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Abstract. We study a nonlinear, second order ordinary differential equation

that models the longitudinal librations of the longest axis L of a satellite with

respect to the planet-satellite center line C. Combining theoretical arguments
and numerical evidence we prove that, in the case of Hyperion, a satellite of

Saturn, the angle A between L and C can change in a chaotic manner at the

moments when the distance from Hyperion to Saturn reaches its minimum
value. More precisely, given an arbitrary sequence of zeros and ones, we show

that there is at least one initial velocity of A such that its successive positions

reproduce the given sequence.

1. Introduction

Hyperion is a satellite of Saturn. The irregular oscillations of its longest axis
with respect to the planet-satellite center line have been studied previously by J.
Wisdom, S. Peale, and F. Mignard [15]. Their conclusions were derived from:

1. Hyperion’s images transmitted by Voyager 2 [13];
2. a numerical and theoretical analysis of a differential equation modeling a

planetary motion and proposed by P. Goldreich and S. Peale [5].

The last two authors modified the equation developed by J. M. A. Danby [2] to
model the longitudinal librations of the moon.

In the first part of their interesting paper Wisdom, Peale, and Mignard [15] pro-
vide numerical evidence that Hyperion’s longitudinal librations are chaotic. They
denote by ϕ the angle between Hyperion’s longest diameter and the planet-satellite
center line. Using the surface of section method, they plot the pairs (ϕ, ϕ̇) when
Hyperion crosses the periapsis, namely the point when the satellite is closest to Sat-
urn. A large cloud of points is obtained, which dominates the 1/2 and 2 spin-orbit
states.

We use a different approach, since our goal is to provide a mathematical expla-
nation of the unpredictable behavior of the longitudinal librations of Hyperion. We
assume that the spin axis of the satellite remains perpendicular to the orbit plane,
and set x = 2ϕ in the equation of motion proposed in [5, 15]. In this framework
we identify x with a point mass moving without friction on S1 with its lowest po-
sition (called South Pole) used as a reference and set equal to 0. The point mass
is acted on by two forces. One, a sort of oscillating gravitational force, pushes it
vertically toward the South Pole. The other gives the point mass a clockwise or
counterclockwise rotational acceleration.

We consider x as decreasing or increasing according to whether the point mass
travels clockwise or counterclockwise. Moreover, the positions on S1 are given by
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x mod 2π. Consequently, x ≡ 0 when the point mass crosses the South Pole.
Moreover, we say that x moves from −π to π (the North Pole), if it proceeds
counterclockwise from its highest position to its lowest, and then to its highest
again. All results of this paper are stated with these conditions.

Two properties of the motion of the point mass on S1 are used to prove the
unpredictability of the longitudinal librations of Hyperion. The first one, which is
established theoretically, states that the South Pole can be reached at any selected
time (see Theorem 3.7). The second one states that the time of arrival at the South
Pole is crucial, since it dictates if the point mass will (see Theorem 4.2) or will not
(see Theorem 4.3) gain enough energy to complete a full revolution around S1.
Accurate numerical estimates play a determinant role in the proof of this second
property.

We include in this paper the terms neglected in [4] (powers of the eccentricity
e with exponent 2 or higher), complicating considerably the differential equation
governing the motion of the point mass. Despite this, we are able to show that the
longitudinal librations of Hyperion can be chaotic.

Besides J. Wisdom, S. Peale, and F. Mignard [15], other authors, such as [1, 4,
7, 8, 9, 11, 12, 14, 17], have investigated problems similar to the one presented here.

2. The model

According to [5, 15], the motion of a tri-axial satellite describing an elliptical
orbit around a planet, with spin axis perpendicular to the orbit plane, can be
modeled by the second order nonlinear differential equation

(2.1) ϕ̈+ θ̈ = − 3(B−A)
2C (ar )3 sin 2ϕ.

