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Abstract

We apply topological methods to the study of the set of harmonic
solutions of periodically perturbed autonomous ordinary differential
equations on differentiable manifolds, allowing the perturbing term
to contain a fixed delay. In the crucial step, in order to cope with the
delay, we define a suitable (infinite dimensional) notion of Poincaré
T -translation operator and prove a formula that, in the unperturbed
case, allows the computation of its fixed point index.
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1 Introduction

In this paper we shall study the set of harmonic solutions to periodic per-
turbations of autonomous ODEs on (smooth) manifolds, allowing for the
perturbation to contain a delay. Namely, given T > 0, r ≥ 0 and a manifold
M ⊆ Rk, we will consider the T -periodic solutions to

(1.1) ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
, λ ≥ 0,

where g is a tangent vector field on M and f is T -periodic in t and tangent
to M in the second variable (the meaning of these terms will be explained in
due course). Roughly speaking, we will give conditions ensuring the existence
of a connected component of pairs (λ, x), λ ≥ 0 and x a T -periodic solution
to the above equation, that emanates from the set of zeros of g and is not
compact. We point out that, although this result is valid for f and g merely
continuous, its proof boils down, by an approximation procedure, to the case
when f and g are C1.
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Carrying out this program requires topological tools like the fixed point
index and the degree (also called the rotation or characteristic) of a tangent
vector field, that shall be briefly recalled in Section 2. In fact, in the case
when the perturbation f is independent of the delay, as in [FS97], the exis-
tence of such a connected component of T -periodic solutions is based on the
computation of the fixed point index of the translation operator (at time T )
associated to the equation (1.1) when f and g are C1. This computation is
derived from a formula (see e.g. [FS96]) that relates the degree of g with the
fixed point index of the finite dimensional Poincaré T -translation operator
P at time T associated to the unperturbed equation ẋ = g(x). However,
since in our case the perturbing term f contains a delay, the T -translation
operator P must be replaced by its infinite dimensional version. Namely,
the operator Q that to any function ϕ ∈ M̃ := C([−r, 0],M) associates the

function of M̃ given by θ 7→ x
(
ϕ(0), θ + T

)
. Here x(p, ·) denotes the unique

solution to the Cauchy problem

ẋ = g(x), x(0) = p.

Clearly P and Q are closely related, although they operate in different spaces,
only one of which is finite dimensional. The relation between these operators
is discussed in Section 3, where we derive a formula that deduces the fixed
point index of Q from the degree of the tangent vector field g.

Let us be more precise about the above mentioned formulas for the fixed
point indices of P and Q. It has been proved in [FS96] that, given U ⊆ M
open, one has

(1.2) ind(P,U) = deg(−g, U),

provided that the left hand side member of (1.2) is defined. Formula (1.2) is
a generalization of a result of [CMZ92] valid for M = Rk, that was related
to an earlier theorem by Krasnosel’skĭı [Kr68]. This latter result holds for
nonautonomous differential equations on manifolds, but requires a rather
restrictive assumption called T -irreversibility (which, in our settings, simply
means that the closure U of U in M is compact and the map p 7→ x(p, t) is
fixed point free on ∂U for all t ∈ (0, T ]). Equation (1.2) does away with this
heavy assumption and allows, by means of the properties of Commutativity of
the fixed point index and Excision of the degree, to deduce a similar formula
for Q. In fact, given W ⊆ M̃ open, we have

(1.3) ind(Q,W ) = deg(−g,
∨

W ),

provided that the left hand side member is defined. Here
∨

W denotes the set
of points of M that, when regarded as constant functions of M̃ , belong to
W .
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The formula described above for the computation of the fixed point index
of Q allows us, in Sections 4 and 5, to follow the lines of [FS97] in order to
prove our main result about the connected sets of T -periodic solutions (λ, x).
We point out that in Sections 3 and 4 the maps f and g are always considered
C1, while in Section 5 the merely continuous case is considered.

For what concerns the basic theory of delay differential equations we refer
to the book [HL93] and to the paper [Ol69].

2 Preliminaries and notation

This section is devoted to some facts and notation that will be needed in this
paper. In particular we recall the notions of fixed point index of a map and
of degree of a tangent vector field.

Let us begin with the fixed point index. We recall that a metrizable
space E is an absolute neighborhood retract (ANR) if, whenever it is home-
omorphically embedded as a closed subset C of a metric space X, there
exists an open neighborhood U of C in X and a retraction r : U → C (see
e.g. [Bo67, GD03]). Polyhedra and differentiable manifolds are examples of
ANRs. Let us also recall that a continuous map between topological spaces
is called locally compact if it has the property that each point in its domain
has a neighborhood whose image is contained in a compact set.

