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Abstract. Let A,C : E → F be two bounded linear operators between real

Banach spaces, and denote by S the unit sphere of E (or, more generally,

let S = g−1(1), where g is any continuous norm in E). Assume that µ0 is
an eigenvalue of the problem Ax = µCx, that the operator L = A − µ0C

is Fredholm of index zero, and that C satisfies the transversality condition

ImgL + C(KerL) = F , which implies that the eigenvalue µ0 is isolated (and
when F = E and C is the identity implies that the geometric and the algebraic

multiplicities of µ0 coincide).
We prove the following result about the persistence of the unit eigenvectors:

Given an arbitrary C1 map M : E → F , if the (geometric) multiplicity of µ0
is odd, then for any real ε sufficiently small there exists xε ∈ S and µε near
µ0 such that Axε + εM(xε) = µεCxε.

This result extends a previous one by the authors in which E is a real

Hilbert space, F = E, A is selfadjoint and C is the identity. We provide an
example showing that the assumption that the multiplicity of µ0 is odd cannot

be removed.

1. Introduction

Let E and F be two real Banach spaces, and g : E → R any continuous norm on
E, not necessarily equivalent to the Banach norm ‖ · ‖. Let

S = {x ∈ E : g(x) = 1}

denote the unit g-sphere of E and consider the system{
Ax+ εM(x) = µCx,
x ∈ S, (1.1)

where A : E → F and C : E → F are bounded linear operators, ε and µ are real
parameters, and M : E → F is a C1 map.

By a solution of (1.1) we mean a triple (x, ε, µ) ∈ S × R × R satisfying the
equation Ax + εM(x) = µCx. Since, in this case, the g-norm of x is one, we say
that x is a unit eigenvector of the perturbed operator A+εM corresponding to the
eigenvalue µ (or, simply, that x is a unit µ-eigenvector of A+ εM).

We assume that µ0 is an eigenvalue of the problem Ax = µCx (i.e. the operator
L = A− µ0C has a nontrivial kernel KerL), that L is Fredholm of index zero, and
that C satisfies the transversality condition

ImgL+ C(KerL) = F. (1.2)
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We will show (see Remark 3.1) that, L being Fredholm of index zero, this con-
dition is equivalent to

ImgL⊕ C(KerL) = F

as well as to

(u ∈ KerL) ∧ (Cu ∈ ImgL) =⇒ u = 0.

As we shall see, the transversality condition (1.2) implies that the eigenvalue
µ0 is isolated. Moreover, when F = E and C is the identity, it implies that the
geometric and the algebraic multiplicities of µ0 coincide. In fact, in this case,
ImgL⊕KerL = E.

The set of the unit µ0-eigenvectors of the unperturbed problem (i.e. when ε = 0)
is the finite dimensional sphere KerL ∩ S. Under the assumption that this sphere
is even dimensional (which means that the kernel of L is odd dimensional), we
prove (see Theorem 3.9) that it contains at least one unit µ0-eigenvector x0 with
the property that

there exists a sequence
{

(xn, εn, µn)
}

in S × (R \ {0}) × R which converges to
(x0, 0, µ0) and such that Axn + εnM(xn) = µnCxn, ∀n ∈ N.

When this happens we say that such an x0 is a bifurcation point for problem (1.1).
This terminology is justified by the fact that, identifying the sphere KerL∩S of the
unit µ0-eigenvectors of A with the set (KerL ∩ S)× {0} × {µ0} of trivial solutions
of system (1.1), any neighborhood of x0 (regarded as (x0, 0, µ0)) contains nontrivial
solutions, i.e. solutions which are not of the type (x, 0, µ0).

Moreover, we prove two persistence results: one regarding the eigenvalues (The-
orem 3.6) and the other one regarding the eigenvectors (Theorem 3.7). Roughly
speaking, these results, put together, imply that

if ε is small, there exist µε close to µ0 (persistence of the eigenvalues) and xε ∈ S
close to KerL (persistence of the eigenvectors) such that Axε + εM(xε) = µεCxε.

Of course, without loss of generality, we may assume µ0 = 0, and this will be
done from now on. In fact, system 1.1 can be equivalently written as{

Lx+ εM(x) = λCx,
g(x) = 1,

(1.3)

where λ = µ− µ0 and, we recall, L = A− µ0C.

Our results about (1.3) - in fact, about a slightly more general form of it - are
stated and proved in Section 3. They extend analogous ones obtained in [8] in
which E is a real Hilbert space, F = E, A is selfadjoint and C is the identity. The
topological tool utilized in the proofs of the results in [8], the Lefschetz Fixed Point
Theorem, seems not to work in our more general situation. Therefore, we make
use of a different instrument: a degree for Fredholm maps of index zero between
Banach spaces (actually, Banach manifolds) that was constructed in [1]. Section 2
is devoted to recall and summarize the main points of this construction which is
based, among others, on the idea of oriented Fredholm map of index zero and of
oriented homotopy between such maps.

In Section 4 we provide examples in which our results apply, as well as examples
showing that the assumption that the (geometric) multiplicity of µ0 is odd cannot
be dropped.
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Finally, we point out that the origin of the investigations about the topological
persistence of eigenvalues and eigenvectors goes back to an article of the first author
in which the multiplicity of µ0 is one (see [6]).

2. Preliminaries

Let f : X → Y be a continuous map between two metric spaces. We recall that f
is said to be compact if f(X) is relatively compact, and completely continuous if it is
compact on any bounded subset of X. If for any p ∈ X there exists a neighborhood
U of p such that the restriction f |U is compact, then f is called locally compact.
The map f is said to be proper if f−1(K) is compact for any compact subset K
of Y and locally proper if for any p ∈ X there exists a closed neighborhood U of p
such that the restriction f |U is proper. Recall that a proper map sends closed sets
into closed sets.

