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Abstract. We consider a parametrized fixed point equation (or, more gen-

erally, a coincidence equation) in a finite dimensional manifold and we give
necessary as well as sufficient conditions for bifurcation from a manifold of

trivial fixed points. The abstract results are then applied to forced oscillations

of second order differential equations on manifolds, providing a necessary con-
dition and a sufficient condition for an equilibrium point to be a bifurcation

point of periodic orbits.

1. Introduction

Let Z be a finite dimensional differentiable manifold and consider the parame-
trized fixed point equation

(1.1) f(λ, z) = z,

where f : R× Z → Z is a C1 map. In [7], assuming that f(0, z) = z, for all z ∈ Z,
we obtained conditions for bifurcation from the manifold {0}×Z, actually regarded
as the set of trivial solutions to (1.1). In the same paper, we gave an application
of such results to the one parameter family of first order periodic problems

(1.2)
{
ẋ = λF (t, x), λ ∈ R
x(0) = x(T ) ,

with F : R × N → Rs a time dependent T -periodic C1 tangent vector field on a
differentiable manifold N ⊆ Rs. A pair (λ, q) ∈ R×N , where q is the value at time
t = 0 of a T -periodic solution of ẋ = λF (t, x), has been called a starting point.
Clearly, for λ = 0, any pair (0, q), q ∈ N is a starting point of the constant solution
x(t) ≡ q. The abstract bifurcation results of [7] apply to (1.2) by taking Z = N
and f to be the Poincaré T -translation operator PT : R×N → N associated with
(1.2). Since the starting points of the form (0, q) satisfy PT (0, q) = q, it is natural
to regard {0} ×N as the manifold of trivial solutions. We proved that a sufficient
condition for a trivial starting point (0, q0) to be a bifurcation point is that q0 is a
nondegenerate zero of the autonomous tangent vector field

w(q) =
1
T

∫ T

0

F (t, q) dt,

called in [7] the “average wind”.
The idea of extending a similar result to periodic problems for second order dif-

ferential equations on manifolds led us to study the one parameter motion problem
associated with a force λF , where now F : R×TN → Rs is a T -periodic C2 vector
field defined on the tangent bundle TN of N and is assumed to be tangent to N ,
that means F (t, q, v) tangent to N at q for all (t, q, v) ∈ R×TN . Clearly, as for first
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order equations, any q ∈ N is still a rest point of the motion problem with λ = 0,
the so-called inertial problem. However, as well-known, in the non flat case the
inertial problem may also have nonconstant T -periodic solutions, as, for instance,
in the case of an inertial motion on a sphere. In fact, closed geodesics may be
T -periodic if they have appropriate speed. Consequently, when dealing with the
parametrized fixed point equation involving the Poincaré T -translation operator
PT : R× TN → TN associated with the T -periodic second order problem, namely
PT (λ, q, v) = (q, v), even if it is natural to suppose the triples (0, q, 0), q ∈ N, to
be the trivial solutions (observe that, now, the constraint is N × {0} ⊆ TN), one
should keep in mind that, for λ = 0, the equation PT (0, q, v) = (q, v) may also have
fixed points (q, v) with v 6= 0.

The situation arising in the constrained periodic motion problem, and already
described, is the main motivation of this paper. In particular, in Section 4 where
we are concerned with the equation (1.1), we assume the existence of a manifold
M0 ⊆ Z such that f(0, z) = z for all z ∈M0. We emphasize the fact that M0 may
be strictly contained in the set of fixed points of f for λ = 0 and we will refer to
{0} ×M0 as to the set of trivial solutions of (1.1). Our aim is to get bifurcation
from {0}×M0. We give necessary conditions (Theorem 4.1 and Corollary 4.5) and
sufficient conditions (Theorem 4.2 and Corollary 4.7) for a point p ∈ M0 to be a
bifurcation point of (1.1). Such results are deduced from quite general bifurcation
theorems obtained in Section 3 for a coincidence equation of the form f(x) =
h(x), with f and h maps between two finite dimensional manifolds (extensions to
the infinite dimensional context will appear elsewhere). We would like to point
out that, as one may expect, our sufficient conditions for bifurcation are, in some
sense, second order conditions. Actually, they are given in terms of the Hessian
of a C2 map between manifolds (see Section 2), since, as well-known and easy to
check, the second derivative is not intrinsically defined for maps acting between two
differentiable manifolds.

As observed just few lines above, in the present context the nontrivial solutions
(λ, z) of (1.1) may have λ = 0. However, an extra condition yielding that nontrivial
pairs sufficiently close to {0} ×M0 have λ 6= 0 can be assumed (see (H) of Section
4). It seems interesting to observe that this condition is satisfied by the Poincaré
operator PT : R × TN → TN associated with the second order periodic problem
we are interested in (see Theorem 5.2 below). As a consequence, the nontrivial
triples (λ, q, v) which are close to (0, q, 0) and such that PT (λ, q, v) = (q, v) have
necessarily λ 6= 0. This corresponds to the well-known physical fact that in a
Riemaniann manifold there are no nonconstant closed geodesics too close to a given
point.

Finally, from the abstract results of Section 4, we are able to deduce for the
constrained T -periodic second order problem, the analogue of the bifurcation result
obtained for the first order problem (1.2). Namely, we prove that a trivial starting
point (0, q0, 0) of the motion equation is a bifurcation point provided that q0 is a
nondegenerate zero of the “average force” vector field

F̄ (q) =
1
T

∫ T

0

F (t, q, 0) dt.
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2. Notation and Preliminaries

In this paper all the manifolds are assumed to be real and smooth. Thus, for
simplicity, the term smooth will be omitted. Clearly, most of the statements make
sense even assuming less regularity of the involved manifolds. However, we are not
interested here in this more general situation.

Given two manifolds X and Y and a C1 map f : X → Y , the (first) derivative
of f at x ∈ X will be denoted by Df(x) or, also, by f ′(x). As well-known, Df(x) is
a linear operator sending the tangent space TxX of X at x into the tangent space
Tf(x)Y of Y at f(x).

When X = X1×X2, the partial derivative with respect to the first (respectively,
the second) variable at (x1, x2) will be indicated with ∂1f(x1, x2) (respectively,
∂2f(x1, x2)). For any pair of tangent vectors (u1, u2) ∈ Tx1X1 × Tx2X2, one has

Df(x1, x2)(u1, u2) = ∂1f(x1, x2)u1 + ∂2f(x1, x2)u2.

In particular, if X1 = R, the partial derivative ∂1f(x1, x2), which is actually a linear
operator from R to the tangent space Tf(x1,x2)Y , will be identified with the tangent
vector ∂1f(x1, x2)(1) ∈ Tf(x1,x2)Y . With this notation, for the (total) derivative
Df(x1, x2) one has the equality

Df(x1, x2)(u1, u2) = u1∂1f(x1, x2) + ∂2f(x1, x2)u2,

where (u1, u2) ∈ R× Tx2X2.
When X and Y are Euclidean (or, more generally, Banach) spaces, the second

derivative of a C2 map f : X → Y at x ∈ X is a symmetric bilinear operator from
X to Y , i.e. an element of the space L2

s(X,Y ), and will be denoted by D2f(x). A
practical method for its computation is the following: given u, v ∈ X, consider the
function of two real variables σ(r, s) = f(x+ ru+ sv); then,

D2f(x)(u, v) =
∂2σ

∂r∂s
(0, 0).

