
        

CHAOTIC ORBITS OF A PENDULUM WITH VARIABLE

LENGTH

M. FURI, M. MARTELLI, M. O’NEILL AND C. STAPLES

1. Introduction

This introduction, although a bit technical in a couple of paragraphs, is largely
descriptive. Its aim is to present the organization of the paper and to discuss its
goal, strategies and results. It is written with the intent of generating enough
interest and curiosity to entice our readers to follow us through the entire journey,
including its most technical parts. First we present the main goal of the paper
and the ideas needed to better understand its meaning and importance. Then we
explain the organization of the paper and the strategies we use to prove the results.
Finally, we talk about some results closely related to our effort and previously
obtained by other authors.

The main purpose of our investigation is to show, with a rather simple argu-
ment, that a pendulum, whose pivot oscillates vertically in a periodic fashion, has
uncountably many chaotic orbits that start, with zero velocity, from positions suf-
ficiently close to the unstable equilibrium.

Our readers are certainly aware that there are many different definitions of chaos.
Hence, we need to explain in what sense we say that an orbit is chaotic. To
any orbit of the pendulum we associate a finite or infinite sequence as follows.
We write 1 or −1 every time the position of unstable equilibrium is crossed with
positive (counterclockwise) or negative (clockwise) velocity, respectively. We write
0 whenever we encounter a pair of consecutive zero’s of the velocity separated only
by a crossing of the stable equilibrium, and with the understanding that different
pairs cannot share a common time of zero velocity. Oscillation is the name we
shall use for each pair of this type. Finally, the symbol ω, that is used only as the
ending symbol of a finite sequence, indicates that the orbit tends asymptotically to
the position of unstable equilibrium. Every infinite sequence of the three symbols
{1,−1, 0} is a real number of the interval [0, 1] written in base 3 when −1 is replaced
with 2. An orbit of the pendulum will be considered chaotic whenever the associated
sequence of the three symbols {1, 2, 0} is an irrational number of [0, 1].

In Section 4 we shall prove that given any infinite sequence S with entries taken
exclusively from the three symbols 1,−1, 0, or any finite sequence S ending with ω
and with all remaining entries taken from the three symbols 1,−1, 0, we can find
infinitely many orbits of the pendulum to which the sequence S is associated ac-
cording to the rules just described. For example, let us suppose that the sequence
is S = {1, 1,−1, 0, 0, 1,−1, . . . }. Then, we can find infinitely many orbits that start
with two counterclockwise crossings followed by one clockwise crossing, two oscil-
lations, one counterclockwise and one clockwise crossing, etc. Since the irrational
numbers of [0, 1] are uncountable we obtain that the pendulum has uncountably
many chaotic orbits.
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Figure 1. The pivot C of the pendulum moves vertically and
periodically with period 2π

µ .

The technical preparatory lemmas and theorems are presented in Section 3, and
the main result is proved in Section 4. Although some parts of Section 3, and in
particular Theorems 3.3 and 3.4, may look intimidating, they are based on a very
simple idea that is explained below. A reader who feels comfortable with the idea
can glance through Section 2, where notations and definitions are introduced, skip
Section 3, and go directly to Section 4, where the main result is presented and some
relevant consequences are derived.

To describe the idea let us model the motion of a pendulum, when the pivot
oscillates vertically in a periodic manner, with the initial value problem

(1.1)

{
ẍ(t) + (1 + r sinµt) sinx(t) = 0

x(0) = θ0, ẋ(0) = 0,

with (r, µ) ∈ (0, 1) × (0, 1]. For simplicity, we assume that θ0 ∈ (−π,−π2 ) is given
and µ = 1. Denote by x(θ0, t) the corresponding solution of (1.1). Then, given
n ∈ N , x(θ0, t) will go over the top if the downward vertical position is reached for
the first time when t = (2n + 1)π, and will not go over the top if t = 2nπ. The
statement going over the top means that ẋ(θ0, t) > 0 as long as x(θ0, t) ≤ π, while
not going over the top means that there exists t0 > 2nπ such that ẋ(θ0, t) > 0
for t ∈ (0, t0), ẋ(θ0, t0) = 0 and x(θ0, t0) < π. Continuity with respect to initial
conditions shows that the odd-even crossings just mentioned are sufficient but not
necessary for going or not going over the top.