The quantities involved in (2.1) are defined as follows (see [16]). The numbers
A < B < C are the principal moments of inertia of the satellite, with C the moment
about the spin axis. The orbit is assumed to be a fixed ellipse with semimajor axis
a, eccentricity e, instantaneous radius r, and polar angle θ. Recall that θ, measured
counterclockwise and expressed in radians, is the angle between the planet-satellite
center line and the major axis of the ellipse, oriented toward the periapsis of the
orbit. The orientation of the satellite longest axis relative to the planet-satellite
center line is specified by ϕ. Thus ϕ + θ is the angle between this axis and the
longest diameter of the elliptical orbit. We make here the standard approximation
that the center of mass of the satellite describes an elliptical orbit around the planet.
Consequently, the distance r between the satellite and the planet is expressed by
the following function of the angle θ:

(2.2) r =
p

1 + e cos θ
,

where p = a(1 − e2) is the parameter of the elliptical orbit. The angle θ and the
time t are related by Kepler’s second law of planetary motion and by the standard
initial condition θ(0) = 0. Hence, we obtain the initial value problem:

(2.3) 1
2r

2θ̇ = c, θ(0) = 0,

where the constant c represents the instantaneous area swept by r.
Let us introduce the variable ψ such that (see [6])

r = a(1− e cosψ).
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The relation between θ and ψ is easily obtained. We find

cos θ =
cosψ − e

1− e cosψ
.

Customarily, we set

θ = ψ = 0

when the distance between the satellite and the planet is

r =
p

1 + e
,

namely, at the periapsis of the orbit. Moreover,

θ = ψ = π

when the distance is

r =
p

1− e
,

i.e. the position of the satellite is symmetric to the periapsis with respect to the
origin. The relation between ψ and t is found to be (see [6])

ωt = ψ − e sinψ,

where ω is the frequency of the elliptical motion.
Differentiating (2.2) and (2.3) with respect to t yields

θ̈ = − 8c2

r3
e sin θ
a(1−e2) .

Hence, (2.1) takes the form

(2.4) ϕ̈ = (ar )3( 8c2e sin θ
a4(1−e2) −

3(B−A)
2C sin 2ϕ).

Define x = 2ϕ. Then (2.4) becomes

ẍ = (ar )3( 16c2e sin θ
a4(1−e2) −

3(B−A)
C sinx).

Since we are interested in the motion of Hyperion, we use e = 0.11 ([10]) and
3(B−A)

C = 0.78 ([15], pg. 138), which are good approximations of the characteristic
parameters of this satellite. Moreover, we set a = 1 and we normalize the time so
that the period of revolution is 2π. As an immediate consequence, we obtain

4c2 = 1− e2 = 0.9879.

In this case the three variables θ, ψ and t coincide at nπ, n ∈ Z. In fact, geometric
considerations show that the C∞ functions η(t) := θ(t)− t and γ(t) := θ(t)− ψ(t)
are 2π-periodic, odd, and vanish at t = π.

With the above settings we obtain the autonomous system of differential equa-
tions

(2.5)

ẋ = y,
ẏ = 1.0372(1 + .11 cos θ)3(.44 sin θ − .78 sinx),

θ̇ = 1.01843(1 + .11 cos θ)2,

where the numbers 1.0372 and 1.01843 have been rounded up.
The initial value problem (2.3) can be written as

θ̇ = 1.01843(1 + .11 cos θ)2, θ(0) = 0.
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Thus, considering the unique solution θ(t) of this problem, the autonomous system
(2.5) is transformed into the non-autonomous differential equation

(2.6) ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx).

Proposition 2.2 below shows that this equation can be regarded as governing
the motion of a point mass constrained on a vertical circle and acted on by two
periodic forces of the same period: an oscillating gravitational force, and a forcing
term acting clockwise and counterclockwise, alternatively. The proof of Proposition
2.2 is based on the following simple result.

Lemma 2.1. Let f(t) be a C∞ odd function, periodic with period 2π and such that
f(−π) = f(π) = 0. Then there exists an even C∞ function a(t) such that

f(t) = a(t) sin t.

Proof. It is known that sin t = k(t)t, where k(t) is a C∞ even function such that
k(0) = 1. Additionally, the C∞ odd function f(t) can be written in the form f(t) =

g(t)t, where g(t) is C∞ and even. Hence, f(t) = a1(t) sin t, where a1(t) = g(t)
k(t) in

the interval (−π, π).
Similarly, one can write sin t = h(t)(t−π) with h(π) = −1, and f(t) = d(t)(t−π).

Define a2(t) = d(t)
h(t) in the interval (0, 2π). Notice that a1(t) = a2(t) in the interval

(0, π). Hence, we can define the C∞ function

δ(t) =

{
a1(t), t ∈ [0, π),
a2(t), t ∈ [π, 2π).