A multivalued map φ : X ( Y between two metric spaces is said to be upper
semicontinuous if it has compact (possibly empty) values and for any open subset
V of Y the upper inverse image of V , i.e. the set φ−1(V ) = {x ∈ X : φ(x) ⊆ V },
is an open subset of X. Clearly, the composition of upper semicontinuous maps is
upper semicontinuous.

The following remark will be used several times in the sequel.

Remark 2.1. Let K be a compact subset of X × Y and, for any x ∈ X, denote
by Kx = {y ∈ Y : (x, y) ∈ K} the slice of K at x. Then, the multivalued map
x ∈ X (Kx (whose graph is K) is upper semicontinuous. To see this, let V be any
open subset of Y and assume, by contradiction, that the set U = {x ∈ X : Kx ⊆ V }
is not open. Then, there exists a sequence {xn} in X\U which converges to some
x0 ∈ U . For any n ∈ N, choose yn ∈ Kxn

∩ (Y \V ). Because of the compactness of
K, we may assume (xn, yn) → (x0, y0) ∈ K. Thus, y0 belongs to Kx0

which is a
subset of V , contradicting the fact that y0 also belongs to the closed set Y \V .

2.1. Linear Fredholm operators and Fredholm maps. Let E and F be real
Banach spaces. We recall that a bounded linear operator L : E → F is called Fred-
holm (see e.g. [11]) if both KerL and CokerL := F/ ImgL have finite dimension.
The index of L is the integer

indL = dim KerL− dim CokerL.

For short, a Fredholm operator of index n will be also called a Φn-operator, or a
Φ-operator if its index is not specified.

It is known that the image of a Φ-operator between Banach spaces is necessarily
closed.

One can verify that any linear operator from Rk to Rs is Fredholm of index k−s.

Here are some fundamental properties in the framework of Φ-operators:

(1) The set Φn(E,F ) of Fredholm operators from E to F of a given index n
is open in the Banach space L(E,F ) of bounded linear operators; conse-
quently, so is the set Φ(E,F ) of Fredholm operators.

(2) The composition of two Fredholm operators of indices m and n is Fredholm
of index m+ n.

(3) Given L,K ∈ L(E,F ), with L Fredholm and K compact, then L + K is
Fredholm and ind(L+K) = indL.
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A nonlinear map f : Ω→ F of class C1 on an open subset of E is called Fredholm
at a given x ∈ Ω if the derivative f ′(x) : E → F is a (linear) Fredholm operator. In
this case the index of f at x is the index of f ′(x). The map f is said to be Fredholm
[of index n] on a subset X of Ω if it is Fredholm [of index n] at any x ∈ X. Notice
that if f is Fredholm on X, its index depends continuously on x ∈ X (in fact, due
to the above property (1), it is locally constant). Consequently, if X is connected,
the index of f is constant in X.

Hereafter, a nonlinear Fredholm map of index zero will be also called a Φ0-map.
Notice that a Φ0-operator L : E → F is also a Φ0-map, being differentiable at any
x ∈ E with L′(x) = L.

According to a result of S. Smale (see [10]), a Fredholm map defined on an open
subset of a Banach space is locally proper.

We summarize the notions of orientation, introduced in [1] and [2], of a Φ0-
operator and of a Φ0-map.

Given L ∈ Φ0(E,F ), a bounded linear operator A : E → F with finite dimen-
sional image is called a corrector of L if L+A is invertible. Notice that the set of
correctors of L is nonempty. This is true, and of crucial importance in what follows,
even when L does not need to be corrected (i.e. when it is invertible). On the set
C(L) of correctors of L one has an equivalence relation as follows. Let A,B ∈ C(L)
be given and consider the following automorphism of E:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A),

where I denotes the identity in E. The operator K = I−T = (L+B)−1(B−A) has
clearly finite dimensional image. Hence, given any finite dimensional subspace E0 of
E containing K(E), the restriction of T to E0 is an automorphism. Consequently,
its determinant is well defined and nonzero (it is 1 when E0 is the trivial subspace
{0} of E, and this occurs only in the case when T is the identity). It is easy to
check that this number does not depend on the choice of E0. Thus, it makes sense
to define the determinant of T as the determinant of the restriction of T to any
finite dimensional subspace of E containing the image of K. One says that A is
equivalent to B or, more precisely, A is L-equivalent to B, if

det
(
(L+B)−1(L+A)

)
> 0.

As shown in [1], this is an equivalence relation on C(L) with two equivalence
classes.

Definition 2.2 (Algebraic orientation of a Φ0-operator). Let L be a linear Fred-
holm operator of index zero between two real Banach spaces. Each one of the two
equivalence classes of C(L) is called an orientation of L, and L is oriented when an
orientation is chosen.

Given an oriented operator L, we call positive correctors of L the elements of its
orientation.

Definition 2.3 (Natural algebraic orientation of an isomorphism). An oriented
isomorphism L is said to be naturally oriented if the trivial (i.e. null) operator is a
positive corrector, and this orientation is called the natural orientation of L.
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Definition 2.4 (Sign of an oriented Φ0-operator). Let L ∈ Φ0(E,F ) be oriented.
Its sign is the integer

signL =

 +1 if L is invertible and naturally oriented,
−1 if L is invertible and not naturally oriented,

0 if L is not invertible.

