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Abstract

We give two versions of the Leray Product Formula for the oriented de-
gree for Fredholm maps of index zero recently introduced by the first two
authors. As a consequence, we obtain a simplified proof of the generalized
Jordan-Brouwer Separation Theorem due to Leray and an analogous version
in Banach manifolds.
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1 Introduction and preliminaries

One of the most important and deep properties of the Leray-Schauder degree is the
well-known Leray Product Formula for the computation of the degree of a composite
map (see, e.g., [3, 14, 15, 17, 19]). In this paper, using the concept of boundary set
of a map introduced in [1], among other results we give an extension of the Leray
formula (Theorem 3.5) and we provide, as a consequence, a simple proof of the
generalized Jordan-Brouwer Separation Theorem due to Leray (see [14]).

As it is well-known, the integer valued degree has been extended by several
authors to the framework of Fredholm maps between real Banach manifolds. A
pioneering work in this direction is due to Elworthy and Tromba (see [8, 9]). In
[1], still in the context of nonlinear Fredholm maps, the first two authors introduce
an elementary notion of oriented map (see below) which differs from the one given
in [10] in some aspects which are pointed out in [2]. By means of this notion they
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define an integer-valued degree which coincides, for a large variety of maps, with the
degree introduced in [10] and can be considered an evolution of the oriented degree
of Elworthy-Tromba.

This work contains two versions of the Product Formula for the oriented degree
of [1], namely Theorem 3.1 and Theorem 3.7. The first one is the analog of Theorem
3.5. The second one is a more general formula containing, as a particular case, an
extended additivity property for the degree of oriented maps. At the end a Jordan’s
like separation theorem in Banach manifolds is deduced from Theorem 3.1.

We need some preliminaries.

Let E and F be two real Banach spaces. We recall that a bounded linear operator
is said to be Fredholm if both KerL and coKerL have finite dimension. In this case,
its index is the integer

indL = dim KerL− dim coKerL.

A map f : M → N between real Banach manifolds is Fredholm of index zero (see
[18]) if it is C1 and its Fréchet derivative Df(x), from the tangent space TxM of M
at x to the tangent space Tf(x)N of N at f(x), is Fredholm of index zero for any
x ∈M .

A map f : M → N between manifolds is said to be proper if f−1(K) is compact
for any compact subset K of N . In particular, let us recall that Fredholm maps are
locally proper (see [18]).

A map f : X → E defined on a subset X of a Banach space E is a compact
vector field if it is a completely continuous perturbation of the identity; that is, if it
has the form f(x) = x− ϕ(x), with ϕ : X → E sending bounded subsets of X into
relatively compact subsets of E. We observe that if f : X → E is a compact vector
field, X is closed, and ||f(x)|| → ∞ as ||x|| → ∞, then f is proper. In particular, a
compact vector field is proper on bounded closed sets.

2 Orientation and degree

In this section, we give a brief review of the notion of degree for oriented maps
between real Banach manifolds introduced in [1]. This notion is essentially based
on the concept of orientability for Fredholm maps developed in [1, 2].

Let L : E → F be a bounded Fredholm linear operator of index zero between
real Banach spaces. We say that a bounded linear operator A : E → F with finite
dimensional range is a corrector of L provided that L+A is an isomorphism. Observe
that the set of correctors of L is nonempty. In fact, any (possibly trivial) bounded
linear operator A : E → F such that KerA⊕KerL = E and RangeA⊕RangeL = F
is a corrector of L.

Let A and B be two correctors of L. Observe that the isomorphism T = (L +
B)−1(L+A) is a finite dimensional perturbation of the identity I. Moreover, given

2



any finite dimensional subspace E0 of E containing the image of I − T , one has
T (E0) ⊂ E0. Thus, the determinant of the restriction of T to E0, detT |E0 , is well
defined. It is not difficult to show that this determinant does not depend on the
choice of the finite dimensional space E0 containing Range (I − T ). This common
value will be denoted detT . We say that A is equivalent to B or, more precisely,
A is L-equivalent to B, if detT > 0. This is an equivalence relation on the set of
correctors of L with just two equivalence classes (see [1]). An orientation of L is, by
definition, one of the two equivalence classes.

Given an oriented operator L : E → F , the elements of its orientation will be
called the positive correctors of L.

We point out that any isomorphism L admits a special orientation, namely the
equivalence class containing the trivial operator 0. We shall refer to this equivalence
class as the natural orientation ν(L) of L. However, if an isomorphism L happens
to be already oriented, we define its sign as follows: signL = 1 if the trivial operator
0 is a positive corrector of L (i.e. if the orientation of L coincides with ν(L)), and
signL = −1 otherwise.