The C∞ function δ(t) can now be extended in a periodic manner (of period 2π) to
the entire real line. Its C∞ extension is the function a(t). �

As a consequence of Lemma 2.1 we obtain the following

Proposition 2.2. The differential equation (2.6) can be rewritten in the form

ẍ = α(t) sin t− β(t) sinx

where the functions α(t) and β(t) are positive, even, C∞, and 2π-periodic.

Proof. Recall that θ(t) = t + η(t), where η(t) is 2π-periodic, odd, and vanishes at
t = π. Thus, the existence of α(t) is established using Lemma 2.1. The function
β(t) is given by .809016(1 + .11 cos θ(t))3. �

3. Preliminary Results

Our goal is to investigate the behavior of the solutions of the non-autonomous
differential equation (2.6) which, as pointed out in the previous section, is 2π-
periodic.

We already mentioned that the dependent variable x(t) denotes the location
(measured in radians) of a point mass on S1, with its lowest position set equal to
0 and referred to as the South Pole.

The methods and strategy we use to study (2.6) have similarities with the ones
of [4]. There is, however, a significant difference since we do not approximate the
eccentricity of Hyperion’s orbit. To make the statements and proofs of the following
sections more concise and transparent we now present some terminology, lemmata,
propositions, theorems, and appropriate remarks.

The first lemma contains an important property of the product xẍ.
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Lemma 3.1. There exist open arcs AW and AE, centered respectively at −π2 and
π
2 , such that x ∈ AW ∪AE implies xẍ < 0.

Proof. The readers can easily verify that

AW = (−π + arcsin 22
39 ,− arcsin 22

39 ).

In fact, ẍ is positive as long as −.44− .78 sinx > 0. Notice that, when −π < x < 0
we have

−.78 sinx > 0.

In a similar manner we obtain

AE = (arcsin 22
39 , π − arcsin 22

39 ),

and this completes the proof. �

In the sequel we will call AW and AE the west arc and the east arc respectively.
We write AW = (αW , βW ) with αW = −π + arcsin 22

39 , βW = − arcsin 22
39 . Likewise,

we have AE = (βE, αE) with αE = π − arcsin 22
39 , βE = arcsin 22

39 . Moreover, the
arc (αW , αE) containing π will be called the north arc and denoted by AN , while
the arc (βW , βE) that contains 0 will be called the south arc and denoted by AS.
Accordingly, the center points of the four arcs AW , AE, AN and AS will be called
West, East, North Pole and South Pole, respectively.

We will need the following physically meaningful result. For completeness’ sake
we include its elementary proof. Given x0, x1 ∈ R, x0 6= x1, by x0x1 we shall denote
the closed interval [min{x0, x1},max{x0, x1}].

Lemma 3.2. Let f : R2 → R, f− : R→ R and f+ : R→ R be continuous and such
that

f−(x) ≤ f(t, x) ≤ f+(x)

for all (t, x) ∈ R2. Let x(t), t ≥ t0, be a solution of the differential equation
ẍ = f(t, x) satisfying the initial conditions x(t0) = x0, ẋ(t0) = v0. Define the real
functions k− and k+ by

k±(x) =
v20
2

+

∫ x

x0

f±(s) ds,

and, given x1 6= x0, denote by u− and u+ the numbers

u± = min
{
k±(x) : x ∈ x0x1

}
.

If x1 > x0, v0 > 0, and u− > 0, then ẋ(t) ≥
√

2u− for all t ≥ t0 such that
x0 ≤ x(t) ≤ x1. In particular x(t) reaches x1 at some t1 ≤ t0 + (x1 − x0)/

√
2u− .

If x1 < x0, v0 < 0, and u+ > 0, then ẋ(t) ≤ −
√

2u+ for all t ≥ t0 such that
x0 ≤ x(t) ≤ x1. In particular x(t) reaches x1 at some t1 ≤ t0 + (x0 − x1)/

√
2u+ .

If x1 > x0, v0 > 0, and u+ < 0, then x(t) does not reach x1 before it stops.

If x1 < x0, v0 < 0, and u− < 0, then x(t) does not reach x1 before it stops.