An orientation of a Fredholm operator of index zero induces an orientation to
any sufficiently close operator. Precisely, consider a Fredholm operator of index
zero L and a corrector A of L. Since the set of the isomorphisms from E into
F is open in the space L(E,F ) of bounded linear operators, A turns out to be a
corrector of every T in a suitable neighborhood W of L in L(E,F ). Therefore, if L
is oriented and A is a positive corrector of L, any T ∈W can be oriented regarding
A as a positive corrector of T .

Definition 2.5 (Topological orientation of a Φ0(E,F )-valued map). Let X be a
topological space and h : X → Φ0(E,F ) a continuous map. An orientation of h is a
continuous choice of an orientation α(x) of h(x) for each x ∈ X, where ‘continuous’
means that for any x ∈ X there exists A ∈ α(x) which is a positive corrector of
h(u) for any u in a neighborhood of x. The map h is orientable when it admits an
orientation and oriented when an orientation is chosen.

It is possible to prove (see [2, Proposition 3.4]) that two equivalent correctors A
and B of a given L ∈ Φ0(E,F ) remain T -equivalent for any T in a neighborhood of
L. This implies that the notion of ‘continuous choice of an orientation’ in Definition
2.5 is equivalent to the following one:

• for any x ∈ X and any A ∈ α(x), there exists a neighborhood U of x such
that A ∈ α(u) for all u ∈ U .

One can easily show that if h : X → Φ0(E,F ) is orientable and X is connected,
then it admits exactly two orientations (one opposite to the other). Moreover, by
means of the theory of covering spaces, it is not difficult to prove that if X is simply
connected and locally path connected, then h is orientable (see e.g. [2]).

Definition 2.6 (Topological orientation of a Φ0-map). Let f : U → F be a Fred-
holm map of index zero defined on an open subset of E. An orientation of f is an
orientation, in the sense of Definition 2.5, of the derivative

f ′ : U → Φ0(E,F ).

Moreover, f is said to be orientable or oriented, according to the homonymous
property of f ′.

We point out that if L : E → F is a Φ0-operator, then it is orientable if regarded
as a Φ0-map; that is, in the sense of Definition 2.6. In fact, at any x ∈ E, the
derivative L′(x) coincides with L, which can be “constantly” oriented according to
Definition 2.2. Unless otherwise stated, for such an operator the two notions of ori-
entation, the algebraic and the topological, will be identified. The same convention
is assumed even when one considers the restriction L|U of L to any open subset U
of E.

Let U be open in E and let H : U × [0, 1] → F be a continuous map. We say
that H is a homotopy of Fredholm maps of index zero or, simply, a Φ0-homotopy
if it is continuously differentiable with respect to the first variable and any partial
map Hs := H(·, s) is a Φ0-map.
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Definition 2.7 (Topological orientation of a Φ0-homotopy). Let H : U× [0, 1]→ F
be a Φ0-homotopy. An orientation of H is an orientation of the partial derivative

∂1H : U × [0, 1]→ Φ0(E,F ), (x, s) 7→ (Hs)
′(x),

in the sense of Definition 2.5. Moreover, H is orientable or oriented, according to
the homonymous property of ∂1H.

The following result regards an important property of the notion of orientability.
Roughly speaking, it is a sort of continuous transport of an orientation along a
homotopy (see [2, Theorem 3.14]).

Theorem 2.8 (Orientation transport). Let H : U × [0, 1]→ F be a Φ0-homotopy.
Given any s ∈ [0, 1], assume that the partial map Hs is oriented. Then there exists
and is unique an orientation of H which is compatible with that of Hs.

2.2. The degree for oriented Fredholm maps of index zero. Let us now
sketch the construction of the degree given in [1] (see also [2] and [4]) and recall its
main properties.

Definition 2.9 (Admissible triples). Let f : Ω → F be a Fredholm map of index
zero, U an open subset of Ω, and y ∈ F . The triple (f, U, y) is said to be admissible
for the degree if f−1(y) ∩ U is compact and f is oriented in U (i.e. if it is oriented
the restriction of f to U).

Remark 2.10. Let f : Ω→ F be a Fredholm map of index zero and y ∈ F . Given
an open set U such that of : U ⊂ Ω, assume that f is proper on U and oriented in
U . Then (f, U, y) is admissible whenever y 6∈ f(∂U).

The degree is an integer valued function, deg, defined on the family of all the
admissible triples, that satisfies some important properties listed below. Roughly
speaking, if (f, U, y) is admissible, deg(f, U, y) is an algebraic count of the solutions
in U of the equation f(x) = y. In fact, when y is a regular value, the degree of
(f, U, y) is preliminarily defined as

deg(f, U, y) =
∑

x∈f−1(y)∩U

sign f ′(x).

Notice that this sum makes sense since any f ′(x) is an oriented isomorphism
and the set f−1(y) ∩ U is finite, being compact and discrete. Observe also that if
L ∈ L(E,F ) is an oriented isomorphism, U is any open subset of E and y any point
of F , then the triple (L,U, y) is admissible and deg(L,U, y) is either signL or zero,
depending on whether L−1(y) belongs to U or not.

To define the degree of an arbitrary admissible triple (f, U, y), choose any open
subset V of U containing f−1(y)∩U and such that f is proper on the closure V of
V (V exists since Fredholm maps are locally proper - see [10]) and put

deg(f, U, y) := deg(f, V, z),

where z is any regular value for the restriction of f to V , sufficiently close to y. As
shown in [1], this definition is well posed.

