasionally, it will be convenient to identify Ψ with the restriction of Φ to the
k-dimensional submanifold

Z = Sk−1 × {0} × R

of Sk−1×R×R. Incidentally, we observe that the set Σ0 of the trivial solutions of
(3.1) coincides with Z ∩ Σ.

Before proving Theorem 3.8 we need some preliminary results. One of these is
the following one regarding the classical eigenvalue problem:

Lemma 3.3 (On the local diffeomorphism). Let L : Rk → Rk be a linear opera-
tor, and assume that x∗ ∈ Sk−1 is an eigenvector of L corresponding to a simple
eigenvalue λ∗.

Then the function

Ψ: Sk−1 × R→ Rk, (x, λ) 7→ Lx− λx
maps, diffeomorphically, a neighborhood of (x∗, λ∗) in Sk−1×R onto a neighborhood
of the origin 0 ∈ Rk.

Proof. Let p∗ = (x∗, λ∗). Because of the (Local) Inverse Function Theorem, it is
enough to prove that the derivative dΨp∗ : Tp∗(Sk−1 × R) → Rk of Ψ at p∗ is an
isomorphism. Since the manifold Sk−1 × R has the same dimension as Rk, it is
sufficient to show that dΨp∗ is injective.

Observe that the tangent space of Sk−1 × R at p∗ is the subspace

Tp∗(Sk−1 × R) =
{
ṗ = (ẋ, λ̇) ∈ Rk × R : 〈ẋ, x∗〉 = 0

}
of Rk ×R, and that ṗ = (ẋ, λ̇) ∈ Tp∗(Sk−1 ×R) is in the kernel of dΨp∗ if and only
if

(3.2) dΨp∗(ṗ) = (L− λ∗I)ẋ− λ̇x∗ = 0.

Now, the assumption that λ∗ is a simple eigenvalue implies the splitting

Rk = Img(L− λ∗I)⊕Ker(L− λ∗I) = Img(L− λ∗I)⊕ Rx∗.

Therefore, from (3.2) we derive ẋ ∈ Ker(L − λ∗I) = Rx∗ and λ̇ = 0. Finally,

recalling that 〈ẋ, x∗〉 = 0, we get ẋ = 0 and, consequently, ṗ = (ẋ, λ̇) = 0. �
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We observe that, in the finite-dimensional setting, the local persistence result of
Chiappinelli quoted in the Introduction could be deduced from Lemma 3.3. In fact,
we obtain the following

Corollary 3.4. Let L : Rk → Rk be a linear operator and N : Sk−1 → Rk a Lips-
chitz continuous map. Assume that x∗ ∈ Sk−1 is an eigenvector of L corresponding
to a simple eigenvalue λ∗.

Then there exists a neighborhood (−δ, δ) of 0 ∈ R and a Lipschitz curve

ε ∈ (−δ, δ) 7→ (x(ε), λ(ε)) ∈ Sk−1 × R

such that (x(0), λ(0)) = (x∗, λ∗) and

Lx(ε) + εN(x(ε)) = λ(ε)x(ε), ∀ ε ∈ (−δ, δ).

Proof. Lemma 3.3 ensures that the function

Ψ: Sk−1 × R→ Rk, (x, λ) 7→ Lx− λx

maps, diffeomorphically, a neighborhood U of (x∗, λ∗) in Sk−1 × R onto a neigh-
borhood V of the origin 0 ∈ Rk.

Consider the equation Lx − λx = −εN(x), with (x, λ) ∈ U and ε ∈ R. This
can be written in the form Ψ(x, λ) = εg(x, λ), where g(x, λ) = −N(x). The
diffeomorphism between U and V allows us to transform this equation into an
equivalent fixed point problem depending on the real parameter ε.

