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Abstract. We compare different spectral theories for nonlinear operators, focusing in particular on the

notion of spectrum at a point recently introduced by the authors. We discuss the main properties of the

nonlinear spectrum and present illustrating applications and examples.

1. INTRODUCTION

The purpose of this paper is to compare different notions of spectra for nonlinear maps. In particular

we will focus on the spectrum at a point recently introduced by the authors (see [9]). Related works

on nonlinear spectral theory are due to Appell [1] and Appell, De Pascale and Vignoli [2]. As a basic

reference we cite the monograph [3].

In view of the importance of spectral theory for linear operators, it is not surprising that several efforts

have been made to define and study spectra in the nonlinear context. A reasonable definition of spectrum

of a continuous nonlinear operator should satisfy some basic requirements: first it should reduce to the

familiar spectrum in case of linear operators. Moreover, it should possibly share some of the classical

properties with the linear spectrum. Finally, it should have nontrivial applications. Unfortunately, it

turns out that, when building a nonlinear spectral theory, one is led to several “unpleasant” phenomena.

First of all, in contrast to the linear case, the spectrum of a nonlinear operator contains little information

on the operator itself. Moreover, the familiar properties such as boundedness, closedness, or nonemptiness

fail, in general, for all the spectra proposed so far in the literature. In this paper we will discuss spectra

for various classes of nonlinear operators and compare their properties from the viewpoint of the above

requirements.

First we will consider a spectrum for continuous operators due to Rhodius [24], and a spectrum for

C1 operators which goes back to Neuberger [23]. The Rhodius spectrum may be noncompact or empty,

while the Neuberger spectrum is always nonempty (in the complex case), but it need be neither closed

nor bounded. Then we take into account a spectrum for Lipschitz continuous operators which was first

proposed by Kachurovskij in 1969 (see [19]). Let us mention here also a spectrum for linearly bounded

operators introduced recently by Dörfner in [10] (see also [2]). In contrast to the Neuberger spectrum,

the Kachurovskij spectrum is compact, but it may be empty even in (complex) dimension 2. All these

spectra reduce to the classical spectrum in the linear case, and they all contain the eigenvalues of the

operator involved (i.e. those λ for which f(x) = λx for some x 6= 0). Interestingly, these spectra always

contain 0 in the case of a compact operator in an infinite dimensional Banach space. This is of course

completely analogous to the linear case.

Then we consider the spectrum introduced in [13] by Furi, Martelli, and Vignoli, called FuMaVi (or

asymptotic) spectrum for short, which is defined for any continuous map from a Banach space into itself.

Roughly speaking, one may say that this spectrum takes into account the asymptotic properties of an

operator. This spectrum is always closed, sometimes even bounded, and coincides with the classical

2000 Mathematics Subject Classification. 47J10, 47H14, 47J05.

1



2 A. CALAMAI, M. FURI, AND A. VIGNOLI

spectrum in the linear case. A different and related notion of spectrum has been introduced by Feng in

1997 (see [11]). The Feng spectrum is related to the global behavior of an operator, has similar topological

properties as the FuMaVi spectrum and contains all the eigenvalues. However, the computation of the

eigenvalues requires the knowledge of the operator in the whole space. A very interesting approach to

some kind of local spectrum is due to Väth (see e.g. [27]). Since his construction is rather far from what

one usually calls a spectrum, it has been called phantom. There are several other spectra for nonlinear

operators in the literature which deserve being quoted here. For instance the Infante–Webb spectrum

[18] and the Appell–Giorgieri–Väth spectrum [5].

Recently, a new definition of spectrum has been proposed by the authors in [9]. Given an open subset

U of a Banach space E, a continuous map f : U → E, and a point p ∈ U , they introduce the concept of

spectrum of f at p, which is denoted by σ(f, p). This spectrum is close in spirit to the FuMaVi spectrum.

Nevertheless, while the asymptotic spectrum is related to the asymptotic behavior of a map, σ(f, p)

depends only on the germ of f at p; that is, the equivalence class of maps which coincide with f in some

neighborhood of p. We stress that the first attempt to introduce a notion of spectrum at a point was

undertaken by E.L. May in [22] by means of a suitable local adaptation of Neuberger’s ideas. In 1977

the last two authors gave another definition of spectrum at a point (see [16]). Given f and p as above,

they define a spectrum Σ(f, p) which, in the case of a bounded linear operator L : E → E, gives only a

part of the classical spectrum σ(L). Namely, Σ(L, p) reduces to the approximate point spectrum of L.

Therefore, the definition of Σ(f, p) is somehow nonexhaustive and the new spectrum at a point σ(f, p),

in some sense, fills the gap. The crucial notions in the new definition of spectrum at a point are the

topological concept of zero-epi map (see [14]) as well as two numerical characteristics recently introduced

by the first author in [7] (see also [8]). These notions are briefly recalled in Section 6.

Concerning the topological properties of our spectrum at a point, we show that σ(f, p) is always closed

and contains Σ(f, p). Moreover, in the case of a positively homogeneous map f : E → E, the spectrum

σ(f, 0) at 0 coincides with the asymptotic spectrum of f , and for a bounded linear operator L, we get

σ(L, p) = σ(L) for any p ∈ E, where σ(L) is the classical spectrum of L. More precisely, if a map f

is C1, then σ(f, p) equals the spectrum of the Fréchet derivative σ(f ′(p)). Thus, in the complex case,

the spectrum at a point of a C1 map is always nonempty, as the Neuberger spectrum. The spectrum at

a point turns out to be useful to tackle bifurcation problems in the non-differentiable case. This paper

closes with a few examples illustrating some peculiarities of this spectrum, and some applications to

bifurcation theory.

subsectionNotation Throughout the paper, E and F will be two Banach spaces over K, where K is R

or C. Given a subset X of E, by C(X, F ) we denote the set of all continuous maps from X into F . By

I we denote the identity on E. Given a subset A of a metric space X , A, IntA and ∂A stand for the

closure, the interior and the boundary of A, respectively. In the sequel we will adopt the conventions

sup ∅ = −∞ and inf ∅ = +∞, so that if A ⊆ B ⊆ R, then inf A ≥ inf B and supA ≤ sup B even when A

is empty.

Let f : X → Y be a continuous map between two metric spaces. We recall that f is said to be compact

if f(X) is relatively compact, and completely continuous if it is compact on any bounded subset of X .

If for any p ∈ X there exists a neighborhood V of p such that the restriction f |V is compact, then f is

called locally compact. By a standard abuse of terminology, a locally compact linear operator between

Banach spaces is said to be compact. The map f is said to be proper if f−1(K) is compact for any

compact subset K of Y . Recall that a proper map sends closed sets into closed sets. Given p ∈ X , f is

locally proper at p if there exists a closed neighborhood V of p such that the restriction f |V is proper.
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2. THE RHODIUS, NEUBERGER AND KACHUROVSKIJ SPECTRA

2.1. The Rhodius spectrum. In [24], A. Rhodius proposed a naive definition of spectrum that runs

as follows. Given a continuous map f : E → E such that f(0) = 0, the set

ρR(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 continuous}
is called the Rhodius resolvent set and its complement σR(f) = K\ρR(f) the Rhodius spectrum of f .

Thus, a point λ ∈ K belongs to ρR(f) if and only if λI − f is a homeomorphism on E.

Notice that in the case of a bounded linear operator this gives the definition of the classical spectrum.