Let E be an ANR and let ψ : D(ψ) → E be a locally compact map
defined on an open subset D(ψ) of E. Given an open subset U of D(ψ), if
the set Fix (ψ,U) of the fixed points of ψ in U is compact, then it is well
defined an integer, ind(ψ,U), called the fixed point index of ψ in U (see, e.g.
[GD03, Gr72, Nu91]). Roughly speaking, ind(ψ,U) counts algebraically the
elements of Fix (ψ,U).

The fixed point index turns out to be completely determined by the fol-
lowing four properties that, therefore, could be used as axioms (see [Br70]).
Here, E is an ANR and U ⊆ E is open.

Normalization. Let ψ : E → E be constant. Then ind(ψ,E) = 1.

Additivity. Given a locally compact map ψ : U → E with Fix(ψ,U) com-
pact, if U1 and U2 are disjoint open subsets of U such that Fix(ψ,U) ⊆
U1 ∪ U2, then

ind(ψ,U) = ind(ψ,U1) + ind(ψ,U2).

Homotopy Invariance. Assume that H : U × [0, 1] → E is an admissible
homotopy in U ; that is, H is locally compact and the set {(x, λ) ∈
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U × [0, 1] : H(x, λ) = x} is compact. Then

ind
(
H(·, 0), U

)
= ind

(
H(·, 1), U

)
.

Commutativity. Let E1, E2 be ANRs and let U1 ⊆ E1 and U2 ⊆ E2 be
open. Suppose ψ1 : U1 → E2 and ψ2 : U2 → E1 are locally compact
maps. If one of the sets

{x ∈ ψ−1
1 (U2) : ψ2 ◦ ψ1(x) = x} or {y ∈ ψ−1

2 (U1) : ψ1 ◦ ψ2(y) = y}

is compact, then so is the other and

ind
(
ψ2 ◦ ψ1, ψ

−1
1 (U2)

)
= ind

(
ψ1 ◦ ψ2, ψ

−1
2 (U1)

)
.

It is easily shown that the Additivity Property implies the following two
important ones:

Solution. Let ψ : U → E be locally compact with Fix(ψ,U) = ∅. Then
ind(ψ,U) = 0.

Excision. Given a locally compact map ψ : U → E with Fix(ψ,U) compact,
and an open subset V of U containing Fix(ψ,U), one has ind(ψ,U) =
ind(ψ, V ).

From the Homotopy Invariance and Excision properties one could deduce
the following property:

Generalized Homotopy Invariance. Let W ⊆ E×[0, 1] be open. Assume
that H : W → E is locally compact and such that the set {(x, λ) ∈ W :
H(x, λ) = x} is compact. Let Wλ denote the slice Wλ := {x ∈ E :
(x, λ) ∈ W}. Then, ind

(
H(·, λ),Wλ

)
does not depend on λ ∈ [0, 1].

In the case when E is a finite dimensional manifold, the fixed point index
is uniquely determined by the first three properties (see [FPS04]). It is
also worth mentioning that when E = Rn, U is bounded, ψ is defined on
U and fixed point free on ∂U , then ind(ψ,U) is just the Brouwer degree
degB(I − ψ,U, 0), where I denotes the identity on Rn.

We now recall some basic notions about tangent vector fields on mani-
folds.

Let M ⊆ Rk be a manifold. Given any p ∈ M , TpM ⊆ Rk denotes the
tangent space of M at p. Let w be a tangent vector field on M , that is, a
(continuous) map w : M → Rk with the property that w(p) ∈ TpM for any
p ∈ M . If p ∈ M is such that w(p) = 0, then the Fréchet derivative w′(p) :
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TpM → Rk maps TpM into itself (see e.g. [Mi65]), so that the determinant
detw′(p) of w′(p) is defined. If, in addition, p is a nondegenerate zero (i.e.
w′(p) : TpM → Rk is injective) then p is an isolated zero and detw′(p) 6= 0.

Let U be an open subset of M in which we assume w admissible for the
degree; that is, the set w−1(0) ∩ U is compact. Then, one can associate to
the pair (w,U) an integer, deg(w,U), called the degree (or characteristic) of
the vector field w in U , which, roughly speaking, counts (algebraically) the
zeros of w in U (see e.g. [Hi76, Mi65, FPS05] and references therein). For
instance, when the zeros of w are all nondegenerate, then the set w−1(0)∩U
is finite and

deg(w,U) =
∑

q∈w−1(0)∩U

sign detw′(q).