Unless otherwise stated, the composition L2L1 of two oriented operators will be
oriented by taking as a positive corrector the operator L2A1 +A2A1 +A2L1, where
A1 and A2 are positive correctors of L1 and L2, respectively.

An orientation of a bounded Fredholm operator of index zero induces, by a sort
of stability, an orientation to any sufficiently close bounded operator. In fact, if A
is a corrector of L, then L′ + A is an isomorphism whenever L′ is sufficiently close
to L. Thus, any such L′ can be oriented by choosing A as a positive corrector.

Assume now f : M → N is a Fredholm map of index zero between real Banach
manifolds. An orientation of f at a point x ∈ M is an orientation of the Fréchet
derivative Df(x) of f at x. An orientation of f is a “continuous” assignment
of an orientation at any point of M (see [1, 2] for a precise notion of continuous
assignment). By an oriented map we mean a Fredholm map between real Banach
manifolds with a given orientation. Let us point out that, when M and N are finite
dimensional orientable connected manifolds (of the same dimension), an orientation
of f : M → N can be regarded as a pair of orientations, one of M and one of N , up
to an inversion of both of them. The simplest example of a nonorientable Fredholm
map (of index zero) is a constant function from a finite dimensional nonorientable
manifold M into a manifold N of the same dimension as M . An example of a
nonorientable map in the flat case, i.e. acting between open sets of Banach spaces,
can be found in [2].

Notice that a local diffeomorphism f : M → N can be oriented by choosing the
natural orientation at any x ∈M . This makes sense since Df(x) is an isomorphism
for any x ∈M . Thus, for example, the covering projection from the two dimensional
sphere S2 onto the (nonorientable) projective space P 2 is orientable. As shown in
[2], if M is simply connected, then any Fredholm map of index zero f : M → N
is orientable (and, consequently, an orientation of f can be given by assigning an
orientation at a chosen point of M). Thus, actually, any (C1) map from S2 into P 2
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is orientable.

A homotopy H : M × [0, 1] → N is called an oriented homotopy provided that
any partial map Hλ := H(·, λ) is Fredholm of index zero, the partial derivative
D1H(·, λ) depends continuously on (x, λ), and a “continuous” choice of an orienta-
tion of D1H(x, λ) is assigned for any (x, λ). Thus, an oriented homotopy induces
an orientation on any partial map Hλ. In [2], it is proved that an orientation of any
given partial map Hλ induces a unique compatible orientation on H. As a conse-
quence of this we observe the following. Let T : E → E be a linear operator in a
real Banach space of the form I − K, where I is the identity and K is a compact
operator. Then T has a canonical orientation induced by the natural orientation of
I through the homotopy H(x, λ) = x − λKx. When T happens to be an isomor-
phism (i.e. when 1 is not an eigenvalue of K), two associated orientations can be
considered: the natural one and the canonical one. We define the sign of T to be
1 if these two orientations coincide and −1 otherwise. One can show that when E
is finite dimensional (or, more generally, when I − T has finite dimensional range),
signT coincides with the sign of the determinant of T . Actually, we point out that,
in general, still under the assumption that T = I −K is invertible, signT coincides
with the sign of the Leray-Schauder index of T at zero (i.e. the Leray-Schauder
degree of T in a ball around zero).

The orientation of the composition gf of two oriented maps, f and g, can be
defined as in the linear case. With this induced orientation, gf will be called the
oriented composition of f and g. From now on, the composition of two (or more)
oriented maps will be regarded as an oriented composition.

Let f : M → N be an oriented map. Given an open subset U of M and
an element y ∈ N , we say that the triple (f, U, y) is admissible if f−1(y) ∩ U is
compact. The degree introduced in [1] is an integer valued function defined in the
class of all the admissible triples and satisfying the following main properties:

Normalization. If f : M → N is a naturally oriented diffeomorphism and
y ∈ N , then

deg (f,M, y) = 1.

Additivity. If (f,M, y) is an admissible triple and U1, U2 are two open disjoint
subsets of M such that f−1(y) ⊂ U1 ∪ U2, then

deg (f,M, y) = deg (f, U1, y) + deg (f, U2, y).

Homotopy invariance. Let H : M × [0, 1]→ N be an oriented homotopy and
let y : [0, 1]→ N be continuous. If the set {(x, λ) ∈ M × [0, 1] : H(x, λ) = y(λ)} is
compact, then deg (Hλ,M, y(λ)) does not depend on λ.

The degree of an admissible triple (f, U, y) is firstly defined when y is a regular
value (for f in U) as

deg (f, U, y) =
∑

x∈f−1(y)

signDf(x).
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This restrictive assumption on y is then removed by means of the following lemma
of [1].