The reason why the odd-even crossings of the downward vertical position make
such a big difference is the same for both cases. To better understand it, we need to
remember that the function u(t) = 2 arcsin(tanh t) is a solution of the differential
equation

ü(t) + sinu(t) = 0

and has the property

lim
t→∓∞

u(t) = ∓π.

The function u(t) is called separatrix. For t 6= 0 we have ü(t)u(t) < 0. In other
words the position and the acceleration of the separatrix have opposite sign.The
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total energy (kinetic and potential) of the separatrix is

E(t) =
1

2
u̇2(t) + 1− cosu(t).

Since Ė(t) = 0, we have E(t) = 2 for every t ∈ R. We now observe that the gain
or loss of energy which is crucial for determining whether the solution x(θ0, t) goes
over or does not go over the top is taking place π units of time before and after
reaching the bottom position. For example, let us consider the case when the first
crossing is taking place at t = (2n+1)π with n ≥ 1. At t = 2nπ the solution is more
negative than 2 arcsin(tanh−π) < −2.9688. In the time interval [2nπ, (2n + 1)π]
it gains energy over the separatrix since (1 + r sin(t)) > 1. Then, in the time
interval [(2n+ 1)π, (2n+ 2)π] the negative acceleration is not as strong as the one
acting on the separatrix, since 1 + r sin t < 1. Hence, at t = (2n + 2)π we have
x(θ0, (2n + 2)π) > 2 arcsin(tanhπ) > 2.9688 and the solution has enough energy
to go over the top. The situation when x(θ0, 2nπ) = 0 is just the opposite. We
provide a technical proof of this very simple idea in Section 3. In Section 4 we show
how this idea, in combination with continuity with respect to initial conditions,
produces the infinitely many orbits to which a given sequence can be associated.

Several authors have worked on related problems during the last 20 years (see,
for example,[2],[3],[5]). Many of them have been interested in proving the existence
of chaotic orbits for the pendulum ([3],[8]). In some cases numerical evidence has
been proposed as the main argument [2], while in others [8] chaos in the sense of
Smale [7] has been proved using the Melnikov [4] method. Finally, some authors
have proved the existence of chaotic orbits for planar systems ([5],[6]), while others
have obtained the presence of specific type of chaotic orbits ([2],[3]) for systems
similar to ours.

To the best of our knowledge the odd-even crossing idea is new. However, our
investigation has been largely motivated by the paper of Hastings and McLeod [3].
We end this introduction by mentioning that the presence of a small friction term in
(1.1) can easily be incorporated into the proofs of the results established in Sections
3 and 4.

2. Notation and Definitions

We mentioned in the Introduction that the motion of a pendulum, with the
pivot oscillating vertically in a periodic manner, can be modeled by the second
order ordinary differential equation

(2.2) ẍ(t) + (1 + r sinµt) sinx(t) = 0.

The function x(t) is an angle and it measures the displacement of the pendulum’s
arm from the downward vertical position. It is taken positive when measured
counterclockwise.

All results will be stated for the case µ = 1. At the end of Section 4 we will
make some observations regarding the cases µ < 1 and µ > 1. We shall indicate
why the results proved in Sections 3 and 4 continue to be valid in the case µ < 1.
We can prove that the same conclusion holds when µ ∈ (1, µ0], where

µ0 =
π

log(
√

2 + 1)− log(
√

2− 1)
.
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The result is false for large values of µ (see [1]) although we are unable to specify
what the values of µ might be. In Section 3 and 4 we usually deal with the Initial
Value Problem

(2.3)

{
ẍ(t) + (1 + r sin t) sinx(t) = 0

x(0) = θ0, ẋ(0) = 0,

with r ∈ (0, 1) and θ0 ∈ [−π, 0). In the case when r = 0, (2.3) reduces to the
well-known mathematical model of the motion of a simple pendulum

(2.4)

{
ẍ(t) + sinx(t) = 0

x(0) = θ0, ẋ(0) = 0.

The solution of (2.4) reaches the downward vertical position at a time T given by
the elliptic integral

(2.5) T =

∫ π
2

0

dφ√
1− k2sin2φ

,

where k = sin θ0
2 . The time T = π is of special interest to us. In this case, we shall

follow a standard notation used by other authors, and replace θ0 by α. Hence the
initial value problem will be

(2.6)

{
q̈(t) + sin q(t) = 0

q(0) = α, q̇(0) = 0.

