
         

ON THE CHAOTIC BEHAVIOR OF THE SATELLITE

HYPERION

M. FURI, A.S. LANDSBERG, AND M. MARTELLI

1. Introduction

The behavior of certain satellites of the solar system can be regarded as chaotic.
The most striking example is Hyperion, a satellite of the planet Saturn. The ir-
regular oscillations of Hyperion’s longest axis with respect to the planet-satellite
center line have been studied previously by J. Wisdom, S. Peale, and F. Mignard
[12]. The conclusions of the three authors are based on:

1. the images of Hyperion transmitted by Voyager 2 [10];
2. a numerical and theoretical analysis of a differential equation proposed P.

Goldreich and S. Peale [4].

The last two authors modified the equation developed by J.M.A. Danby [2] to model
the libration in longitude of the moon.

In the first part of their interesting paper, Wisdom, Peale, and Mignard [12]
provide numerical evidence that Hyperion’s longitudinal librations are chaotic. Us-
ing the surface of section method, they plot the pairs (φ, φ̇), where φ is the angle
between Hyperion’s longest diameter and the planet-satellite center line, when Hy-
perion crosses the periapsis. A large cloud of points is obtained, which dominates
the p = 1/2 and p = 2 spin-orbit states.

We use a different approach. We first assume, as done in [4, 12], that the spin
axis of the satellite remains perpendicular to the orbit plane. Then, the terms of
order e2 or higher, where e is the eccentricity of Hyperion’s elliptical orbit, are
neglected in the second order nonlinear differential equation proposed in [4, 12].
The equation obtained in this way is transformed, with a change of variable, into
an equivalent equation of a forced pendulum with a vertically oscillating pivot. The
variable of interest becomes a time dependent angle x(t), measured in radians. The
reference position is the one with minimum potential energy, that we set to 0. We
regard x(t) as decreasing or increasing according to whether the pendulum travels
clockwise or counterclockwise. Moreover, the positions assumed by the pendulum
are always given by x(t) mod 2π. Consequently, we can write x(t) = 0 when the
pendulum crosses its lowest position, and we say that the pendulum moves from
−π to π, if it proceeds counterclockwise from its highest position to its lowest, and
then to its highest again.

We consider any non constant and infinite string S of the two symbols −1, 1,
and we prove that there exists at least one orbit of the pendulum that represents
(or is associated to) S in the following sense. The symbol −1 is used whenever the
position π

2 is crossed with negative (i.e. clockwise) velocity. Likewise, the symbol
1 is used whenever the symmetric position, −π2 , is crossed with positive (i.e. coun-
terclockwise) velocity. The orbit represents S if it crosses the two positions in the
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order expressed by S and with velocity of the required sign (see Remark 3.1). We
regard the orbit as chaotic if the string S is an irrational number of [0, 1], written in
base 2, when −1 is replaced by 0. Finally, using the equivalence mentioned in the
previous paragraph, we conclude that the proposed approximate model indicates,
although it does not prove, why the planar oscillations of Hyperion are chaotic.

In a future paper we plan to study the full equation (see (2.5) in the next section)
governing the motion of Hyperion and other satellites. We would like to mention
that problems similar to the one presented here have been investigated by other
authors, besides J. Wisdom, S. Peale, and F. Mignard [12]. The following list
mentions simply the ones we had the chance to peruse: [1, 5, 6, 7, 8, 9, 11, 13].

2. The model

According to [4, 12], the motion of a tri-axial satellite describing an elliptical
orbit around a planet, with spin axis perpendicular to the orbit plane, can be
modeled by the second order nonlinear differential equation

(2.1) φ̈+ θ̈ = − 3(B−A)
2r3C sin 2φ.

The quantities involved in (2.1) are defined as follows. The numbers A < B < C
are the principal moments of inertia of the satellite, with C the moment about
the spin axis. The orbit is assumed to be a fixed ellipse with semimajor axis a,
eccentricity e, instantaneous radius r, and polar angle θ. Recall that θ, measured
counterclockwise and expressed in radians, represents the angle between the planet-
satellite center line and the major axis of the ellipse, oriented toward the periapsis
of the orbit.

Without loss of generality we can assume a = 1. Therefore, the relation between
r and θ is given by

(2.2) r = 1−e2
1+e cos θ .