However, when f : X → Y acts between two differentiable manifolds, then the
second derivative of f at x ∈ X is not intrinsically defined, since only a part of
this derivative is independent of coordinates, as can be easily seen by a simple
computation. More precisely, one can define (see e.g. [1]) an intrinsic symmetric
bilinear operator Hf(x), called the Hessian of f at x, acting from KerDf(x) to
coKerDf(x) = Tf(x)Y/ ImDf(x), i.e. an element of L2

s(KerDf(x), coKerDf(x)).
For example, if f is a real function on X and x ∈ X is a critical point of f , then
KerDf(x) = TxX and coKerDf(x) = R. Thus, in this case, Hf(x) is the classical
Hessian, which can be regarded either as a symmetric bilinear form or as a quadratic
form on the tangent space TxX.

By taking charts ϕ : U ⊆ X → Rk and ψ : V ⊆ Y → Rl about x and y = f(x)
respectively, one can define Hf(x) as follows

(2.1) Hf(x)(u, v) = π
(
Dψ−1(ψ(y))D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v)

)
,

where u, v ∈ KerDf(x), f̂ = ψ ◦ f ◦ ϕ−1, and π : TyY → TyY/ ImDf(x) is the
canonical projection. We will show below that Hf(x) is a well-defined element of
L2

s(KerDf(x), coKerDf(x)), i.e. that the above definition does not depend on the
particular choice of the charts ϕ and ψ. More precisely, if ϕ1 : U1 ⊆ X → Rk and
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ϕ2 : U2 ⊆ X → Rk are charts about x, ψ1 : V1 ⊆ Y → Rl and ψ2 : V2 ⊆ Y → Rl

are charts about y = f(x), we will show that

(2.2)
π
(
Dψ−1

1 (ψ1(y))D2f̂1(ϕ1(x))(Dϕ1(x)u,Dϕ1(x)v)
)

= π
(
Dψ−1

2 (ψ2(y))D2f̂2(ϕ2(x))(Dϕ2(x)u,Dϕ2(x)v)
)
,

where f̂i = ψi ◦ f ◦ ϕ−1
i : ϕi(Ui) ⊆ Rk → Rl, i = 1, 2. Clearly, one has f̂2 =

β ◦ f̂1 ◦α−1, where we have set α = ϕ2 ◦ϕ−1
1 and β = ψ2 ◦ψ−1

1 . In other words, we
are reduced to consider the diagram

(2.3)

ϕ1(U1)
f̂1−−−−→ ψ1(V1)

α

y yβ

ϕ2(U2)
f̂2−−−−→ ψ2(V2)

and to investigate the relationship between the second derivatives D2f̂1 and D2f̂2.
This will be carried out in the following two steps.

Lemma 2.1. Let W1,W2 be open subsets of Rk, f1 : W1 → Rl be a C2 map,
α : W1 → W2 be a C2 diffeomorphism. Then, if f2 : W2 → Rl denotes the
composition f1 ◦ α−1 and x2 = α(x1), we have

(a) Df1(x1)u1 = Df2(x2)u2, where u1, u2 ∈ Rk are such that u2 = Dα(x1)u1;
(b) w1 − w2 ∈ ImDf1(x1) = ImDf2(x2), where wi = D2fi(xi)(ui, vi) with

ui, vi ∈ Rk (i = 1, 2) such that u2 = Dα(x1)u1, v2 = Dα(x1)v1.

Proof. (a) The assertion follows immediately from the chain rule of the derivative.
(b) Let us compute the second derivative w1 = D2f1(x1)(u1, v1) and compare it

with w2 = D2f2(x2)(u2, v2). As observed above, it is enough to compute the second
derivative at the origin of the function of two real variables σ1(r, s) = f1(x1 +ru1 +
sv1) = f2(α(x1 + ru1 + sv1)). One has

∂σ1

∂r
(0, s) = Df2(α(x1 + sv1))Dα(x1 + sv1)u1

and
∂2σ1

∂s∂r
(0, 0) = D2f2(α(x1))(Dα(x1)u1, Dα(x1)v1)+

Df2(α(x1))(D2α(x1)(u1, v1)).
Therefore,

D2f1(x1)(u1, v1) = D2f2(x2)(u2, v2) +Df2(x2)(D2α(x1)(u1, v1)).

This means that w1 coincides with w2 up to an element belonging to ImDf2(x2),
as claimed. �

Lemma 2.2. Let W be an open subset of Rk, Ω1 and Ω2 open subsets of Rl,
f1 : W → Ω1 a C2 map, β : Ω1 → Ω2 a C2 diffeomorphism. Then, if f2 : W → Ω2

denotes the composition β ◦ f1 and y1 = f1(x), we have
(a) Df2(x)u = Dβ(y1)(Df1(x)u), for any u ∈ Rk;
(b) Dβ(y1)w1 = w2 , where wi = D2fi(x)(u, v), i = 1, 2 , with u, v ∈ KerDf1(x).
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Proof. (a) The assertion follows immediately from the chain rule of the derivative.
(b) Given u, v ∈ Rk, let us compute D2f2(x)(u, v). As in Lemma 2.1, consider

the function σ2(r, s) = f2(x+ ru+ sv) = β(f1(x+ ru+ sv)). One has
∂σ2

∂r
(0, s) = Dβ(f1(x+ sv))(Df1(x+ sv)u)

and
∂2σ2

∂s∂r
(0, 0) = D2β(f1(x))(Df1(x)u,Df1(x)v) +Dβ(f1(x))(D2f1(x)(u, v)).

Now, by taking u, v ∈ KerDf1(x), the first term in the above sum is zero. Thus
D2f2(x)(u, v) = Dβ(y1)(D2f1(x)(u, v)), and the assertion is proved. �

Observe now that the equality (2.2) follows by directly applying Lemmas 2.1
and 2.2, with α = ϕ2 ◦ ϕ−1

1 , β = ψ2 ◦ ψ−1
1 ,W1 = ϕ1(U1),W2 = ϕ2(U2),Ω1 =

ψ1(V1),Ω2 = ψ2(V2), and by recalling that π(w) = 0 if and only if w ∈ ImDf(x).

Remark 2.3. Let us compute in coordinates the derivative and the Hessian of
a smooth map f : X → Y between two manifolds X and Y . Given x ∈ X and
y = f(x) ∈ Y, let {xi}i=1,...,k and {yh}h=1,...,l be coordinate systems about x and
y, respectively. Thus, if u is a vector tangent to X at x, the derivative Df(x)u in
coordinates is given by ∑

h

( ∑
i

αi
∂fh

∂xi
(x)

)( ∂

∂yh

)
y
,

where u =
∑

i αi

(
∂

∂xi

)
x

and fh = yh ◦ f. Moreover, if u and v are tangent vectors

belonging to KerDf(x), it is not hard to check that the Hessian Hf(x)(u, v) can
be represented in coordinates, up to elements belonging to the image of Df(x), as
follows ∑

h

( ∑
i,j

αiβj
∂2fh

∂xi∂xj
(x)

)( ∂

∂yh

)
y
,

where v =
∑

j βj

(
∂

∂xj

)
x
.

The following property of Hf(x) will be used in the sequel.

Lemma 2.4. Let f : X → Y be a C2 map between two finite dimensional manifolds
and assume that f is constant on a submanifold M of X. Then, given x ∈M and
u, v ∈ TxM one has Hf(x)(u, v) = 0.

Proof. Since f is constant in the submanifold M of X, then, according to definition
introduced in (2.1), given x ∈ M , the map f̂ : ϕ(U) → ψ(V ) is constant in ϕ(U ∩
M), where we may assume that ϕ : U → W is a chart about x transforming
U ∩ M in W ∩ E, where E is a subspace of Rk. Therefore, given u, v ∈ TxM ,
the corresponding vectors Dϕ(x)u, Dϕ(x)v belong to E. Hence, the map σ̂(r, s) =
f̂(ϕ(x) + rDϕ(x)u+ sDϕ(x)v) is constant, so that

D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v) =
∂2σ̂

∂r∂s
(0, 0) = 0.