An easy numerical estimate shows that the angle α such that q(α, π) = 0 for the
first time, satisfies the inequality −2.78824 < α < −2.78823. We mentioned in the
previous section that the separatrix of the equation of a simple pendulum is the
function

(2.7) x(t) = 2 arcsin(tanh t)

The derivative is ẋ(t) = 2 sech t and its value for t = 0 is 2.
A solution of (2.3) will be denoted by x(θ0, t). When the initial velocity is a 6= 0,

it will be incorporated in the notation and the solution will be denoted by x(θ0, a, t).
The energy of x(θ0, t) is the function

(2.8) E(t) =
(ẋ(θ0, t))

2

2
+ 1− cosx(θ0, t)

and its derivative is

(2.9) Ė(t) = −rẋ(θ0, t) sin t sinx(θ0, t).

The first term of (2.8) is the kinetic energy. The term 1−cosx(θ0, t) is the potential
energy, that sometimes will be called height of the solution, since it represents how
far up is x(θ0, t) with respect to the downward vertical position.

Observe that the differential equation

(2.10) ẍ(t) + (1 + r sin t) sinx(t) = 0

has two equilibrium solution: one stable and one unstable. The stable one is
obtained with the choice of 0 initial position and 0 initial velocity. The unstable one
has the same initial velocity, but the initial position is changed to ±π. Sometimes
we shall call bottom and top the stable and unstable positions, respectively.
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We explained in the previous section in what sense the orbits of a pendulum are
considered chaotic. We add here a comment on how the symbol 0 is associated to
a pair of 0’s of the velocity separated only by a crossing of the stable equilibrium.
Two different situations may arise. The symbols immediately before and after a
string of k consecutive 0′s, k = 1, 2, . . . , may have the same or opposite sign. The
velocity is 2k times equal to 0 in the first case, and 2k+ 1 times in the second case.
The number of oscillations will be equal to k in both cases.

We are now ready for the technical details.

3. Over the top or not

This section is divided into two parts. After the preliminary Lemma 3.1 that
is used in both parts, we prove, in Lemma 3.2 and Theorem 3.3, that a solution
of (2.3) such that x(θ0, (2n + 1)π) = 0, n ≥ 1, for the first time, will go over the
top before its velocity changes sign. Then, in Theorem 3.4, we prove that when
x(θ0, 2nπ) = 0, n ≥ 2, for the first time, the solution will not go over the top before
its velocity changes sign.

Lemma 3.1. Assume that f : [a, b] → R is increasing and continuous. Then, for

every n ∈ N such that [0, 2nπ] ⊆ [a, b] we have
∣∣∣
∫ 2nπ

0
cos tf(t) dt

∣∣∣ ≤ f(b)− f(a).

Proof. We shall prove this result with the additional assumption that f is C1. In-
tegration by parts gives

(3.1)

∫ 2nπ

0

cos tf(t) dt = −
∫ 2nπ

0

sin tḟ(t) dt.

Since

(3.2)

∣∣∣∣
∫ 2nπ

0

sin tḟ(t) dt

∣∣∣∣ ≤
∫ 2nπ

0

ḟ(t) dt = f(2nπ)− f(0) ≤ f(b)− f(a),

the result follows. ¤

Notice that Lemma 3.1 can be easily adjusted to the case when f is decreasing.
In what follows we shall denote by u(β, γ, t) the solution of the initial value

problem

(3.3)

{
ü(t) + sinu(t) = 0

u(0) = β, u̇(0) = γ.

We may simply write u(β, t) when γ = 0.
Let θ1 be such that u(θ2, a, π) = 0, where a = u̇(θ1, π) and θ2 = u(θ1, π) + aπ.

Notice that θ1 is selected so that in a time interval of 3π we reach the downward ver-
tical position by first following u(θ1, t) for t ∈ [0, π], then advancing with constant
speed a = u̇(θ1, π) for t ∈ [π, 2π] and, finally, following u(θ2, a, t) for t ∈ [2π, 3π].

Lemma 3.2. Let r ∈ (0, 1) be given. Denote by x(θ0, t) the solution of the initial
value problem (2.3) with θ0 ∈ (−π, 0). Assume that n ≥ 1 is such that x(θ0, (2n+
1)π) = 0 for the first time. Let β = x(θ0, 2nπ). Then β ≤ θ2, where θ2 was defined
above.