Lemma 2.1 Let (f, U, y) be admissible and let W1 and W2 be two open neighbor-
hoods of f−1(y) such that W 1 ∪W 2 ⊂ U and f is proper in W 1 ∪W 2. Then there
exists a neighborhood V of y such that for any pair of regular values y1, y2 ∈ V one
has

deg(f,W1, y1) = deg(f,W2, y2).

Lemma 2.1 justifies the following definition of degree for general admissible
triples, taking also into account that Fredholm maps are locally proper.

Definition 2.2 Let (f, U, y) be admissible and let W be any open neighborhood of
f−1(y) such that W ⊂ U and f is proper on W . The degree of (f, U, y) is given by

deg(f, U, y) := deg(f,W, z),

where z is any regular value for f in W sufficiently close to y.

As pointed out in [1], no infinite dimensional version of the Sard Theorem is
needed in the above definition, since the existence of a sequence of regular values for
f |W which converges to y is a consequence of the Implicit Function Theorem and
the classical Sard-Brown Lemma.

This notion of degree can be compared with the classical ones of Brouwer and
Leray-Schauder as follows.

Assume that f : M → N acts between connected finite dimensional oriented
manifolds (of the same dimension) and M is compact (or, more generally, assume
that f is proper). Thus, the classical Brouwer degree, degB f , is defined. In this
case, if f is C1, the orientation associated in [1] to the pair of orientations of M and
N is such that deg(f,M, y) = degB f , for all y ∈ N .

As regards the Leray-Schauder degree, let f : Ω → E be a C1 compact vector
field on a bounded open subset Ω of a real Banach space E. Assume that f admits
a continuous extension (still denoted by f) to the closure Ω of Ω. If y 6∈ f(∂Ω),
the Leray-Schauder degree degLS(f,Ω, y) is defined. It can be shown that if f is
canonically oriented (i.e. Df(x) has the canonical orientation for any x ∈ Ω), then
deg(f,Ω, y), which is clearly defined since f is proper on Ω and f−1(y) ∩ ∂Ω = ∅,
coincides with degLS(f,Ω, y).

Given an oriented map f : M → N , the degree deg(f,M, y) does not neces-
sarily depend continuously on y. To see this, observe, for instance, that the triple
(exp,R, y) is admissible for all y ∈ R, but the map y 7→ deg(exp,R, y) is discontin-
uous at y = 0. To overcome this inconvenience we introduce the boundary set ∂f of
f , which is a subset of N with the property that the map y 7→ deg(f,M, y) is well
defined and continuous when restricted to N \ ∂f .
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Given y ∈ N , we say that f is y-proper if there exists a neighborhood V of y
such that f−1(K) is compact for any compact subset K of V . Clearly, the set

{y ∈ N : f is y-proper}

is open in N . Consequently, its complement, the boundary set of f , denoted by ∂f ,
is closed. As shown in Proposition 2.3 below, a map f : M → N is proper if and
only if ∂f is empty.

Given an open subset U of M and y ∈ N , we say that f is y-proper in U if it
is y-proper the restriction f |U of f to U . We will denote ∂(f, U) := ∂(f |U). The
symbol “∂” in this notation is justified by the fact that, in many instances, ∂(f, U)
coincides with f(∂U), where, as usual, ∂U stands for the boundary of U .

In the following proposition we collect some properties of the boundary set which
will be useful in the next sections. Let us point out in particular that, as a conse-
quence of 2) below, when f : Ω → E is a compact vector field on the closure of a
bounded open subset Ω of a Banach space E, then ∂(f,Ω) := f(∂Ω).

Proposition 2.3 Let f : M → N and g : N → Z be two continuous maps between
Banach manifolds. The following properties hold true:

1) If K is any compact subset of N such that K∩∂f = ∅, then f−1(K) is compact.
In particular, if ∂f = ∅, then f is proper.

2) Given any open set U ⊂ M , one has f(∂U) ⊂ ∂(f, U). Moreover, if f is
proper on the closure U of U , then ∂(f, U) = f(∂U).

3) If C ⊂M is a closed set, then f(C)∪∂f is closed. In particular, as well-known,
if ∂f = ∅ (i.e. f is proper), then f(C) is closed.

4) Let y 6∈ ∂f . Let U be a family of pairwise disjoint open subsets of M whose
union contains f−1(y). Then there exists an open neighborhood V of y such
that, for any compact K ⊂ V and any U ∈ U , the set f−1(K)∩U is compact.
In particular, y 6∈ ∂(f, U) for all U ∈ U .

5) ∂(gf) ⊂ g(∂f) ∪ ∂g.