Proof. Observe that

(3.7)
ẋ(t)2

2
=
v20
2

+

∫ t

t0

f(τ, x(τ))ẋ(τ) dτ, ∀ t ≥ t0,

as can be easily verified by differentiating both members of the equation and notic-
ing that they coincide when t = t0.
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We have to examine four cases, and in any of them the initial velocity v0 = ẋ(t0)
is assumed to be nonzero. Therefore, it make sense to consider the maximal interval
containing t0 and contained in the relatively open subset {t ≥ t0 : ẋ(t) 6= 0} of
[t0,+∞). This nonempty interval will be denoted by [t0, t∗), with t0 < t∗ ≤ +∞.

Consider the first case. That is, assume x1 > x0, v0 > 0, and u− > 0. From the
equation (3.7) and the inequality f−(x) ≤ f(t, x), given any t ∈ [t0, t∗), we obtain

ẋ(t)2

2
≥ v20

2
+

∫ t

t0

f−(x(τ))ẋ(τ) dτ =
v20
2

+

∫ x(t)

x0

f−(s) ds = k−(x(t)).

Since ẋ(t0) > 0, we get ẋ(t) ≥
√

2u− for all t ∈ [t0, t∗) such that x(t) ≤ x1, and the
assertion follows in the first case.

The second case can be treated as the previous one, but taking into account that
now ẋ(τ) is negative for all τ ∈ [t0, t] ⊂ [t0, t∗).

Consider now the third case. Namely, suppose x1 > x0, v0 > 0, and u+ < 0.
Then, from the equation (3.7) and the inequality f(t, x) ≤ f+(x), we get

ẋ(t)2

2
≤ v20

2
+

∫ x(t)

x0

f+(s) ds = k+(x(t)), ∀ t ∈ [t0, t∗).

Since u+ < 0, there exists a point x̄ in the open interval (x0, x1) such that k+(x̄) < 0.
Thus, because of the above inequality, x(t) cannot cross the point x̄ before it stops.

The last case can be treated as the previous one, but using the fact that now
ẋ(τ) < 0, ∀ τ ∈ [t0, t]. �

Remark 3.3. The equation (2.6) is of the type ẍ = f(t, x), with

f−(x) ≤ f(t, x) ≤ f+(x)

for all (t, x) ∈ R2, where

f−(x) = 1.0372(1− sign(−.44− 0.78 sin(x)))3(−.44− 0.78 sin(x)),

f+(x) = 1.0372(1 + sign(+.44− 0.78 sin(x)))3(+.44− 0.78 sin(x)).

Our goal is to show that the velocity ẋ of the point mass at the South Pole never
vanishes when the point mass arrives there after crossing with positive (negative)
velocity the arc AW (AE). This important result is stated as a proposition.

Proposition 3.4. Assume that t0 is such that the point mass x(t) is at the position
αW (or αE) when t = t0, and it travels counterclockwise (clockwise). Let t1 > t0
be the first time after t0 such that the point mass reaches the South Pole. Then
ẋ(t) 6= 0, ∀ t ∈ [t0, t1].

Proof. We first give the proof when the South Pole is reached by the point mass
while it travels with positive velocity.

With the notation of Lemma 3.2, let x0 = αW be the highest point of the west
arc and let x1 = 0 be the South Pole. Notice that the function

g(x) =

∫ x

x0

f−(s) ds

is increasing in the west arc (x0, βW ), f−(s) being positive in this arc, and decreas-
ing in (βW , x1). Computing g(x1) we get g(x1) = g(0) = .13355... . Since the
initial velocity v0 (i.e. the velocity of x(t) when the point mass enters the west
arc) cannot be negative, Lemma 3.2 shows that x(t) reaches the South Pole with
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positive velocity without stopping. In fact, a numerical computation shows that
ẋ(t1) > .5205.

In the case when the point mass travels clockwise (i.e. with negative velocity)
the computation is similar. With a procedure parallel to the one just used for the
previous case, we arrive at the conclusion that the velocity of the point mass at the
South Pole satisfies the inequality ẋ(t1) < −0.5205.

Hence, in both cases, the velocity at the South Pole cannot be 0. �

Notice that the differential equation (2.6) does not have any equilibrium points.
However, the role of the North Pole for x(t) is very similar to its role in the equation
investigated in [4]. More precisely, we have the following result.

Proposition 3.5. Let t0 ∈ R be given. Then there exists v0 such that the unique
solution x(t) of the initial value problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(t0) = −π, ẋ(t0) = v0,

will oscillate around the North Pole without ever entering AW or AE for t > t0.

Proof. Given any v, denote by xv(t) the unique solution of the initial value problem

(3.8)
ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(t0) = −π, ẋ(t0) = v.