The properties of this degree are analogous to the ones of the Leray–Schauder
degree. Here we mention the principal ones:

i) (Normalization) Let the identity I of E be naturally oriented. Then

deg(I, E, 0) = 1.
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ii) (Additivity) If (f, U, y) is an admissible triple and U1, U2 are two disjoint
open subsets of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then

deg(f, U, y) = deg(f, U1, y) + deg(f, U2, y).

iii) (Existence) Let (f, U, y) be admissible. If

deg(f, U, y) 6= 0,

then the equation f(x) = y has a solution in U .
iv) (Excision) If (f, U, y) is an admissible triple and U1 is an open subset of U

containing f−1(y) ∩ U , then

deg(f, U1, y) = deg(f, U, y).

v) (Translation invariance) If (f, U, y) is an admissible triple, then

deg(f, U, y) = deg(f − y, U, 0).

vi) (Homotopy invariance) Let H : U × [0, 1]→ F be an oriented Φ0-homotopy
and let y ∈ F . If the set H−1(y) is compact, then deg(H(·, s), U, y) does
not depend on s ∈ [0, 1].

Given a Φ0-homotopy H : U × [0, 1] → F and y ∈ F , we point out that if H
admits a continuous extension H to U × [0, 1] and this extension is proper, then
H−1(y) is compact provided that H(x, s) 6= y for all (x, s) ∈ ∂U × [0, 1].

3. Results

Let E and F be two real Banach spaces, and denote by g : E → R any continuous
norm on E, not necessarily equivalent to the Banach norm ‖·‖. Consider the system{

Lx+N(ε, x) = λCx,
g(x) = 1,

(3.1)

where L : E → F and C : E → F are bounded linear operators, λ is a real param-
eter, and N : R× E → F is continuous, continuously differentiable with respect to
the second variable and such that N(0, x) = 0 for all x ∈ E.

Notice that (3.1) is slightly more general than system (1.3) in which N(ε, x) =
εM(x).

A solution of (3.1) is a triple (x, ε, λ) ∈ E × R × R satisfying the equation
Lx + N(ε, x) = λCx and such that g(x) = 1. Since, in this case, the g-norm of x
is one, we say that x is a unit eigenvector of the perturbed operator L + N(ε, ·)
corresponding to the eigenvalue λ.

We assume that L is Fredholm of index zero with nontrivial kernel and that

ImgL⊕ C(KerL) = F. (3.2)

As a consequence, there exists σ > 0 such that L−λC is invertible if 0 < |λ| ≤ σ. In
fact, according to the decompositions E = E1 ⊕KerL and F = ImgL⊕C(KerL),
write L− λC in a block-matrix form as

L− λC =

(
L11 − λC11 0
−λC21 −λC22

)
(3.3)
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where L11 : E1 → ImgL and C22 : KerL → C(KerL) are isomorphisms. Thus, so
is L11−λC11 if λ is sufficiently small. Consequently, for λ small and different from
zero, given any (y1, y2) ∈ ImgL× C(KerL), the system{

L11x1 − λC11x1 = y1
−λC21x1 − λC22x2 = y2

has one and only one solution (x1, x2) ∈ E1 ×KerL.
This means that λ = 0 is an isolated eigenvalue for the problem Lx = λCx.

The following remark will be useful in order to check that condition (3.2) holds
true for some examples in Section 4.

Remark 3.1. Condition (3.2) implies dimC(KerL) = codim ImgL. Thus, taking
into account that codim ImgL = dim KerL, it is equivalent to

ImgL+ C(KerL) = F. (3.4)

Moreover, it is also equivalent to

(u ∈ KerL) ∧ (Cu ∈ ImgL) =⇒ u = 0. (3.5)

In fact, if (3.5) holds, the restriction of C to KerL is clearly injective and, conse-
quently, C(KerL) has the same dimension as KerL, which equals the codimension
of ImgL. Thus, (3.2) is verified, since (3.5) implies also ImgL ∩ C(KerL) = {0}.
The converse implication is also true, since, if (3.2) holds, one has dimC(KerL)
equals codim ImgL, which is the same as dim KerL. Hence C is one-to-one on
KerL, and this implies (3.5) since ImgL ∩ C(KerL) = {0}.

Clearly, a triple of the type (x, 0, 0) ∈ E×R×R is a solution of (3.1) if and only
if x belongs to the finite dimensional sphere KerL ∩ S, where

S = {x ∈ E : g(x) = 1}

denotes the unit g-sphere of E. These distinguished solutions (those with (ε, λ) =
(0, 0)) will be called trivial and, consequently, all the others will be said nontrivial.
Due to this distinction, it makes sense to introduce the following definition.

Definition 3.2 (Bifurcation points). A unit eigenvector x0 ∈ KerL ∩ S of L
(corresponding to the eigenvalue λ = 0) will be called a bifurcation point of system
(3.1) if any neighborhood of (x0, 0, 0), called bifurcation triple, contains nontrivial
solutions of (3.1).

Since, as already observed, L − λC is invertible for |λ| > 0 small, one gets
that any nontrivial solution (x, ε, λ) of (3.1) sufficiently close to a bifurcation triple
(x0, 0, 0) must have ε 6= 0.

The following result can be found in [5] in a more general version. We give here
an independent proof.

Lemma 3.3 (On the sign-jump). Let σ be such that L − λC is invertible for
0 < |λ| ≤ σ. Then, given any one of the two orientations (in the sense of Definition
2.5) of the map

h : [−σ, σ]→ Φ0(E,F ) , h(λ) = L− λC,
signh(λ) changes crossing λ = 0 if and only if KerL is odd dimensional.
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Proof. Since [−σ, σ] is simply connected, the map h admits exactly two orientations.
The choice of any one of them does not affect the existence or the nonexistence of
a sign-jump at λ = 0.