The orientation of the satellite longest axis relative to the planet-satellite center
line is specified by φ. Thus φ + θ measures the orientation of this axis relative to
the longest diameter of the elliptical orbit. The time is rescaled so that the period
T of the satellite revolution around the planet is 2π. According to Kepler’s second
law of planetary motion we have

(2.3) 1
2r

2θ̇(t) = c,

where c represents the instantaneous area swept by r. Taking into account the
equalities a = 1 and T = 2π, we obtain 2c =

√
1− e2. Differentiating (2.2) and

(2.3) with respect to t we get

(2.4) θ̈(t) = − 2e sin θ
r3 .

Hence, (2.1) takes the form

(2.5) φ̈(t) = 2e sin θ
r3 − 3(B−A)

2r3C sin 2φ.

The variable φ can be replaced by ψ
2 to obtain

(2.6) ψ̈(t) = 4e sin θ
r3 − 3(B−A)

r3C sinψ.

When terms of order e2 or higher are neglected, (2.6) becomes

(2.7) ẍ(t) = 4e sin t− k2(1 + 3e cos t) sinx(t)
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where k2 = 3(B−A)
C . This is the equation we shall investigate. Since our interest is

focused on studying the motion of Hyperion, we shall use e = 0.11 and k2 = 0.78,
which are the characteristic parameters of this satellite.

3. Preliminary Results

Our readers will notice that the strategy, used in this section and in the next, to
study (2.7), is similar to the one used in [3]. There are, however, some significant
differences. We mention three.

1. In this paper the variable of interest is the initial velocity of the orbit, while
in [3] was the initial position.

2. The solutions of (2.7) are affected by the forcing term 4e sin t.
3. Equation (2.7) does not have equilibrium points.

To make the statements and proofs of Sections 3 and 4 more concise and trans-
parent we first introduce some terminology and present three important remarks.

A function f : N → Σ, where Σ is a set of symbols, is called a sequence or an
infinite string (in Σ); it is usually identified with its ordered image {f(1), f(2), . . . }.
Likewise, a function g : {1, 2, . . . ,m} → Σ is called a finite string or an m-string
(in Σ); it is identified with its ordered image {g(1), g(2), . . . , g(m)}. Therefore, a
sequence is always infinite, while a string can be finite or infinite. We shall use the
term string, without adding the qualification finite or infinite, unless the clarity of
the discussion requires otherwise.

Remark 3.1. Let Σ = {−1, 1, ω}. We consider all finite or infinite strings in Σ
of the following form. The last entry of every finite string is ω. The remaining
entries of a finite string and all entries of an infinite string are taken from the
subset Σ0 = {−1, 1}.

Let S be an infinite string of the type just described. We say that the solution
x(t) of the initial value problem

(3.8)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(0) = −π, ẋ(0) = v

represents (or is associated to) S, if x(t) crosses the positions ±π2 in the manner
described in Section 1, and according to the order in which the entries of S are
listed.

Let S be an m-string of the type considered above. We say that the solution x(t)
of (3.8) represents (or is associated to) S, if x(t) crosses m− 1 times the positions
±π2 as described in Section 1, and according to the order in which the first m − 1
entries of S are listed, and then oscillates indefinitely around the top position.

Finally, let S be any m-string in Σ0. We say that the solution x(t) of (3.8)
realizes S, if the first m crossings of x(t) take place according to the order in which
the entries of S are listed.

The reader should notice the difference between representing and realizing.

Remark 3.2. It is easy to see that by selecting a sufficiently high and positive or
negative initial velocity v, the solution of (3.8) will cross as many times as required
the positions −π2 or π

2 with positive or negative velocity, respectively.

Remark 3.3. Lemmas and theorems of Sections 3 and 4 are stated and proved
for solutions of (2.7) crossing the bottom position while traveling counterclockwise
(i.e. with strictly positive velocity). Since (2.7) is equivariant under the symmetry
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x(t) → −x(−t), all statements and proofs remain valid when the bottom position
is crossed clockwise.

We are now ready to present the results of this section. The first lemma deals
with an interesting property of ẍ(t).

Lemma 3.4. Let x(t) be a solution of (2.7). Then there exist open arcs A1 and
A2, centered respectively at −π2 and π

2 , such that x(t) ∈ Ai, i = 1, 2, implies
x(t)ẍ(t) < 0.