To this purpose, denote by Ψ|−1U the inverse of the diffeomorphism between U
and V defined by Ψ. Taking U and V = Ψ(U) smaller, if necessary, we may
assume that this inverse function is Lipschitz. Thus, putting q = Ψ(x, λ), the
equation Ψ(x, λ) = εg(x, λ) is equivalent to the fixed point problem q = εf(q),
where f : V → Rk is the Lipschitz continuous function, with bounded image, given
by q 7→ g(Ψ|−1U (q)). Therefore, if |ε| is small, the map q 7→ εf(q) is a contraction
whose image is contained in a complete subset of V . Consequently, for any ε in
some neighborhood (−δ, δ) of 0 ∈ R, this map has a unique fixed point q(ε) ∈ V .
Now, taking into account that f is dominated by some constant M and is Lipschitz
with some constant C, by considering δ such that δC < 1 one gets that ε 7→ q(ε) is
a Lipschitz map with constant M/(1− δC), consequence of the inequality

‖q(ε2)− q(ε1)‖ ≤ δC‖q(ε2)− q(ε1)‖+M |ε2 − ε1|.

Thus, the curve ε ∈ (−δ, δ) 7→ Ψ|−1U (q(ε)) satisfies the assertion. �

The next result will play a fundamental role in the proof of Theorem 3.8.

Lemma 3.5. Regarding problem (3.1), assume that the map N is smooth and that
x∗ ∈ Sk−1 is an eigenvector of L corresponding to a simple eigenvalue λ∗.

Given a neighborhood U of (x∗, 0, λ∗) in Z = Sk−1 × {0} × R, there exists a
neighborhood V of the origin 0 ∈ Rk such that, if q ∈ V is a regular value for the
function

Φ: Sk−1 × R× R→ Rk, (x, ε, λ) 7→ Lx+ εN(x)− λx,
then Φ−1(q) has a connected component that intersects U and is either unbounded
or contains at least two points of Z.

Proof. Because of Lemma 3.3, we may assume, without loss of generality, that the
restriction of Φ to U is a diffeomorphism onto V . In fact, as already pointed out,
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the map Ψ may be identified with the restriction of Φ to the submanifold Z of
Sk−1 × R× R.

Now, assume that q ∈ V is a regular value for Φ. Thus, Φ−1(q), which is clearly
nonempty, is a (boundaryless) manifold, whose dimension is

dim(Sk−1 × R× R)− dim(Rk) = 1.

Any component of this curve is either compact, and in this case diffeomorphic to a
circle, or noncompact, and therefore unbounded, as a closed subset of Sk−1×R×R.

Let C denote the component of Φ−1(q) containing the unique point p ∈ U such
that Φ(p) = q. Since the intersection C ∩ U is nonempty, the first assertion is
established.

Assume that C is bounded. Thus, it is diffeomorphic to a circle. We need to
show that this closed curve intersects Z also at some point different from p (so that,
necessarily, it is not in U).

To this purpose it is enough to prove that the intersection at p between C and
Z is transversal. In fact, in this case, if C intersected Z only at p, the intersection
number (see e.g. [12]) between C and Z would be either 1 or −1, according to the
orientations of the two manifolds. This would contradict the fact that this number
must be zero, since any closed curve in Sk−1 ×R×R can be homotopically moved
away from Z in such a way that, during the homotopy, the intersection set remains
confined in a compact subset of Z.

Now, the transversality of the intersection at p between C and Z is ensured by
the fact that Φ maps diffeomorphically U onto V , which implies that q is a regular
value not just for Φ but also for the restriction of Φ to U (actually, any value in V
is regular for this restriction). In fact, one has

Tp(Z) ∩ Tp(C) = Tp(Z) ∩Ker dΦp = {0}.

Thus, we have

Tp(Z)⊕ Tp(C) = Tp(Sk−1 × R× R),

and this concludes the proof. �

The following corollary is an easy consequence of the above two lemmas. There-
fore, the proof will be omitted.

Corollary 3.6. Assume that N is smooth, that 0 ∈ Rk is a regular value for Φ,
and that x∗ ∈ Sk−1 is an eigenvector of L corresponding to a simple eigenvalue λ∗.

Then the connected component of Φ−1(0) containing (x∗, 0, λ∗) is a smooth curve
which, if bounded, meets a trivial solution of (3.1) different from (x∗, 0, λ∗).

The next point-set topological lemma plays an essential role in the proof of
Theorem 3.8. It is particularly cut to our purposes and is deduced from general
results by C. Kuratowski (see [14], Chapter 5, Vol. 2). We also recommend [1] for
a helpful article on connectivity.