This clearly implies

Hf(x)(u, v) = π
(
Dψ−1(ψ(y))D2f̂(ϕ(x))(Dϕ(x)u,Dϕ(x)v)

)
= 0,

which is our assertion. �
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3. General bifurcation

Let f, h : X → Y be maps between two finite dimensional manifolds and consider
the coincidence equation

(3.1) f(x) = h(x).

Let us denote by S the solution set to the above equation and suppose that one is
interested in regarding a distinguished subset M of S as the set of trivial solutions
of (3.1). Consequently, S \M will be the set of nontrivial solutions. According to
this terminology, a trivial solution p ∈ M will be called a bifurcation point for the
equation (3.1) if any neighborhood of p in X contains elements of S \M . Actually,
some structure is required on the trivial set M; for instance, assume that

• the set M of trivial solutions of the equation (3.1) is an m-dimensional
manifold.

Our purpose now is to prove a necessary condition (Theorem 3.4 below) and
a sufficient condition (Theorem 3.6) for the coincidence equation (3.1) to possess
bifurcation from M . To this end, we will make use of finite dimensional versions
(Lemmas 3.1 and 3.2 below) of two results obtained in [5], by means of the Implicit
Function Theorem, in the more general context of Fredholm maps between Banach
spaces (a forthcoming joint paper with M. Martelli will deal with coincidence prob-
lems for maps between Banach manifolds). In particular, given a map g : Rk → Rl

and a set M ⊆ g−1(0), an element p ∈ M is a bifurcation point for the equation
g(x) = 0 if any neighborhood of p in Rk contains elements of g−1(0)\M . To under-
stand the meaning of the following lemma, observe that, if g is C1, the condition
M ⊆ g−1(0) implies TxM ⊆ KerDg(x) for all x ∈M .

Lemma 3.1. Let g : Rk → Rl be a C1 map and let M be an m-dimensional
manifold contained in g−1(0). A necessary condition for p ∈M to be a bifurcation
point (from M) for the equation g(x) = 0 is that dim KerDg(p) > m.

Lemma 3.2. Let g : Rk → Rl, with k − l = 1, be a C2 map and let M be an
m-dimensional manifold contained in g−1(0). Assume that for some p ∈ M there
exists u ∈ KerDg(p) \ TpM such that the linear operator

v ∈ TpM 7→ πD2g(p)(u, v) ,

where π : Rl → Rl/ ImDg(p) denotes the canonical projection, is onto. Then p is
a bifurcation point (from M) for the equation g(x) = 0.

Remark 3.3. Since in Lemma 3.2 we have assumed k − l = 1, we have

dim KerDg(p) = 1 + dim(Rl/ ImDg(p)).

Moreover, the existence of u ∈ KerDg(p) \ TpM implies

dim KerDg(p) > m.

On the other hand, from the assumption that the map

v ∈ TpM 7→ πD2g(p)(u, v) ∈ Rl/ ImDg(p)

is onto, we get
dim(Rl/ ImDg(p)) ≤ dimTpM = m.

Therefore,
dim KerDg(p) = m+ 1
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and, thus, dim(Rl/ ImDg(p)) = m. Consequently, the map

v ∈ TpM 7→ πD2g(p)(u, v) ∈ Rl/ ImDg(p)

is also one-to-one. This shows that the surjectivity assumption of Lemma 3.2 can
be replaced (as in [5]) with the following equivalent condition

(3.2)
{

dim KerDg(p) = m+ 1,
v ∈ TpM and D2g(p)(u, v) ∈ ImDg(p) =⇒ v = 0 .

Let us now go back to the coincidence equation (3.1). We can prove the following
results.

Theorem 3.4. Let f, h : X → Y and M be as above, and let p ∈M be a bifurcation
point for the equation (3.1). If f and h are C1 in a neighborhood of p in X, then

dim Ker(Df(p)−Dh(p)) > m.

Proof. Observe first that, as one can easily check, the notion of bifurcation and the
statement of the theorem are invariant under diffeomorphisms. Therefore, recalling
that a manifold is locally diffeomorphic to a whole Euclidean space, one can think
of f and h as maps between Euclidean spaces, say Rk and Rl. Hence, the assertion
follows by a straightforward application of Lemma 3.1 to the map g = f − h. �

Remark 3.5. Observe that, for any x ∈M , the following inclusion holds

(3.3) TxM ⊆ Ker(Df(x)−Dh(x)).

To see this, it suffices to reduce, as in the proof of Theorem 3.4, to the map
g : Rk → Rl, g = f − h, and to observe that the fact that g is constant on M
implies, as already observed, that TxM ⊆ KerDg(x), for all x ∈M .

As a consequence of (3.3) and recalling that M is m-dimensional, one has

dim Ker(Df(p)−Dh(p)) > m

if and only if TpM is strictly contained in Ker(Df(p) − Dh(p)). In other words,
the necessary condition of Theorem 3.4 is equivalent to the following:

there exists u 6∈ TpM such that Df(p)u = Dh(p)u.

Theorem 3.6. Let f, h : X → Y and M be as above, and suppose dimX−dimY =
1. Given p ∈M , assume that f and h are C2 in a neighborhood of p in X. If there
exists u ∈ Ker(Df(p)−Dh(p)) \ TpM such that the linear operator

Lu : TpM → Tf(p)Y/ Im(Df(p)−Dh(p))

given by
Luv = Hf(p)(u, v)−Hh(p)(u, v)

is onto, then p is a bifurcation point (from M) for the equation (3.1).

Proof. As in the proof of Theorem 3.4, one can reduce to the case of a map g = f−h
acting between Euclidean spaces Rk and Rl and to an m-dimensional manifold
(still denoted by M) contained in g−1(0). In this context, our assumption is trans-
formed in the existence of p ∈ M and u ∈ KerDg(p) \ TpM such that the map
v ∈ TpM 7→ Hg(p)(u, v) ∈ Rk/ ImDg(p) is onto. Now, observe that the map
Hg(p)(u, v) is nothing else but the composition πD2g(p)(u, v), where D2g(p) is the
second derivative of g at p and π : Rl → Rl/ ImDg(p) denotes the canonical projec-
tion. Consequently, the condition that the map v ∈ TpM 7→ πD2g(p)(u, v) is onto
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implies, by Lemma 3.2, that p is a bifurcation point for the equation g(x) = 0. Thus,
the same is true also for the coincidence equation f(x) = h(x), as claimed. �

Remark 3.7. From the assumption dimX − dimY = 1 it follows

dim Ker(Df(p)−Dh(p)) = 1 + Tf(p)Y/ Im(Df(p)−Dh(p)).

Therefore, as in Remark 3.3, it is easy to verify that the following conditions in
Theorem 3.6 are equivalent:

(a) Lu is onto;
(b) Lu is an isomorphism;
(c) dim Ker(Df(p)−Dh(p)) = m+ 1 and Lu is one-to-one.

Theorem 3.8. Let Lu be the linear operator defined in Theorem 3.6. Then, the
property of Lu of being onto does not depend on u ∈ Ker(Df(p) −Dh(p)) \ TpM .
More precisely, given u1 ∈ Ker(Df(p)−Dh(p))\TpM , there exists α 6= 0 such that
Lu1 = αLu.