Proof. It is sufficient to consider the arcs Ai, i = 1, 2, of those angles α such that

(3.9) 0.44 sin t < 0.78(1 + 0.33 cos t) sinα

for every t. An easy computation shows that the choice A1 = (−π + β,−β) and
A2 = (β, π−β), with β = arcsin 0.44

0.78
√

1−0.1089
≈ 0.640477, satisfies the condition of

the lemma. ¤

Notice that (2.7) does not have any equilibrium point. However, the role of
the top vertical position in the present situation is very similar to its role in the
equation without the forcing term 0.44 sin t investigated in [3]. More precisely, we
have the following result.

Lemma 3.5. Let t0 > 0 be given. Then there exists a velocity a such that the
solution of

(3.10)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(t0) = −π, ẋ(t0) = a

will oscillate indefinitely around the top position without entering the arcs A1 or
A2 for t > t0.

Proof. Given any velocity v, denote by xv(t) the solution of

(3.11)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(t0) = −π, ẋ(t0) = v.

Define V1 as the set of those velocities v such that xv(t) enters A1 before (or
without) entering A2. The set V2 is defined in a similar manner. We need to show
that V1 ∪ V2 6= R.

Since the arcs A1 and A2 are open, continuity with respect to initial conditions
implies that the sets V1 and V2 are open as well. Thus, as these two sets are disjoint,
their union cannot coincide with the entire real line. ¤

Remark 3.6. With the notation of the proof of Lemma 3.5, we observe that, given
v ∈ R, the solution xv(t) of (3.11) can enter the arcs A1 or A2 from the top only
with strictly positive or strictly negative velocity, respectively. Then, because of
Lemma 3.4, xv(t) will cross either arc before its velocity changes sign. Therefore,
V1 and V2 coincide with those values of v such that xv(t) realizes a string ending
with 1 (if v ∈ V1) or −1, respectively. The solution xa(t) of Lemma 3.5 represents a
string ending with ω. Moreover, numerical estimates based on comparison systems
(see [3] for a similar strategy) insure that if v ∈ V1 ∪ V2, the solution xv(t) will
reach the bottom position, after crossing the arcs A1 or A2, with nonzero velocity.
Therefore the time τ(v) of the first arrival at the bottom depends continuously on
v ∈ V1 ∪ V2.
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Lemma 3.7. Let t0 be given and let T > t0. Then there exists a velocity vT such
that the solution x(t) of (3.11), with v = vT , will reach the bottom position for the
first time at the instant T .

Proof. Let V1 be as in the proof of Lemma 3.5 and, given v ∈ V1, denote by xv(t)
the solution of (3.11). Because of Lemmas 3.4 and 3.5, the open set V1 has an
unbounded component (a,+∞), where a is such that xa(t) oscillates indefinitely
around the top position without ever entering the arcs A1 or A2 for t > t0. Given
v ∈ (a,+∞), let τ(v) > t0 be the time of first arrival of xv(t) at the bottom position.
As pointed out in Remark 3.6, τ(v) depends continuously on v. Clearly τ(v)→ t0
as v → +∞ and, by continuity with respect to data, τ(v) → +∞ as v → a. The
assertion now follows from the intermediate value theorem. ¤

The next two theorems deal with going over or not going over the top. We
establish, in this case, results similar to the ones proved in [3] for a pendulum with
variable length but without a forcing term. The times of arrival at the bottom
position are different from the ones considered in [3]. In fact, we analyze the
behavior of solutions that reach the bottom position at time t = (n + 1

2 )π where
n is an integer, and study the differences between the cases when n is even (see
Theorem 3.8) and the ones when n is odd (see Theorem 3.9).

Theorem 3.8. Let x(t) be a solution of (2.7) such that:

1. x(t0) = −π for some t0 ∈ [0,∞);
2. there exists a positive even integer n such that t1 := (n + 1

2 )π > t0 + π,
x(t1) = 0, and x(t) 6= x(t1) for every t ∈ [t0, t1);

3. x(t) /∈ A2 for every t ∈ (t0, t1);
4. x(t) enters A1 from the top during the time interval (t0, t1).

Then x(t) goes over the top in the sense that the positions −π2 , 0, π2 , π and again
−π2 are crossed successively by x(t) while the velocity ẋ(t) remains positive.