One could expect that at least some of the properties of the linear spectrum carry over to the Rhodius

spectrum. This is not true even for the most elementary properties. We illustrate this fact with a series

of simple examples which we will further use in the sequel.

Example 2.1. Let E = R and f(x) = xn with n ∈ N, n ≥ 2. Then, σR(f) = R if n is even and

σR(f) = (0,∞) if n is odd. On the other hand, let E = C and f(z) = zn with n ∈ N, n ≥ 2. Then,

σR(f) = C for any n. Thus, the Rhodius spectrum is, in general, neither closed nor bounded.

Example 2.2. Let E = R and f(x) = arctanx. Then, σR(f) = [0, 1).

Example 2.3. Let E = C2 and f(z, w) = (w̄, iz̄). Then, σR(f) = ∅ since, for any λ ∈ C, the map

fλ(z, w) = (λz − w̄, λw − iz̄) is a homeomorphism on C2 with inverse

f−1
λ (ζ, ω) =

(

λ̄ζ + ω̄

i + |λ|2 ,− λ̄ω + iζ̄

i − |λ|2
)

.

This last example, which was given in [17] in a different context, shows that the Rhodius spectrum

may be empty.

subsectionThe Neuberger spectrum In [23], J.W. Neuberger proposed the following definition of spec-

trum. Given a map f : E → E of class C1 such that f(0) = 0, the set

ρN(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 of class C1}
is called the Neuberger resolvent set and its complement σN(f) = K\ρN(f) the Neuberger spectrum of f .

Thus, a point λ ∈ K belongs to ρN(f) if and only if λI − f is a diffeomorphism on E.

Again, this definition agrees with the classical one in the linear case. If f is of class C1, we have the

trivial inclusion σR(f) ⊆ σN(f).

Whenever possible, let us compute the Neuberger spectrum in the above examples. In Example 2.1

we have, in the case E = R, σN(f) = R if n is even and σN(f) = [0,∞) if n is odd. In the case E = C, we

have again σN(f) = C for any n. Example 2.1 shows that the Neuberger spectrum need not be bounded.

In Example 2.2 we have σN(f) = [0, 1]. On the other hand, Example 2.3 is not applicable, since the

map given there is not differentiable at any point (z, w) ∈ C
2. In fact, it turns out that the Neuberger

spectrum shares the following important property with the linear spectrum.

Theorem 2.4 (Neuberger [23]). The Neuberger spectrum of a C1 map is always nonempty in the case

K = C.

Notice that the Neuberger spectrum need not be closed. This already happens in the one dimensional

case, as it is shown by the following example.

Example 2.5. Consider the C1 real function f(x) = log(1 + |x|) sign x. It is easy to check that σN(f) =

σR(f) = [0, 1).
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Since the Neuberger spectrum is defined for C1 operators, one should expect that it might be expressed

through the linear spectra of the Fréchet derivatives. This is in fact true as shown in [4]. We recall the

result given there.

Theorem 2.6 (Appell and Dörfner [4]). Given f : E → E of class C1 such that f(0) = 0, denote by

π(f) the set of all λ ∈ K such that the operator λI − f is not proper. Then

σN(f) = π(f) ∪
⋃

x∈E

σ(f ′(x)).

In particular, σN(f) 6= ∅ in case K = C.

Notice that if E is an infinite dimensional Banach space and f : E → E is completely continuous, then

f cannot be proper. Thus, given a completely continuous map f : E → E of class C1, as a consequence

of Theorem 2.6 one has 0 ∈ π(f) ⊆ σN(f). This is of course analogous to the case of a compact linear

operator.

subsectionThe Kachurovskij spectrum We introduce now the following definition. We write f ∈ Lip(E)

if f is Lipschitz continuous on E, i.e.

[f ]Lip = sup
x 6=y

‖f(x) − f(y)‖
‖x − y‖ < ∞.

Following [19], given a map f : E → E in the class Lip(E) such that f(0) = 0, the set

ρK(f) = {λ ∈ K : λI − f is bijective and (λI − f)−1 belongs to Lip(E)}
is called the Kachurovskij resolvent set and its complement σK(f) = K\ρK(f) the Kachurovskij spectrum

of f . Thus, a point λ ∈ K belongs to ρK(f) if and only if λI − f is a lipeomorphism on E.

If f is in the class Lip(E), we have the trivial inclusion σR(f) ⊆ σK(f). Let us point out that the

operator fλ in Example 2.3 is a lipeomorphism for each λ ∈ C. This shows that σK(f) = ∅ in this

example.

The Kachurovskij spectrum possesses some nice properties, as the following result shows.

Theorem 2.7 (Maddox and Wickstead [21]). The Kachurovskij spectrum, σK(f), of a map f ∈ Lip(E)

is bounded and closed. Moreover the following inclusion holds:

σK(f) ⊆ {λ ∈ K : |λ| ≤ [f ]Lip}.

Notice that for a bounded linear operator L : E → E we have [L]Lip = ‖L‖. Consequently, the above

inclusion generalizes the known inequality between the spectral radius and the norm of a bounded linear

operator.

Let us briefly check the other examples from the viewpoint of the Kachurovskij spectrum. Clearly,

Example 2.1 does not apply. In Example 2.2 we have σK(f) = [0, 1] and in Example 2.5 we have

σK(f) = [0, 1).

As we have seen, the Rhodius and Kachurovskij spectra may be empty. Nevertheless, the following

result holds.

Theorem 2.8. Assume that dimE = ∞ and let f : E → E be completely continuous. Then, 0 ∈ σR(f).

If, moreover, f ∈ Lip(E), then 0 ∈ σK(f).

The above theorem is analogous to a well known result for compact linear operators. Example 2.3

shows that the assumption dim E = ∞ is essential.
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3. THE ASYMPTOTIC FURI–MARTELLI–VIGNOLI SPECTRUM

In this section we recall the definition of spectrum for nonlinear operators introduced in 1978 by

Furi, Martelli, and Vignoli. This spectrum is based on the notion of stable solvability of operators, a

nonlinear analogue to surjectivity, and has found various applications to integral equations, boundary

value problems, and bifurcation theory.

The definition of this spectrum requires some technical preliminary notions. First, let us recall the

definition and properties of the Kuratowski measure of noncompactness (see [20]). The Kuratowski

measure of noncompactness α(A) of a subset A of E is defined as the infimum of real numbers d > 0

such that A admits a finite covering by sets of diameter less than d. In particular, if A is unbounded, we

have α(A) = inf ∅ = +∞. Notice that, if E is finite dimensional, then α(A) = 0 for any bounded subset

A of E. Observe that α(A) = 0 if and only if A is compact.

Given a subset X of E and f ∈ C(X, F ), we recall the definition of the following two extended real

numbers (see e.g. [13]) associated with the map f :

α(f) = sup

{

α(f(A))

α(A)
: A ⊆ X bounded, α(A) > 0

}

,

and

ω(f) = inf

{

α(f(A))

α(A)
: A ⊆ X bounded, α(A) > 0

}

.

Notice that α(f) = −∞ and ω(f) = +∞ whenever E is finite dimensional.

It is important to observe that α(f) ≤ 0 if and only if f is completely continuous. Moreover, ω(f) > 0

only if f is proper on bounded closed sets. For a comprehensive list of properties of α(f) and ω(f) we

refer to [13].

