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1. Introduction

Let F : Rp → Rp be of class C1 (i.e. differentiable in the sense of Fréchet with
continuous derivative). In a paper published in 1960 Markus L. and Yamabe H.
[20] conjectured that the origin is a global attractor for the autonomous system of
differential equations

(1.1) x′(t) = F (x(t))

provided that
1. F (0) = 0, and
2.

σ(F ′(x)) ⊂ C−

for every x ∈ Rp.
The symbol σ(F ′(x)) stands for the spectrum of the linear operator F ′(x), while

C− denotes the set of complex numbers with real part strictly less than 0. We
know today that the Markus-Yamabe conjecture is true in R2 [9, 12], and false in
Rp : p ≥ 3 [6].

In 1976 La Salle J. P. [19] proposed a similar result for discrete dynamical systems
by conjecturing that every orbit of

(1.2) xn+1 = F (xn)

converges to 0 provided that
1. F (0) = 0, and
2.

ρ(F ′(x)) < 1
for every x ∈ Rp.

It is assumed that F is of class C1 and the symbol ρ(F ′(x)) = max{|λ| : λ ∈
σ(F ′(x))} denotes the spectral radius of the linear operator F ′(x).

The conjecture of La Salle is false even in R2 [23]. However, it is true in R2 for
polynomial vector fields [8].

It is not hard to show that when F is a gradient every orbit of (1.1) and of (1.2)
converges to 0 [22]. It has been shown that the same conclusion can be reached
when F is upper or lower triangular. Moreover, in the case of the discrete dynamical
system (1.2), the assumption ρ(F ′(x)) < 1 can be relaxed [1, 16].

Hartman [14] proved the global convergence conjectured by Markus-Yamabe for
(1.1) when the spectrum of the symmetric part H(x) of F ′(x) is contained in C−.

The present paper has two main purposes. First we would like to show that
Hartman’s condition [14] can be considerably relaxed (see Theorem 2.5) using an
idea developed in [10]. Second, we would like to establish a companion result (see
Theorem 2.7) for discrete dynamical systems.
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2. Results

The theorems presented in this section regard the global behavior of continuous
and discrete dynamical systems when the time dependence is not contained explic-
itly in the equation, i.e. the systems are autonomous. We shall assume that the
function F : Rp → Rp is continuous and F (0) = 0. Moreover we shall also assume
that F is Gateaux differentiable [27] except possibly on a linearly countable set S,
i.e. such that 0 ∈ S and S ∩ [0,x] is at most countable, where [0,x] denotes the
line segment joining 0 with x, and x is any point of Rp.

Our theorems are based on extensions of previous results established in [10, 11,
21] (see also [4]). We shall now state and prove the results and their generalizations
with the adjustments that make them applicable to the situations envisioned in this
paper.

Theorem 2.1. Let a < b be two real numbers and let f : [a, b]→ R be continuous
in [a, b]. Assume that f is differentiable in (a, b) except possibly at finitely many
points of (a, b). Then both sets S+ = {c ∈ (a, b) : f(b) − f(a) ≤ f ′(c)(b − a)}, and
S− = {d ∈ (a, b) : f(b)− f(a) ≥ f ′(d)(b− a)} are not empty.

Proof. Assume first that f is constant. Then S+ and S− are obviously not empty.
Assume now that f is not constant. In the case when f is differentiable in (a, b)
the stated result is a consequence of the Mean Value Theorem. In the case when f
is not differentiable at n points of (a, b) we can apply Corollary 4 of [10] to obtain

(2.3) f(b)− f(a) =
n+1∑
i=1

αif
′(ci)(b− a),

where α1, . . . , αn+1 are positive real numbers such that
∑n+1
i=1 αi = 1. Let cj , ck be

such that f ′(cj) ≤ f ′(ci) ≤ f ′(ck) for every i = 1, . . . , n+ 1. Then

(2.4) f ′(cj)(b− a) ≤ f(b)− f(a) ≤ f ′(ck)(b− a).

(see also Theorem 2 of [21]). �

We shall now establish a result that is a more general than Theorem 2.1. We
first need the following lemma. The symbol Ec denotes the complement of the set
E.