As in (3.3), write L− λC as

h(λ) =

(
L11 − λC11 0
−λC21 −λC22

)
and observe that

A =

(
0 0
0 −2σC22

)
.

is a corrector of h(λ) for any λ ∈ [−σ, σ]. Thus, the map h can, and here will
be, oriented by choosing A as a positive corrector of any h(λ). Therefore, for
0 < |λ| ≤ σ, signh(λ) = 1 if A is h(λ)-equivalent to the trivial corrector of h(λ),
which is the null operator, and signh(λ) = −1 otherwise. Namely,

signh(λ) = sign det
(
h(λ)−1(h(λ) +A)

)
.

For 0 < |λ| ≤ σ one has h(λ)−1(h(λ) + A) = I + h(λ)−1A, which, according to
the decomposition E = E1 ⊕KerL, takes the block-matrix form(

I11 0
D(λ) λ+2σ

λ I22

)
,

where I11 and I22 are the identities of E1 and KerL respectively, and

D(λ) = −C−122 C21(L− λC11)−1.

Now, recalling the definition of a finite dimensional linear perturbation of the
identity (see Section 2.1) and letting n denote the dimension of KerL, we get

signh(λ) = sign det

(
λ+ 2σ

λ
I22

)
= sign

(
λ+ 2σ

λ

)n
,

which implies the assertion. �

Lemma 3.5 below is of crucial importance in the proof of our results on the
persistence of eigenvalues and eigenvectors. We need first the following lemma
about locally proper maps.

Lemma 3.4 (see [3]). Let E and F be real Banach spaces and H : Ω → F a con-
tinuous map from an open subset of E×Rk into F . Assume that H is continuously
differentiable with respect to the first variable and such that ∂1H(x, s) : E → F is a
Fredholm operator for all (x, s) ∈ Ω. Then H is locally proper.

Lemma 3.5. Let L,C,N : E → F be as in (3.1) and let H : E×R×R→ F be the
map given by

H(x, ε, λ) = Lx+N(ε, x)− λCx . (3.6)

Then, the set Ω ⊆ E × R × R of all (x, ε, λ) such that the first partial derivative
∂1H(x, ε, λ) of H at (x, ε, λ) is Fredholm of index zero is an open neighborhood of
E × {0} × {0}. Moreover, H is locally proper on Ω.

Proof. Observe first that

Ω = {(x, ε, λ) ∈ E × R× R : ∂1H(x, ε, λ) ∈ Φ0(E,F )} (3.7)

is open in E ×R×R, as the inverse image of the open subset Φ0(E,F ) of L(E,F )
under the continuous map ∂1H. Moreover Ω contains E × {0} × {0} since, at
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any (x, 0, 0), ∂1H(x, 0, 0) coincides with L, which is Fredholm of index zero by
assumption. This proves our first assertion.

To prove the second one, according to Lemma 3.4, it is enough to show that the
partial derivative ∂1H is a nonlinear Fredholm map on Ω. This is true because of
the definition of Ω. �

As above, let S denote the unit g-sphere of E and, given c > 0, put

Sc = {x ∈ S : dist(x,KerL) < c},
where dist(·,KerL) denotes the distance function from the set KerL (in the Banach
norm ‖ · ‖ of E).

Theorem 3.6 (Persistence of the eigenvalues). Let L,C,N : E → F be as above.
Assume that KerL is odd dimensional. Then, given c > 0, there exist a > 0 and
b > 0 such that:

(1) the set

Γ = {(ε, λ) ∈ [−a, a]× [−b, b] : Lx+N(ε, x) = λCx for some x ∈ Sc}
is compact;

(2) for any ε ∈ [−a, a], the set of eigenvalues

Γε = {λ ∈ [−b, b] : Lx+N(ε, x) = λCx for some x ∈ Sc}
is nonempty;

(3) the multivalued eigenvalue map ε ∈ [−a, a]( Γε is upper semicontinuous;
(4) Γ0 = {0}.

Proof. Let H : E × R × R → F and Ω ⊆ E × R × R be as in (3.6) and (3.7)
respectively. Recall that - by Lemma 3.5 - Ω contains E × {0} × {0} and H is
locally proper on Ω.

Consider the unit g-ball B = {x ∈ E : g(x) < 1} of E and, given any c > 0, let

U c = {x ∈ B : dist(x,KerL) < c}
be the “hamburger shaped” set of those points in B whose distance from KerL
(in the Banach norm) is less that c. Clearly U c is open in E and its closure U c

contains the compact set KerL∩B. Since H is locally proper on Ω and the subset
(KerL ∩ B)× {0} × {0} of Ω is compact, there exist positive constants a, b and c
such that the closure

W = U c × [−a, a]× [−b, b]
of the open subset

W = U c × (−a, a)× (−b, b)
of E × R× R is contained in Ω and H is proper on W . Consequently, the set

K = H−1(0) ∩W
is compact, as inverse image of a compact set under a proper map. By Remark 2.1,
the multivalued map that associates to any (ε, λ) ∈ [−a, a]× [−b, b] the slice

K(ε,λ) = {x ∈ E : (x, ε, λ) ∈ K} = {x ∈ U c : H(x, ε, λ) = 0}
is upper semicontinuous. Thus, U c being open in E, the set

V = {(ε, λ) ∈ [−a, a]× [−b, b] : K(ε,λ) ⊂ U c}
is open in the rectangle R = [−a, a]× [−b, b].
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Since H is proper on W = U c × R, so is on U c any partial map H(·, ε, λ), with
(ε, λ) ∈ R. Moreover, any such a map is Fredholm of index zero on its natural
domain, which is the open subset

Ω(ε,λ) = {x ∈ E : (x, ε, λ) ∈ Ω} = {x ∈ E : ∂1H(x, ε, λ) ∈ Φ0(E,F )}

of E. Notice that any Ω(ε,λ) contains U c since W ⊂ Ω.
As already pointed out, assumption (3.2) implies that L − λC is invertible for

λ 6= 0 sufficiently small. Hence, in case taking b smaller, we may suppose that
H(·, 0, λ) = L − λC is invertible if 0 < |λ| ≤ b. Thus, any pair (0, λ), with
λ ∈ [−b, b], λ 6= 0, belongs to V . In particular, V contains the up and down middle
points (0, b) and (0,−b).