When M = Rk, deg(w,U) is just the classical Brouwer degree, degB(w, V, 0),
where V is any bounded open neighborhood of w−1(0)∩U whose closure is in
U . Moreover, when M is a compact manifold, the celebrated Poincaré-Hopf
Theorem states that deg(w,M) coincides with the Euler-Poincaré character-
istic χ(M) of M and, therefore, is independent of w.

For the pourpose of future reference, we mention a few of the properties
of the degree of a tangent vector field that shall be useful in the sequel. Here
U is an open subset of a manifold M ⊆ Rk and g : M → Rk is a tangent
vector field.

Solution. If (g, U) is admissible and deg(g, U) 6= 0, then g has a zero in U .

Additivity. Let (g, U) be admissible. If U1 and U2 are two disjoint open
subsets of U whose union contains g−1(0) ∩ U , then

deg(g, U) = deg(g, U1) + deg(g, U2).

Homotopy Invariance. Let h : U × [0, 1]→ Rk be an admissible homotopy
of tangent vector fields; that is, h(x, λ) ∈ TxM for all (x, λ) ∈ U× [0, 1]
and h−1(0) is compact. Then deg

(
h(·, λ), U

)
is independent of λ.

As in the case of the fixed point index, the Additivity Property implies the
following important one:

Excision Let (g, U) be admissible. If V ⊆ U is open and contains g−1(0)∩U ,
then deg(g, U) = deg(g, V ).
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3 Poincaré-type translation operators

Let M ⊆ Rk be a manifold, and g : M → Rk a tangent vector field on M .
Let f : R ×M ×M → Rk be (continuous and) tangent to M in the second
variable (i.e. such that f(t, p, q) ∈ TpM for all (t, p, q) ∈ R×M ×M). Given
T > 0, assume also that f is T -periodic in t.

Given r > 0, consider the following delay differential equation depending
on a parameter λ ≥ 0:

(3.1) ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
.

We are interested in the T -periodic solutions of (3.1). Without loss of
generality we will assume that T ≥ r ([Fr07]). In fact, for n ∈ N, equations
(3.1) and

ẋ(t) = g
(
x(t)

)
+ λf

(
t, x(t), x(t− (r − nT ))

)
have the same T -periodic solutions. Thus, if necessary, one can replace r
with r − nT , where n ∈ N is such that 0 < r − nT ≤ T .

Let us introduce some notation.
Given any X ⊆ Rk, X̃ denotes the metric space C

(
[−r, 0], X) with the

distance inherited from the Banach space R̃k = C([−r, 0],Rk) with the usual

supremum norm. Notice that X̃ is complete if and only if X is closed in Rk.
Given any p ∈ M , denote by p̂ ∈ M̃ the constant function p̂(t) ≡ p and, for

any U ⊆ M , define Û =
{
p̂ ∈ M̃ : p ∈ U

}
. Also, given W ⊆ M̃ , we put

∨

W =
{
p ∈M : p̂ ∈ W

}
.

Observe that, for any given U ⊆ M , one has Û ⊆ Ũ and
∨

Ũ = U . It is
known (see e.g. [Ee66]) that M̃ is a smooth infinite dimensional manifold.
Actually, it turns out that it is a C1–ANR (see e.g. [EF76]), as a C1 retract

of the open subset Ũ of R̃k, U being a tubular neighborhood of M in Rk.
Assume now, till further notice, that g is C1. Consider the map Q in M̃

defined by Q(ϕ)(θ) = x
(
ϕ(0), T + θ

)
, θ ∈ [−r, 0], where x(p, ·) denotes the

unique solution of the Cauchy problem

ẋ(t) = g
(
x(t)

)
,(3.2a)

x(0) = p.(3.2b)

Well known properties of differential equations imply that the domain D(Q)

of Q is an open subset of M̃ . Also, since T ≥ r, the Ascoli-Arzelà Theorem
implies that Q is a locally compact map (see, e.g. [Ol69]).

Observe that the T -periodic solutions of (3.2a) are in a one-to-one corre-
spondence with the fixed points of Q. We will prove a formula (Theorem 3.2
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below) for the computation of the fixed point index of the admissible pairs
(Q,W ), where W is an open subset of D(Q). Clearly, Q is strictly related to
the M -valued Poincaré map P , given by P (p) = x(p, T ), whose domain is the
open subset D(P ) of M consisting of those points p such that the solution
x(p, ·) of the above Cauchy problem is defined up to T .