Let f ∈ C(E, F ). We define the quasinorm of f as

|f | = lim sup
‖x‖→+∞

‖f(x)‖
‖x‖ ,

and the number

d(f) = lim inf
‖x‖→+∞

‖f(x)‖
‖x‖ .

We call f quasibounded if |f | < ∞. Assuming f(0) = 0, we have |f | ≤ [f ]Lip and α(f) ≤ [f ]Lip.

Following [12], we say that f ∈ C(E, F ) is stably solvable if for any compact map h : E → F such that

|h| = 0, the equation f(x) = h(x) has a solution in E.

Observe that every stably solvable operator is surjective, but in general the converse is not true. For

linear operators, however, surjectivity is equivalent to stable solvability (see e.g. [12]).

We are now ready to define the FuMaVi spectrum. We need first to introduce the notion of FMV-

regular map. A map f is said to be FMV-regular if it is stably solvable, ω(f) > 0, and d(f) > 0. Observe

that a bounded linear operator is FMV-regular if and only if it is an isomorphism.

The following stability property of FMV-regular maps can be regarded as a Rouché–type perturbation

theorem.

Theorem 3.1 (Stability theorem for FMV-regular maps, [13]). Assume that f is FMV-regular and let

g = f + k, where k ∈ C(E, F ) is such that α(k) < ω(f) and |k| < d(f). Then g is FMV-regular.

Let now f ∈ C(E, E). We define the asymptotic spectrum of the map f as the set

σF MV (f) = {λ ∈ K : λI − f is not FMV-regular}.
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It is convenient to define the following subsets of σF MV (f):

σω,F MV (f) = {λ ∈ K : ω(λI − f) = 0}, ΣF MV (f) = {λ ∈ K : d(λI − f) = 0},

σπ,F MV (f) = σω,F MV (f) ∪ ΣF MV (f),

and

σδ,F MV (f) = {λ ∈ K : λI − f is not stably solvable}.

We shall call σπ,F MV (f) the (asymptotic) approximate point spectrum of f and σδ,F MV (f) the (asymptotic)

approximate defect spectrum of f .

Note that for a bounded linear operator this gives the definition of the classical spectrum. More

precisely, the following properties hold.

Theorem 3.2 ([13]). Let L : E → E be a bounded linear operator. Then

(1) σF MV (L) coincides with the classical spectrum of L;

(2) σδ,F MV (L) coincides with the classical approximate defect spectrum of L. In other words, λ ∈
σδ,F MV (L) if and only if λI − L is not onto;

(3) σπ,F MV (L) coincides with the classical approximate point spectrum of L. In other words, λ ∈
σπ,F MV (L) if and only if inf‖x‖=1 ‖λx − Lx‖ = 0.

We are now ready to investigate the topological properties of the asymptotic spectrum. It is known

that σF MV (f) = ∅ for the map f given in Example 2.3 (see [13]), and thus also the asymptotic spectrum

may be empty.

The following result provides three nontrivial properties of the asymptotic spectrum.

Theorem 3.3 ([13]). The following properties hold:

(1) σF MV (f) is closed;

(2) σπ,F MV (f) is closed;

(3) ∂σF MV (f) ⊆ σπ,F MV (f).

The next result provides a sufficient condition for the boundedness of the asymptotic spectrum.

Theorem 3.4 ([13]). Assume that f is quasibounded with α(f) < ∞. Then σF MV (f) is bounded. More

precisely the following inclusion holds:

σF MV (f) ⊆
{

λ ∈ K : |λ| ≤ max{α(f), |f |}
}

.

Analogously to all the previous spectra, the following result holds.

Theorem 3.5 ([13]). Assume that dimE = ∞ and let f : E → E be completely continuous. Then,

0 ∈ σF MV (f).

Let us briefly check the other examples from the viewpoint of the asymptotic spectrum. Consider

Example 2.1. In the case E = R, we have σF MV (f) = R if n is even and σF MV (f) = ∅ if n is odd. Using

the Brower degree one could prove that in the case E = C one has σF MV (f) = ∅ for any n ≥ 2. Both in

Example 2.2 and in Example 2.5 we have σF MV (f) = {0}.
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4. THE FENG SPECTRUM

In this section we discuss another notion of spectrum, due to Feng [11], which is similar to the FuMaVi

spectrum and is meaningful only for maps vanishing at the origin, and preferably positively homogeneous.

Let f ∈ C(E, F ). We recall the definition of the following numerical characteristics associated with f :

M(f) = sup
‖x‖6=0

‖f(x)‖
‖x‖ and m(f) = inf

‖x‖6=0

‖f(x)‖
‖x‖ .

Assuming f(0) = 0, we have m(f) ≤ d(f) ≤ |f | ≤ M(f).

Now, let U be a bounded open subset of E, and f ∈ C(U, F ). We need to recall the following definitions

given in [14].

Definition 4.1. Given y ∈ F , we say that f is y-admissible (on U) if f(x) 6= y for any x ∈ ∂U .

Definition 4.2. We say that f is y-epi (on U) if it is y-admissible and for any compact map h : U → F

such that h(x) = y for all x ∈ ∂U the equation f(x) = h(x) has a solution in U .

Notice that f is y-epi if and only if the map f − y, defined by (f − y)(x) = f(x)− y, is 0-epi (zero-epi).

The main properties of zero-epi maps are analogous to some of the properties which characterize the

Leray–Schauder degree. For a comprehensive list of properties of zero-epi maps we refer to [14]. In

particular, we mention the following ones to be used in the sequel.

Proposition 4.3. If f ∈ C(U, F ) is a local homeomorphism at p, then it is f(p)-epi at p.

Proposition 4.4 (Localization). If f ∈ C(U, F ) is 0-epi on U , and U1 is an open subset of U containing

f−1(0), then f |U1
is 0-epi.

The next local surjectivity property of zero-epi maps has been proved in [14].

Theorem 4.5 (Local surjectivity). Let f ∈ C(U, F ) be 0-epi on U and proper on U . Then, f maps U

onto a neighborhood of the origin. More precisely, if V is the connected component of F\f(∂U) containing

the origin, then V ⊆ f(U).

Given r > 0, by Br we denote the open ball in E centered in the origin with radius r. Following [11],

define by νr(f) the infimum of all k > 0 such that there exists a map g ∈ C(Br, F ) such that g(x) = 0

for all x ∈ ∂Br, α(g) ≤ k, and f(x) 6= g(x) for all x ∈ Br. Then, the number

ν(f) = inf
r>0

νr(f)

is called the measure of solvability of f at 0.

Let us now introduce the notion of F-regular map. A map f ∈ C(E, F ) is said to be F-regular if

ω(f) > 0, m(f) > 0, and ν(f) > 0. One can show that a bounded linear operator is F-regular if and only

if it is an isomorphism. Thus, the following definition again extends the linear spectrum.

Let f ∈ C(E, E) be such that f(0) = 0. We define the Feng spectrum of the map f as the set

σF (f) = {λ ∈ K : λI − f is not F-regular}.
As all the other spectra considered above, we have that the Feng spectrum, σF (f), is empty for the

map f given in Example 2.3.

We observe that the Feng spectrum contains the asymptotic spectrum. Thus, as a consequence of

Theorem 3.5, when dimE = ∞, for a completely continuous map f : E → E we have 0 ∈ σF (f).

Moreover, the Feng spectrum shares the following property with the asymptotic spectrum.
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Theorem 4.6 (Feng [11]). The spectrum σF (f) is closed.