Proof. 1) By the definition of ∂f , for any y ∈ K there exists an open neigh-
borhood Vy of y such that f is proper as a map from f−1(Vy) to Vy. For any y ∈ K,
let Wy be an open neighborhood of y such that W y ⊂ Vy. Clearly, for any y ∈ K,
f−1(W y ∩K) is compact. On the other hand, the compact set K can be covered by
a finite number of Wy’s, say Wy1 ,Wy2 ,...,Wyn . Therefore,

f−1(K) = f−1((∪ni=1W yi) ∩K) = ∪ni=1f
−1(W yi ∩K)

is compact, being the union of a finite number of compact sets.
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2) Take y ∈ f(∂U) and let x ∈ ∂U be such that f(x) = y. Given a sequence {xn}
in U converging to x, consider the compact set K = {f(xn) : n ∈ N}∪{y}. Clearly,
given any closed neighborhood C of y, the set U ∩ f−1(C ∩K) is not compact, since
{xn} converges to x 6∈ U . Thus, f(∂U) ⊂ ∂(f, U). Assume now that f is proper
in U . We need to show that N \ f(∂U) ⊂ N \ ∂(f, U). Take y 6∈ f(∂U). Then,
since f is proper, V = N \ f(∂U) is an open neighborhood of y. Now, if K is
any compact subset of V , then f−1(K) ∩ U is compact. Moreover, by construction,
f−1(K)∩ ∂U = ∅. Consequently, the set f−1(K)∩U = f−1(K)∩U is compact, i.e.
f is y-proper on U .

3) Let {yn} be a sequence in f(C) ∪ ∂f converging to y ∈ N . If yn ∈ ∂f for
infinitely many n, then there exists in ∂f a subsequence of {yn} converging to y so
that, ∂f being closed, y ∈ ∂f . Otherwise, there exists n ∈ N such that yn ∈ f(C)
for n > n. Thus, for any n > n, there exists xn ∈ C such that f(xn) = yn. Suppose
y 6∈ ∂f . Since N \∂f is open, without loss of generality we may assume yn ∈ N \∂f
for all n > n. Therefore, K = {yn : n > n} ∪ {y} is a compact subset of N \ ∂f .
Hence, as proved above, f−1(K) is compact and, consequently, f−1(K) ∩ C is a
compact subset of M containing {xn : n > n}. Thus, passing to a subsequence if
necessary, we can assume xn → x ∈ C, so that f(x) = y ∈ f(C).

4) Consider the closed set M \ (∪U∈UU). By 3) above, f(M \ (∪U∈UU))∪∂f is a
closed subset of N not containing y. Therefore, V = N \ (f(M \ (∪U∈UU)) ∪ ∂f) is
an open neighborhood of y. Now, if K is any compact subset of V , then, by 1), the
set f−1(K) is compact and, taking into account that any U is also closed in ∪U∈UU ,
we have that f−1(K) ∩ U is compact too.

5) We can prove, equivalently, that if g is z-proper and g−1(z) ∩ ∂f = ∅, then
gf is z-proper. To this end, take z 6∈ ∂g. By 3), the set g(∂f) ∪ ∂g is closed and,
since z 6∈ g(∂f), V = Z \ (g(∂f) ∪ ∂g) is an open neighborhood of z. Therefore, for
any compact K ⊂ V , g−1(K) is compact and, since g−1(K) ∩ ∂f = ∅, (gf)−1(K) =
f−1(g−1(K)) is compact as well.

Let us now go back to the degree and conclude this section by introducing a
notation which will be used in some of our statements below.

If f : M → N is an oriented map (between real Banach manifolds), then, given
y ∈ N \ ∂f , deg(f,M, y) is well defined and, because of the Homotopy Property
of the degree, depends only on the component V of N \ ∂f containing y. This
common value will be denoted deg(f,M, V ). More generally, given a not necessarily
connected open subset V of N , with the symbol deg(f,M, V ) we shall understand
that V ∩ ∂f = ∅ and that deg(f,M, y) is independent of y ∈ V .

3 The Multiplicativity Property

In this section we are interested in obtaining some extensions of the classical Leray
Product Theorem (see e.g. [19]) both for oriented maps between Banach manifolds
and, in the not necessarily C1 case, for compact vector fields in Banach spaces.
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The first result is the following multiplicativity formula for the degree of oriented
maps between Banach manifolds.

Theorem 3.1 (Multiplicativity). Let M,N and Z be real Banach manifolds, f :
M → N and g : N → Z oriented maps, C a closed subset of N containing ∂f .
Then, for any z /∈ g(C) ∪ ∂g one has

deg(gf,M, z) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ),

where gf is the oriented composition of f and g, and V denotes the family of the
components of N \C. Therefore, if W is any connected open subset of Z\(g(C)∪∂g)
one has

deg(gf,M,W ) =
∑
V ∈V

deg(g, V,W ) deg(f,M, V ).