Lemma 2.2. Let a < b and g : [a, b] → R be continuous. Assume that E ⊂ (a, b)
is a countable subset of (a, b) such that g is differentiable on Ec ∩ (a, b), g′(x) ≥ 0,
and g is not constant. Then the set N = {x ∈ (a, b) : g′(x) > 0} is non-negligible.
Moreover, we have g(b) > g(a).

Proof. The image of g is the union of three sets

Im(g) = g(E) ∪ g(F ) ∪ g(N)

where F = {x ∈ (a, b) : g′(x) = 0}. Since g is not constant, Im(g) is non-negligible.
We know that g(F ) is negligible [21] and g(E) is countable. Hence, N cannot be
negligible, for, otherwise, g(N) would be negligible [21]. The inequality g(b) > g(a)
is now a consequence of Theorem 2 of [24]. �

From Lemma 2.2 we derive the following important consequence.
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Theorem 2.3. Let a < b and f : [a, b] → R be continuous. Assume that f is
differentiable except possibly at the points of a countable set E ⊂ (a, b). Then there
are points c1, c2 ∈ Ec ∩ (a, b) such that

(2.5) f ′(c1)(b− a) ≤ f(b)− f(a) ≤ f ′(c2)(b− a)

Proof. The result is obviously true if f is constant. Hence, assume that f is not
constant. We shall establish the existence of c2 such that

f(b)− f(a) ≤ f ′(c2)(b− a).

The existence of c1 can be obtained in a similar manner.
In the case when

(2.6) sup{f ′(x) : x ∈ Ec ∩ (a, b)} = +∞
the existence of c2 is obvious.

Hence, assume that

sup{f ′(x) : x ∈ Ec ∩ (a, b)} = M <∞
and define k(x) = M(x− b)− f(x). Then k is continuous in [a, b] and it is differen-
tiable in Ec ∩ (a, b). Moreover, we have k′(x) = M− f ′(x) ≥ 0. Assume first, that
k is constant. Then k(a) = M(a − b) − f(a) = k(b) = −f(b) and M = f ′(x) for
every x ∈ Ec ∩ (a, b). Thus, we obtain

(2.7)
f(b)− f(a)

b− a
= M = f ′(c2)

for some c2 ∈ (a, b). Hence,the right-hand-side inequality stated in the theorem is
clearly true.

Let us now assume that k is not constant. Then k′(x) > 0 for x ∈ N where
N ⊂ (a, b) is non-negligible. Moreover, k(b) > k(a) (see Lemma 2.2). From

k(b) = −f(b)

and
k(a) = M(a− b)− f(a)

we derive

(2.8) M >
f(b)− f(a)

b− a
,

and this inequality establishes the right hand side of (2.5). �

We are now in a position to prove the following result that has important appli-
cations to global asymptotic stability.

Theorem 2.4. Let F : Rp → Rp be continuous. Assume that F (0) = 0, and F is
Gateaux differentiable except possibly on a linearly countable subset S of Rp. Let
x ∈ Rp and v 6= 0 be any vector of Rp. Then there exist c1, c2 in the open line
segment joining 0 with x such that

(2.9) v · F
′

G(c1) x ≤ v · F (x) ≤ v · F
′

G(c2) x.

where · denotes the standard inner product.

Proof. Let x be any element of Rp different from 0 and define g : [0, 1] → R by
g(s) = v · F (α(s)) where α : [0, 1]→ Rp is given by α(s) = sx. The stated result is
now a consequence of Theorem 2.3 (see also [27]). �
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Our first result on global asymptotic stability considers the behavior of all orbits
of continuous and autonomous dynamical systems.

Theorem 2.5. Let F : Rp → Rp be a map that is locally Lipschitz at every x ∈
Rp, and Gateaux differentiable except possibly on a linearly countable set S ⊂ Rp.
Assume that F (0) = 0 and the eigenvalues of the symmetric part HG(x) of F ′G(x)
are strictly negative at every point where F ′G(x) exists. Then every solution of the
autonomous system

(2.10) x′(t) = F (x(t))

goes to 0 as t goes to ∞.