Observe now that W is simply connected. Thus, in this set the map

(x, ε, λ) 7→ ∂1H(x, ε, λ)

is orientable with two possible orientations. Let us choose one of them. For example
the one which makes the partial derivative

∂1H(0, b, 0) = L− bC
naturally oriented. Consequently, any partial map H(·, ε, λ), with (ε, λ) ∈ R, be-
comes an oriented Fredholm map of index zero on U c. Since any such a map is
proper on the closure U c of U c, according to Remark 2.10, V coincides with the set
of all (ε, λ) ∈ R for which the triple (H(·, ε, λ), U c, 0) is admissible for the degree.
In fact, recalling that

K(ε,λ) = {x ∈ U c : H(x, ε, λ) = 0},
one has

V = {(ε, λ) ∈ R : H(x, ε, λ) 6= 0 for all x ∈ ∂U c}.
As a consequence of the homotopy invariance property of the degree, the integer

valued function
(ε, λ) ∈ V 7→ deg(H(·, ε, λ), U c, 0)

is locally constant. Moreover, because of Lemma 3.3 and the definition of degree,
with the chosen orientation we have

deg(H(·, 0, b), U c, 0) = sign(L− bC) = 1

and
deg(H(·, 0,−b), U c, 0) = sign(L+ bC) = −1.

Hence, the points (0, b) and (0,−b) lie in different connected components of V .
Now, let Γ denote the complement of V in R. That is, Γ is the compact set of

all (ε, λ) ∈ R for which the triple (H(·, ε, λ), U c, 0) is not admissible for the degree.
Namely,

Γ = {(ε, λ) ∈ R : H(x, ε, λ) = 0 for some x ∈ ∂U c}.
We observe that a vector x ∈ ∂U c such that H(x, ε, λ) = 0 for some (ε, λ) ∈ R,
is not necessarily a unit eigenvector of our problem. That is, (x, ε, λ) need not be
a solution of system (3.1), since g(x) could be less than 1. In fact, in ∂U c there
are points in the unit g-sphere S, but there are also points not (necessarily) in
S whose distance from KerL is c (recall that U c is a “2c-thick slice” of the unit
g-ball B = {x ∈ E : g(x) < 1} containing KerL ∩ B in the middle). However,
taking R smaller if necessary, we obtain that any such a vector x ∈ ∂U c is a unit
eigenvector. That is, if R is sufficiently small, thanks to the compactness of K and
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the consequent upper semicontinuity of the multivalued map (ε, λ)(K(ε,λ), one
has

Γ = {(ε, λ) ∈ R : H(x, ε, λ) = 0 for some x ∈ Sc}.
In fact, K(0,0) = KerL ∩B is contained in the open subset

Oc = {x ∈ E : dist(x,KerL) < c}
of E and, consequently, K(ε,λ) ⊂ Oc for all (ε, λ) in a neighborhood of (0, 0).

Finally, to get assertion (a) we need, if necessary, to reduce the width of R a
little bit: taking into account that (0,±b) ∈ V , we may assume that both the up
and down horizontal sides of the rectangle R are contained in V .

Now, as already observed, assertion (1) holds true being Γ the complement of
the relatively open subset V of the rectangle R.

Assertion (2) follows from the fact that any vertical segment in R meets Γ since,
like the points (0, b) and (0,−b), the two horizontal sides of R lie in different com-
ponents of V = R \ Γ.

Assertion (3), recalling Remark 2.1, is a consequence of the compactness of Γ.
Assertion (4) is verified since b is such that L−λC is invertible for 0 < |λ| ≤ b. �

Theorem 3.7 (Persistence of the eigenvectors). Let L,C,N : E → F be as above.
Assume that KerL is odd dimensional. Then, given c > 0, there exist a > 0 and
b > 0 such that:

(1) the set

Ξ = {(ε, x) ∈ [−a, a]× Sc : Lx+N(ε, x) = λCx for some λ ∈ [−b, b]}
is compact;

(2) for any ε ∈ [−a, a], the set of eigenvectors

Ξε = {x ∈ Sc : Lx+N(ε, x) = λCx for some λ ∈ [−b, b]}
is nonempty;

(3) the multivalued eigenvector map ε ∈ [−a, a]( Ξε is upper semicontinuous;
(4) Ξ0 = KerL ∩ S.

Proof. Let the map H : E × R × R → F , the rectangle R = [−a, a] × [−b, b], the
“hamburger” U c ⊆ E, and the compact set K = H−1(0) ∩ (R × U c) be as in the
proof of Theorem 3.6. Consider the compact set Σ = K ∩ S and recall that (as
shown in the final part of the proof of Theorem 3.6) R is such that any triple
(x, ε, λ) ∈ K is such that dist(x,KerL) < c. Therefore

Σ = K ∩ Sc = {(x, ε, λ) ∈ [−a, a]× [−b, b]× Sc : Lx+N(ε, x) = λCx}.
That is, Σ is the set of solutions (x, ε, λ) of (3.1) which belong to R × Oc, where
Oc = {x ∈ E : dist(x,KerL) < c}.