Proof. The proof is divided into three parts. First we establish that a < ẋ(θ0, 2nπ)
implies that x(θ0, 2nπ) ≤ θ2. Then we show that θ1 < θ0 is not an acceptable
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alternative since it would require a < ẋ(θ0, 2nπ) and θ2 < x(θ0, 2nπ). Finally we
show that the only other option θ0 ≤ θ1 always implies x(θ0, 2nπ) ≤ θ2.

For the first part assume that a < ẋ(θ0, 2nπ), where a was defined above. We
want to show that x(θ0, 2nπ) ≤ θ2. To see why this is true let b = ẋ(θ0, 2nπ)
and θ3 = x(θ0, 2nπ). The inequality θ2 < θ3 would imply that u(θ3, b, t) would
reach the downward vertical position in a time T1 < π. In fact, the integral giving
the time π for u(θ2, a, t) to reach the downward vertical position is strictly larger
than the integral that provides the time T1 needed by u(θ3, b, t) to reach the same
position. At this point the conclusion for the first part is derived from the inequality
u(θ3, b, t) ≤ x(θ3, b, t) = x(θ0, 2nπ + t) for every t ∈ (0, π), that can be easily
established using an energy argument. In fact, since

...
u (θ3, b, 0) <

...
x (θ0, 2nπ) and

the energy of x(θ0, 2nπ+ t) is larger than the energy of u(θ3, b, t) for every t ∈ (0, π]
we obtain that u̇(θ3, b, t) < ẋ(θ0, 2nπ + t) for every t ∈ (0, π].

For the second part let us assume that θ1 < θ0. It is not hard to show that
x(θ0, 2nπ) < −π2 . As a consequence of this we obtain that ü(θ1, t) < ẍ(θ0, (2n −
2)π + t) for every t ∈ (0, π). It follows that a < ẋ(θ0, (2n − 1)π) and u(θ1, π) <
x(θ0, (2n−1)π). Consequently, θ2 < x(θ0, 2nπ) and a < ẋ(θ0, 2nπ), in contradiction
to the first part of the proof.

In the third part it remains to show that the only alternative left, namely θ0 ≤ θ1,
implies x(θ0, 2nπ) ≤ θ2. Using an energy argument we can show that u(θ1, π) ≤
x(θ0, (2n − 1)π) would imply a = u̇(θ1, π) < ẋ(θ0, (2n − 1)π). Consequently, we
would obtain the same unacceptable conclusion already seen in the second part of
the proof. Hence, we must have x(θ0, (2n − 1)π) < u(θ1, π). Now let us look at
ẋ(θ0, 2nπ). On the one hand, we know that if this velocity is strictly larger than
a then we must have x(θ0, 2nπ) ≤ θ2. On the other hand, if ẋ(θ0, 2nπ) ≤ a, then
from the inequality x(θ0, (2n−1)π) < u(θ1, π), we easily derive x(θ0, 2nπ) ≤ θ2. ¤

Theorem 3.3 can be labeled as the over the top theorem. Notice that, as a
consequence of continuity with respect to initial conditions, the result stated in it
continues to be valid for all solutions with initial conditions sufficiently close to the
ones included in the theorem.

Theorem 3.3. Let r > 0 be given and let φ ∈ (−π, 0) be such that 1+cosφ < 0.1r.
The following two statements hold.

i. There exists a positive integer N ≥ 1 such that for every n ≥ N there is at
least one initial position θ0 ∈ (−π, φ) such that the unique solution of the
initial value problem (2.3) reaches the downward vertical position for the
first time when t = (2n+ 1)π.

ii. There exists t2 > (2n + 1)π such that x(θ0, t2) = π and ẋ(θ0, t) > 0 for
every t ∈ (0, t2].

Proof. The first part of Theorem 3.3 is an easy consequence of the continuity with
respect to initial conditions, since, as we approach −π, the time needed to reach
the downward vertical position goes to infinity.

To prove the second part we first show that when the solution arrives at the
bottom position its energy is at least 2 + 0.8r. Lastly, we prove that with this
energy the solution will go over the top.
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An easy computation shows that

(3.4)

ẋ2(θ0,(2n+1)π)
2 = 2− δ + 2r

∫ 2nπ

0
cos t sin2 x(θ0,t)

2 dt

+2r
∫ (2n+1)π

2nπ
cos t sin2 x(θ0,t)

2 dt,

where 0 < δ = 1 + cos θ0 < 0.1r. Using the estimate provided by Lemma 3.2 we
find that

x(θ0, 2nπ) ≤ −2.9688.