Lemma 3.7 ([11]). Let Y0 be a compact subset of a locally compact metric space Y .
Assume that every compact subset of Y containing Y0 has nonempty boundary.

Then Y \ Y0 contains a connected set whose closure in Y is noncompact and
intersects Y0.

We are now in a position to prove our main result regarding problem (3.1).
Recall that Σ is the set of solutions of (3.1) and Σ0 is the subset of the trivial ones.
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Theorem 3.8 (Global continuation of solution triples). Regarding problem (3.1),
assume that x∗ ∈ Sk−1 is an eigenvector of L corresponding to a simple eigen-
value λ∗.

Then, the set Σ\Σ0 of the nontrivial solutions has a connected subset whose clo-
sure in Σ contains (x∗, 0, λ∗) and is either unbounded or meets a solution (x∗, 0, λ∗)
with x∗ 6= x∗.

Proof. We will proceed in two steps: firstly, we shall assume that N is smooth;
secondly, we shall suppose that N is merely continuous. In both steps, Lemma
3.7 will play an essential role, and in both steps the metric pair (Y, Y0) will be the
same. So, we shall define it before the first step.

Denote by p∗ the “starting” triple (x∗, 0, λ∗) ∈ Σ0 and put

Y = (Σ \ Σ0) ∪ {p∗} and Y0 = {p∗}.
We need to show that Y is locally compact, as required in Lemma 3.7. In fact,
Y coincides with Σ \ (Σ0 \ {p∗}), which is open in Σ, being obtained from this
metric space by removing the set Σ0 \ {p∗}, which is closed, because p∗ is isolated.
Thus, the local compactness of Y follows from the fact that Σ = Φ−1(0) is locally
compact, being a closed subset of a finite-dimensional space.

We claim that our proof is complete if the metric pair (Y, Y0) satisfies the as-
sertion of Lemma 3.7. In fact, assume that Y \ Y0, which is the same as Σ \ Σ0,
contains a connected set, say Γ, whose closure in Y is noncompact and intersects
Y0. Let Γ̄ denote the closure of Γ in Σ (or, equivalently, in Sk−1 × R× R), so that
Γ̄∩Y is the closure of Γ in Y . Observe that Γ̄ includes p∗, this point being in Γ̄∩Y .

Assume that Γ̄ is bounded. Then it must contain a point p∗ = (x∗, 0, λ∗) ∈
Σ0 \ {p∗}, since otherwise Γ̄ would coincide with Γ̄ ∩ Y , which is noncompact.

Observe that to any eigenvector of a linear endomorphism of a vector space
corresponds a unique eigenvalue (notice that the converse is false). Thus, taking
into account that p∗ 6= p∗, we get x∗ 6= x∗, and this proves our claim.

Now, it is enough show that the pair (Y, Y0) satisfies the hypothesis of Lemma
3.7. Assume the contrary. Thus, there exists a compact subset K of Y which
contains the point p∗ and whose boundary, in Y , is empty. This compact set is
relatively open in Y , therefore it is far away from its closed complement Y \ K.
Actually, it is also far away from Σ \ K, since it is disjoint from the closed set
Σ0 \ {p∗}. Consequently, there exists an open subset W of Sk−1 × R× R, that we
may assume to be bounded, such that W ∩ Σ = K and

(3.3) ∂W ∩ Σ = ∅.
Because of Lemma 3.3, taking W smaller, if necessary, we may also suppose that
the intersection U = Z ∩W is mapped by Φ diffeomorphically onto a neighborhood
V of the origin 0 ∈ Rk (recall that Z = Sk−1 × {0} × R).

Step 1. Assume that N is smooth. According to Sard’s Lemma, the subset Q of
V consisting of the regular values for Φ is dense in V . Because of Lemma 3.5, for
any q ∈ Q there exists a connected component of Φ−1(q) that intersects U and is
either unbounded or contains at least two points of Z. Since Φ−1(q)∩U consists of
a single point, this component must intersect ∂W . Therefore, being Σ = Φ−1(0),
the density of Q and the continuity of Φ imply ∂W ∩ Σ 6= ∅, contradicting (3.3).