A nice property of the Feng spectrum is to contain the nonlinear “eigenvalues”.

Theorem 4.7 (Feng [11]). Let λ ∈ K be such that f(x) = λx for some x 6= 0. Then, λ ∈ σF (f).

The next result, which is analogous to Theorem 3.4, provides a sufficient condition for the Feng

spectrum to be bounded.

Theorem 4.8 (Feng [11]). Assume that f verifies M(f) < ∞ and α(f) < ∞. Then σF (f) is bounded.

More precisely the following inclusion holds:

σF (f) ⊆
{

λ ∈ K : |λ| ≤ max{α(f), M(f)}
}

.

Let us briefly check the other examples from the viewpoint of the Feng spectrum. Consider Example

2.1. In the case E = R, we have σF (f) = R if n is even and σF (f) = [0,∞) if n is odd. On the other

hand, in the case E = C we have σF (f) = C for any n. This example shows that the Feng spectrum may

be unbounded. Both in Example 2.2 and in Example 2.5 we have σF (f) = [0, 1].

5. THE VÄTH PHANTOM

In this section we discuss two spectra which have been recently introduced by Väth under the name

“phantoms” (see [25], [26], [27], [28]). The definition is based on a topological notion which is similar to

the concept of zero-epi map.

Let U ⊆ E be open, bounded, connected and containing 0, and let f ∈ C(U, F ). Following Väth [27],

the map f will be called strictly epi (on U) if

inf{‖f(x)‖ : x ∈ ∂U} > 0

and there exists k > 0 such that for any map g ∈ C(U, F ) with α(g) ≤ k and g(x) = 0 for all x ∈ ∂U , the

coincidence equation f(x) = g(x) admits a solution in U . The map f will be called properly epi (on U) if

ω(f) > 0, f(x) 6= 0 for all x ∈ ∂U , and for any compact map g ∈ C(U, F ) with g(x) = 0 for all x ∈ ∂U ,

the coincidence equation f(x) = g(x) admits a solution in U . That is, f properly epi on U means that

ω(f) > 0 and f is zero-epi on U . It is known, but not trivial to prove, that if f is properly epi on U then

it is also strictly epi on U (see e.g. [27]).

Let us now introduce the notion of v-regular and V-regular maps. A map f ∈ C(E, F ) is said to be

v-regular (V-regular) if it is strictly epi (properly epi) on some U . Given f ∈ C(E, E), we call the set

φ(f) = {λ ∈ K : λI − f is not v-regular}
the Väth phantom of f and the set

Φ(f) = {λ ∈ K : λI − f is not V-regular}
the large Väth phantom of f . We have the following inclusions:

φ(f) ⊆ Φ(f) ⊆ σF MV (f).

That is, the Väth phantoms are both contained in the FuMaVi spectrum.

Let us now discuss some properties of the two phantoms. The following result shows that the phantoms

extend the linear spectrum.

Theorem 5.1. Let L : E → E be a bounded linear operator. Then, both the phantom φ(L) and the large

phantom Φ(L) coincide with the classical spectrum of L.
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Theorem 5.2. Both the phantom φ(f) and the large phantom Φ(f) are closed.

The next result provides a sufficient condition for the two phantoms to be bounded.

Theorem 5.3. Assume that α(f |U ) < ∞ for some U . Then, both the phantom φ(f) and the large

phantom Φ(f) are bounded. More precisely the following inclusion holds:

Φ(f) ⊆
{

λ ∈ K : |λ| ≤ inf
U

max

{

α(f |U ),
supx∈∂U ‖f(x)‖

infx∈∂U ‖x‖

}}

.

A detailed comparison of spectra and phantoms may be found in the monograph [3]. Furthermore, the

short survey [27] provides an interesting comparison between the phantom and the asymptotic spectrum.

6. THE SPECTRUM AT A POINT

In this section we recall a notion of spectrum for nonlinear operators recently introduced by the

authors. This spectrum at a point is based on the concept of zero-epi map at a point as well as on some

numerical characteristics.

In the sequel we will use the following notation. Let U be an open subset of E, f ∈ C(U, F ) and

p ∈ U . Denote by Up the open neighborhood {x ∈ E : p + x ∈ U} of 0 ∈ E, and define fp ∈ C(Up, F ) by

fp(x) = f(p + x) − f(p).

6.1. Some numerical characteristics. Let U be an open subset of E, f ∈ C(U, F ) and p ∈ U . We

recall the definitions of αp(f) and ωp(f) given in [7]. Roughly speaking, these numbers are the pointwise

analogues of α(f) and ω(f).

Let B(p, r) denote the open ball in E centered at p with radius r > 0. Suppose that B(p, r) ⊆ U and

consider the number

α(f |B(p,r)) = sup

{

α(f(A))

α(A)
: A ⊆ B(p, r), α(A) > 0

}

,

which is nondecreasing as a function of r. Hence, we can define

αp(f) = lim
r→0

α(f |B(p,r)).

Clearly, αp(f) ≤ α(f). Analogously, define

ωp(f) = lim
r→0

ω(f |B(p,r)).

Obviously, ωp(f) ≥ ω(f). Notice that αp(f) = α0(fp) and ωp(f) = ω0(fp). Let us point out that, if E is

finite dimensional, then αp(f) = −∞ and ωp(f) = +∞ for any p ∈ U . Observe also that if f is locally

compact, then αp(f) = 0. Moreover, if ωp(f) > 0, then f is locally proper at p.

For a comprehensive list of properties of αp(f) and ωp(f) we refer to [7].

Remark 6.1. If f : E → F is positively homogeneous, then α0(f) = α(f) and ω0(f) = ω(f).

Clearly, for a bounded linear operator L : E → F , the numbers αp(L) and ωp(L) do not depend on

the point p and coincide, respectively, with α(L) and ω(L). Furthermore, for the C1 case the following

result holds.

Proposition 6.2 ([7]). Let f : U → F be of class C1. Then, for any p ∈ U we have αp(f) = α(f ′(p))

and ωp(f) = ω(f ′(p)).
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As before, let f ∈ C(U, F ), and fix p ∈ U . Following [16], define

|f |p = lim sup
x→0

‖f(p + x) − f(p)‖
‖x‖

and

dp(f) = lim inf
x→0

‖f(p + x) − f(p)‖
‖x‖ .

Notice that |f |p = |fp|0 and dp(f) = d0(fp). Following [16], the map f will be called quasibounded at p

if |f |p < +∞.

Remark 6.3. If f : E → F is positively homogeneous, then |f |0 coincides with the quasinorm of f , and

d0(f) coincides with the number d(f). More precisely, one has

|f |0 = |f | = sup
‖x‖=1

‖f(x)‖ and d0(f) = d(f) = inf
‖x‖=1

‖f(x)‖.

Evidently, for a bounded linear operator L : E → F , the number |L|p does not depend on the point p

and coincides with the norm ‖L‖. Analogously, dp(L) is independent of p and coincides with d(L).

For the C1 case the following result holds.

Proposition 6.4 ([16]). Let f : U → F be of class C1. Then, for any p ∈ U we have |f |p = ‖f ′(p)‖ and

dp(f) = d(f ′(p)).

6.2. Zero-epi maps at a point. We recall now the following definitions (see [9]). Let U be open in E,

f ∈ C(U, F ) and p ∈ U .