Hence, from Lemma 3.1, we derive

(3.5) 2r

∣∣∣∣
∫ 2nπ

0

cos t sin2 x(t)

2
dt

∣∣∣∣ ≤ 0.014884r.

We now need to estimate the last integral of (3.4). To accomplish this task we split
the integral into two parts: the first from 2nπ to 2nπ + π

2 and the second from
2nπ + π

2 to (2n+ 1)π.
The first part of the integral is positive. We obtain a lower estimate of its value

using the function u(θ3, a3, t) where θ3 = 2arc sin(tanh(−π)) and a3 = 2
cosh(−π) .

The given position and velocity are selected so that u(θ3, a3, π) = 0 and

0 ≤ cos t sin2 u(θ3, a3, t)

2
≤ cos t sin2 x(θ0, 2nπ + t)

2
,

for t ∈ [0, π2 ]. The second part of the integral is negative and we provide a lower
estimate of its value using the solution of the initial value problem

(3.6)

{
v̈(t) + 2 sin v(t) = 0

v(0) = θ4, v̇(0) = a4,

where θ4 = 2arc sin(tanh(−
√

2π)) and a4 = 2
√

2
cosh(−

√
2π)

. The initial position and

velocity are selected so that v(θ4, a4, π) = 0 and

cos t sin2 v(θ4, a4, t)

2
≤ cos t sin2 x(θ0, 2nπ + t)

2
≤ 0 ,

for t ∈ [π2 , π].
The first estimate provides a positive value exceeding 1.938527 and the second

estimate provides a negative value not smaller than −0.829164. Putting together
all estimates and assuming the worst possible situation we have

0.8r ≤ (−0.1− 0.014884 + 1.938527− 0.829164)r.

As x(θ0, t) moves past the downward vertical position, it travels faster than the
separatrix and at t = (2n+2)π we have x(θ0, (2n+2)π) > 2 arcsin tanhπ > 2.9688.
Hence, the energy needed to go over the top does not exceed r(1 + cos 2.9688) <
0.014892r. Recall that at the bottom position the energy surplus was at least
0.8r and observe that in the interval [(2n + 1)π, (2n + 2)π] the solution is losing
less kinetic energy than the separatrix. Hence, the solution will make it over the
top. ¤

Theorem 3.4 addresses the case when the solution reaches the downward vertical
position for t = 2nπ with n ≥ 2. The technical details are similar to the ones
introduced in the proofs of Lemma 3.2 and Theorem 3.3. The estimates are obtained
using different functions, but the basic ideas and strategy are the same. Therefore,
we will simply mention the results without including the technical details.
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Figure 2. The solution with r = 0.001 that reaches the position
θ = 0 when t = 5π crosses over the unstable equilibrium before 8π

Theorem 3.4. Let r > 0 be given and let φ ∈ (−π, 0) be such that 1+ cosφ ≤ 0.1r.
The following two statements hold.

i. There exists a positive integer N ≥ 1 such that for every n ≥ N there is at
least one initial position θ0 ∈ (−π, φ) such that the solution of the initial
value problem (2.3) reaches the downward vertical position for the first time
when t = 2nπ.

ii. There exists t3 > 2nπ such that ẋ(θ0, t) > 0 for t ∈ (0, t3), ẋ(θ0, t3) = 0
and x(θ0, t3) < π.

Proof. The first part of Theorem 3.4 is an easy consequence of continuity with
respect to initial conditions combined with the fact that as we approach −π the
time needed to reach the downward vertical position goes to infinity.

To prove the second part we first show that when the solution arrives at the
downward vertical position its energy does not exceed 2 − 0.8r. After, we prove
that the solution will not go over the top.

An easy computation shows that

(3.7)

ẋ2(2nπ)
2 = 2− δ + 2r

∫ (2n−1)π

0
cos t sin2 x(t)

2 dt

+2r
∫ 2nπ

(2n−1)π
cos t sin2 x(t)

2 dt,

where 0 < δ = 1 + cos θ0 ≤ 0.1r. With a strategy similar to the one used in Lemma
3.2 we obtain that x(θ0, (2n− 1)π) ≤ −2.65314. Hence, by Lemma 3.1 we have

(3.8) 2r

∣∣∣∣∣

∫ (2n−1)π

0

cos t sin2 x(t)

2
dt

∣∣∣∣∣ ≤ 0.11694r.