We shall need the following result of [FS96] about the fixed point index
of P .

Theorem 3.1. Let g be as above and let U ⊆ M be open and such that
ind(P,U) is defined. Then, deg(−g, U) is defined as well and

ind(P,U) = deg(−g, U).

There is a simple relation between the domain D(Q) of Q and the domain

D(P ) of P . In fact D(Q) = {ϕ ∈ M̃ : ϕ(0) ∈ D(P )}. In particular,

D̃(P ) ⊆ D(Q). Observe also that P (p) = Q(p̂)(0) for all p ∈ D(P ).

Theorem 3.2. Let g, T and Q be as above, and let W ⊆ M̃ be open. If the

fixed point index ind(Q,W ) is defined, then so is deg(−g,
∨

W ) and

ind(Q,W ) = deg(−g,
∨

W ).

Proof. The assumption that ind(Q,W ) is defined means that W ⊆ D(Q)

and that Fix(Q,W ) is compact. Let us show that deg(−g,
∨

W ) is defined too.

We need to prove that g−1(0) ∩
∨

W is compact. If p ∈ g−1(0) ∩
∨

W , then the

constant function p̂ is a fixed point of Q. Thus g−1(0) ∩
∨

W is compact since
it can be regarded as a closed subset of the compact set Fix(Q,W ).

We now use the Commutativity Property of the fixed point index in
order to deduce the desired formula for the fixed point index of Q from the
analogous one for P , expressed in Theorem 3.1. In order to do so, we define
the maps h : D(P ) → M̃ and k : M̃ → M by h(p)(θ) = x(p, θ + T ) and
k(ϕ) = ϕ(0), respectively. Clearly, we have

(h ◦ k)(ϕ)(θ) = x
(
ϕ(0), θ + T

)
= Q(ϕ)(θ), ϕ ∈ D(Q), θ ∈ [−r, 0],(3.3)

and

(k ◦ h)(p) = x(p, T ) = P (p), p ∈ D(P ).(3.4)

Define γ = k|W . By the Commutativity Property of the fixed point index,

ind
(
h◦γ, γ−1

(
D(P )

))
is defined if and only if so is ind

(
γ ◦h, h−1(W )

)
, and

(3.5) ind
(
h ◦ γ, γ−1

(
D(P )

))
= ind

(
γ ◦ h, h−1(W )

)
.
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Since W ⊆ D(Q), then γ−1
(
D(P )

)
= W . Hence, from formulas (3.3)–

(3.4), it follows that

ind(Q,W ) = ind
(
h ◦ γ, γ−1

(
D(P )

))
,(3.6)

ind
(
P, h−1(W )

)
= ind

(
γ ◦ h, h−1(W )

)
.(3.7)

Thus, by (3.5), we get

(3.8) ind(Q,W ) = ind
(
P, h−1(W )

)
.

From Theorem 3.1, we obtain

(3.9) ind
(
P, h−1(W )

)
= deg

(
− g, h−1(W )

)
.

From the definition of h it follows immediately that

g−1(0) ∩
∨

W = g−1(0) ∩ h−1(W ).

Therefore, from the Excision Property of the degree of a vector field, one has

(3.10) deg
(
− g, h−1(W )

)
= deg(−g,

∨

W )

and the assertion follows from equations (3.8), (3.9) and (3.10).

Let W ⊆ D(Q) be open in M̃ . We point out that Theorems 3.1 and 3.2
imply that the fixed point index of Q in W actually reduces to the fixed point

index of the finite dimensional operator P in
∨

W . Namely,

(3.11) ind(Q,W ) = ind(P,
∨

W ).

In fact, P is defined on
∨

W and Fix(P,
∨

W ) can be regarded as a closed subset of

Fix(Q,W ). Therefore, if ind(Q,W ) is defined, then so is ind(P,
∨

W ) and, ap-

plying Theorems 3.2 and 3.1, we get ind(Q,W ) = deg(−g,
∨

W ) = ind(P,
∨

W ).
Let us remark that the mappings h and k, defined in the proof of Theorem

3.2, establish a bijection between the fixed point sets of Q and P . However,
we should not think of formula (3.11) as a trivial consequence of this corre-
spondence. In fact, given W as in Theorem 3.2, we see that h and k induce a
one-to-one correspondence between the fixed points of Q in W and those of P

in h−1(W ) but, in general, Fix
(
P, h−1(W )