Define IW as the set of those velocities v such that xv(t) enters AW before (or
without) entering AE. Likewise, we define IE as the set of those values v such that
xv(t) enters AE before (or without) entering AW . We need to show that IW∪IE 6= R.

The set IW is nonempty since, as a consequence of Lemma 3.2 and Remark 3.3,
v ∈ IW when v > 0 is large enough. Analogously IE 6= ∅. Now observe that, given
v ∈ R, the solution xv(t) can enter the arcs AW or AE from the top only with strictly
positive or strictly negative velocity respectively. Then, because of Proposition 3.4,
after entering one of the two arcs, xv(t) will cross the South Pole before ẋ changes
sign. Therefore, continuity with respect to initial conditions implies that IW and
IE are open. Thus, as these two sets are disjoint, their union cannot coincide with
the entire real line. �

Remark 3.6. With the notation of the proof of Proposition 3.5, given v ∈ IW ∪IE,
according to Proposition 3.4 the point mass xv(t) will reach the South Pole (for the
first time after t0) with nonzero velocity.

Our next result is a consequence of the above remark.

Theorem 3.7. Let t0 be given and let τ > t0. Then there exists a velocity vτW (vτE)
such that the solution x(t) of the initial value problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(t0) = −π, ẋ(t0) = vτW (ẋ(t0) = vτE)

will reach with positive (negative) velocity the South Pole for the first time at the
instant τ .

Proof. Let IW and IE be as in the proof of Proposition 3.5. Notice that v ∈ IW ∪ IE
when |v| 6= 0 is large enough. Therefore, because of Proposition 3.5, the open set
IW has an unbounded component (v0,+∞). Moreover v0 does not belong to IE,
since this set is open. Consequently, v0 satisfies the assertion of Proposition 3.5.
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Given v ∈ (v0,+∞), let τ(v) > t0 be the time of first arrival of xv(t) at the
South Pole. From Remark 3.6 we derive that τ(v) depends continuously on v.
Clearly τ(v)→ t0 as v → +∞ and, by continuity with respect to initial conditions,
τ(v)→ +∞ as v → v0. A similar reasoning applies to IE.

In both cases the assertion follows from the Intermediate Value Theorem. �

4. over or not

The two results of this section deal with going over (see Theorem 4.2) or not
going over (see Theorem 4.3) the top. We establish results similar to the ones
proved in [4]. The procedure, however, is different.

The following definition will be used repeatedly.

Definition 4.1. We say that the point mass crosses or enters one of the arcs AS,
AW , AN , AE or crosses one of the corners S, W , N , E immediately after a time t0
when the event occurs for the first time after t0, and between t0 and the event its
velocity either does not change sign, or it changes sign only inside AN . In this case
we require the point mass to enter and exit AN from different border points.

The following result deals with going over the top.

Theorem 4.2. Consider a solution x(t) of the differential equation (2.6) which,
for some instant t0 ∈ R, satisfies the following two conditions:

• x(t0) belongs to the north arc AN ;
• immediately after t0 the point mass x(t) crosses either AW or AE and, for

some n ∈ Z, arrives at the South Pole at time t1 = π
2 + 2nπ in the first

case, or at time t1 = −π2 + 2nπ in the second one.

Then the point mass crosses the South Pole immediately after t1. Hence, it crosses
the South Pole a second time immediately after t0.

Proof. First of all notice that the equation (2.6) is periodic of period 2π. Thus, if
x(t) is a solution, so is y(t) := x(t+ 2nπ) for any n ∈ Z, and we can suppose that
t1 is π

2 in the first case and −π2 in the second.
Consider the first case. That is, assume that immediately after t0 <

π
2 the point

mass crosses AW and arrives at the South Pole at time t1 = π
2 . We shall establish

that in this case the point mass arrives there with velocity greater than 2.271.
Moreover, we will show that if the point mass arrives at the South Pole at time
t1 = π

2 with velocity greater that 2, then it will reach the west arc immediately
after t1. Consequently, because of Proposition 3.4, it will cross again the South
Pole immediately after t1.

The computations can be made by solving numerically the differential equation
(2.6) with the following conditions: x(π2 ) = 0, ẋ(π2 ) = v, v ∈ R. Given a shooting
velocity v, the problem will be solved backward to show that the point mass arrives
at the bottom with velocity greater than 2.271, and will be solved forward to show
that with v > 2 the point mass will reach the west arc.