Before proving Theorem 3.1, it is convenient to make the following preliminary
comments to the statement.

a) By assumption, g is z-proper and g−1(z) ∩ ∂f = ∅. Therefore, by 5) of
Proposition 2.3, it follows that z 6∈ ∂(gf). Thus, deg(gf,M, z) is defined.

b) Since g−1(z) ∩ C = ∅, by 4) of Proposition 2.3 it follows that z 6∈ ∂(g, V ) for
any component V of N \ C. Thus deg(g, V, z) is defined. Moreover, all but a finite
number of the terms deg(g, V, z) are equal to zero, since V is an open covering of
pairwise disjoint sets of the compact set g−1(z). Consequently, the above sum is in
fact finite.

Proof. As observed above, the assumptions imply that the composition gf is
z-proper on M .

Assume first that z is a regular value of gf . Hence, (gf)−1(z) is a finite set and

deg(gf,M, z) =
∑

x∈(gf)−1(z)

signD(gf)(x).

Since f and g are Fredholm of index zero, then z is a regular value for g and any
y ∈ g−1(z) is a regular value for f . Thus,∑

x∈(gf)−1(z)

signD(gf)(x) =
∑

x∈(gf)−1(z)

signDg(f(x))signDf(x) =

∑
y∈g−1(z)

(
∑

x∈f−1(y)

signDf(x))signDg(y) =
∑

y∈g−1(z)

signDg(y) deg(f,M, y).

Since, by assumption, z ∈ Z \ g(C), by considering the family V of the components
of N \ C, we can write∑

y∈g−1(z)

signDg(y) deg(f,M, y) =
∑
V ∈V

∑
y∈g−1(z)∩V

signDg(y) deg(f,M, y) =
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∑
V ∈V

∑
y∈g−1(z)∩V

signDg(y) deg(f,M, V ) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ).

Thus, the multiplicativity formula for the degree is proved in the case when z is, in
addition, a regular value of gf .

Consider now the general case and take any z 6∈ (g(C)∪∂g). As a consequence of
3) of Proposition 2.3, Z \ (g(C)∪∂g) is an open set, so that, if z is any regular value
for gf in the component of Z \ (g(C) ∪ ∂g) containing z, there exists a continuous
path joining z and z and having image K contained in Z \ (g(C) ∪ ∂g). Clearly,
K is compact and K ∩ ∂(gf) = ∅. Hence, (gf)−1(K) is compact, so that, by the
homotopy invariance of the degree, one has

deg(gf,M, z) = deg(gf,M, z).

Therefore, by the first part of the proof,

deg(gf,M, z) =
∑
V ∈V

deg(g, V, z) deg(f,M, V ).

On the other hand, by taking into account again that K ⊂ Z\(g(C)∪∂g), we obtain
that g−1(K) is compact and contained in N \C. Moreover, since any V ∈ V , being
a component on N \ C, is closed, the set g−1(K) ∩ V is compact. Consequently,
again by the homotopy invariance of the degree, it follows

deg(g, V, z) = deg(g, V, z), ∀ V ∈ V .

This completes the proof.

In many situations, the maps f and g above turn out to be proper. Hence, if
this is the case, ∂f and ∂g are empty. Therefore, by taking C = ∅, we obtain the
following simplified version of Theorem 3.1.

Corollary 3.2 Let f : M → N and g : N → Z be two proper oriented maps. Let V
be the family of the connected component of N . Then, for any connected and open
subset W of Z, one has

deg(gf,M,W ) =
∑
V ∈V

deg(g, V,W ) deg(f,M, V ).

In the case of finite dimensional oriented manifolds, one can clearly extend to
not necessarily proper maps the notion of Brouwer degree for triples (f,M, y) with
f : M → N continuous and y 6∈ ∂f . This extended notion of degree will be denoted
by degB(f,M, y). In this context, by using a standard smooth approximation of
continuous maps, from Theorem 3.1 we obtain the following extension of the usual
version of the multiplicativity property for Brouwer degree (see e.g. [3, 15, 17, 19]).
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Theorem 3.3 Let M,N , and Z be oriented finite dimensional manifolds, f : M →
N and g : N → Z be continuous maps, C a closed subset of N containing ∂f . Then,
for any z /∈ g(C) ∪ ∂g one has

degB(gf,M, z) =
∑
V ∈V

degB(g, V, z) degB(f,M, V ),

where V denotes the family of the components of N \ C. Therefore, if W is any
connected open subset of Z \ (g(C ∪ ∂g) one has

degB(gf,M,W ) =
∑
V ∈V

degB(g, V,W ) degB(f,M, V ).