)
6= Fix

(
P,
∨

W
)
. Observe also that

the “finite dimensional reduction formula” (3.11) has a clear advantage over
the more crude reduction formula (3.8) obtained in the proof of Theorem 3.2
by means of the Commutativity Property of the fixed point index (and that
derives from the correspondence we just mentioned). In fact, differently from

the set h−1(W ) that appears in (3.8), the open set
∨

W does not depend on
the equation (3.2a).
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4 Branches of starting pairs

Any pair (λ, ϕ) ∈ [0,∞) × M̃ is said to be a starting pair (for (3.1)) if the
following initial value problem has a T -periodic solution:

(4.1)

{
ẋ(t) = g

(
x(t)

)
+ λf

(
t, x(t), x(t− r)

)
t > 0,

x(t) = ϕ(t), t ∈ [−r, 0].

A pair of the type (0, p̂) with g(p) = 0 is clearly a starting pair and will be
called a trivial starting pair. The set of all starting pairs for (3.1) will be
denoted by S.

Throughout this section we shall assume that f and g are C1, so that
(4.1) admits a unique solution that we shall denote by ξλ(ϕ, ·). Observe that
ξ0
(
ϕ(0), ·

)
= x

(
ϕ(0), ·

)
, where, we recall, x(p, ·) is the unique solutions of

the Cauchy problem (3.2). By known continuous dependence properties of

delay differential equations the set V ⊆ [0,∞)× M̃ given by

V :=
{

(λ, ϕ) : ξλ(ϕ, ·) is defined on [0, T ]
}

is open. Clearly V contains the set S of all starting pairs for (3.1). Observe

that S is closed in V , even if it could be not so in [0,+∞) × M̃ . Moreover,
by the Ascoli-Arzelà Theorem it follows that S is locally compact.

In the sequel, given A ⊆ R × M̃ and λ ∈ R, we will denote the slice

{x ∈ M̃ : (λ, x) ∈ A} by the symbol Aλ. Observe that
∨

V0 = D(P ) where P
is the Poincaré operator defined in the previous section.

In order to study the T -periodic solutions of (1.1), it will be convenient

to introduce, for each λ ≥ 0, the map Qλ : Vλ → M̃ given by

Qλ(ϕ)(θ) = ξλ(ϕ, θ + T ), θ ∈ [−r, 0].

Notice that Q0 coincides with the map Q defined in the previous section.
We will need the following global connectivity result of [FP93].

Lemma 4.1. Let Y be a locally compact metric space and let Z be a com-
pact subset of Y . Assume that any compact subset of Y containing Y0 has
nonempty boundary. Then Y \ Z contains a connected set whose closure (in
Y ) intersects Z and is not compact.

Proposition 4.1. Assume that f , g, S are as above. Given W ⊆ [0,∞]×M̃
open, if deg(g,

∨

W 0) is (defined and) nonzero, then the set

(S ∩W ) \
{

(0, p̂) ∈ W : g(p) = 0
}

of nontrivial starting pairs in W , admits a connected subset whose closure in
S ∩W meets

{
(0, p̂) ∈ W : g(p) = 0

}
and is not compact.

9



Proof. Let us define the open set U = W∩V . Since g−1(0)∩
∨

U0 = g−1(0)∩
∨

W 0,
and S∩U = S∩W , we need to prove that the set of nontrivial starting pairs
in U admits a connected subset whose closure in S ∩ U meets

{
(0, p̂) ∈ U :

g(p) = 0
}

and is not compact.
As pointed out before, S is locally compact, thus, U being open, S ∩U is

locally compact. Moreover the assumption that deg(g,
∨

W 0) is defined means
that the set {

p ∈
∨

W 0 : g(p) = 0
}

=
{
p ∈
∨

U0 : g(p) = 0
}

is compact. Thus the homeomorphic set {(0, p̂) ∈ U : g(p) = 0} is compact
as well.

The assertion will follow applying Lemma 4.1 to the pair

(Y, Z) =
(
S ∩ U,

{
(0, p̂) ∈ U : p ∈ g−1(0)

})
.

In fact, if Σ is a connected set as in the assertion of Lemma 4.1, its closure
satisfies the requirement.