Let us start by shooting with v = 2 and solving the problem forward. Numerical
computations show that in this case the highest point αW of the west arc is reached
(without stopping) at time t̄ = 3.5956... with velocity v̄ = 1.7054... .

If we let the initial velocity v vary between 2 and 3, we observe that the point
mass reaches the upper point αW of the west arc with a velocity v̄ which increases
almost linearly with v. Here are some values obtained numerically (many other
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values have been checked and all of them agrees with interpolation):
v = 2.0 7→ v̄ = 1.7054... ,
v = 2.1 7→ v̄ = 1.8449... ,
v = 2.2 7→ v̄ = 1.9771... ,
v = 2.3 7→ v̄ = 2.1039... ,
v = 2.4 7→ v̄ = 2.2263... ,
v = 2.5 7→ v̄ = 2.3454... ,
v = 2.6 7→ v̄ = 2.4618... ,
v = 2.7 7→ v̄ = 2.5761... ,
v = 2.8 7→ v̄ = 2.6884... ,
v = 2.9 7→ v̄ = 2.7994... ,
v = 3.0 7→ v̄ = 2.9089... .

Moreover, as a consequence of Lemma 3.2 and Remark 3.3, we obtain that if the
point mass starts from the South Pole at any time with velocity greater than 3,
then it will reach, without stopping, the west arc with velocity greater than 0.5386.
Therefore, we may conclude that the solution of any initial value problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(π2 ) = 0, ẋ(π2 ) > 2

reaches αW with positive velocity immediately after t1 = π
2 . Consequently, because

of Proposition 3.4, it will continue until it crosses the South Pole immediately
after t1.

Now we want to show that if x(t) enters the west arc with positive velocity and
arrives at the South Pole at time t1 = π

2 , then ẋ(t1) > 2.271. Therefore, as a
consequence of the previous argument, x(t) will continue without stopping until it
crosses the South Pole a second time.

We shoot now with the following final conditions x(π2 ) = 0, ẋ(π2 ) = v, v ∈ R, and
we follow the solution backward. The entering velocity in the west arc is denoted
by v̂. We write below some values obtained numerically (many other values have
been checked and all of them agrees with interpolation). We point out that exactly
the same values of v̂ can be obtained by solving (this time forward) the equation
(2.6) with initial conditions x(−π2 ) = 0, ẋ(−π2 ) = v, and computing the velocity v̂
of the solution when it reaches the highest point αE of the east arc. In fact, if x(t)
is a solution of (2.6), so is y(t) := −x(−t). It is not difficult to check, numerically,
that if x(−π2 ) = 0 and ẋ(−π2 ) < 2.2713, then the initial energy is not sufficient to
reach the point αE immediately after t1 = −π2 . For this reason we compute v̂ for
v ≥ 2.2714.
v = 2.2714 7→ v̂ = 0.0045... ,
v = 2.3714 7→ v̂ = 0.4668... ,
v = 2.4714 7→ v̂ = 0.7763... ,
v = 2.5714 7→ v̂ = 1.0288... ,
v = 2.6714 7→ v̂ = 1.2485... ,
v = 2.7714 7→ v̂ = 1.4467... ,
v = 2.8714 7→ v̂ = 1.6297... ,
v = 2.9714 7→ v̂ = 1.8008... ,
v = 3.0714 7→ v̂ = 1.9633... ,
v = 3.1714 7→ v̂ = 2.1187... ,
v = 3.2714 7→ v̂ = 2.2680... .
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We do not need to continue the computation for final velocities v greater than
3.2714. In fact, as a consequence of Lemma 3.2 and Remark 3.3, if the point mass
enters the west arc with any positive velocity v̂, it will arrive at the South Pole
with velocity v greater than v̂ (whatever is the time of arrival). Actually, as in the
proof of Proposition 3.4, one has

v2

2
≥ v̂2

2
+ 0.13355... .

Therefore, we conclude that if the point mass enters AW with positive velocity and,
for some n ∈ Z, arrives at the South Pole at time t1 = π

2 + 2nπ, then it will cross
again the South Pole immediately after t1.

Consider now the case in which immediately after t0 < −π2 the point mass crosses
AE and arrives at the South Pole at time t1 = −π2 .