Proof. Let x0 be an initial condition for equation (2.10) and let x(t) be the unique
solution of (2.10) such that x(0) = x0. The assumption that F is locally Lipschitz
at every x ∈ Rp insures that the solution of (2.10) is uniquely determined by its
initial value x0 and varies continuously with it [29]. According to Theorem 2.4
there exists c2 in the open line segment joining x with 0 such that

(2.11)
d

dt
‖x(t)‖2 = 2x(t) · x′(t) = 2x(t) · F (x(t)) ≤ 2x(t) · F ′G(c2)x(t).

Note that
2x(t) · F ′G(c2)x(t) = x(t) ·HG(c2)x(t).

Since the eigenvalues of HG(c2) are strictly negative we obtain that ‖x(t)‖ is de-
creasing. Hence, the solution exists for all t > 0 and we have

(2.12) lim
t→+∞

‖x(t)‖ = a ≥ 0.

Assume that a > 0. Then the Ω limit set of the solution is contained in the
sphere {z ∈ Rp : ‖z‖ = a}. This, however, is impossible, since it would imply
the existence of a solution w of (2.10) defined in [0,+∞) and with the property
‖w(t)‖ = a for all t ≥ 0 (see [2], pg. 227). �

We now provide an example showing that the conditions listed in Theorem 2.5
appear to be optimal, in the sense that the intersection between S and a segment
of the form [0,x] cannot be uncountable.

Example 2.6. Let T : [0, 1]→ [0, 1] be the Cantor ternary function. Extend T to
the entire real line in the following manner. For x ∈ (1, 2] define F (x) = 1+T (x−1),
and for x ∈ (2, 3] set F (x) = 2 + T (x − 2). For x > 2 the function F is defined in
a similar manner. We then extend F to the entire real line so that the extension
is odd. Shift F to the left by 1

2 and lower it by 1
2 . Then, define G : R → R by

G(x) = F (x+ 1
2 )− 1

2 − εx where 0 < ε < 0.1. Consider the differential equation

(2.13) x′(t) = G(x(t))

Clearly G(0) = 0 and G is continuous. Moreover G′(x) < 0 for every x where the
derivative exists. In particular, when x ∈ (− 1

6 ,
1
6 ) we have G(x) = −εx. Hence,

x = 0 is a local attractor. However, notice that the solution of the initial value
problem

x′(t) = G(x(t)), x(0) = 1

does not go to 0. It should be pointed out that the function G(x) is not locally
Lipschitz at every point of an uncountable set of measure 0.
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In the following theorem we establish a criterion similar to the one of the previous
result and regarding discrete dynamical systems.

Theorem 2.7. Let F : Rp → Rp be continuous. Assume that F is Gateaux differen-
tiable except possibly on a linearly countable set S, F (0) = 0, and the spectral radius
ρ(PG(x)), of PG(x) = F ′G(x)TF ′G(x), where TF ′G(x) is the transpose of F ′G(x), is
less than 1 at every point where F ′G(x) exists. Then every orbit of the system

(2.14) xn+1 = F (xn)

goes to 0 as n goes to +∞.

Proof. Set v = F (x) in (2.9) to obtain

‖F (x)‖2 ≤ F (x) · F ′G(c2) x.

By a well known inequality we have

F (x) · F ′G(c2) x ≤ ‖F (x)‖ ‖F ′G(c2) x‖.

It follows that
‖F (x)‖ ≤ ‖F ′G(c2) x‖,

and

(2.15) ‖F (x)‖2 ≤ x · TF ′G(c2)F ′G(c2)x,

where TF ′G(c2) is the transpose of F ′G(c2). Let x0 be the starting point of an orbit.
Equation (2.15) and the assumption ρ(PG(x)) < 1 imply that

(2.16) ‖xn+1‖ < ‖xn‖,

for every n = 0, 1, . . . . Hence, the sequence {‖xn‖ : n = 0, 1, . . . } is decreasing.
Let L(x0) be the set of limit points of the orbit O(x0). Since F is continuous we
have (see [22]) F (L(x0)) = L(x0). Therefore, we conclude that 0 is the only limit
point of the orbit O(x0), i.e. L(x0) = {0}. �

The following example is an application of Theorem 2.7 to a discrete dynamical
system in R2.