Definition 6.5. Given y in F , we say that f is y-admissible at p if f(p) = y and f(x) 6= y for any x in

a pinched neighborhood of p.

Notice that the map f is y-admissible at p if and only if f(p) = y and fp is 0-admissible at 0.

Furthermore, observe that if f verifies dp(f) > 0 then it is f(p)-admissible at p.

Definition 6.6. We say that f is y-epi at p if it is y-admissible at p and y-epi on any sufficiently small

neighborhood of p.

Remark 6.7. In view of the localization property of zero-epi maps (see Proposition 4.4), in the previous

definition it is not restrictive to require that there exists a bounded open neighborhood U of p such that

f(x) 6= y for all x ∈ U , x 6= p, and f is y-epi on U .

Notice that f is y-epi at p if and only if f(p) = y and fp is 0-epi at 0.

The following local surjectivity property can be deduced from the corresponding property of zero-epi

maps stated in Theorem 4.5 above.

Corollary 6.8. Let f ∈ C(U, F ) be y-epi at p and locally proper at p. Then, y is an interior point of

the image f(U).

We observe that a bounded linear operator L : E → F is y-admissible at p if and only if Lp = y and

L is injective. Moreover, if Lp = y, then L is y-epi at p if and only if it is 0-epi at 0.

Let L : E → F be a linear isomorphism. As a consequence of the Schauder Fixed Point Theorem,

it is not difficult to prove that L is zero-epi on any bounded neighborhood of the origin (see [14]). In

particular, this implies that L is 0-epi at 0.
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6.3. The spectrum at a point. We are now ready to define the spectrum of a map at a point (see [9]).

We need first to introduce the notion of regular map at a point.

Let U be an open subset of E, f ∈ C(U, F ), and p ∈ U .

Definition 6.9. The map f is said to be regular at p if the following conditions hold:

i) dp(f) > 0;

ii) ωp(f) > 0;

iii) fp is 0-epi at 0.

Notice that f is regular at p if and only if fp is regular at 0. Moreover, if f is regular at p and c 6= 0,

then cf is regular at p as well.

The following stability property for regular maps at a point, which can be regarded as a Rouché–type

theorem, is the analogue of Theorem 3.1 above.

Theorem 6.10 (Stability theorem for regular maps, [9]). Assume that f is regular at p and let g = f +k,

where k ∈ C(U, F ) is such that αp(k) < ωp(f) and |k|p < dp(f). Then g is regular at p.

Notice that a bounded linear operator L : E → F is regular at p if and only if it is regular at 0. The

following proposition characterizes the bounded linear operators which are regular at 0.

Proposition 6.11. Let L : E → F be a bounded linear operator. Then L is regular at 0 if and only if it

is an isomorphism.

Let now f ∈ C(U, E) and p ∈ U . We define the spectrum of the map f at the point p as the set

σ(f, p) = {λ ∈ K : λI − f is not regular at p}.
It is convenient to define the following subsets of σ(f, p):

σω(f, p) = {λ ∈ K : ωp(λI − f) = 0}, Σ(f, p) = {λ ∈ K : dp(λI − f) = 0},
and σπ(f, p) = σω(f, p) ∪ Σ(f, p). We shall call σπ(f, p) the approximate point spectrum of f at p. We

point out that the spectrum Σ(f, p) has been introduced in [16] by the last two authors.

Clearly, for a bounded linear operator L : E → E, σ(L, p) and σπ(L, p) do not depend on p. Hence,

we can simply write σ(L) and σπ(L) instead of σ(L, p) and σπ(L, p).

The above notation and definitions are justified by the following result, which is analogous to Theorem

3.2.

Theorem 6.12. Let L : E → E be a bounded linear operator. Then

(1) σ(L) coincides with the classical spectrum of L;

(2) σπ(L) coincides with the classical approximate point spectrum of L.

The next result shows that, for a positively homogeneous map f : E → E, the spectrum of f at 0

coincides with the asymptotic spectrum of f . In particular, the same is true for bounded linear operators.

The proof is straightforward and, therefore, will be omitted.

Theorem 6.13. Let f : E → E be positively homogeneous. Then

(1) σ(f, 0) coincides with the asymptotic spectrum, σF MV (f), of f ;

(2) σπ(f, 0) coincides with the asymptotic approximate point spectrum σπ,F MV (f). More precisely,

σω(f, 0) = σω,F MV (f) and Σ(f, 0) = ΣF MV (f). In addition, λ ∈ Σ(f, 0) if and only if

inf
‖x‖=1

‖λx − f(x)‖ = 0.
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Observe that the map f : C2 → C2 as in Example 2.3 is positively homogeneous. We already pointed

out that σF MV (f) = ∅. Taking into account Theorem 6.13 it follows that σ(f, 0) = ∅. This shows that

also the spectrum at a point may be empty.

Remark 6.14. If E is finite dimensional, then σω(f, p) = ∅ for any p and hence σπ(f, p) = Σ(f, p).

Remark 6.15. It is interesting to observe that, for a real function f , the spectrum σ(f, p) is completely

determined by the Dini’s derivatives of f at p, that is, by the following four extended real numbers:

D−f(p) = lim inf
h→0−

f(p + h) − f(p)

h
, D−f(p) = lim sup

h→0−

f(p + h) − f(p)

h
,

D+f(p) = lim inf
h→0+

f(p + h) − f(p)

h
, D+f(p) = lim sup

h→0+

f(p + h) − f(p)

h
.

It is not difficult to show that σ(f, p) is the closed subinterval of R whose endpoints are, respectively, the

smallest and the largest of the Dini’s derivatives. Thus, any closed interval (the empty set, a singleton

and R included) is the spectrum at a point of some continuous function. For example, if all the four

Dini’s derivatives of f at p are +∞ (or −∞), then σ(f, p) = ∅.
We point out that, even in the one dimensional real case, Σ(f, p) need not coincide with σ(f, p). In

fact, one can check that Σ(f, p) is the union of two closed intervals: one with endpoints D−f(p) and

D−f(p), and the other one with endpoints D+f(p) and D+f(p). Hence, σ(f, p) is the smallest interval

containing Σ(f, p), and this agrees with Theorem 6.18 below.

As a consequence of these facts, if f is differentiable at p one gets σ(f, p) = Σ(f, p) = {f ′(p)}. This

agrees with Corollary 6.22 below.

Let us point out that, in view of Remark 6.15, the computation of the spectrum at a point in Examples

2.1, 2.2 and 2.5 is trivial. In the present as well as in the next section we will provide more interesting

examples dealing with non-differentiable maps.

The next result, which is a consequence of Theorem 6.10, provides a sufficient condition for the

spectrum of f at p to be bounded. Set

qp(f) = max{αp(f), |f |p}
and define the spectral radius of f at p as

rp(f) = sup{|λ| : λ ∈ σ(f, p)}.

Theorem 6.16 ([9]). We have rp(f) ≤ qp(f). In particular, if f is locally compact and quasibounded at

p, then σ(f, p) is bounded.

In the case of a bounded linear operator L : E → E, the number rp(L) is independent of p. Therefore,

this number will be denoted by r(L). From Proposition 6.16 above we recover the well known property

r(L) ≤ ‖L‖.
The estimates provided in the following proposition will be used in the sequel.

Proposition 6.17. The following estimates hold:

(1) λ ∈ Σ(f, p) implies dp(f) ≤ |λ| ≤ |f |p;
(2) λ ∈ σω(f, p) implies ωp(f) ≤ |λ| ≤ αp(f).