With a numerical procedure similar to that of the previous case, one can check
that any solution x(t) of (2.6) that reaches the South Pole at time t1 = −π2 im-
mediately after crossing AE will arrive there with velocity less than −1.698 (i.e.
the speed is higher than 1.698 and clockwise). The computations can be made by
solving backward the differential equation (2.6) with initial conditions x(−π2 ) = 0,
ẋ(−π2 ) = v, v ∈ R.

Again numerically, we can prove that the solution of any initial value problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(−π2 ) = 0, ẋ(−π2 ) < −1.65

crosses the South Pole immediately after t1 = −π2 . Therefore, also in this last case
the point mass will cross the South Pole a second time immediately after t0. �

Our next result deals with not reaching the north arc AN .

Theorem 4.3. Consider a solution x(t) of the differential equation (2.6) which,
for some instant t0 ∈ R, satisfies the following three conditions:

• x(t0) belongs to the north arc AN ;
• ẋ(t0) = 0;
• immediately after t0 the point mass x(t) crosses either AW or AE and, for

some n ∈ Z, arrives at the South Pole at time t1 = −π2 + 2nπ in the first
case, or at time t1 = π

2 + 2nπ in the second one.

Then the point mass will not reach the north arc AN immediately after t1.

Proof. As in the proof of Theorem 4.2 we can set t1 = −π2 in the first case and
t1 = π

2 in the second one.
Assume first that the point mass starts at time t0 < −π2 from a point in AN

with zero velocity, and immediately after t0 it crosses AW and arrives at the South
Pole at time t1 = −π2 . We can show (numerically) that in this case the point mass
will reach the South Pole with positive velocity less than 1.412.

Still numerically we can prove that the solution of any problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(−π2 ) = 0, 0 < ẋ(−π2 ) < 2.271

does not reach AN immediately after t1. Thus the assertion is proved in the first
case.
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Consider now the second case. We can show that the point mass will cross the
South Pole with clockwise velocity less negative than −1.65 (i.e. with speed less
than 1.65).

Moreover, we can show that the solution of any problem

ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(π2 ) = 0, −1.698 < ẋ(π2 ) < 0

does not reach AN immediately after t1 = π
2 . Thus the assertion is proved also in

this last case. �

5. chaotic behavior

We are now ready to show that the librations in longitude of Hyperion can be
chaotic. We first need some definitions.

Given v ∈ R, let x(t) be the solution of the initial value problem

(5.9)
ẍ = 1.0372(1 + .11 cos θ(t))3(.44 sin θ(t)− .78 sinx),
x(0) = −π, ẋ(0) = v.

Definition 5.1. Whenever x(t) crosses AW with positive velocity or AE with neg-
ative velocity we say that the crossing is a significant event. When the velocity is
positive we identify the crossing with 1, and when it is negative with −1.

Denote by Σ all infinite strings with entries from {−1, 1}.

Definition 5.2. Given σ ∈ Σ and n ∈ N, we say that x(t) is n-compatible with σ
if it starts with at least n-significant events and the list of symbols associated to
them coincides with the first n entries of σ, with their order preserved.

Definition 5.3. We say that x(t) realizes σ ∈ Σ if it is n-compatible with σ for
every n ∈ N.

Let σ ∈ Σ and n ∈ N be given.

1. We denote by Iσn ⊂ R the set of initial velocities v ∈ R such that the cor-
responding solution of (5.9) is n-compatible with σ. Notice that continuity
with respect to initial conditions implies that Iσn is open.

2. Given v ∈ Iσn , denote by tσn(v) the time when the solution of (5.9) with initial
velocity v crosses the South Pole immediately after n-significant events.
Proposition 3.4 and the continuous dependence on initial conditions imply
that the function tσn : Iσn → R is continuous.

We are now ready to state and prove the main result of our paper.

Theorem 5.4. Let σ ∈ Σ. Then there exists a solution of (5.9) that realizes σ.

Proof. We shall determine a sequence {Jn} of nonempty, bounded, open intervals
such that for all n ∈ N:

(an) Jn ⊂ Iσn ;
(bn) the closure of Jn+1 is contained in Jn.

The two properties just mentioned imply that

(5.10) J∞ =
⋂
n≥1

Jn 6= ∅,

and a solution of (5.9) with initial velocity v ∈ J∞ realizes σ.