An immediate consequence of Theorem 3.3 is the following well-known product
formula (see [12, 13, 16]).

Corollary 3.4 Let f : M → N and g : N → Z be two continuous maps between
compact, connected and oriented finite dimensional manifolds. Then

degB gf = degB g degB f.

Let now Ω be a, not necessarily bounded, open subset of a Banach space E, and
let f : Ω → E be a compact vector field. Take y 6∈ ∂(f,Ω). Hence, f−1(y) is a
compact subset of Ω. Consequently, it makes sense to define the Leray-Schauder
degree of f in Ω with respect to y as follows:

degLS(f,Ω, y) := degLS(f,Ω1, y),

where Ω1 is any bounded open subset of Ω such that Ω1 ⊂ Ω and f−1(y) ⊂ Ω1.
Clearly, the excision property of the Leray-Schauder degree guarantees that the
above definition is independent of Ω1. In particular, if Ω is bounded and f is
defined on Ω, then, as already observed, f is proper on Ω and, by 2) of Proposition
2.3, ∂(f,Ω) = f(∂Ω). Thus, as usual, we obtain that the degree is defined for
y 6∈ f(∂Ω). More generally, if f is defined only on ∂Ω and y 6∈ f(∂Ω), then again
we will use the notation degLS(f,Ω, y) to indicate the degree of any compact vector
field defined on Ω and coinciding with f on ∂Ω. This makes sense because of the
boundary dependence property of the Leray-Schauder degree.

In the context of compact vector fields in Banach spaces, the analog of Theorem
3.1 is the following result, which is an extension of the classical Leray Product
Theorem (see e.g. [3, 15, 17, 19]). We point out that this extension cannot be
considered a corollary of Theorem 3.1, since the maps are not necessarily of class
C1. Nevertheless, the proof is similar and will be omitted.
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Theorem 3.5 Let E be a Banach space and Ω an open subset of E. Let f : Ω→ E
and g : Ω̃ → E be (continuous) compact vector fields, where Ω̃ is an open subset
of E containing f(Ω). Then, if C is a closed subset of Ω̃ containing ∂(f,Ω) and
z 6∈ g(C) ∪ ∂(g, Ω̃), one has

degLS(gf,Ω, z) =
∑
V ∈V

degLS(g, V, z) degLS(f,Ω, V ),

where V denotes the family of the components of Ω̃ \ C. Therefore, if W is any
connected open subset of E \ (g(C) ∪ ∂(g, Ω̃)) one has

degLS(gf,Ω,W ) =
∑
V ∈V

degLS(g, V,W ) degLS(f,Ω, V ).

From Theorem 3.5, we obtain the following well known multiplicativity formula
for Leray-Schauder degree. In the proof of Corollary 3.6, we will make use of the
following fact, which we recall here for completeness. If f : Ω → E is a compact
vector field on a bounded open subset Ω of E, then there exists a proper compact
vector field f̂ : E → E extending f . To see this, suppose f of the form f(x) =
x−ϕ(x), with ϕ : Ω→ E compact and recall that, since ϕ(Ω) is relatively compact,
by Dugundji extension theorem (see [6]) there exists ϕ̂ : E → E coinciding with
ϕ in Ω and with image contained in co ϕ(Ω), the convex hull of ϕ(Ω). By Mazur
theorem, co ϕ(Ω) is relatively compact (see e.g. [7]). Thus, f̂(x) = x − ϕ̂(x) is
a compact vector field extending f and, as already observed in the Introduction,
proper since ||f̂(x)|| → ∞ as ||x|| → ∞.

Corollary 3.6 Let E be a Banach space and Ω be a bounded open subset of E. Let
f : ∂Ω → E and g : f(∂Ω) → E be a compact vector fields. Then, if z 6∈ gf(∂Ω),
one has

degLS(gf,Ω, z) =
∑

V ∈V,V 6=V∞
degLS(g, V, z) degLS(f,Ω, V ),

where V denotes the family of the components of E \f(∂Ω) and V∞ is the unbounded
component.