Proof. Let u1 ∈ Ker(Df(p) − Dh(p)) \ TpM . Since, in view of Remark 3.7, one
has dim Ker(Df(p) − Dh(p)) = 1 + dimTpM , there exists α 6= 0 and w ∈ TpM
such that u1 = αu+w. Hence, recalling that (by Lemma 2.4) the bilinear operator
Hf(p) vanishes for pair of vectors in TpM , given any v ∈ TpM , we obtain

Hf(p)(u1, v) = Hf(p)(αu+ w, v) = αHf(p)(u, v) +Hf(p)(w, v) = αHf(p)(u, v).

Analogously, Hh(p)(u1, ·) = αHh(p)(u, ·). Thus Lu1 = αLu, as claimed. �

4. Bifurcation of fixed points

In this section we are concerned with bifurcation for the parametrized fixed point
equation

(4.1) f(λ, z) = z,

where z belongs to a finite dimensional manifold Z and f is a Z-valued map defined
in R×Z or, more generally, in an open subset U of R×Z containing {0}×Z. For
any λ ∈ R we denote by fλ : Z → Z the partial map fλ(·) = f(λ, ·). We use the
notation Fix fλ to indicate the subset of Z of the fixed points of fλ. Moreover, we
set

S = {(λ, z) ∈ R× Z : f(λ, z) = z}
and we assume that
• there exists an m-dimensional submanifold M0 of Z such that f(0, z) = z

for all z ∈M0.

In other words, we assume the existence of a distinguished subset M0 of Fix f0 in
such a way that we can think of {0} ×M0 ⊆ R × Z as the set of trivial solutions
to (4.1). Let us point out that M0 may be strictly contained in Fix f0 and, in fact,
this is precisely the situation we have in mind in view of the applications to second
order differential equations on manifolds that we are going to present in the next
section.

We will say that an element p ∈ M0 is a bifurcation point of the equation (4.1)
if in any neighborhood of (0, p) there exists a nontrivial solution of (4.1), i.e. a pair
(λ, z) ∈ S \ ({0} ×M0).
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Clearly, the equation (4.1) is a particular case of the coincidence equation (3.1)
with X = R× Z, Y = Z,M = {0} ×M0 and h = P2, where P2 : R× Z → Z is the
projection onto the second component Z.

By using the terminology introduced in Section 3, we have here that p ∈ M0 is
a bifurcation point of (4.1) if and only if (0, p) ∈ {0} ×M0 is a bifurcation point
for the coincidence equation f(λ, z) = P2(λ, z). We emphasize the fact that, in the
present context, a pair of the form (0, z), with z ∈ Fix f0 \M0, must be considered
as a nontrivial solution.

In this section, we are interested in obtaining, for the equation (4.1), necessary
conditions and sufficient conditions providing bifurcation from M0.

To this end, let z ∈ M0 and assume that f is C1 in a neighborhood of (0, z) in
R×Z. Denote by Iz the identity map on the tangent space TzZ. Since z is a fixed
point of the partial map f0, the partial derivative ∂2f(0, z) of f at (0, z), which
coincides with the derivative Df0(z) of f0 at z, maps TzZ into itself. Consequently,
the linear operator ∂2f(0, z) − Iz maps TzZ into itself as well. Also observe that,
since the derivative DP2(0, z) : R × TzZ → TzZ of P2 at (0, z) is the projection
(µ,w) 7→ w, then the partial derivative ∂2P2(0, z) : TzZ → TzZ coincides with Iz.

Straightforward consequences of Theorems 3.4 and 3.6 are the following condi-
tions for bifurcation.

Theorem 4.1 (Necessary condition). Let f : R× Z → Z and M0 be as above and
let p ∈M0 be a bifurcation point of (4.1). If f is C1 in a neighborhood of (0, p) in
R× Z, then there exists (µ,w) ∈ (R× TpZ) \ ({0} × TpM0) such that

−µ∂1f(0, p) = ∂2f(0, p)w − w .

Proof. The assumption that (0, p) is a bifurcation point for the coincidence equation
f(λ, z) = P2(λ, z) implies, by Theorem 3.4,

dim Ker(Df(0, p)−DP2(0, p)) > m .

Therefore, as already observed in Remark 3.5, the tangent space of M = {0}×M0

at (0, p) is strictly contained in the kernel of Df(0, p) − DP2(0, p). Thus, there
exists (µ,w) 6∈ T(0,p)M = {0} × TpM0 such that

µ∂1f(0, p) + ∂2f(0, p)w − w = 0,

which is our assertion. �

Theorem 4.2 (Sufficient condition). Let f : R× Z → Z and M0 be as above and
let p ∈ M0. Assume that f is C2 in a neighborhood of (0, p) in R × Z, and that
there exists (µ,w) ∈ (R× TpZ) \ ({0} × TpM0) such that

−µ∂1f(0, p) = ∂2f(0, p)w − w .

If the linear operator

v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) ∈ TpZ/ Im(Df(0, p)−DP2(0, p))

is onto, then p is a bifurcation point of (4.1) from M0.

Proof. The assertion follows immediately by applying Theorem 3.6 to the coinci-
dence equation f(λ, z) = P2(λ, z), noting that the equality µ∂1f(0, p)+∂2f(0, p)w−
w = 0 is equivalent to (µ,w) ∈ Ker(Df(0, p)−DP2(0, p)), and that, obviously, one
has HP2(0, p) = 0. �
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Remark 4.3. In the case of the bifurcation equation (4.1), one clearly has dim(R×
Z)−dimZ = 1. Therefore, similar arguments to those in Remarks 3.3 and 3.7 prove
that the following conditions in Theorem 4.2 are equivalent

(a) the map v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) is onto;
(b) the map v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) is an isomorphism;
(c) dimKer(Df(0, p)−DP2(0, p)) = m+ 1 and the map

v ∈ TpM0 7→ Hf((0, p))((µ,w), (0, v)) is one-to-one.

As already pointed out, the manifold M0 may be strictly contained in the set
Fix f0. Thus, the nontrivial pairs (λ, z) involved in equation (4.1) may have λ = 0.
However, as we shall see later, an extra condition yielding that any nontrivial pair
sufficiently close to {0}×M0 has λ 6= 0 turns out to be satisfied in many applications
to differential equations. In the abstract setting, such a condition can be interpreted
by assuming that f is C1 in a neighborhood of {0} ×M0 and that

(H) TzM0 = Ker(∂2f(0, z)− Iz) for all z ∈M0 .

Lemma 4.4 below shows that M0 is isolated in the set Fix f0, provided that (H)
is satisfied.

Lemma 4.4. Assume that f is C1 in a neighborhood of a given (0, p) ∈ {0} ×M0

and that condition

(Hp) TpM0 = Ker(∂2f(0, p)− Ip)

is satisfied. Then, there exists a neighborhood V of (0, p) in R × Z such that if
(λ, z) ∈ V is a nontrivial solution of (4.1), then λ 6= 0. Consequently, if condition
(H) is satisfied, there exists an isolating neighborhood W of M0 in Z, i.e. M0 =
Fix f0 ∩W .

Proof. Assume by contradiction that in any neighborhood of (0, p) in R× Z there
exists a solution (0, z) of (4.1) with z ∈ Fix f0 \M0. This means that p is a bifur-
cation point, relatively to the manifold Z, for the coincidence equation f(0, z) = z.
Therefore, by applying Theorem 3.4 to f0 = f(0, ·), to the identity of Z and to M0,
one gets dim Ker(Df0(p)− Ip) > m = dimTpM0. This contradicts condition (Hp),
and the first assertion is proved. The last statement is a trivial consequence. �

Corollary 4.5 below is a direct consequence of Theorem 4.1 and assumption (Hp).