We now estimate the last integral of (3.7). In the interval [(2n−1)π, (2n−1)π+ π
2 ]

the integral is more negative than −1.6308916r and in the interval [(2n − 1)π +
π
2 , 2nπ] is bounded above by 0.5680262r. Putting all estimates together we obtain
that the energy of the solution at the downward vertical position does not exceed
2− 0.8r.

With this loss of energy the solution will not make it over the top. The proof of
this last step is divided into two parts. In the first we consider those solutions such



         

CHAOS 9

5 10 15 20

-3

-2

-1

1

2

3

Figure 3. The solution with r = 0.001 that reaches the downward
vertical position when t = 4π does not cross over the unstable
equilibrium before t = 5π

that

ẋ(θ0, 2nπ) ≤
√

2(1− cosα),

where α was defined and numerically estimated in Section 2. In the second we
consider those solutions whose velocity at the bottom is larger than

√
2(1− cosα).

All solutions of the first group will come to a rest point at a time t < π and
before reaching the top position. Here is why. The solution

u(0,
√

2(1− cosα), t)

reaches zero velocity at t = π, u(0,
√

2(1− cosα), π) < π, and in the interval
(2nπ, (2n+ 1)π) we have

ẍ(θ0, t) < ü(0,
√

2(1− cosα), t) < 0.

For the solutions of the second group we use the estimate on the energy at the
bottom to derive that r ≤ 0.077. We now use the solution of the initial value
problem

(3.9)

{
ẅ(t) + (1.077) sinw(t) = 0

w(0) = 0, ẇ(0) =
√

2(1− cosα).

It can be easily verified that

w(0,
√

2(1− cosα), π) ≤ x(θ0, (2n+ 1)π) ≤ 2 arcsin tanhπ.

Hence, for any choice of r ∈ (0, 0.077), a solution of (2.3) that reaches the bottom
position at a time t = 2nπ will be at least as high as the solution of (3.9) at t =

(2n+ 1)π. An easy numerical estimate shows that 1− cosw(0,
√

2(1− cosα), π) ≥
2 − 0.2. Consequently, the largest excess of energy x(θ0, t) can gain to reach the
top after t = (2n + 1)π is at most 0.2r. Since at the bottom there was already a
loss of energy of at least 0.8r and in the following time interval [2nπ, (2n+1)π], the
solution x(θ0, t) is losing more energy than the separatrix, it will not have enough
energy to reach the top before its velocity changes sign. ¤

We now add an important remark to the results established previously.
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Remark 3.5. Systems of the form

(3.10)

{
z̈(t) + (1 + r sin t) sin z(t) = 0

z(t0) = α0, ż(t0) = 0.

are sometimes considered and will be needed in the proof of our main result. Given
r > 0 and t0, we can determine α0 ∈ (−π, 0) sufficiently close to −π so that all
conclusions reached before are still valid. In a similar manner we can handle cases in
which α0 = −π and small velocities are assumed in either direction. Both situations
will arise in the proof of the next theorem.

4. Chaotic Orbits

We are now ready to state and prove the main result of this paper concern-
ing orbits of a pendulum with an oscillating pivot. We introduce a preliminary
definition.

Definition 4.1. The symbols 1,−1 denote a crossing of the unstable equilibrium
in a counterclockwise or clockwise direction, respectively. The symbol 0 denotes
two times of zero velocity separated only by a crossing of the position of stable
equilibrium. The symbol ω indicates that an orbit tends asymptotically to the
position of unstable equilibrium.

Since an orbit may tend asymptotically to the top position either in a counter-
clockwise or clockwise manner, it would be more precise to use +ω in one case, and
−ω in the other case. However, this distinction does not really add an important
information on the orbit. Hence, we have decided not to use it.

The statement solution starting from followed by the indication of a position
angle will be used to denote the solution of initial value problems like (4.1) below.
We may also say that the solution corresponds to followed by the indication of the
position angle. When the initial velocity is not mentioned it will be assumed equal
to 0. The statement a sequence corresponds to a solution means that a sequence
of symbols is associated to the solution according to the rules stated in Definition
4.1.