Proof. Let f̂ : E → E and ĝ : E → E be proper compact vector fields extending
f and g respectively. Hence, ∂ĝ = ∅ and, by 2) of Proposition 2.3, ∂(f̂ ,Ω) = f(∂Ω).
Therefore, by applying to f̂ and ĝ Theorem 3.5 with Ω̃ = E and C = f(∂Ω), we
obtain, for any z 6∈ ĝf̂(∂Ω),

degLS(ĝf̂ ,Ω, z) =
∑
V ∈V

degLS(ĝ, V, z) degLS(f̂ ,Ω, V ),

where V denotes the family of the components of E \ f(∂Ω).
Observe now that that one can restrict the above sum only to the bounded

components of E \ f(∂Ω) since degLS(f̂ ,Ω, V∞) = 0. To see this, it is enough to
compute degLS(f̂ ,Ω, y) with y 6∈ f̂(Ω). Moreover, if V is any bounded component
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of E \ f(∂Ω), since ∂V ⊂ f(∂Ω), then ĝ = g on ∂V . Hence, by recalling that the
degree depends only on the restriction of a map to the boundary of an open bounded
set, the above equality becomes

degLS(gf,Ω, z) =
∑

V ∈V,V 6=V∞
degLS(g, V, z) degLS(f,Ω, V ),

as claimed.

The following more general version of Theorem 3.1 can be obtained by the same
proof as that given above.

Theorem 3.7 (Generalized multiplicativity). Let M,N and Z be Banach manifolds
and let f : M → N and g : N → Z be oriented maps. Given z ∈ Z \ (g(∂f) ∪ ∂g),
let V be a family of pairwise disjoint open subsets of N \ ∂f such that

i) g−1(z) ⊂ ∪V ∈VV ;

ii) for any V ∈ V and for any y1, y2 ∈ V, deg(f,M, y1) = deg(f,M, y2).

Then,
deg(gf,M, z) =

∑
V ∈V

deg(g, V, z) deg(f,M, V ).

By taking in Theorem 3.7 the map f to be the identity with the natural orienta-
tion recalled in Section 2, we have deg(f,M, V ) = 1. Consequently, we immediately
obtain the following generalized additivity formula for the degree.

Theorem 3.8 (Generalized additivity). Let g : N → Z be an oriented map and
let z ∈ Z \ ∂g. Let V be a family of pairwise disjoint open subsets of N such that
g−1(z) ⊂ ∪V ∈VV . Then,

deg(g,N, z) =
∑
V ∈V

deg(g, V, z).

Another nice consequence of Theorem 3.7 is the following formula.

Corollary 3.9 Let f : M → N and g : N → Z be two oriented maps. For any k ∈
Z, let Vk denote the open subset of N given by Vk = {y ∈ N \∂f : deg(f,M, y) = k}.
Then, given z ∈ Z \ (g(∂f) ∪ ∂g), one has

deg(gf,M, z) =
∑
k∈Z

k deg(g, Vk, z).
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4 Some Jordan like theorems

We apply now the multiplicativity formulas obtained in the previous section to
deduce some homotopic versions of Jordan’s theorem.

Let X and Y be two subsets of a Banach space E. We say that X and Y have the
same homotopy type with respect to compact vector fields if there exist two compact
vector fields f : X → Y and g : Y → X such that gf and fg are homotopic to IX
(the identity on X) and IY respectively, through homotopies which are completely
continuous perturbations of the identity.

Theorem 4.1 is a consequence of the infinite dimensional version of Alexander-
Pontriagin duality due to Gȩba-Granas (see [11] and references therein). Here we
give a simple proof based on degree theory in the outline of the argument due to
Leray in [14], where he assumes that the two sets are homeomorphic.

Theorem 4.1 Let E be a Banach space and let X and Y be two bounded closed
subsets of E having the same homotopy type with respect to compact vector fields.
Then, E \X and E \ Y have the same number of components.

Proof. By assumption there exist two compact vector fields f : X → Y and g :
Y → X and two homotopies H : X × [0, 1]→ X and K : Y × [0, 1]→ Y of the form
H(x, λ) = x− h(x, λ), K(y, λ) = y − k(y, λ) respectively, where h : X × [0, 1]→ E
and k : Y × [0, 1] → E are compact maps such that h(·, 0) = 0, h(·, 1) = IX − gf ,
k(·, 0) = 0, k(·, 1) = IY − fg. As already observed in the above section, f and g can
be extended to proper compact vector fields on E, say f̂ : E → E and ĝ : E → E
respectively, such that I − f̂ and I − ĝ have relatively compact image.

Let U and V denote the family of the components of E\X and E\Y respectively.
Observe first that, for any U ∈ U and V ∈ V , degLS(f̂ , U, V ) and degLS(ĝ, V, U) are
defined. In fact, take for instance any V ∈ V and y ∈ V . Since f̂ is proper in E
(and, thus, in U), by 2) of Proposition 2.3, ∂(f̂ , U) = f(∂U). On the other hand,
since ∂U ⊂ X, it follows f(∂U) ⊂ Y. Hence, ∂(f̂ , U) ⊂ Y , so that degLS(f̂ , U, y)
makes sense. A similar argument holds for degLS(ĝ, V, x), x ∈ U .