Corollary 4.5. Let p ∈ M0 and f : R × Z → Z be as in Theorem 4.1. Assume
that (Hp) is satisfied. Then, a necessary condition for p to be a bifurcation point
of (4.1) is that there exists w ∈ TpZ such that

∂1f(0, p) = ∂2f(0, p)w − w .

Proof. By Theorem 4.1, there exists (µ, ŵ) ∈ (R× TpZ) \ ({0} × TpM0) such that

−µ∂1f(0, p) = ∂2f(0, p)ŵ − ŵ .

Now, if µ 6= 0, then, by setting w = −ŵ/µ, we obtain ∂1f(0, p) = ∂2f(0, p)w −
w, as claimed. Let us show that µ cannot be equal to zero. In fact, otherwise,
∂2f(0, p)ŵ − ŵ = 0; that is, ŵ ∈ Ker(∂2f(0, p) − Ip). By assumption (Hp), this
implies ŵ ∈ TpM0 and, thus, (0, ŵ) ∈ T(0,p)M = {0} × TpM0, a contradiction. �
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Remark 4.6. The above necessary condition can be interpreted as the fact that,
if (Hp) is satisfied, then one can find w ∈ TpZ such that the vector (1,−w), which
is tangent to R× Z at (0, p), belongs to the kernel of Df(0, p)−DP2(0, p).

In this case, an equivalent manner of writing the necessary condition is also

∂1f(0, p) ∈ Im(∂2f(0, p)− Ip) .

The following particular case of Theorem 4.2 will be used in the applications to
differential equations presented in the next section.

Corollary 4.7. Let p ∈ M0 and f : R × Z → Z be as in Theorem 4.2. Assume
that, there exists w ∈ TpZ such that

∂1f(0, p) = ∂2f(0, p)w − w .

If the linear operator

v ∈ TpM0 7→ Hf((0, p))((1,−w), (0, v)) ∈ TpZ/ Im(∂2f(0, p)− Ip)

is onto, then p is a bifurcation point of (4.1) from M0. In addition, any nontrivial
solution (λ, z) of (4.1) close to (0, p) has λ 6= 0.

Proof. Apply Theorem 4.2 with the pair (1,−w) and observe that the assumption
∂1f(0, p) ∈ Im(∂2f(0, p)− Ip) implies

Im(∂2f(0, p)− Ip) = Im(Df(0, p)−DP2(0, p)).

Thus, p is a bifurcation point of (4.1).
In order to prove the last assertion, according to Lemma 4.4 it is enough to show

that the assumptions in the corollary guarantee the validity of condition (Hp). To
this end, observe first that, from Remark 4.3, we get

dim Ker(Df(0, p)−DP2(0, p)) = m+ 1.

Moreover, the existence of a vector w ∈ TpZ such that

(1,−w) ∈ Ker(Df(0, p)−DP2(0, p))

clearly implies

dim
(

Ker(Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)
)
< m+ 1 .

On the other hand, since

Ker(Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)

contains {0} × TpM0, one has

dim
(

Ker(Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)
)
≥ dim({0} × TpM0) = m.

Therefore,

dim
(

Ker(Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ)
)

= m

and (Hp) follows noting that

Ker(Df(0, p)−DP2(0, p)) ∩ ({0} × TpZ) = {0} ×Ker(∂2f(0, p)− Ip).

Consequently, by Lemma 4.4, any nontrivial solution (λ, z) of (4.1) close to (0, p)
has λ 6= 0. �
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Remark 4.8. In the case when dimM0 = 1, the linear operator

v ∈ TpM0 7→ Hf((0, p))((1,−w), (0, v)) ∈ TpZ/ Im(∂2f(0, p)− Ip)

introduced in Corollary 4.7 is a map between 1-dimensional spaces. Thus, our as-
sumption that such an operator is onto can be interpreted as a Crandall-Rabinowitz
type condition ([3]).

In order to illustrate how the assumptions in Corollary 4.5 and 4.7 above can be
explicitly computed in local coordinates, we give below two examples of parame-
trized fixed point equations in the projective space P2.

Example 4.9. Let P2 be the 2-dimensional projective space. We can think of P2

as the Grassmannian G1(R3); that is, the smooth manifold of all straight lines in
R3 through the origin. Consider the map σ : [−π/2, π/2] × R → P2 that asso-
ciates to any (θ, ϕ) ∈ [−π/2, π/2] × R the straight line of P2 containing the point
(cos θ cosϕ, cos θ sinϕ, sin θ). It is easy to check that σ is a quotient map, i.e. that
a set A ⊆ P2 is open if and only if σ−1(A) is open in [−π/2, π/2] × R. As in
the terminology used for the coordinates of the Earth, θ will be called the latitude
and ϕ the longitude. Moreover, the Equator is the image of {0} × R (under σ)
and the North-South Pole (that is, the vertical line), denoted NS, is the element
σ({π/2} × R) or, equivalently, σ({−π/2} × R). Consider the map

f̂ : R× [−π/2, π/2]× R → [−π/2, π/2]× R

given by f̂(λ, θ, ϕ) = (−θ + sinλ sin θ, ϕ + sinλ sinϕ). Since f̂ sends fibers of the
quotient map I × σ (here I denotes the identity of R) into fibers of σ, then it
induces a well-defined map f : R × P2 → P2, which is continuous since σ is a
quotient map. One can also check that f is smooth on R × (P2 \NS). By taking
Z = P2 and f as above, we are reduced in R × P2 to a parametrized fixed point
equation as (4.1). For λ = 0, the fixed points of f0 = f(0, ·) are the elements of
the Equator and the North-South Pole. It is quite natural to think of the Equator,
which obviously is a 1-dimensional submanifold of P2, as the set M0 of trivial fixed
points of f0. Let us consider in the Equator the element p = σ(0, 0); that is, the
line through the origin and (1, 0, 0). It is immediately seen that p is a bifurcation
point from the Equator, since any pair (λ, p) ∈ R×P2 is a solution to our equation
(and is nontrivial if λ 6= 0). Our aim here is to compute in coordinates for such
a bifurcation point p and for the map f defined above the necessary condition
as well as the sufficient condition given in Corollaries 4.5 and 4.7. To this end
observe first that the restriction of σ to the open subset (−π/2, π/2)× (−π/2, π/2)
is clearly a smooth parametrization of a neighborhood U of p in P2. Thus, its inverse
z ∈ U 7→ (θ(z), ϕ(z)) is a system of coordinates about p sending p in (0, 0). Let us
take the same local coordinates (θ, ϕ) about p ∈ P2 both for p in the domain of f0
and in its image. By recalling Remark 2.3, it is easy to verify that, if w is a vector
tangent to P2 at p, w = α1

(
∂
∂θ

)
p

+ α2

(
∂

∂ϕ

)
p
, then the vector (∂2f(0, p)− Ip)w is

given by

−α1

( ∂

∂θ

)
p

+ α2

( ∂

∂ϕ

)
p
− α1

( ∂

∂θ

)
p
− α2

( ∂

∂ϕ

)
p

= −2α1

( ∂

∂θ

)
p
.

In other words, the image of the linear map ∂2f(0, p) − Ip consists of the vectors
which are tangent at p to the meridian passing through p and its kernel consists
of the vectors which are tangent to the Equator at p. Therefore, assumption (Hp)
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holds and, since the derivative ∂1f(0, p) of f with respect to λ at (0, p) is represented
by

(
∂
∂θ

)
p
, the necessary condition “∂1f(0, p) = ∂2f(0, p)w−w, for some w ∈ TpP2”,

stated in Corollary 4.5, is clearly satisfied with α1 = −1/2. As regards the sufficient
condition of Corollary 4.7, if w is as above and v is a vector tangent to the Equator
at p, say v = β

(
∂

∂ϕ

)
p
, then (again recall Remark 2.3) an easy computation shows

that the Hessian Hf(0, p)((1,−w)(0, v)) can be represented as 2β
(

∂
∂ϕ

)
p
, up to

elements belonging to the image of ∂2f(0, p)− Ip; that is, up to vectors of the form

γ
(

∂
∂θ

)
p
. Thus, since if β 6= 0 such an element does not belong to Im(∂2f(0, p)−Ip),

this proves that the linear operator v 7→ Hf((0, p))((1,−w), (0, v)) is onto, and the
sufficient condition stated in Corollary 4.7 is verified.