The set

Ξ = {(ε, x) ∈ [−a, a]× Sc : Lx+N(ε, x) = λCx for some λ ∈ [−b, b]}
is compact being the projection of the compact set Σ into [−a, a]×Sc. This proves
assertion (1).

Assertion (2) follows from the analogous one in Theorem 3.6, since here the
constants a, b and c are the same as in that result.

Assertion (3), recalling Remark 2.1, is a consequence of the compactness of Ξ.
Assertion (4) is verified since b is such that L−λC is invertible for 0 < |λ| ≤ b. �
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Remark 3.8. With the notation of Theorems 3.6 and 3.7, in the case when Γε and
Ξε are singletons for all ε ∈ [−a, a], the multivalued maps ε( Γε and ε( Ξε can
be regarded as ordinary (single valued) maps. In this case, the upper semicontinuity
coincides with the continuity.

Theorem 3.9 (Existence of bifurcation points). Let L,C,N : E → F be as above.
Assume that KerL is odd dimensional. Then, the finite dimensional unit g-sphere
KerL ∩ S contains at least one bifurcation point of problem (3.1).

Proof. Let the positive constants a, b, c and the compact set Σ be as in the proof
of Theorem 3.7.

Recall that any triple (x, ε, λ) ∈ Σ is a solution of (3.1), and observe that the
projection of Σ into the rectangle R = [−a, a]× [−b, b] is just the set Γ of Theorem
3.6. This set, because of the properties (1), (2) and (4) stated in this theorem,
contains pairs (ε, λ) ∈ Γ as close to (0, 0) as one wishes, but different from (0, 0).

Thus in Σ there is a sequence {(xn, εn, λn)}, with (εn, λn) 6= (0, 0) for all n, such
that (εn, λn)→ (0, 0).

Because of the compactness of Σ, {xn} has at least one cluster point x0, and
this is a bifurcation point. �

4. Examples

In this section we provide examples in which our results apply, as well as examples
showing that the assumption that the (geometric) multiplicity of the eigenvalue
λ = 0 (for the unperturbed problem) is odd cannot be dropped.

The following is, if we may say so, a multi-example: it provides problems for
which the multiplicity of the eigenvalue λ = 0 is an arbitrary positive integer.

Example 4.1. Given 1 ≤ p ≤ ∞ and k ∈ N, let Lk : `p → `p be the bounded linear
operator that associates to any x = (ξ1, ξ2, . . . ) ∈ `p the element

Lkx = (0, 0, . . . , 0, ξk+1, ξk+2, . . . ),

and define M : `p → `p by

Mx = (−ξ2, ξ1,−ξ4, ξ3, . . . ,−ξ2i, ξ2i+1, . . . ).

Observe that Lk is Fredholm of index zero and its kernel is the k-dimensional
space

KerLk = {x ∈ `p : x = (ξ1, ξ2, . . . ξk, 0, 0, . . . )}.
Hence, λ0 = 0 is an eigenvalue of Lk of geometric multiplicity k.

Consider the system {
Lkx+ εMx = λx,
g(x) = 1,

(4.1)

where g(x) is the `∞ norm ‖x‖∞ on the space `p, which is clearly continuous
whatever is p ∈ [1,∞]. Notice that the transversality condition (3.4) is satisfied
since, in this case, the operator C is the identity. Incidentally we observe that this
implies that the algebraic multiplicity of the eigenvalue λ0 = 0 (of the unperturbed
problem) is the same as the geometric one.

It is easy to verify that if k is even then, for any ε and for any λ sufficiently small,
the above equation has no solutions x 6= 0. On the other hand, if k is odd, then
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according to Theorem 3.9 there exists a sequence {(xn, εn, λn)} which converges to
a point (x0, 0, 0) and such that

εn 6= 0, ‖xn‖∞ = 1, Lkxn + εnMxn = λnxn , ∀n ∈ N.
For example, if k = 3, then for any ε 6= 0 we get the eigenvalue

λε =
1−
√

1− 4ε2

2

of T3 + εM to which corresponds the eigenspace spanned by the eigenvector

vε = (0, 0, 1, ξ4(ε), 0, . . . ) ,

where

ξ4(ε) =

√
1− 4ε2 − 1

2ε
= −ε+ o(ε) .

Thus, no matter what p ∈ [1,∞] we have chosen, we get exactly two bifurcation
points for the perturbed eigenvalue problem{

L3x+ εMx = λx,
‖x‖∞ = 1,

namely (0, 0,±1, 0, . . . ).

The following is an apparently misleading example that could induce to turn
over in one’s mind that our results about the persistence of eigenvalues and unit
eigenvectors are false.

Example 4.2. Consider the following second order differential equation depending
on the real parameters ε and λ:

x′′ + ε cos t = λx, t ∈ R. (4.2)

We are interested in 2π-periodic solutions x of (4.2) normalized as follows:

sup
t∈R
|x(t)| = 1.

To this purpose, we consider the problem
x′′ + ε cos t = λx,

x(0) = x(2π), x′(0) = x′(2π),

g(x) = 1,

(4.3)

where g(x) = sup
{
|x(t)| : t ∈ [0, 2π]

}
. Clearly, all the solutions of (4.3) are C∞

and we will look for them in the Banach space

C2
2π([0, 2π]) =

{
x ∈ C2([0, 2π]) : x(0) = x(2π), x′(0) = x′(2π)

}
.

In the notation of Section 3, set

E = C2
2π([0, 2π]) , F = C([0, 2π])

and define
L : E → F by Lx = x′′,

N : R× E → F by N(ε, x)(t) = ε cos t,

C : E → F to be the inclusion.