Theorem 4.2. Let r ∈ (0, 1) be given. Select any infinite sequence of entries from
the symbols 1,−1, 0 or any finite sequence of entries from the same symbols and
ending with ω. Then there are infinitely many initial conditions (θ0, 0) such that
the given sequence of symbols corresponds to the solution of the initial value problem

(4.1)

{
ẍ(t) + (1 + r sin t) sinx(t) = 0

x(0) = θ0, ẋ(0) = 0.

Proof. The procedure to follow in the case of a finite sequence will be evident from
the proof we present when the sequence is infinite. To obtain the desired result we
will produce a family of nested intervals In = [an, bn], such that all orbits of (4.1)
with initial position θ0 ∈ In will complete the first n steps of the sequence, except
when θ0 is equal to either one of the border points. These two initial positions
will produce solutions satisfying only the first n − 1 steps of the sequence and
terminating with ω. Since ∩In = I∞ 6= ∅ we obtain the desired orbit by selecting
θ0 ∈ I∞.

To better understand how the sequence of intervals can be constructed let us
keep in mind that the set of initial conditions with corresponding orbits satisfying
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the first k entries of the infinite sequence is an open set. This is a direct consequence
of the continuity with respect to initial conditions. Let us also keep in mind that to
any solution we can associate a sequence, although different solutions need not have
different sequences. For example, the sequence {0, 0, . . . , 0, . . . } corresponds to all
solutions that will indefinitely oscillate around the position of stable equilibrium.

Let us assume that the sequence starts with 1. The cases when the sequence
starts with −1 or 0 are handled similarly.

Given r ∈ (0, 1) we select N large enough so that for all n ≥ N we can determine
θ0 so that the solution of the initial value problem

(4.2)

{
ẍ(t) + (1 + r sin t) sinx(t) = 0

x(0) = θ0, ẋ(0) = 0

reaches the downward vertical position at time t = (2n+ 1)π. Hence, the solution
will go over the top. Take the largest interval of the form [a1, b1] where a1 < θ0 < b1
and [a1, b1] is such that for all θ ∈ (a1, b1) the corresponding solution will go over
the top at least once, while for θ = a1 or θ = b1 the corresponding solution will
not go over the top but will tend asymptotically to it as t → +∞. Consequently,
the sequence corresponding to these two orbits will be simply denoted by S = {ω}.
Set I1 = [a1, b1]. Observe that this first interval can be selected in infinitely many
different ways. In fact, for every n ≥ N , we can find an open interval (a1, b1) such
that every solution with initial position in (a1, b1) will go over the top at least once
before its velocity changes sign.

We now indicate how to construct I2. We shall assume that the second entry of
the sequence is 0. The cases with second entry equal to ±1 are handled similarly. I2
will be constructed so that it is contained in I1 and all its points, except the border
points, provide solutions having {1, 0} in the first two entries of the corresponding
sequence. The solutions corresponding to the border points will have 1 in the first
entry, and ω in the second entry. First we select in I1 an initial condition θ1 so
that the velocity of the corresponding solution over the unstable equilibrium will
be very small and the downward vertical position will be reached at time t = 2kπ,
with 2kπ >> t0 and t0 the time when the solution is over the top. This can ob-
viously be accomplished, since as the initial condition in I1 approaches b1 (or a1)
the corresponding solution will arrive at the top with progressively smaller velocity.
Hence, we can also consider an initial condition smaller than θ1 and larger than
a1 so that the corresponding solution will reach the downward vertical position at
a time that is an odd multiple of π. The two initial conditions will be separated
by one generating a solution that after going over the top will tend asymptotically
to the unstable equilibrium. From this discussion the interested reader can under-
stand how the choice of θ1 can be made so that the border points of the interval
I2 as selected below are contained in (a1, b1). Moreover, we can also satisfy the
requirement imposed by the magnitude of r and mentioned in the statements of
Theorems 3.3 and 3.4 of starting close enough to the unstable equilibrium to insure
the validity of all inequalities previously established.