Hence, the pair (Y, Y0) does satisfy the hypothesis of Lemma 3.7. This proves the
assertion in the case when N is smooth. Consequently, recalling that the closure
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of a connected set is connected, one gets that the component of Φ−1(0) containing
p∗ is unbounded or contains at least one point p∗ ∈ Σ0 \ {p∗}.

Step 2. Finally, assume that N is merely continuous. Then, it can be uniformly
approximated by a sequence of smooth functions, and for any such a function the
conclusion of Step 1 applies. This implies that also in this case we get ∂W ∩Σ 6= ∅,
contradicting (3.3). Therefore the metric pair (Y, Y0) satisfies the hypothesis of
Lemma 3.7, and the proof of our main result is completed. �

Remark 3.9. Under the assumptions of Theorem 3.8, let C denote the connected
component of Σ containing (x∗, 0, λ∗). Then, taking into account that Σ is closed
in Sk−1 × R × R and that the closure of a connected set is connected, we deduce
that C is either unbounded or contains a trivial solution (x∗, 0, λ∗) with x∗ 6= x∗.

4. Examples

Here we provide some simple examples illustrating the assertion of Theorem
3.8, as well as examples proving that, in this theorem, the assumption that the
eigenvalue λ∗ is simple cannot be removed. In any considered case the dimension
k of the Euclidean space will be “very low” (1, 2 or 3) with the operator L having
at least one real eigenvalue. In each example, Σ and E denote, respectively, the
set of solutions and the set of eigenpairs of the given problem. As in the previous
sections, Σ0 is the subset of Σ of the trivial solutions.

The following is a simple example of a linear problem in R2, in which the operator
L has two real eigenvalues (thus, both necessarily simple). The set Σ of solutions
is a smooth curve, diffeomorphic to a circle, which contains all the four trivial
solutions (two for each eigenvalue). As we shall see, the projection of Σ onto E is
a double covering map.

Example 4.1. In R2 consider the linear problem

(4.1)

 x1 − εx2 = λx1,
−x2 + εx1 = λx2,

x21+ x22 = 1.

Here, the operators are L : (x1, x2) 7→ (x1,−x2) and N : (x1, x2) 7→ (−x2, x1). The
unperturbed problem has two simple eigenvalues, λ∗ = −1 and λ∗ = 1, with two
corresponding pairs of antipodal unit eigenvectors:

±x∗ = ±(0, 1) and ± x∗ = ±(1, 0).

As one can check (see Remark 3.1), the set E of the eigenpairs of (4.1) is the unit
circle ε2 + λ2 = 1. So, any eigenpair (ε, λ) can be represented as (sin t, cos t), with
t ∈ [0, 2π]. Observe that, given t, the kernel of the linear operator

L+ (sin t)N − (cos t)I

is the straight line containing the pair of antipodal unit eigenvectors

±(cos(t/2), sin(t/2)).

Therefore, as one can easily verify, Σ can be represented, parametrically, by the
simple, regular, closed curve

γ : [0, 4π]→ R2 × R× R, γ(t) =
((

cos(t/2), sin(t/2)
)
, sin t, cos t

)
,

which (for t = 0, π, 2π, 3π) encounters all the four trivial solutions of (4.1).
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If from the topological circle Σ we remove the four points of Σ0, we get four arcs,
each of them diffeomorphic to an open real interval and satisfying the assertion of
Theorem 3.8. More precisely, any one of the four trivial solutions corresponds to a
simple eigenvalue of L and has two arcs satisfying the assertion of Theorem 3.8.

Incidentally, we observe that the projection of Σ onto E is a double covering
map, and the above parametrization γ of Σ is the lifting of the curve

σ : [0, 4π]→ E , σ(t) = (sin t, cos t),

with the initial condition γ(0) =
(
(1, 0), 0, 1

)
.

The next system differs from the previous one only for a sign in the first equation
and the unperturbed problem is the same. In spite of this, the structure of the set Σ
of the solutions is drastically different: it is made up of four unbounded components,
each of them containing just one trivial solution.