Let G1 and G2 be the free abelian groups generated by U and V , respectively.
Define the homomorphisms ϕ : G1 → G2 and ψ : G2 → G1 by

ϕ(U) =
∑
V ∈V

degLS(f̂ , U, V )V, U ∈ U

and
ψ(V ) =

∑
U∈U

degLS(ĝ, V, U)U, V ∈ V .

The result follows if we show that ϕ and ψ are isomorphisms.
One has

ψϕ(U) = ψ(
∑
V ∈V

degLS(f̂ , U, V )V ) =
∑
V ∈V

degLS(f̂ , U, V )ψ(V ) =
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∑
V ∈V

( degLS(f̂ , U, V )
∑
W∈U

degLS(ĝ, V,W )W ) =

∑
W∈U

(
∑
V ∈V

degLS(f̂ , U, V ) degLS(ĝ, V,W ))W.

Our aim now is to apply to f̂ and ĝ the multiplicativity Theorem 3.5 with Ω = U ,
Ω̃ = E, C = Y . As observed above, Y is a closed subset of E containing ∂(f̂ , U).
Moreover, since ĝ(Y ) ⊂ X, the connected open subset W of E \ X is in fact a
connected open subset of E \ ĝ(Y ). Therefore, by Theorem 3.5, we obtain∑

W∈U
(
∑
V ∈V

degLS(f̂ , U, V ) degLS(ĝ, V,W ))W =
∑
W∈U

degLS(ĝf̂ , U,W )W.

Let h : (E × {0}) ∪ (X × [0, 1]) ∪ (E × {1})→ E be the map defined by

h(x, λ) =


0 if λ = 0
h(x, λ) if (x, λ) ∈ X × [0, 1]

x− ĝf̂(x) if λ = 1.

Clearly, h is a continuous map defined on a closed subset of E × [0, 1] and it is easy
to check that its image is relatively compact. Hence, as previously observed, h can
be extended to a compact map ĥ : E×[0, 1]→ E. Consequently, the compact vector
field Ĥ = IE − ĥ is a proper homotopy joining the identity with ĝf̂ and satisfying
Ĥλ(X) := Ĥ(X,λ) ⊂ X for all λ ∈ [0, 1]. Moreover, as above, it is easily seen that
∂(Ĥλ, U) ⊂ X, ∀ λ ∈ [0, 1]. Therefore, degLS(Ĥλ, U,W ) is defined and independent
of λ. Hence,

degLS(I, U,W ) = degLS(Ĥ0, U,W ) = degLS(Ĥ1, U,W ) = degLS(ĝf̂ , U,W ).

Thus,
ψϕ(U) =

∑
W∈U

degLS(ĝf̂ , U,W )W =
∑
W∈U

degLS(I, U,W )W.

Clearly, degLS(I, U,W ) is equal to 1 if W = U and equal to 0 if W 6= U . Conse-
quently,

ψϕ(U) = U, U ∈ U .
By a similar argument we also obtain

ϕψ(V ) = V, V ∈ V .

The above equalities show that the free abelian groups G1 and G2 have the same
rank, that is, the families U and V have the same cardinality. This proves the
assertion.

Since any continuous map in Rn is a compact vector field, we obtain the following
extension of the well known Jordan Separation Theorem. The same result can also
be deduced as a consequence of the classical Alexander duality as is shown, for
instance, in [4]. Another elegant proof of the Jordan theorem can be found in [5].
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Theorem 4.2 Let X and Y be compact subsets of Rn having the same homotopy
type. Then, Rn \X and Rn \ Y have the same number of components.

We close the paper by noting that the multiplicativity property of the oriented
degree proved in Theorem 3.1 allows us to prove a quite general version in Banach
manifolds of a Jordan’s like separation theorem. To this end, let M and N be Banach
manifolds and let X and Y be two closed subsets of M and N respectively. We say
that (M,X) and (N, Y ) have the same proper oriented homotopy type, provided
that there exist two proper orientable maps f̂ : (M,X)→ (N, Y ) and ĝ : (N, Y )→
(M,X) such that ĝf̂ and f̂ ĝ are homotopic to the identity maps I(M,X) and I(N,Y )

through proper oriented homotopies respectively.
We close with the following result whose proof is in the outline of that of Theorem

4.1, and, therefore, will be omitted.

Theorem 4.3 Let M and N be two Banach manifolds and let X and Y be two
closed subsets of M and N respectively. Assume (M,X) and (N, Y ) have the same
proper oriented homotopy type. Then M \ X and N \ Y have the same number of
components.
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