In Example 4.10 below, the dimension of the manifold M0 of trivial fixed points
is strictly greater than 1; that is, grater than the difference between the dimension
of X = R×P2 and that of Y = P2. Consequently, since this difference is an integer
representing the Fredholm index of the map f , our example cannot be interpreted,
as the previous one, in the context of the Crandall-Rabinowitz bifurcation result.

Example 4.10. Given the quotient map σ as in Example 4.9, let us consider the
map f : R × P2 → P2 induced by f̂(λ, θ, ϕ) = (θ + sinλ sin θ, ϕ + sinλ sinϕ). For
λ = 0, any element of P2 is clearly a fixed point of f0 and will be assumed to be a
trivial fixed point. Consequently, M0 coincides with the whole space Z = P2. As
previously, let us take the element p = σ(0, 0) of the Equator to be the bifurcation
point at which computing the conditions of Corollaries 4.5 and 4.7. It is immediately
seen that, in this case, ∂2f(0, p)− Ip is the null operator. Thus,

Ker(∂2f(0, p)− Ip) = TpP2 and Im(∂2f(0, p)− Ip) = {0}.
Moreover, since ∂1f(0, p) = 0, the necessary condition of Corollary 4.5 is satisfied
with any w ∈ TpP2. Let us take, for simplicity, w = 0 and observe that if v is any
vector in TpM0, then Hf((0, p))((1, 0), (0, v)) belongs to TpM0 as well (recall that

here TpZ = TpM0 and Im(∂2f(0, p)−Ip) = {0}). Hence, if v = β1

(
∂
∂θ

)
p
+β2

(
∂

∂ϕ

)
p
,

by computing Hf((0, p))((1, 0), (0, v)), one gets again β1

(
∂
∂θ

)
p

+ β2

(
∂

∂ϕ

)
p
. This

shows that the linear operator v 7→ Hf((0, p))((1, 0), (0, v)) is onto, as required by
our sufficient condition.

5. Applications to differential equations

In this section we give an application to second order differential equations on
manifolds of the obtained bifurcation results. Similar results have been obtained in
[6] by means of topological tools, as the fixed point index and its relationship with
the degree of a tangent vector field on a differentiable manifold.

Let N be an m-dimensional manifold in Rs. As previously, given q ∈ N , let
TqN ⊆ Rs and (TqN)⊥ ⊆ Rs denote, respectively, the tangent space and the
normal space of N at q. Given any q ∈ N and any u ∈ Rs, the vector u can be
uniquely decomposed into a parallel component uπ ∈ TqN and a normal component
uν ∈ (TqN)⊥. Obviously, the decomposition of u depends on the chosen element q.
By

TN = {(q, v) ∈ Rs × Rs : q ∈ N , v ∈ TqN}
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we indicate the tangent bundle of N . Clearly, TN contains a natural copy of N via
the embedding q 7→ (q, 0).

Let F : R × TN → Rs be a continuous map such that F (t, q, v) ∈ TqN for all
(t, q, v) ∈ R × TN . For brevity, we will say that F is tangent to N although it is
not a tangent vector field on N .

We will consider in N the parametrized motion equation

(5.1)
..
xπ = λF (t, x, ẋ), λ ∈ R .

A solution of (5.1), corresponding to a given λ ∈ R, is a C2 map x : J → N ,
defined on a nontrivial interval J , such that

..
xπ(t) = λF (t, x(t), ẋ(t)) for all t ∈ J ,

where
..
xπ(t) is the parallel (or tangential) part of the acceleration

..
x(t) ∈ Rs and is

obtained by taking the orthogonal projection of
..
x(t) onto Tx(t)N .

It is known that there exists a unique smooth map r : TN → Rs, called the
reactive force (or inertial reaction) with the following properties:

(a) r(q, v) ∈ (TqN)⊥ for any (q, v) ∈ TN ;
(b) r is quadratic in the second variable;
(c) any C2 curve x : J → N is a solution of the differential equation

..
xν = r(x, ẋ),

i.e., for any t ∈ J , the normal component
..
xν(t) of the acceleration

..
x(t)

equals r(x(t), ẋ(t)).
The map r is strictly related to the second fundamental form on N and may be

interpreted as the reactive force due to the constraint N . Actually, given (q, v) ∈
TN , r(q, v) is the unique vector of Rs which makes (v, r(q, v)) tangent to TN at
(q, v).

Due to condition (c) above, equation (5.1) can be equivalently written as

(5.2)
..
x = r(x, ẋ) + λF (t, x, ẋ).

For λ = 0, it reduces to the so-called inertial equation
..
x = r(x, ẋ) ,

whose solutions are the geodesics of N .
Clearly, (5.2) can be written, in an equivalent way, as a first order order differ-

ential equation on TN as follows:

(5.3)
{
ẋ = y
ẏ = r(x, y) + λF (t, x, y) ,

where, as it is not hard to verify, the map

(λ, t, q, v) ∈ R× R× TN 7→ (v, r(q, v) + λF (t, q, v)) ∈ Rs × Rs

is a tangent vector field on TN .
For a more extensive treatment on the subject of second-order ODEs on mani-

folds from this embedded viewpoint see e.g. [4].

Assume from now on that F is T -periodic with respect to t and (at least) C1. In
what follows, we will be concerned with T -periodic solutions of the motion equation
(5.1). More precisely, a pair (λ, x), with λ ∈ R and x : R → N a T -periodic solution
of (5.1) corresponding to λ, will be called a T -pair of (5.1).
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Let

D = {(λ, q, v) ∈ R× TN : the maximal solution (x(·), y(·)) of (5.3)

satisfying x(0) = q, y(0) = v is defined in [0, T ]},
and let PT : D → TN be the Poincaré T-translation operator which associates
to any (λ, q, v) ∈ D the value (x(T ), y(T )) at time T of the solution of (5.3) with
initial conditions (q, v). It can be shown that D is an open set (clearly containing
{0} ×N × {0}) and that PT is Ck provided that so is F . Since we will deal with
a local problem, for the sake of simplicity we assume D = R × TN . However, all
the statements below remain true also in the case when D is a proper subset of
R× TN , but their proofs require cumbersome notation.

Consider the parametrized fixed point equation

(5.4) PT (λ, q, v) = (q, v).

The equation (5.4) is strictly related to the T -periodic problem associated with
equation (5.1). More precisely, a triple (λ, q, v) is such that PT (λ, q, v) = (q, v) if
and only if (λ, x) with x(·) a solution of (5.1) corresponding to λ and satisfying
x(0) = q, ẋ(0) = v, is a T -pair of (5.1). Such a triple (λ, q, v) is also called a starting
point of the T -pair (λ, x).