The following result, which is analogous to Theorem 3.3 above, shows that the spectrum at a point

shares some important properties with the asymptotic spectrum.
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Theorem 6.18 ([9]). The following properties hold.

(1) σ(f, p) is closed;

(2) σπ(f, p) is closed;

(3) σ(f, p)\σπ(f, p) is open;

(4) ∂σ(f, p) ⊆ σπ(f, p).

Corollary 6.19. Let W be a connected component of K\σπ(f, p). Then, W is open in K and maps of

the form λI − fp, with λ ∈ W , are either all 0-epi at 0 or all not 0-epi at 0.

Corollary 6.20. The following assertions hold.

i) Assume that K = C, σ(f, p) is bounded, and λ belongs to the unbounded component of C\σπ(f, p).

Then λI − f is regular at p. In particular (as pointed out by J.R.L. Webb in a private commu-

nication), if σπ(f, p) is countable, then σ(f, p) = σπ(f, p).

ii) Assume that K = R, σ(f, p) is bounded from above (resp. below), and λ belongs to the right (resp.

left) unbounded component of R\σπ(f, p). Then λI − f is regular at p.

In what follows the notation σ(f, p) ≡ σ(g, p) stands for σ(f, p) = σ(g, p), σω(f, p) = σω(g, p), and

Σ(f, p) = Σ(g, p). Recall that qp(f) = max{αp(f), |f |p}.
Theorem 6.21 ([9]). Given an open subset U of E, f, g ∈ C(U, E) and p ∈ U , one has

(1) σ(cf, p) ≡ cσ(f, p), for any c ∈ K;

(2) σ(c + f, p) ≡ c + σ(f, p), for any c ∈ K;

(3) qp(f − g) = 0 implies σ(f, p) ≡ σ(g, p).

For C1 maps we have the following result which is a direct consequence of property (3) in Theorem 6.21.

Corollary 6.22. Let f : U → E be of class C1 and p ∈ U . Then, σ(f, p) ≡ σ(f ′(p)).

Observe that the equivalence σ(f, p) ≡ σ(f ′(p)) holds true even when the map f ∈ C(U, E) is merely

Fréchet differentiable at the point p ∈ U , provided that the remainder φ ∈ C(U, E), defined as

φ(x) = f(x) − f ′(p)(x − p), x ∈ U,

verifies αp(φ) = 0. This is the case, for instance, if f = g + h, where g is of class C1 and h is locally

compact and Fréchet differentiable at p (but not necessarily C1). As an example, consider the map

f : E → E defined by

f(x) =

{

x + ‖x‖2
(

sin 1
‖x‖

)

v if x 6= 0,

0 if x = 0,

where v ∈ E\{0} is given, and p = 0.

In the case when the map f is of class C1, Corollary 6.22 above implies that the multivalued map that

associates to every point p the spectrum σ(f, p) ⊆ K is upper semicontinuous. This depends on the well

known fact that so is the map which associates to any bounded linear operator L : E → E its spectrum

σ(L). The next one-dimensional example shows that the multivalued map p 7→ σ(f, p) ⊆ K need not be

upper semicontinuous if f is merely C0.

Example 6.23. Let f : R → R be defined by f(x) = x2 sin(1/x), if x 6= 0 and f(0) = 0. Notice that f is

C1 on R \ {0} and merely differentiable at 0 with f ′(0) = 0. Thus, as pointed out above, σ(f, 0) = {0}.
Consequently, the multivalued map p 7→ σ(f, p) = {f ′(p)} is not upper semicontinuous at 0 since f ′ is

not continuous at 0.
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The next example in the infinite dimensional context regards an interesting differentiable map.

Example 6.24. Let E be a real Hilbert space (of dimension greater than 1), and consider the nonlinear

map f(x) = ‖x‖x. Observe that f is Fréchet differentiable at any p ∈ E with

f ′(p)v = ‖p‖v +
(p, v)

‖p‖ p, v ∈ E

if p 6= 0, and f ′(0) = 0. Hence, by Corollary 6.22 we have σ(f, p) = σ(f ′(p)). Given p 6= 0, in order

to compute σ(f ′(p)), observe that f ′(p) is of the form L = cI + K, with c ∈ R and K : E → E

with finite dimensional image, say E0 (in this case dimE0 = 1). Since σ(L) = {c} ∪ σ(L0), where L0

denotes the restriction of L to E0, we get σ(f, p) = σ(f ′(p)) = {‖p‖} ∪ {2‖p‖} if p 6= 0 and, clearly,

σ(f, 0) = σ(f ′(0)) = {0}.

We already pointed out that the spectrum at a point may be empty. On the other hand, it satisfies

the following nonemptiness property (which is a straightforward consequence of Corollary 6.22 above),

as the Neuberger spectrum does.

Corollary 6.25. If K = C and f : U → E is of class C1, then for any p ∈ U the spectrum σ(f, p) is

nonempty.

Also the following property is in common with all the other spectra considered up to now.

Proposition 6.26. Assume dim E = +∞ and let f be locally compact. Then, 0 ∈ σ(f, p). More precisely,

σω(f, p) = {0}. Thus, σπ(f, p) = {0} ∪ Σ(f, p).

The following simple examples illustrate three “pathological cases” for the spectrum at a point.

Example 6.27. Let f : R → R, f(x) = sign(x)
√

|x|. Then, Σ(f, 0) = σ(f, 0) = ∅.

Example 6.28. Let f : R → R, f(x) =
√

|x|. Then, Σ(f, 0) = ∅ and σ(f, 0) = R.

Example 6.29. Let f : R → R be such that f(x) =
√

|x| sin(1/x) if x 6= 0 and f(0) = 0. Clearly,

σπ(f, 0) = Σ(f, 0) = R.

In the case of positively homogeneous maps, it is notably meaningful to introduce the concept of

eigenvalue. Let f : E → E be positively homogeneous. As in the linear case, we say that λ ∈ K is an

eigenvalue of f if the equation λx = f(x) admits a nontrivial solution.

Proposition 6.30. Assume f : E → E positively homogeneous and λ 6∈ σω(f, 0). Then, λ ∈ Σ(f, 0) if

and only if λ is an eigenvalue of f .

Corollary 6.31. The following assertions hold.

i) Assume dimE = +∞ and let f : E → E be positively homogeneous and locally compact. Then,

Σ(f, 0)\{0} = {λ ∈ K\{0} : λ eigenvalue of f}.
ii) Assume E finite dimensional and f : E → E positively homogeneous. Then, Σ(f, 0) = {λ ∈ K :

λ eigenvalue of f}.

In Table 1 we summarize the main properties of the various spectra we have considered so far.
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Spectrum Nonempty Closed Bounded Compact

σR(f) No No No No

σN(f) Yes No No No

σK(f) Noa Yes Yes Yes

σF MV (f) Noa Yes Nob Nob

σF (f) Noa Yes Noc Noc

σ(f, p) Nod Yes Noe Noe

a Yes if dimE = ∞ and f is completely continuous.
b Yes if α(f) < ∞ and f is quasibounded.
c Yes if α(f) < ∞ and M(f) < ∞.
d Yes if dimE = ∞ and f is locally compact.
e Yes if αp(f) < ∞ and f is quasibounded at p.