The solution starting from θ1 will come to a rest on the right-hand-side before
reaching the top a second time. Since the set of solutions with this property is open,
we consider the largest interval in I1 of the form (c2, d2) with c2 < θ1 < d2 and such
that for all initial conditions of this interval the corresponding solution will come to
a rest before reaching the top a second time. The solutions corresponding to θ = c2
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or θ = d2 will go over the top once and then will tend asymptotically to the unstable
equilibrium. Hence, the sequence corresponding to both will be S = {1, ω}. Among
the initial conditions of (c2, d2) there will be some with corresponding solution
coming down to the downward vertical position at a time that is even multiple of π
and others with corresponding solutions coming down at a time that is odd multiple
of π. These will be separated by initial conditions with corresponding solutions that
after going over the top and coming to a rest point on the right-hand-side, will tend
asymptotically to the unstable equilibrium as they move up on the left-hand-side.
Pick an initial condition in (c2, d2) so that the corresponding solution comes down
again at a time that is an even multiple of π and consider the largest open interval in
(c2, d2) containing this initial condition and such that for all θ in this open interval
the corresponding solution will have a rest point on the left-hand-side separated
from the one on the right-hand-side by a single crossing of the position of stable
equilibrium. The closure of this interval is I2 = [a2, b2]. Clearly, for all θ ∈ (a2, b2)
the corresponding solution will be represented by a sequence having {1, 0} in the
first and second position. For θ = b2 or θ = a2 the corresponding solution will be
represented by the sequence {1, ω}. An induction argument can now be used to
conclude the proof. ¤

Remark 4.3. We have not included the presence of a friction term kẋ(t) in our
analysis. However, it is not difficult to see that the principles on which the proofs
are based will continue to be valid if a small friction term is added. While it is hard
to establish the magnitude of the constant k, we can say that given r > 0 there
exists k0 such that for all k < k0 the inclusion of a friction term with constant
k > 0 will not affect the validity of the results we have established.

Remark 4.4. We now examine the case when µ 6= 1 and still µ > 0. The separatrix
of the problem

(4.3) ü(t) + c sinu(t) = 0

is given by

u(t) = 2 arcsin(tanh(
√
ct)).

At the downward vertical position its velocity is 2
√
c.

The results proved before remain unchanged if µ < 1. In fact, with a suitable
change of variable we can rewrite equation (2.2) in the form

(4.4) θ̈(t) + c(1 + r sin t) sin θ(t) = 0

where c = 1
µ2 , and we see that all inequalities remain true due to the fact that the

system must start from a more negative position to reach the downward vertical
position at the required time. Hence, for every (r, µ) ∈ (0, 1) × (0, 1] Theorem 4.2
holds true.

The case µ > 1 is more complicated. The approach we used before is still valid
for µ ∈ [1, µ0), where

µ0 =
π

log(
√

2 + 1)− log(
√

2− 1)
.

For all these values of µ one can show, using exactly the same approach outlined
in Lemmas 3.1 and 3.2, that the estimates of energy gain or loss are the same as
previously determined. We simply have to multiply them by 1

µ2 . More precisely,

we can prove that the kinetic energy of a solution that reaches the bottom position
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at an odd multiple of π is at least 2+0.8r
µ2 . For example, for µ = µ0 and with

1+cos θ0 < 0.1r the energy surplus at the downward vertical position is at least .8r
µ2

0

and the same reasoning used in the proof of Theorem 3.3 shows that the solution
will go over the top. Similarly, when the bottom position is reached at a time that
is an even multiple of π and µ ≤ µ0, the kinetic energy cannot exceed 2−0.8r

µ2 and

the solution will not make it over the top. The only caveat is that the multiples of
π may need to have n very large, but this is obviously not a problem.

For µ0 < µ, the situation is more complex, particularly when 2µ0 < µ. Numerical
experiments suggest that the result is still true when µ is not too large. One has
to be careful in selecting the time needed to come down to the position of stable
equilibrium. The reader would certainly remember that an appropriate choice was
also included in Theorems 3.3 and 3.4. Hence, this is nothing new. The results
on the stability of the inverted pendulum (see [1], Chapter 5) show the existence
of large µ values for which it is hard to establish what the behavior of the system
might be at least for certain choices of the initial position and velocity. Hence, from
this point of view, some additional work needs to be done.

There are also some interesting questions we have not been able to answer. One
of the most puzzling is the amount of energy an orbit can accumulate, given r
and µ. We have done some experiments with µ = 1 and we have observed that
the energy fluctuates between specific values. In each case we have started with 0
initial velocity. The energy never grows too large or becomes too small. Although
this behavior makes sense, we have not been able to prove it, let alone establish
what an upper and lower bound for the energy must be.

We sincerely hope that some of these questions, and others that are not men-
tioned here, will rouse the curiosity of some interested readers, who will further
explore the intricacies of these simple, yet fascinating systems.
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