When λ = 0, the fixed points (q, v) of PT
0 = PT (0, ·, ·) are initial conditions

of closed (T -periodic) geodesics on N . Among these pairs, those of the form (q, 0)
correspond to the constant solutions x(t) ≡ q. Therefore, as far as we are concerned
with equation (5.4), it turns out to be quite natural to think of the starting points
(0, q, 0), q ∈ N , as the trivial ones. We will be interested in detecting those elements
(q, 0) ∈ N × {0} such that in any neighborhood of (0, q, 0) in R× TN there exists
a nontrivial starting point. More precisely, we will apply the results of Section 4,
with Z = TN, M0 = N ×{0} and f = PT , in order to obtain a necessary condition
and a sufficient condition for a pair (q, 0) ∈ N×{0} to be a bifurcation point for the
equation (5.4). As already pointed out (see Section 4), in the second order ODEs
context that we are investigating here, the set N × {0} may be strictly contained
in FixPT

0 . In other words, there may exist triples (0, q, v), with (q, v) belonging to
FixPT

0 \ (N × {0}) that are (nontrivial) starting points of nonconstant T -periodic
geodesics on N . For example, this occurs for the inertial motion on a sphere.

In what follows, we will say that a constant solution x(t) ≡ q0 ∈ N is a bifurcation
point of (the second order equation) (5.1) if (q0, 0) ∈ TN is a bifurcation point of
PT (λ, q, v) = (q, v).Due to the continuous dependence of the solutions of differential
equations on the initial conditions, given a bifurcation point t 7→ q0 of (5.1), if (λ, x)
is a T -pair associated with a nontrivial starting point (λ, q, v) close in R × TN to
the triple (0, q0, 0), then λ is close to 0 in R and t 7→ x(t) is close to t 7→ q0 in
the usual C1 norm. Thus, a bifurcation point of the motion equation (5.1) has, in
some sense, also an infinite dimensional meaning since it can be interpreted as a
bifurcation point of T -pairs as well.

We recall below a well-known result on ODEs that we will use several times in
the sequel (see e.g. [2]).

Theorem 5.1. Consider the following initial value problem

(5.5)
{
ẋ = g(t, x)
x(0) = a ,
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where g : [0,+∞)× Rn → Rn is a C1 function and a ∈ Rn. Assume that, for any
a ∈ Rn, the solutions of (5.5) are continuable at least to T . Let ΦT : Rn → Rn be
the translation operator which associates to a ∈ Rn the value x(T ) of the solution of
ẋ = g(t, x) such that x(0) = a. Then, ΦT is C1 and, for any a ∈ Rn and h ∈ Rn,
the derivative DΦT (a)h of ΦT at the point a along the vector h coincides with the
value at the time T of the solution ξ(·) of the linear problem{

ξ̇ = ∂2g(t, x0(t)) ξ
ξ(0) = h ,

where x0(·) is the solution of ẋ = g(t, x) with initial value a.

It is well-known that in a Riemannian manifold there are no nonconstant closed
geodesics too close to a given point. Roughly speaking, this fact, if interpreted in
our context, means that the manifold N × {0} ⊆ TN is isolated in FixPT

0 . As
already observed in Section 4 (see Lemma 4.4), this is a consequence of condition
(H). Actually, we prove below that the T-translation operator PT in (5.4) satisfies
assumption (H). As a by-product, according to Lemma 4.4, we will obtain that if
(q0, 0), q0 ∈ N, is any bifurcation point of (5.4), then there exists a neighborhood of
(0, q0, 0) in R×TN in which any nontrivial solution (λ, q, v) of (5.4) has necessarily
λ 6= 0.

Theorem 5.2. The T-translation operator PT satisfies assumption (H) of Section
4 with M0 = N × {0}, i.e., for any q ∈ N , one has

(5.6) T(q,0)(N × {0}) = Ker(DPT
0 (q, 0)− I(q,0))

(here I(q,0) denotes the identity map on the tangent space T(q,0)TN).

Proof. In order to prove that PT satisfies (5.6), we need first to compute the de-
rivative of PT

0 at any point (q, 0), q ∈ N . To this end observe that, since N is an
m-dimensional manifold in Rs, there exists a diffeomorphism of a neighborhood of
q in N onto Rm. Clearly, this diffeomorphism can be extended to a C∞ map ϕ de-
fined on an open neighborhood of q in Rs. Since we are dealing with local problems,
without loss of generality we may therefore assume that ϕ is a map from an open
neighborhood U of N in Rs and that the restriction of ϕ to N is a diffeomorphism
onto Rm. The map ϕ induces on the fiber bundle TU = U × Rs the tangent map

Tϕ : TU → Rm × Rm, (x, y) 7→ (ϕ(x), Dϕ(x)y).

Since the restriction ϕ|N : N → Rm of ϕ to N is a diffeomorphism, so is the tangent
map T (ϕ|N ) : TN → Rm × Rm. By means of the change of variables{

x1 = ϕ(x)
y1 = Dϕ(x)y ,

system (5.3) is transformed, after some calculations, in a first order system in
Rm × Rm of the form

(5.7)
{
ẋ1 = y1
ẏ1 = s(x1, y1) + λG(t, x1, y1) ,

where s is quadratic in y1 for any fixed x1 andG is the vector field which corresponds
to F under Dϕ. More precisely, we have

s(x1, y1) = D2ϕ(ϕ−1(x1))
((
D(ϕ−1(x1))

)−1
y1,

(
D(ϕ−1(x1))

)−1
y1

)
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+Dϕ
(
ϕ−1(x1)

)
r
(
ϕ−1(x1),

(
D(ϕ−1(x1))

)−1
y1

)
and

G(t, x1, y1) = Dϕ
(
ϕ−1(x1)

)
F

(
t, ϕ−1(x1),

(
D(ϕ−1(x1))

)−1
y1

)
Moreover, it is easy to see that the Poincaré T -translation operator QT which
associates to any (λ, q̂, v̂) ∈ R×Rm×Rm the value (x1(T ), y1(T )) at time T of the
solution of (5.7) with initial condition (q̂, v̂) corresponds to PT under T (ϕ|N ).

Our aim is to apply Theorem 5.1 to system (5.7) with λ = 0. We need to
linearize (5.7) about the constant solution (x1(t), y1(t)) ≡ (q̂, 0) ∈ Rm ×{0}. Since
s(x1, 0) = 0 for all x1 ∈ Rm, one has ∂1s(q̂, 0) = 0. Moreover, recalling that s is
quadratic in the second variable, one also gets ∂2s(q̂, 0) = 0. Thus Ds(q̂, o) = 0,
and the required linearization is given by the initial value problem

(5.8)


ξ̇ = η
η̇ = 0
ξ(0) = h
η(0) = k,

with (h, k) ∈ Rm × Rm. By Theorem 5.1, the derivative DQT
0 (q̂, 0)(h, k) of QT

0 :=
QT (0, ·, ·) at (q̂, 0) in (h, k) coincides with the value (ξ(T ), η(T )) of the solution of
(5.8). By computing (ξ(T ), η(T )) one gets{

ξ(T ) = h+ kT
η(T ) = k

Consequently,

(5.9)
(
DQT

0 (q̂, 0)− I
)
(h, k) = (h+ kT − h, k − k) = (kT, 0),

where I denotes the identity of Rm ×Rm. Thus, the kernel of DQT
0 (q̂, 0)− I is the

subset of Rm × Rm given by

{(h, k) ∈ Rm × Rm : k = 0} = Rm × {0}.

Therefore, going back to the manifold N , we have

Ker
(
DPT

0 (q, 0)− I(q,0)

)
= TqN × {0}

and noting that
T(q,0)(N × {0}) = TqN × {0} ,

the assertion follows. �

Let us now consider the average force F̄ : N → Rs given by

F̄ (q) =
1
T

∫ T

0

F (t, q, 0)dt .

Clearly, F̄ is an autonomous tangent vector field on N . The zeros of the average
force play an important role in obtaining bifurcation conditions for the second order
equation (5.1). Results similar to Theorems 5.3 and 5.4 below can be deduced also
from the global bifurcation context discussed in [6] by means of topological degree
methods.