Example 4.2. In R2 consider the problem

(4.2)

 x1 + εx2 = λx1,
−x2 + εx1 = λx2,

x21+ x22 = 1.

where L is the same as in Example 4.1, while N maps (x1, x2) into (x2, x1). As in
the first example, our problem has four trivial solutions (two for each eigenvalue):(

(0,±1), 0,−1
)

and
(
(±1, 0), 0, 1

)
.

As one can verify, the set E of the eigenpairs of (4.2) is the hyperbola λ2−ε2 = 1.
Therefore, the two branches of E , the lower and the upper in the ελ-plane, can be
represented parametrically as

(ε∗(t), λ∗(t)) = (sinh t,− cosh t) and (ε∗(t), λ∗(t)) = (sinh t, cosh t),

with t ∈ R. Regarding the lower branch, given t ∈ R, the kernel of the linear
operator

L+ ε∗(t)N − λ∗(t)I
is the straight line containing the pair of opposite (not necessarily unit) vectors

±v∗(t) = ±(− sinh t, 1 + cosh t).

Analogously, concerning the upper branch, the kernel of

L+ ε∗(t)N − λ∗(t)I

is the straight line containing

±v∗(t) = ±(1 + cosh t, sinh t).

For example, a parametrization of the component containing the trivial solution(
(1, 0), 0, 1

)
is the following:

t ∈ R 7→
(
v∗(t)/‖v∗(t)‖, sinh t, cosh t

)
,

and the other three components of Σ can be parametrized in a similar manner.
In conclusion, the set Σ has four unbounded connected components, each of them

diffeomorphic to R and containing one and only one trivial solution.
Notice that, here, the set Σ \ Σ0 has eight connected components: two for each

trivial solution, and both verifying the assertion of Theorem 3.8.
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In the following example the space is again R2 and N is nonlinear. The operator
L has two different real eigenvalues and, consequently, the problem admits four
trivial solutions. The set Σ is the union of a topological circle and two straight
lines. In spite of the fact that the circle contains only two trivial solutions with
the same eigenvalue, Σ connects all the four trivial solutions; compatibly with
Conjecture 1.3.

Example 4.3. In R2, consider the problem

(4.3)

 x1 + ε = λx1,
2x2 = λx2,
x21+ x22 = 1.

Here L and N are (x1, x2) 7→ (x1, 2x2) and (x1, x2) 7→ (1, 0), respectively. The
operator L has two simple eigenvalues, λ∗ = 1 and λ∗ = 2, with corresponding unit
eigenvectors, ±x∗ = ±(1, 0) and ±x∗ = ±(0, 1).

Notice that any solution
(
(x1, x2), ε, λ

)
of (4.3) must have at least one of the

following two properties: x2 = 0 (and, consequently, x1 = ±1) or λ = 2 (and,
therefore, x1 = ε with |ε| ≤ 1).

In the first case (with x2 = 0) we get two straight lines in R2 × R× R:

`1 =
{(

(−1, 0), ε, 1− ε
)

: ε ∈ R
}

and `2 =
{(

(1, 0), ε, 1 + ε
)

: ε ∈ R
}
,

lying in the two different planes of equations (x1, x2) = (−1, 0) and (x1, x2) = (1, 0),
respectively.

As one can easily check, in the second case (with λ = 2), the set of solutions can
be parametrized as follows:

(4.4) C =
{(

(sin t, cos t), sin t, 2
)

: t ∈ [0, 2π]
}
,

which shows that C is diffeomorphic to a circle and contains two of the four trivial
solutions of problem (4.3), both with the eigenvalue λ∗ = 2. Since this connected
set is bounded, it seems to furnish a counterexample to the Conjecture 1.3, but this
is not the case. In fact, the set Σ of all the solutions of (4.3), which is the union of
`1, `2 and C is connected, unbounded, and contains all the four trivial solutions of
(4.3). In particular, the connectedness of Σ follows from `1∩C =

{(
(−1, 0),−1, 2

)}
and `2 ∩ C =

{(
(1, 0), 1, 2

)}
.

The simplest example that one can obtain is when the dimension k of the space
is one. In this case the unit sphere is S0 = {−1, 1} and, whatever is N : S0 → R,
the set Σ consists of two unbounded connected components.