12 M. FURI, A.S. LANDSBERG, AND M. MARTELLI

We now describe how to define J1, J2 and J3 for a specific σ ∈ Σ. An induction
procedure can be used to define Jn for all n ∈ N so that (5.10) holds.

Without loss of generality we can assume that the first element of σ is 1. Notice
that a point mass with a large and counterclockwise initial speed will first cross AW .
Analogously, if the initial speed is large enough and clockwise, the point mass will
first cross AE. Thus the open set Iσ1 is nonempty and bounded below. Therefore
it contains a bounded interval J1 = (ω1, v1) such that ω1 /∈ Iσ1 . Continuity with
respect to initial conditions implies that the unique solution of (5.9) with initial
velocity ω1 cannot have 1 or −1 as the first significant event. Thus this solution
will always remain in AN oscillating indefinitely. Hence, continuity with respect to
initial conditions implies

(5.11) lim
v→ω1+

tσ1 (v) = +∞.

Suppose now that the second element of σ is different from the previous one,
i.e. it is −1. The continuity of tσ1 , equation (5.11) and Theorem 4.2 imply the
existence of an initial velocity v2 ∈ J1 such that the corresponding solution of (5.9)
crosses AW a second time with no change in the sign of its velocity. Now observe
that continuity with respect to initial conditions implies that any solution of (5.9)
with initial velocity v ∈ J1 close to ω1 will stop inside AN at some instant t0 ≥ 0
before the first significant event (recall that the solution of (5.9) with v = ω1 will
oscillate indefinitely inside AN). Thus, equation (5.11) and Theorem 4.3 imply the
existence of an initial velocity w2 ∈ (ω1, v2) such that the corresponding solution of
(5.9) does not reach the north arc AN immediately after the first significant event.
Therefore, continuity with respect to initial conditions implies the existence of a
solution of (5.9) with initial velocity u2 ∈ (w2, v2) which enters AN (immediately
after the first significant event) and then goes back crossing AE with negative
velocity. Consequently its second significant event is −1. This shows that the open
set Iσ2 ∩ (u2, v2) is nonempty. Moreover, since this set is clearly strictly contained
in (u2, v2), it contains an interval J2 = (u2, ω2) with ω2 /∈ Iσ2 . Continuity with
respect to initial conditions implies that the solution of (5.9) with initial velocity
ω2 cannot have 1 or −1 as the second significant event. Thus, this solution, after
the first significant event, will enter AN and remain there oscillating indefinitely.

At this point, the situation is as follows:

(a2) the interval J2 = (u2, ω2) is contained in Iσ2 ;
(b2) the closure of J2 is contained in J1;
(c2) ω2 is the initial velocity of a solution of (5.9) that after the first significant

event enters AN and remains there oscillating indefinitely.

Because of continuity with respect to initial conditions, we have

(5.12) lim
v→ω2−

tσ2 (v) = +∞.

Let us assume that the third entry of σ is the same as the previous one, i.e.
it is again −1. Observe that, because of (5.12) and condition (c2), in J2 we can
find an initial velocity of a solution of (5.9) that satisfies the two assumptions of
Theorem 4.2 for some instant of time t0 after the first significant event and before
the second (which, we point out, is labeled −1). Similarly, in J2 we can find an
initial velocity of a solution that satisfies the three assumptions of Theorem 4.3 for
some instant of time between the first and the second significant events. Therefore,
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with a procedure analogous to the one described for the construction of J2, we can
select an open interval J3 with the following properties:

(a3) all velocities of the interval J3 are 3-compatible with the string σ;
(b3) the closure of J3 is contained in J2;
(c3) one of the extremes of J3 is the initial velocity of a solution of (5.9) that

after the second significant event enters AN and remains there oscillating
indefinitely.

An induction argument can now be used to complete the proof. �

6. Open Problems

The analysis presented in Sections 3, 4 and 5 proves that the librations in longi-
tude of Hyperion can be chaotic. However, we must admit that our understanding
of the many questions raised by the motion of this satellite is still very limited. We
list below two of these questions.

1. Let CH be the set of velocities such that the corresponding orbits are
chaotic. Does CH have any interior points?

2. We have made the standard approximation that the center of mass of Hy-
perion describes an elliptical orbit and the spin axis of the satellite remains
perpendicular to the orbit’s plane. An interesting question can now be
raised: is the chaotic behavior of Hyperion producing an irregular preces-
sion of its elliptical orbit?
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