Table 1

7. BIFURCATION AND ILLUSTRATING EXAMPLES

In this section we describe some applications of the spectrum at a point to bifurcation problems in

the non-differentiable case. We close this paper with some examples illustrating some peculiarities of the

spectrum at a point.

Let U be an open subset of E and f ∈ C(U, E). Assume that 0 ∈ U and f(0) = 0, and consider the

equation

λx = f(x), λ ∈ K. (7.1)

A solution (λ, x) of (7.1) is called nontrivial if x 6= 0. We recall that λ ∈ K is a bifurcation point for f if

any neighborhood of (λ, 0) in K × E contains a nontrivial solution of (7.1). We will denote by B(f) the

set of bifurcation points of f . Notice that B(f) is closed since λ ∈ B(f) if and only if (λ, 0) belongs to

the closure S of the set S of the nontrivial solutions of (7.1).

It is well known that if f is Fréchet differentiable at 0 then the set B(f) of bifurcation points of f is

contained in the spectrum σ(f ′(0)) of the Fréchet derivative f ′(0). The next proposition (see also [16])

extends this necessary condition.

Proposition 7.1 ([9]). The set B(f) is contained in Σ(f, 0), and hence in σπ(f, 0).

Remark 7.2. As in the linear case, for a positively homogeneous map f : E → E we have that if λ ∈ K

is an eigenvalue of f then λ ∈ B(f). If, moreover, ω(λI − f) > 0, the converse is also true in view of

Proposition 6.30 and Proposition 7.1 above.

The following result provides a sufficient condition for the existence of bifurcation points. It is in the

spirit of Theorem 5.1 in [16], where f is assumed to be locally compact and quasibounded at 0. Notice

that the Leray–Schauder degree cannot be used here, since we do not assume f to be locally compact.

Theorem 7.3 ([9]). Let λ0, λ1 ∈ K. Assume λ0 ∈ σ(f, 0)\σπ(f, 0) and λ1 6∈ σ(f, 0). Then, σω(f, 0)∪B(f)

separates λ0 from λ1; that is, λ0 and λ1 belong to different components of K\(σω(f, 0) ∪ B(f)).

Corollary 7.4. Let λ0 ∈ σ(f, 0)\σπ(f, 0), and assume that σ(f, 0) is bounded. Then, the connected

component of K\(σω(f, 0) ∪ B(f)) containing λ0 is bounded.
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Proposition 7.5 below extends Theorem 2.1 in [16] by replacing the assumption “f quasibounded at

p” with the weaker condition “σ(f, p) bounded”. We wish to stress the fact that, contrary to the proof

of [16, Theorem 2.1], here no degree theory is involved. We wish further to observe that a result of this

type could not be stated in [16] because of the lack of an exhaustive notion of spectrum at a point. The

same proposition exhibits an exclusively nonlinear phenomenon since, in the compact linear case, zero

always belongs to the approximate point spectrum. An example illustrating this peculiarity will be given

below.

Proposition 7.5 ([9]). Let U be an open subset of E containing the origin, and suppose dim E = +∞.

Let f ∈ C(U, E) be locally compact, and assume that σ(f, 0) is bounded. Then, 0 6∈ Σ(f, 0) implies that

the connected component of K\B(f) containing 0 is bounded.

Let us examine now some illustrating examples. We consider first the case E = C. Since C is finite

dimensional, given f : C → C and p ∈ C, we have σπ(f, p) = Σ(f, p). If, in addition, f is positively

homogeneous, then

Σ(f, 0) = {λ ∈ C : λz = f(z) for some z 6= 0} = B(f)

(see Remark 7.2).

Example 7.6. Let f : C → C be defined as f(x+iy) = |x|+iy. The map f is positively homogeneous and,

consequently, λ = a+ib belongs to Σ(f, 0) if and only if the equation (a+ib)(x+iy)−(|x|+iy) = 0 admits

a solution x + iy in S1. An easy computation shows that Σ(f, 0) = S1. Observe that d0(f) = |f |0 = 1,

and this implies that the spectrum σ(f, 0) is bounded. Moreover, f is not zero-epi at 0. To see this

notice that, given w ∈ C with negative real part, the equation f(z) = w has no solutions. Finally, since

∂σ(f, 0) ⊆ Σ(f, 0), we conclude that σ(f, 0) = {a + ib : a2 + b2 ≤ 1} and Σ(f, 0) = S1.

Example 7.7. Let f : C → C be defined as f(x+ iy) = sx+ ty+ i(ux+vy), where s, t, u, v are given real

constants. The map f is positively homogeneous, and linear if regarded from R2 into itself. Consequently,

λ = a + ib belongs to Σ(f, 0) if and only if the equation (a + ib)(x + iy) − (sx + ty + i(ux + vy)) = 0

admits a solution x + iy with x2 + y2 > 0; that is, if and only if the homogeneous linear system
{

(a − s)x − (b + t)y = 0

(b − u)x + (a − v)y = 0

admits a nontrivial solution (x, y). This fact is equivalent to the condition

det

(

a − s −(b + t)

b − u a − v

)

= 0,

from which we get a2 + b2− (s+v)a− (u− t)b+sv− tu = 0. This is the equation of the circle S0, centered

at
(

s+v
2 , u−t

2

)

with radius

r =

√

(s + v)2

4
+

(u − t)2

4
− sv + tu.

Observe that σ(f, 0) = Σ(f, 0). Indeed, assume that λ = a + ib does not belong to Σ(f, 0), that is

det

(

a − s −(b + t)

b − u a − v

)

6= 0.

This implies that λI − f is a linear isomorphism as a map from R2 into itself. In particular, λI − f is a

homeomorphism as a map from C into C. It follows λ 6∈ σ(f, 0) in view of Proposition 4.3. Hence, the

whole spectrum σ(f, 0) coincides with the circle S0.



AN OVERVIEW ON SPECTRAL THEORY FOR NONLINEAR OPERATORS 17

Notice that the spectrum reduces to a point (i.e. r = 0) if and only if s = v and t = −u; that is, if and

only if f is linear as a complex map.

Example 7.8. Let g : C → C be defined by g(x + iy) =
√

x2 + y2 + iyn, with n ≥ 2. As a consequence

of Theorem 6.21-(3), we have σ(g, 0) ≡ σ(f, 0), where f : C → C is the positively homogeneous map

defined as f(x + iy) =
√

x2 + y2. Now, it is not difficult to prove that Σ(f, 0) = S1. Moreover,

σ(f, 0) = {a + ib : a2 + b2 ≤ 1} since 0 is not in the interior of the image of f (so f is not zero-epi at

0). Consequently, Σ(g, 0) = S1 and σ(g, 0) = {a + ib : a2 + b2 ≤ 1}. Hence, by Theorem 7.3, we get

B(g) = Σ(g, 0) = S1.

Example 7.9. Let f : C → C be defined as f(x+iy) =
√

x2 + y2+iy. Since f is positively homogeneous,

one can show that a + ib ∈ Σ(f, 0) if and only if

(a − 1)2 + b2 = (a2 + b2 − a)2,

which is the equation of a closed curve Γ (a cardioid). The curve Γ divides the complex plane in two

connected components, Ω0 (containing 0) and Ω1 (unbounded). Clearly, λ 6∈ σ(f, 0) if λ belongs to Ω1.

Furthermore, λ ∈ σ(f, 0) for any λ ∈ Ω0 since f is not zero-epi at 0. Hence, σ(f, 0) = Ω0 = Ω0 ∪ Γ and

Σ(f, 0) = Γ (see Figure 1).