As observed in the preliminaries, the operator x 7→ x′′, which is clearly Fred-
holm of index 2 between C2([0, 2π]) and F , becomes of index 0, when restricted to
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the 2-codimensional closed subspace E of C2([0, 2π]). The kernel of L is the odd
dimensional (actually 1-dimensional) subspace of E of the constant functions, and

ImgL =
{
y ∈ F :

∫ 2π

0

y(t) dt = 0
}
.

Thus, the transversality condition (3.4) is clearly satisfied and, as one can check
directly, the operator L− λC : E → F given by x 7→ x′′ − λx is invertible for λ 6= 0
sufficiently small. Therefore, for such values of λ the equation

x′′ + ε cos t = λx

has one and only one solution in E, and this is

x(ε,λ)(t) =
ε

1 + λ
cos t.

Thus, g(x(ε,λ)) → 0 as (ε, λ) → (0, 0), and this is, apparently, in contrast with
our persistence results (theorems 3.6 and 3.7), as well with the result about the
existence of bifurcation points (Theorem 3.9).

We claim that there are no contradictions between this example and our results.
And so? To highlight the pitfall we suggest the reader to check what happens for
λ = 0 and ε arbitrary.

The following is another example, with evident physical meaning, without persis-
tence of unit eigenvectors. In this case the unperturbed problem has an eigenvalue
µ0 = 1 whose multiplicity is 2. The elementary details are left to the reader.

Example 4.3. Consider the problem
x′′ + 2εx′ + µx = 0,

x(0) = x(2π), x′(0) = x′(2π),

g(x) = 1,

(4.4)

where g(x) = sup
{
|x(t)| : t ∈ [0, 2π]

}
, observe that µ0 = 1 is an eigenvalue when

ε = 0, and check that there are no solutions when ε 6= 0.

We close with one example of a system of two coupled second order differential
equations in which condition (3.4) is satisfied and the eigenvalue of the unperturbed
problem has multiplicity 3. Consequently, the persistence phenomenon occurs.

Example 4.4. Consider the following system of coupled differential equations with
2π-periodic boundary conditions:

x′′ + x+ ε cos t = λx,

y′′ − x+ εx′′ = λy,

x(0) = x(2π), x′(0) = x′(2π),

y(0) = y(2π), y′(0) = y′(2π).

(4.5)

The solutions (x, y) of (4.5) are all of class C∞ and we seek for them in the sub-
space E of the Banach space C2([0, 2π],R2) of those pairs (x, y) satisfying the
2π-periodic boundary conditions of system (4.5). Notice that E has codimension 4
in C2([0, 2π],R2) and, consequently, the operator

L : E → F = C([0, 2π],R2) given by (x, y) 7→ (x′′ + x, y′′ − x)
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is Fredholm of index zero. Elementary computations show that the unperturbed
problem has λ = 0 as an eigenvalue whose eigenspace KerL is 3-dimensional and
is spanned by the following pairs of functions:

(sin t,− sin t), (cos t,− cos t), (0, 1).

Consider, in E, the continuous norm

g
(
(x, y)

)
= sup

{
|x(t)|+ |y(t)| : t ∈ [0, 2π]

}
and let S denote the unit g-sphere of E.

As we will see, the transversality condition (3.2) is satisfied with C the inclusion
of E into F . Thus, according to Theorem 3.9, the 2-dimensional sphere KerL ∩ S
contains some bifurcation points. Let us see if we can find them.

When λ = 0, the first equation x′′+x+ε cos t = λx has no 2π-periodic solutions,
except in the case when ε = 0, which is of no interest for our search for bifurcation
points. Therefore we may suppose λ 6= 0 and, of course, small. In this case the first
equation admits only one 2π-periodic solution:

x(ε,λ)(t) =
ε

λ
cos t.

Replacing this solution in the second differential equation we get

y′′ − λy =
ε

λ
cos t+

ε2

λ
cos t,

whose only 2π-periodic solution is

y(ε,λ)(t) = − ε(1 + ε)

λ(1 + λ)
cos t.

Since

g
(
(x(ε,λ), y(ε,λ))

)
=
∣∣∣ ε
λ

∣∣∣ (1 +

∣∣∣∣ 1 + ε

1 + λ

∣∣∣∣) ,
for ε and λ small, the solution (x(ε,λ), y(ε,λ)) of system 4.5 lies in the g-sphere S if
and only if

1 =
∣∣∣ ε
λ

∣∣∣ (2 +
ε− λ
1 + λ

)
∼= 2

∣∣∣ ε
λ

∣∣∣ .
Consequently, the 2-dimensional sphere KerL ∩ S has exactly two (antipodal) bi-
furcation points:

1

2
(± cos t,∓ cos t).

Finally, as promised, let us check that condition (3.2) is satisfied. To this purpose,
we will show that the following equivalent condition (see (3.5) in Remark 3.1) holds
true:

(u ∈ KerL) ∧ (Cu ∈ ImgL) =⇒ u = 0.

Let u be a generic element in KerL. That is,

u(t) = a(sin t, sin t) + b(cos t, cos t) + c(0, 1), a, b, c ∈ R.

We need to show that if the system{
x′′ + x = a sin t+ b cos t,

y′′ − x = a sin t+ b cos t+ c

has at least one 2π-periodic solution, then a = b = c = 0.
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The first equation has no 2π-periodic solutions, unless when a = b = 0, and in
this case has many of them, all of the type x(t) = α sin t + β cos t. Replacing any
one of these solutions in the second equation, we get

y′′ = α sin t+ β cos t+ c.

But this equation has a 2π-periodic solution (if and) only if the average, in the
interval [0, 2π], of its second member is zero, which is true (if and) only if c = 0.
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