Example 2.8. Consider a discrete dynamical system F : R2 → R2 such that F is
continuous and the equation

F (x) = x

is solved if and only if x = 0. The function F fails to be differentiable on a linearly
conuntable set S (see below). At every other point the entries of the 2× 2 matrix
F ′(x) are the following

a11 = 0.4(1− cos 2πx)
a12 = g(y)
a21 = g(x)
a22 = 0.4(1− cos 2πy).

Consequently, the elements of the product of the derivative of F and of its transpose
are

b11 = (1−cos 2πx)2

6.25 + (g(y))2

b12 = 0.4(g(x)(1− cos 2πx) + g(y)(1− cos 2πy))
b21 = b12

b22 = (1−cos 2πy)2

6.25 + (g(x))2.
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The eigenvalues are found to be

(2.17) λi =
b11 + b22 + (−1)i

√
(b11 − b22)2 + 4(b12)2

2
, i = 1, 2.

Select g(x) = (−1)[2x+0.5]+1.5
8 , where the symbol [x] denotes the greatest integer

contained in x. Hence, the function g(x) is discontinuous on the family of lines

L = {x = ±1
4
,±3

4
,±5

4
, . . . }.

Analogously, g(y) = (−1)[2y+0.5]+1.5
8 and the function is discontinuous on the family

of lines

M = {y = ±1
4
,±3

4
,±5

4
, . . . }.

It can be easily shown that λi ∈ (−1, 1) at every point where F is differentiable.
Moreover, we can select a function G(x) so that G is continuous, G′(x) = g(x) at
every point where g is continuous, and G(0) = 0. A similar choice can be made for
G(y).

Hence, on the basis of Theorem 2.7, we conclude that every orbit of the discrete
dynamical system

xn+1 = F (xn)

converges to 0.

The following example shows that the set S cannot be selected so that its inter-
section with a segment of the form [0,x] is uncountable.

Example 2.9. Let F be the function defined in Example 2.6 and consider the
discrete dynamical system

(2.18) xn+1 = F (xn +
1
2

)− 1
2

+ εxn = G(xn)

Assume that 0 < ε < 0.1. Notice that G(0) = 0. Hence 0 is a stationary state of
our system. Moreover, for every x0 ∈ (− 1

6 ,
1
6 ) we have G′(x) = ε < 1. Hence, the

orbit starting at x0 will converge to 0, which is a local attractor for the dynamical
system (2.18).

Moreover, at every point where the derivative of G is defined we have G′(x) =
ε < 1. However, let us consider the orbit starting from x0 = 1. Then

x1 = G(x0) = 1 + εx0 = 1 + ε

Hence, x0 < x1. Continue the process to show that the sequence of iterates is
monotone and it does not converge to 0. Thus, 0 is not a global attractor.

The following result does not imply global asymptotic stability, but it is included
in this paper because it appears to be the natural extension of Theorem 2.5 to
discrete dynamical systems of the form

(2.19) xn+1 = xn + hF (xn).

Notice that (2.19) can be obtained with the application of the one-step Euler
method to (2.10). The parameter h represents the time step used in the scheme.
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Theorem 2.10. Let K : Rp → Rp be defined by K(x) = x + hF (x), where F is
continuous in Rp and such that F (0) = 0. Assume that F is Gateaux differentiable
except possibly on a linearly countable set S, and the symmetric part of F ′G(x) is
negative definite. Then, given an initial position x0 there exists h0 = h(x0) > 0
such that for any k ∈ [0, h0) the orbit O(x0) of the dynamical system

(2.20) xn+1 = xn + kF (xn)

converges to 0.

Proof. From (2.19) we easily obtain

xn+1 · xn+1 = xn · xn + 2hxn · F (xn) + h2F (xn) · F (xn).

Using Theorem 2.4 we can write

2x · F (x) + hF (x) · F (x) ≤ 2x · F ′G(c2)x + hF (x) · F (x)

where c2 is a suitable point in the line segment joining x with 0. Since

2x · F ′G(c2)x = x ·HG(c2)x,

our assumptions on F imply that

x0 ·HG(c20)x0 < 0.

where HG(c20) is the symmetric part of F ′G(c20), and c20 is a suitable point in the
line segment joining 0 with x0. Let Q = max{‖F (x)‖2, ‖x‖ ≤ ‖x0‖} and choose
h0 so that

x0 ·HG(c20)x0 + h0Q = 0.