Assume, by contradiction, that there exists a compact subset C of the set
S ∩U of starting pairs of (4.1) in U containing Z and with empty boundary
in S ∩ U . Thus C is a relatively open subset of S ∩ U . As a consequence,
(S ∩ U) \ C is closed in S ∩ U , so the distance, δ = dist

(
C, (S ∩ U) \ C

)
,

between C and (S ∩ U) \ C is nonzero (recall that C is compact). Consider
the set

A =
{

(λ, ϕ) ∈ U : dist
(
(λ, ϕ), C

)
< δ/2

}
,

which, clearly, does not meet (S ∩ U) \ C.
Because of the compactness of S ∩ U ∩ A = C, there exists λ > 0 such

that ({λ} × Aλ) ∩ S ∩ U = ∅. Moreover, the set S ∩ U ∩ A coincides with
{(λ, ϕ) ∈ A : Qλ(ϕ) = ϕ}. Then, from the Generalized Homotopy Invariance
Property of the fixed point index,

0 = ind
(
Qλ, Aλ

)
= ind

(
Qλ, Aλ

)
,

for all λ ∈ [0, λ]. But, by Theorem 3.2 and by the Excision Property of the
degree, we get

ind(Q,A0) = deg(−g,
∨

A0) = deg(−g,
∨

W 0) 6= 0.

That contradicts the previous formula, since Q = Q0.
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5 Branches of T -periodic pairs

Let us introduce the function space where most of the work of this section
is done. We will denote by CT (M) the metric subspace of the Banach space(
CT (Rk) , ‖·‖

)
of all the T -periodic continuous maps x : R → M with the

usual C0 norm. Observe that CT (M) is not complete unless M is complete
(i.e. closed in Rk). Nevertheless, since M is locally compact, CT (M) is always
locally complete.

For the sake of simplicity, we will identify M with its image in [0,∞) ×
CT (M) under the embedding which associates to any p ∈ M the pair (0, p̄),
p̄ ∈ CT (M) being the map constantly equal to p. According to these identi-
fications, if E is a subset of [0,∞)× CT (M), by E ∩M we mean the subset
of M given by all p ∈M such that the pair (0, p̄) belongs to E. Observe that
if Ω ⊆ [0,∞)× CT (M) is open, then so is Ω ∩M .

A pair (λ, x) ∈ [0,∞) × CT (M), where x a solution of (3.1), is called a
T -periodic pair (for (3.1)). Those T -periodic pairs that are of the particular
form (0, p) are said to be trivial. Observe that (0, p) ∈ [0,∞) × CT (M) is a
trivial T -periodic pair if and only if g(p) = 0. We point out that if x is a
nonconstant T -periodic solution of the unperturbed equation ẋ(t) = g

(
x(t)

)
,

then (0, x) is a nontrivial T -periodic pair.
We are now in a position to state our main result. The proof is inspired

by [FS96, FP93].

Theorem 5.1. Let g : M → Rk be a tangent vector field on M and, given
T > 0, let f : R × M × M → Rk be T -periodic in the first variable and
tangent to M in the second one. Let Ω be an open subset of [0,∞)×CT (M),
and assume that deg(g,Ω ∩M) is defined and nonzero. Then Ω contains a
connected set of nontrivial T -periodic pairs whose closure in Ω meets the set
{(0, p) ∈ Ω : g(p) = 0} and is not compact.

In particular, the set of T -periodic pairs for (3.1) contains a connected
component that meets {(0, p) ∈ Ω : g(p) = 0} and whose intersection with Ω
is not compact.

Proof. Denote by X the set of T -periodic pairs of (3.1) and by S the set
of starting pairs of the same equation; that is, of all pairs

(
λ, x|[−r,0]

)
with

(λ, x) ∈ X, x|[−r,0] being the restriction to [−r, 0] of x.
Assume first that f and g are smooth. Define the map h : X → S by

h(λ, x) =
(
λ, x|[−r,0]

)
and observe that h is continuous, onto and, since f

and g are smooth, it is also one to one. Furthermore, by the continuous
dependence on data, h−1 : S → X is continuous as well.

Take

SΩ = {(λ, ϕ) ∈ S : the solution of (3.1) is contained in Ω} .
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So that X ∩ Ω and SΩ correspond under the homeomorphism h : X → S.
Thus, SΩ is an open subset of S and, consequently, we can find an open
subset W of [0,∞)× M̃ such that S ∩W = SΩ. This implies{

p ∈
∨

W 0 : g(p) = 0
}

=
{
p ∈M : (0, p̂) ∈ W, g(p) = 0

}
=

=
{
p ∈M : (0, p) ∈ Ω, g(p) = 0

}
=
{
p ∈ Ω ∩M : g(p) = 0

}
.