Proof. Consider the separatrix

y(t) = 2 arcsin tanh(
√

0.78t)

of the differential equation

(3.12) ü(t) + 0.78 sin(u(t)) = 0.

It can be shown that at the bottom position, the non-constant energy

(3.13) E(t) = ẋ(t)2

2 + 0.78(1− cosx(t))

of x(t) exceeds the constant energy of y(t) by at least 7e = 0.77. To establish this
result we first multiply both sides of (2.7) by ẋ(t), and then integrate in [t0, t1].
In evaluating the integral we take into account Lemma 3.1 of [3] and the following
three properties:

1. x((n− 1
2 )π) ∈ (−π,−π2 ) and ẋ(t) ≥ 0 for t ∈ ((n− 1

2 )π, (n+ 1
2 )π);

2. as long as x(t) oscillates around the top position its energy changes are very
small;

3. if the forcing term 0.44 sin(t) is cancelled at any time t when ẋ(t) ≥ 0 and
x(t) ∈ (−π, 0), the acceleration will become positive and the solution will
never cross again the top position before reaching the bottom position.
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The three properties are obtained by means of comparison systems analogous to
the ones used in [3].

During the time interval [(n+ 1
2 )π, (n+1)π] we have ÿ(t−(n+ 1

2 )π) ≤ ẍ(t). Hence,
y(π2 ) ≤ x((n+1)π), and the energy of x(t) still exceeds the energy of the separatrix
by at least 7e = 0.77. It follows that the energy needed by x(t) to reach the top

position when t = (n + 1)π does not exceed (1 − cos(2 arcsin(tanh
√

0.78π2 )))e ≈
0.44213e < e = 0.11. Thus, x(t) will arrive there with an energy excess of at least
6e = 0.66. This excess gives the solution a positive velocity, which is sufficiently
large to push the pendulum down to the left and through A1, regardless of the time
the top position is crossed. ¤

Theorem 3.9. Let x(t) be a solution of (2.7) such that:

1. x(t0) = −π for some t0 ∈ [0,∞);
2. there exists a positive odd integer n such that t1 := (n + 1

2 )π > t0 + π,
x(t1) = 0, and x(t) 6= x(t1) for every t ∈ [t0, t1);

3. x(t) /∈ A2 for every t ∈ (t0, t1);
4. x(t) enters A1 from the top during the time interval (t0, t1).

Then there exists t2 > t1 such that

i. x(t) < π for every t ∈ [t1, t2];
ii. ẋ(t) > 0 for every t ∈ [t1, t2);
iii. ẋ(t) changes sign at t2.

Proof. We shall follow the pattern of the previous proof, but with less details. One
can show that the non-constant energy of x(t) at the bottom position is less than the

constant energy of the separatrix y(t) = 2 arcsin tanh(
√

0.78t) by at least 6e = 0.66.
Moreover, during the time interval [(n+ 1

2 )π, (n+1)π] we have ÿ(t−(n+ 1
2 )π) ≥ ẍ(t).

Hence, y(π2 ) ≥ x((n+1)π), and the energy of the separatrix still exceeds the energy
of x(t) by at least 6e = 0.66. Since, at t = (n+1)π, the energy needed to reach the
top position is larger than 0.44e = 0.0484 (see Theorem 3.8), the velocity ẋ(t) will
change sign before the solution can reach it. ¤

4. chaotic behavior

The proof of our main result will now be patterned after [3]. We shall use
the lemmas and theorems of the previous section, as well as the following two
lemmas. The first one is an easy consequence of the continuity with respect to initial
conditions. The statement makes use of the terminology introduced in Remark 3.1.
The proof of the lemma is omitted.

Lemma 4.1. Let S be a string of the symbols −1, 1 with exactly m entries. Consider
the set V of initial velocities v such that the solution xv(t) of the initial value
problem

(4.14)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(0) = −π, ẋ(0) = v

realizes S. Then V is an open set of the real line. Moreover, if S is not constant,
then V is bounded.