Example 4.4. Let λ∗ ∈ R be given and, in R, consider the problem

(4.5)

{
λ∗x+ εN(x) = λx,

x = ±1,

whereN : {−1, 1} → R is arbitrary. Clearly, given any ε ∈ R, one gets two solutions:

(1, ε, λ∗ + εN(1)) and (−1, ε, λ∗ − εN(−1)).

Thus the set Σ of all the solutions of problem (4.5) is composed by two straight
lines, {(

1, ε, λ∗ + εN(1)
)

: ε ∈ R
}

and
{(
− 1, ε, λ∗ − εN(−1)

)
: ε ∈ R

}
,

placed in two different planes of R3, whose equations are x = 1 and x = −1,
respectively.



12 P. BENEVIERI, A. CALAMAI, M. FURI, AND M.P. PERA

We close with an example in R3 showing that, in Conjecture 1.3, the assumption
that the eigenvalue λ∗ is simple cannot be removed. Probably it could be replaced
with the hypotheses that the algebraic and geometric multiplicities of λ∗ are the
same and odd. Since here the space is 3-dimensional and N is linear, according to
Proposition 3.2 the set Σ is necessarily unbounded.

Example 4.5. In R3, consider the problem

(4.6)


εx2 = λx1,

2x1 − εx1 = λx2,
2x3 + εx1 = λx3,

x21 + x22 + x23 = 1.

Here, L and N are, respectively, (x1, x2, x3) 7→ (0, 2x1, 2x3) and (x1, x2, x3) 7→
(x2,−x1, x1). The operator L has two real eigenvalues: λ∗ = 0, with geometric
multiplicity 1 and algebraic multiplicity 2; and λ∗ = 2, which is simple.

One can easily verify that the set E of the eigenpairs has two connected compo-
nents: the circle (ε− 1)2 + λ2 = 1 and the straight line λ = 2.

Observe that the disconnected set E is unbounded, as it should be, according to
Proposition 3.2. Consequently, Σ is as well unbounded and disconnected.

Any eigenpair of the above circle can be represented as

(ε(t), λ(t)) = (1− cos t, sin t), with t ∈ [0, 2π].

Moreover, given any t ∈ [0, 2π], the kernel of the linear operator

L+ ε(t)N − λ(t)I

is spanned by the (nonzero) vector

w(t) =
(

sin(t/2), cos(t/2), c(t)
)
,

where c(t) is defined by 2c(t) + ε(t) sin(t/2) = λ(t)c(t), in order to satisfy the third
equation of (4.6). Thus, the connected component C of Σ containing the trivial
solution p∗ =

(
(0, 1, 0), 0, 0

)
can be parametrized as follows:

σ : [0, 4π]→ S2 × R× R, σ(t) =
(
w(t)/‖w(t)‖, 1− cos t, sin t

)
.

Consequently, C is diffeomorphic to S1 and contains both the trivial solutions cor-
responding to the eigenvalue λ∗ = 0:

(
(0, 1, 0), 0, 0

)
for t = 0 (or, equivalently, for

t = 4π) and
(
(0,−1, 0), 0, 0

)
for t = 2π.

Clearly none of the two trivial solutions corresponding to the eigenvalue λ∗ = 2
is in C, and this shows that, in Conjecture 1.3, the assumption that the eigenvalue
λ∗ is simple cannot be omitted.

We observe that the projection of C onto the circle (ε− 1)2 + λ2 = 1 is a double
covering map, and the above parametrization σ of C is the lifting of the curve
t ∈ [0, 4π] 7→ (1− cos t, sin t) with initial condition σ(0) = p∗ =

(
(0, 1, 0), 0, 0

)
.

Associated to the eigenvalue λ∗ = 2 of L, the set Σ has two components: the
straight lines{(

(0, 0, 1), ε, 2
)

: ε ∈ R
}

and
{(

(0, 0,−1), ε, 2
)

: ε ∈ R
}
.

We may conclude that Σ has three components: a bounded one, corresponding
to λ∗ = 0, and two unbounded, corresponding to λ∗ = 2.
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