Theorem 5.3 (Necessary condition). Assume that the constant solution t 7→ q0 ∈
N is a bifurcation point of the motion equation (5.1). Then F̄ (q0) = 0.
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Proof. By definition, the constant solution x(t) ≡ q0 ∈ N is a bifurcation point of
(5.1) if and only if (q0, 0) ∈ TN is a bifurcation point of PT (λ, q, v) = (q, v). Our
aim is to apply Corollary 4.5 to the Poincaré T -translation operator PT and to the
bifurcation point (q0, 0). To this end, observe first that, as proved in Theorem 5.2,
assumption (H) is satisfied. Therefore, by Corollary 4.5 (see also Remark 4.6), it
follows that a necessary condition for (q0, 0) to be a bifurcation point of (5.4) is
that there exists w = (w1, w2) ∈ T(q0,0)TN = Tq0N × Tq0N such that

(5.10) (1,−w1,−w2) ∈ Ker(DPT (0, q0, 0)−DP2(0, q0, 0)),

where P2 : R× TN → TN denotes the projection onto the second component TN .
As in the proof of Theorem 5.2, in order to compute DPT (0, q0, 0) we can reduce

to Rm and apply Theorem 5.1 to the following initial value problem in R×Rm×Rm

(5.11)



λ̇ = 0
ẋ1 = y1
ẏ1 = s(x1, y1) + λG(t, x1, y1)
λ(0) = λ
x1(0) = q̂
y1(0) = v̂

with (q̂, v̂) ∈ Rm × Rm.
By linearizing (5.11) about the constant solution (λ(t), x1(t), y1(t)) ≡ (0, q̂0, 0) ∈

{0} × Rm × {0} (here q̂0 is the point of Rm that corresponds to q0 ∈ N under the
diffeomorphism ϕ), we get 

µ̇ = 0
ξ̇ = η
η̇ = µG(t, q̂0, 0)
µ(0) = µ
ξ(0) = h
η(0) = k

whose solution at time T is
µ(T ) = µ

ξ(T ) = h+ kT + µ
∫ T

0
(T − t)G(t, q̂0, 0)dt

η(T ) = k + µ
∫ T

0
G(t, q̂0, 0)dt

By Theorem 5.1, the triple (µ(T ), ξ(T ), η(T )) coincides with the value along the
vector (µ, h, k) of the derivative at (0, q̂0, 0) of the translation operator associated
with (5.11). In particular, the derivative of the Poincaré operator QT at (0, q̂0, 0)
along (µ, h, k) is given by the last two components (ξ(T ), η(T )), i.e.

(5.12)
DQT (0, q̂0, 0)(µ, h, k) =

(h+ kT + µ
∫ T

0
(T − t)G(t, q̂0, 0)dt, k + µ

∫ T

0
G(t, q̂0, 0)dt).

Consequently, by again interpreting the above operator in R× TN , we obtain

DPT (0, q0, 0)(µ, u1, u2)−DP2(0, q0, 0)(µ, u1, u2) =(
u2T + µ

∫ T

0

(T − t)F (t, q0, 0)dt, µ
∫ T

0

F (t, q0, 0)dt
)
,

where (u1, u2) ∈ T(q0,0)TN .
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Thus, the triple (1,−w1,−w2) of (5.10) must satisfy

(5.13)
(
− w2T +

∫ T

0

(T − t)F (t, q0, 0)dt,
∫ T

0

F (t, q0, 0)dt
)

= (0, 0).

This implies

F̄ (q0) =
1
T

∫ T

0

F (t, q0, 0)dt = 0,

which is our assertion. �

Theorem 5.4 (Sufficient condition). Let F be C2 and assume that q0 ∈ N is a
zero of the average force F̄ such that DF̄ (q0) : Tq0N → Rs is one-to-one. Then,
the constant solution t 7→ q0 is a bifurcation point of (5.1).

Proof. According to our definition, q0 ∈ N is a bifurcation point of (5.1) if (q0, 0)
is a bifurcation point of (5.4) from N × {0}. We will apply Corollary 4.7 with
Z = TN, M0 = N × {0}, f = PT , p = (q0, 0). Since F̄ (q0) = 0, by taking
w = (0, w2) with

w2 = − 1
T

∫ T

0

tF (t, q0, 0)dt,

from (5.13) one has (1, 0,−w2) ∈ Ker(DPT (0, q0, 0)−DP2(0, q0, 0)) or, equivalently,

∂1P
T (0, q0, 0) = (DPT

0 (q0, 0)− I(q0,0))w,

as required in Corollary 4.7.
Therefore, in order to prove that (q0, 0) is a bifurcation point, it remains to show

that the linear operator

q̇ ∈ Tq0N 7→ HPT (0, q0, 0)((1, 0,−w2), (0, q̇, 0))

∈ T(q0,0)TN/ Im(DPT
0 (q0, 0)− I(q0,0))

is onto or, equivalently, that it is one-to-one (recall Remark 4.3 and observe that
the dimension of Ker(DPT (0, q0, 0) − DP2(0, q0, 0)) is m + 1). To this end, as in
Theorem 5.2, we may reduce to system (5.7) in Rm × Rm and consider the linear
operator L : Rm → Rm × Rm given by

L(h) = D2QT (0, q̂0, 0)
(
(1, 0,−ŵ2), (0, h, 0)

)
,

where q̂0 and ŵ2 are the elements in Rm that correspond to q0 and w2 respectively,
and, as previously, QT is the Poincaré T -translation operator that corresponds to
PT under T (ϕ|N ). Since our statements are invariant under diffeomorphisms, it is
enough to prove that if L(h) belongs to Im

(
DQT

0 (q̂0, 0)− I
)
, then h = 0.

As well-known, L(h) can be calculated by introducing the map

γ : Rm → Rm × Rm, x1 7→ DQT
(
(0, x1, 0)

)
(1, 0,−ŵ2),

and by taking the derivative Dγ(q̂0)(h). Thus, recalling (5.12), a standard compu-
tation gives

L(h) =
( ∫ T

0

(T − t)∂2G(t, q̂0, 0)h dt,
∫ T

0

∂2G(t, q̂0, 0)h dt
)
.

On the other hand, from (5.9), we get immediately

Im
(
DQT

0 (q̂0, 0)− I
)

= Ker
(
DQT

0 (q̂0, 0)− I
)

= Rm × {0}.
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Consequently, if L(h) belongs to Im
(
DQT

0 (q̂0, 0)− I
)
, then

(5.14)
∫ T

0

∂2G(t, q̂0, 0)h dt = 0.

To achieve the proof, we will show that (5.14) implies h = 0. To see this, observe
that the term

∫ T

0
∂2G(t, q̂0, 0)h dt coincides with the derivative of the map q̂ 7→∫ T

0
G(t, q̂, 0) dt at q̂0 along h. Therefore, our claim will follow from the injectivity

of the above derivative. Clearly, up to diffeomorphisms, this operator coincides with
the derivative of the average force F̄ at q0. Thus, it turns out to be one-to-one,
since we have assumed that so is DF̄ (q0). �
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on Manifolds, Ann. Mat. Pura Appl. 173 (1997), 313–331.

[8] Hirsch M.W., Differential Topology, Graduate Texts in Math. 33, Springer-Verlag, New York,
1976.

[9] Milnor J.W., Topology from the Differentiable Viewpoint, Univ. Press of Virginia, Char-
lottesville, 1965.

Dipartimento di Matematica Applicata ‘G. Sansone’, Via S. Marta 3, I-50139 Florence,

Italy