Notice that Lemma 4.1 does not imply that the set V is not empty. This property
of V will be evident from the proof of Theorem 4.3.
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Before discussing our next lemma we need some preliminary definitions. Given
a string S with exactly m entries from the symbols −1 and 1, we consider three
different types of strings S1, S−1, and Sω. The first two have exactly m+ 1 entries
and are such that the first m coincide with the entries of S, while the last entry is
1 or −1 respectively. The symbol Sω denotes a string with exactly m entries. The
first m− 1 coincide with the corresponding entries of S. The last entry is ω. Given
an interval I = [a0, b0], with a0 < b0, and a string S as above, we shall say that S
is fully realized by I if

1. for every v ∈ (a0, b0) the solution xv(t) of the initial value problem (4.14)
realizes S (see Remark 3.1);

2. the solution of the initial value problem

(4.15)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(0) = −π, ẋ(0) = a0

represents Sω;
3. the same property holds when a0 in (4.15) is replaced with b0.

With this terminology in mind we are ready to state and prove the second lemma
of this section.

Lemma 4.2. Let S be a string with exactly m entries from the symbols −1, 1 and
let I = [a0, b0], a0 < b0, be such that S if fully realized by I. Then S1 is fully
realized by at least one subinterval J ⊂ I, J = [c0, d0], c0 < d0, and an analogous
result holds for S−1.

Proof. The proof is based on Lemma 3.7 and Theorems 3.8 and 3.9 of the previous
section. The idea is straightforward. In fact, close to the point a0 (or b0) and inside
the interval I, we can find a velocity v1 such that the corresponding solution x1(t) of
(4.14), with v replaced by v1, will reach the bottom position at time t1 = (n1 + 1

2 )π,
where n1 is an odd positive integer. Likewise, we can find v2 such that x2(t) will
reach the bottom position at time t2 = (n2 + 1

2 )π, where n2 is an even positive
integer. ¤

We are now ready to state and prove the main result of our paper.

Theorem 4.3. Let S be a sequence of the symbols −1, 1 and assume that S is not
constant. Then there exists a ∈ R such that the solution of the initial value problem

(4.16)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(0) = −π, ẋ(0) = a

represents the string S.

Proof. We consider first those cases when the two beginning entries of S are dif-
ferent, and, without loss of generality, we assume that S starts with 1. Let Sm be
the string of the first m entries of S. To obtain the desired result we will produce
a family of closed nested intervals Im = [am, bm], am < bm, such that Sm is fully
realized by Im. Since ∩∞m=1Im = I∞ 6= ∅, any solution of (4.16) with a ∈ I∞
represents S.

Without loss of generality we may assume that S = {1,−1, 1, . . . }. Consider
a connected component C of V1 (see Remark 3.6). From the comments made at
the beginning of Section 3 (see Remark 3.2) one can easily derive that C is not
empty and bounded below. Let a0 be its greatest lower bound. Then the solution
of (4.15) represents the 1-string {ω}. With a straightforward argument based on
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Lemma 3.7, Theorem 3.8, and Theorem 3.9, we can prove that C contains a velocity
v such that the solution xv(t) of (4.14) realizes the 2-string {1,−1}. We denote
with I1 the bounded and closed interval contained in C, such that v ∈ I1, and
S1 = {1,−1} is fully realized by I1. Now let S2 = {1,−1, 1}. By Lemma 4.2 the
string S2 = {1,−1, 1} is fully realized by at least one closed subinterval of I1, and
the proof can be completed with an induction argument.

Those cases when S starts with q > 1 entries of the same sign can be handled in
a similar manner with a suitable definition of the set C. ¤

5. Conclusion

At this point we would like to say one more time that the analysis presented
in this paper indicates, although it does not prove, why the librations in longitude
of Hyperion are chaotic. The proof will be presented in the study, to appear in a
forthcoming paper, of the full nonlinear model (2.6).

However, we frankly admit that our understanding of the many questions raised
by both the simplified model investigated here, and the full nonlinear model to be
analyzed later, is still very limited. We list below four of these questions.

1. Is there an initial velocity w > 0 such that ẋw(t) > 0, for every t > 0, where
xw(t) is the solution of the initial value problem

(5.17)
ẍ(t) = 0.44 sin t− 0.78(1 + 0.33 cos t) sinx(t)
x(0) = −π, ẋ(0) = w?

2. Is the energy of every solution of (2.7) bounded?
3. Let CH be the set of velocities such that the corresponding orbits are

chaotic. Does CH have any interior points?
4. Is the chaotic behavior of Hyperion producing an irregular precession of its

elliptical orbit?

We sincerely hope that some of our readers will further explore the intricacies of
these simple, yet fascinating problems.
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