Then for every k < h0 we have ‖x1‖ < ‖x0‖. The procedure can now be repeated
and the reasoning of Theorem 2.7 can be applied to conclude that L(x0) = {0}. �

Recall that a result less general than Theorem 2.5 was established by Hartman
(see [14]). Hartman’s proof requires that F is (differentiable in the sense of Fréchet
and) of class C1 in Rp and the symmetric part of the Fréchet derivative F ′(x) is
negative definite except possibly at 0. To the best of our knowledge, no results
similar to Theorems 2.7 and 2.10 have been established for discrete dynamical
systems.

Hartman and Olech ([15], see Theorem 2.1) proved that the 0 solution of (1.1)
is globally asymptotically stable provided that

1. F (x) = 0 if an only if x = 0;
2. α(x) ≤ 0 with

α(x) = max{λi(x) + λj(x) : 1 ≤ i < j ≤ p},

where {λk(x), k = 1, . . . , p} are the eigenvalues of the symmetric part of
F ′(x);

3. ∫ ∞
0

p(u)du =∞,

with p(u) = min{‖F (x)‖ : ‖x‖ = u}.
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Hartman’s condition (see [14]) was weakened by Smith (see [30], Theorem 7)
who proved that the bounded semi-orbits of (2.10) converge to 0 provided that

λ1(x) + λ2(x) < 0

where λ1(x) and λ2(x) are the two largest eigenvalues of the symmetric part of
F ′(x).

We do not know if the result of Hartman-Olech or the one of Smith can be
obtained or improved with the method outlined in Theorem 2.5.

Recall that when F (0) = 0, F ′(x), the Fréchet derivative of F at x, is continuous
at 0 and the spectral radius of F ′(0) is smaller than 1, then 0 is a sink. In other
words, there exists r > 0 such that every orbit starting at a point x0 closer than r
to the origin will converge to 0 in an exponential manner. The proof can be based
on the equivalence of all norms in Rp, on the Mean Value Inequality, and on the
fundamental result

(2.21) lim
n→∞

‖An‖
1
n
0 = ρ(A),

where A is a p × p matrix with real entries, ‖ · ‖0 is any operator norm, and ρ(A)
is the spectral radius of A (see [22]). A proof of this result without using the
differentiability of the function in a neighborhood of the origin, but still anchored
on (2.21), was proposed in [18]. There are advantages and disadvantages in the
approach of [22] with respect to the one of [18]. The interested reader can easily
compare the two methods and their respective proofs.

3. Open Questions

We would like to mention that when p = 1, f(0) = 0, |f ′
(0)| = 1 and |f ′

(x)| < 1
for 0 < |x| < r one can easily prove that 0 is a sink (see [22]). As a matter of fact,
the differentiability of f at 0 is not needed.

For p > 1 one could try to obtain a similar result by assuming that F (0) =
0, ρ(F ′(0)) = 1, and there exists r > 0 such that ρ(F ′(x)) < 1 whenever ‖x‖ ∈
(0, r). However, such a result is still in the works if no other assumption is made
about F ′(x). We suspect that the result is true when the eigenvalues of F ′(0) with
modulus 1 are semisimple, but does not hold when at least one of these eigenvalues
is not semisimple.

Another interesting question is the following. Suppose that F (0) = 0, ρ(F ′(x)) <
1 for all ‖x‖ ≤ 1, and F maps the unit disk D(0, 1) into itself. Is it true that every
orbit of F with initial point x0 ∈ D(0, 1) converges to 0?

A problem strictly related to the well-known Jacobian Conjecture (JC) regards
the existence of non-zero fixed points for a C1 map F : Rp → Rp such that F (0) = 0
and ρ(F ′(x)) < 1 for every x ∈ Rp. It has been shown [7] that when F is a
polynomial vector field the uniqueness of the fixed point (Fixed Point Conjecture
or FPC, for short) is equivalent to the well-known Jacobian Conjecture (JC) [17].
The proof of this equivalence (see [7]) is anchored to the very clever work of Bass,
Connell and Wright [3]. Nothing is known when F is not a polynomial map, but it
satisfies the conditions listed above.

There are others unsolved problems regarding convergence of continuous or dis-
crete dynamical systems. The ones just mentioned provide interesting open ques-
tions about this area of research.
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