Thus, by excision, deg(g,
∨

W 0) = deg(g,Ω ∩M) 6= 0. Applying Proposition
4.1, we get the existence of a connected set

Σ ⊆ (S ∩W ) \
{

(0, p̂) ∈ W : g(p) = 0
}

whose closure in S ∩W meets
{

(0, p̂) ∈ W : g(p) = 0
}

and is not compact.
Observe that the trivial T -periodic pairs correspond to the trivial starting

pairs under the homeomorphism h. Thus, Γ = h−1(Σ) ⊆ X∩Ω is a connected
set of nontrivial T -periodic pairs whose closure in X ∩ Ω meets {(0, p) ∈ Ω :
g(p) = 0} and is not compact. Since X is closed in [0,∞) × CT (M), the
closures of Γ in X ∩ Ω and in Ω coincide. This proves that Γ satisfies the
requirements of the first part of the assertion.

Let us remove the smoothness assumption on g and f . As above, it is
enough to show the existence of a connected set Γ of nontrivial T -periodic
pairs whose closure in X ∩ Ω meets {(0, p) ∈ Ω : g(p) = 0} and is not
compact.

Observe that the closed subset X of [0,∞) × CT (M) is locally compact
because of Ascoli-Arzelà Theorem. It is convenient to introduce the following
subset of X:

Υ =
{

(0, p) ∈ [0,∞)× CT (M) : g(p) = 0
}
.

Take
Y = X ∩ Ω and Z = Υ ∩ Ω

and notice that Y is locally compact as an open subset of X. Moreover,
Z is a compact subset of Y (recall that, by assumption, deg(g,M ∩ Ω) is
defined). Since Y is closed in Ω, we only have to prove that the pair (Y, Z)
satisfies the hypothesis of Lemma 4.1. Assume the contrary. Thus, we can
find a relatively open compact subset C of Y containing Z. Similarly to the
proof of Proposition 4.1, given 0 < ρ < dist(C, Y \ C), we consider the set
Aρ of all pairs (λ, ϕ) ∈ Ω whose distance from C is smaller than ρ. Thus,
Aρ ∩Y = C and ∂Aρ ∩Y = ∅. We can also assume that the closure Aρ of Aρ

in [0,∞)× CT (M) is contained in Ω. Since C is compact and [0,∞)×M is
locally compact, we can take Aρ in such a way that the set{(

λ , x(t), x(t− r)
)
∈ [0,∞)×M ×M : (λ, x) ∈ Aρ, t ∈ [0, T ]

}
12



is contained in a compact subset of [0,∞) × M × M . This implies that
Aρ is bounded with complete closure and Aρ ∩ M is a relatively compact
subset of Ω ∩ M . In particular g is nonzero on the boundary of Aρ ∩ M
(relative to M). By well known approximation results on manifolds, we can
find sequences {gi} and {fi} of smooth maps uniformly approximating g and
f , and such that the following properties hold for all i ∈ N:

• gi(p) ∈ TpM for all p ∈M ;

• fi(t, p, q) ∈ TpM for all (t, p, q) ∈ R×M ×M ;

• fi is T -periodic in the first variable.

For i ∈ N large enough, we get

deg(gi, A
ρ ∩M) = deg(g, Aρ ∩M).

Furthermore, by excision,

deg(g, Aρ ∩M) = deg(g,Ω ∩M) 6= 0.

Therefore, given i large enough, the first part of the proof can be applied to
the equation

(5.1) ẋ(t) = gi
(
x(t)

)
+ λfi

(
t, x(t), x(t− r)

)
.

Let Xi denote the set of T -periodic pairs of (5.1) and put

Υi =
{

(0, p) ∈ [0,∞)× CT (M) : gi(p) = 0
}
.

Because of the first part of the proof, there exists a connected subset Γi of
Aρ whose closure in Aρ meets Υi ∩Aρ and is not compact. Let us denote by
Γi and Aρ the closures in [0,∞)× CT (M) of Γi and Aρ, respectively.

Let us show that, for i large enough, Γi ∩ ∂Aρ 6= ∅. Thus, Xi being
closed, we get Γi ⊆ Xi. This will imply the existence of a T -periodic pair
(λi, xi) ∈ ∂Aρ of (5.1). It is enough to prove that Γi is compact. In fact,
if this is true and if we assume Γi ∩ ∂Aρ = ∅, then Γi ⊆ Aρ which implies
that the closure of Γi in Aρ coincides with the compact set Γi, and this is a
contradiction. The compactness of Γi, for i large enough, follows from the
completeness of Aρ and the fact that, by the Ascoli-Arzelà Theorem, Γi is
totally bounded, when i is sufficiently large. Thus, for i large enough, there
exists a T -periodic pair (λi, xi) ∈ ∂Aρ of (5.1).