Ω0

Ω1

Γ

−1 10

Figure 1. The spectrum of f : C → C, x + iy 7→
√

x2 + y2 + iy.

Example 7.10. Let f : C → C be defined as f(x + iy) = |x|/2 + iy. Notice that d0(f) = 1/2 and

|f |0 = 1. Since f is positively homogeneous, one can show (see e.g. [15]) that Σ(f, 0) is the union of

two circles: S+ =
{

λ ∈ C :
∣

∣λ − 1
4

∣

∣ = 3
4

}

and S− =
{

λ ∈ C :
∣

∣λ − 3
4

∣

∣ = 1
4

}

. Consequently, C\(S+ ∪ S−)

consists of three connected components, Ω0 (containing 0), Ω1 (surrounded by S−) and Ω2 (unbounded).

One can check that, when λ belongs to Ω1 ∪Ω2, the map λI − f is a local homeomorphism around zero.

Thus, λ 6∈ σ(f, 0) on the basis of Proposition 4.3. Moreover, since f is not zero-epi at 0, we get λ ∈ σ(f, 0)

for all λ ∈ Ω0. Hence, σ(f, 0) = Ω0 = Ω0 ∪ (S+ ∪ S−) and Σ(f, 0) = S+ ∪ S− (see Figure 2).

We close with an example in the infinite dimensional context.
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Ω2

Ω1

Ω0

S+

S−

0− 1
2

11
2

Figure 2. The spectrum of f : C → C, x + iy 7→ |x|
2 + iy.

Example 7.11. Let f : ℓ2(C) → ℓ2(C) be defined by

f(z) = (‖z‖, z1, z2, z3, . . . ),

where z = (z1, z2, z3, . . . ). Notice that f is positively homogeneous, and is the sum of the right-shift

operator L : ℓ2(C) → ℓ2(C), defined as Lz = (0, z1, z2, z3, . . . ), and the finite dimensional map k :

ℓ2(C) → ℓ2(C), defined as k(z) = (‖z‖, 0, 0, 0, . . . ).

An easy computation shows that d(f) = |f | =
√

2. Moreover, α(f) = ω(f) = 1. Indeed, since k is

compact and f = L + k, we have α(f) = α(L) and ω(f) = ω(L). Now, α(L) = ω(L) = 1, L being

an isometry between the space ℓ2(C) and a subspace of codimension one. Therefore, Proposition 6.17

implies σω(f, 0) ⊆ {λ ∈ C : |λ| = 1} and Σ(f, 0) ⊆ {λ ∈ C : |λ| =
√

2}. Let us show that the converse

inclusions hold.

First, let us prove that σω(f, 0) = S1. Since ω(λI − f) = ω(λI − L), it is enough to show that

ω(λI −L) = 0 when |λ| = 1. To this end, recall that a linear operator T is left semi-Fredholm if and only

if ω(T ) > 0. Thus, λI − L is left semi-Fredholm for |λ| 6= 1. Recall also that the index of λI − L,

ind(λI − L) = dimKer(λI − L) − dim coKer(λI − L) ∈ {−∞} ∪ Z,

depends continuously on λ. Therefore, it is constant on any connected set contained in C\S1. This

implies that ind(λI − L) = −1 when |λ| < 1 since ind(−L) = −1. On the other hand, ind(λI −L) = 0 if

|λ| > 1 since, as well known, σ(L) = {λ ∈ C : |λ| ≤ 1}. Thus, the subset σω(L) of S1 separates the two

open sets {λ ∈ C : |λ| < 1} and {λ ∈ C : |λ| > 1}. Consequently, σω(L) = S1. Hence, σω(f, 0) = S1.

To show that Σ(f, 0) = {λ ∈ C : |λ| =
√

2}, assume |λ| =
√

2. Since λ 6∈ σω(f, 0), Proposition 6.30

implies that λ ∈ Σ(f, 0) if and only if λ is an eigenvalue of f . Simple computations show that this

condition is satisfied when |λ| =
√

2.

As a consequence of the above arguments, σπ(f, 0) is the union of two circles centered at the origin.

Now, observe that q0(f) = max{α0(f), |f |0} =
√

2 and hence σ(f, 0) ⊆ {λ ∈ C : |λ| ≤
√

2}. Let us prove

that σ(f, 0) = {λ ∈ C : |λ| ≤
√

2}. For this purpose remember that, if W is a connected component of
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C\σπ(f, 0), then the maps of the form λ − f , with λ ∈ W , are either all zero-epi at 0 or all not zero-epi

at 0 (see Corollary 6.19).

Notice that, if |λ| < 1, then λI − f is not zero-epi at 0. Indeed, set e1 = (1, 0, 0, . . . ) and observe that,

given ε > 0, the equation f(z) = −εe1 has no solutions. Consequently, f is not zero-epi at 0.

Let us show that λI − f is not 0-epi at 0 also for 1 < |λ| <
√

2. Indeed, fix λ ∈ C with 1 < |λ| <
√

2.

We claim that, given ε > 0, the equation

λz − f(z) = εe1, z ∈ E (7.2)

has no solutions. Recall that λI − L is an isomorphism and set vλ = (λI − L)−1(e1). Since f is the sum

of L and k, and the image of k lies in the subspace spanned by e1, the solutions of (7.2) lie in the one

dimensional subspace Eλ spanned by vλ. Therefore, any solution of (7.2) is of the type ξvλ, ξ ∈ C. An

easy computation shows that ‖vλ‖2 = 1
|λ|2−1 . Thus,

λ(ξvλ) − f(ξvλ) = ξe1 − ‖ξvλ‖e1 =

(

ξ − |ξ| 1
√

|λ|2 − 1

)

e1.

Consider now the equation

ξ − |ξ| 1
√

|λ|2 − 1
= ε, ξ ∈ C (7.3)

which is equivalent to (7.2). It is not difficult to see that equation (7.3) has no solutions when 1 < |λ| <√
2. Consequently, equation (7.2) has no solution, as claimed. Hence, λI − f is not zero-epi at 0 when

1 < |λ| <
√

2.

From the above discussion we get σ(f, 0) = {λ ∈ C : |λ| ≤
√

2}.
Consider now any map h : ℓ2(C) → ℓ2(C) which is compact and such that h(z) = o(‖z‖) as ‖z‖ → 0,

and let g = f + h. Then, as a consequence of Theorem 6.21-(3), we have σ(g, 0) ≡ σ(f, 0). In particular,

σ(g, 0) = {λ ∈ C : |λ| ≤
√

2} = Ω0. Moreover, σω(g, 0) = S1 and Σ(g, 0) = {λ ∈ C : |λ| =
√

2} = Γ (see

Figure 3). Hence, from Theorem 7.3, it follows that any λ ∈ C with |λ| =
√

2 is a bifurcation point for

g. That is,

B(g) = {λ ∈ C : |λ| =
√

2} = Γ.

In view of Theorem 7.3, this stability of the set of bifurcation points depends on the fact that Σ(f, 0)

locally separates σ(f, 0) from its complement.

Notice that in the above example we have detected a bifurcation phenomenon that cannot be in-

vestigated via the classical Leray–Schauder degree theory. Moreover, since the map f is a compact

perturbation of a linear Fredholm operator of negative index, also the more recent degree theory for

compact perturbations of Fredholm operators of index zero (see [6] and references therein) cannot be

applied.
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