Again by Ascoli-Arzelà Theorem, we may assume that xi → x0 in CT (M)
and λi → λ0 with (λ0, x0) ∈ ∂Aρ. Passing to the limit in equation (5.1),
it is not difficult to show that (λ0, x0) is a T -periodic pair of (3.1) in ∂Aρ.
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This contradicts the assumption ∂Aρ∩Y = ∅ and proves the first part of the
assertion.

Let us prove the last part of the assertion. Consider the connected com-
ponent Ξ of X that contains the connected set Γ of the first part of the
assertion. We shall now show that Ξ has the required properties. Clearly, Ξ

meets the set
{

(0, p) ∈ Ω : g(p) = 0
}

because the closure Γ
Ω

of Γ in Ω does.
Moreover, Ξ ∩ Ω cannot be compact, since Ξ ∩ Ω, as a closed subset of Ω,

contains Γ
Ω

, and Γ
Ω

is not compact.

The following corollary, in the case of a compact boundaryless manifolds,
extends a result of [BCFP07] in which g is identically zero.

Corollary 5.1. Let f and g be as in Theorem 5.1 and let M ⊆ Rk be
compact with nonzero Euler-Poincaré characteristic χ(M). Then, there exists
an unbounded connected set of nontrivial T -periodic pairs whose closure meets
{(0, p) ∈ [0,∞) × CT (M) : g(p) = 0}. In particular, equation (4.1) has a
solution for any λ ≥ 0.

Proof. SinceM is compact, [0,∞)×CT (M) is a complete metric space. More-
over, the Ascoli-Arzelà Theorem implies that any bounded set of T -periodic
pairs is totally bounded. The Poincaré-Hopf Theorem yields deg(g,M) =
χ(M) 6= 0. Thus, Theorem 5.1 implies the existence of an unbounded con-
nected set Γ of nontrivial T -periodic pairs whose closure in [0,∞)× CT (M)
meets {(0, p) ∈ [0,∞)× CT (M) : g(p) = 0}. The last assertion follows from
the fact that CT (M) is bounded while Γ is unbounded.

Corollary 5.2. Let f and g be as in Theorem 5.1. Assume that M is closed
as a subset of Rk. Let Ω ⊆ [0,∞)×CT (M) be open and such that deg(g,Ω∩
M) is defined and nonzero. Then there exists a connected component Γ of T -
periodic pairs that meets

{
(0, p) ∈ Ω : g(p) = 0

}
and cannot be both bounded

and contained in Ω. In particular, if Ω is bounded, then Γ ∩ ∂Ω 6= ∅.

Proof. Since M is a closed subset of Rk, [0,∞)×CT (M) is complete. More-
over, the Ascoli-Arzelà Theorem implies that any bounded set of T -periodic
pairs is totally bounded. Thus, the first part of the assertion follows from
Theorem 5.1. The last part of the assertion follows from the fact that Γ is
connected and that ∅ 6= Γ ∩ Ω 6= Γ.

To better understand the meaning of Corollary 5.2, consider for example
the case when M = Rm. If g−1(0) is compact and deg(g,Rm) 6= 0, then there
exists an unbounded connected set of T -periodic pairs in [0,∞) × CT (Rm)
which meets the set {(0, p) ∈ [0,∞)× CT (M) : g(p) = 0}, that can be iden-
tified with g−1(0). The existence of this unbounded connected set cannot be
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destroyed by a particular choice of f . However it is possibly “completely ver-
tical”, i.e. contained in the slice {0} ×CT (M). This peculiarity is exhibited,
for instance, by the set of T -periodic pairs of the equation{

ẋ = y,
ẏ = −x+ λ sin t,

where M = R2 and T = 2π.
A somewhat opposite behavior is shown by the set X of T -periodic pairs

for (3.1) in the “degenerate” situation when f(t, p, q) ≡ 0. In this case,
X consists of the pairs (λ, x), where λ ≥ 0 and x is a T -periodic solution
to ẋ = g(x). In particular, given any p ∈ M such that g(p) = 0, the
connected component Γ of X containing {0} × p contains the “horizontal”
set [0,+∞)× {p} and, clearly, satisfies the requirement of Corollary 5.2.
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