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Abstract. In some previous papers we presented a fairly simple construction of a topo-

logical degree for C1 Fredholm maps of index zero between Banach manifolds which

verifies the three fundamental properties of the classical degree theory: normalization,

additivity and homotopy invariance. We show here that this degree is unique. Precisely,

by an axiomatic approach similar to the one due to Amann-Weiss, we prove that there

exists at most one real function satisfying the above properties, and this function must

be integer valued.
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1. Introduction

In [2] and [3] we developed a degree theory for a class of C1 Fredholm maps of index

zero between real Banach manifolds. By our construction we extended and simplified the

Elworthy-Tromba approach to the degree theory avoiding the concept of Fredholm structure

and any related notion of orientation on the source and target manifolds (see [6] and [7]).

To this purpose we introduced a concept of orientability for Fredholm maps of index zero

between Banach manifolds. This notion does not coincide with that given by Fitzpatrick,

Pejsachowicz and Rabier (see [8] and references therein), it is stable (in the sense that any

map “sufficiently close” to an orientable or nonorientable map inherits the same property),

and not based on the Leray-Schauder degree. Moreover, in the finite dimensional case, it

turns out to be equivalent to the concept of orientability for maps between not necessarily

orientable manifolds introduced, with completely different methods, by Dold in [5]. In

particular, when f : M → N is a map acting between finite dimensional orientable manifolds

of the same dimension, an orientation of f (in our sense) can be regarded as a pair of

orientations of M and N , up to an inversion of both of them.

Our notion of orientability is based on an elementary, purely algebraic, definition of

orientation for an algebraic Fredholm linear operator of index zero L : E → F acting

between real vector spaces (no additional structure is needed). When the vector spaces E

and F are actually Banach and the operator L is bounded, an orientation of L induces, by a

sort of continuity, an orientation on any operator L′ sufficiently close to L (in the operator

norm). Thus, roughly speaking, an oriented map from an open subset Ω of E into F is a

nonlinear Fredholm map of index zero f : Ω→ F together with a function α which assigns,

in a continuous way, an orientation α(x) of the Fréchet derivative Df(x) of f at any x ∈ Ω.

This notion of oriented map between real Banach spaces is easily extended to the context

of real Banach manifolds.

Concerning our notion of degree, consider two Banach manifolds M and N and let f :

M → N be an oriented Fredholm map of index zero. Given an open subset U of M and

an element y ∈ N , the triple (f, U, y) is said to be admissible if f−1(y) ∩ U is compact.

Our degree is defined as a map from the class of all admissible triples into Z such that the

classical properties of degree theory are verified.
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The most significant properties of the degree (and the related concept of orientation) are

proved in [2, 3]. The purpose of this paper is to investigate the problem of the uniqueness of

the degree, that is, the problem to determine which properties, thought as axioms, ensure

that there exists a unique map verifying those properties.

In their celebrated paper [1] of 1973 Amann and Weiss showed that both the Brouwer

degree and the Leray-Schauder degree are uniquely determined by three properties, namely

Normalization, Additivity and Homotopy invariance, which they considered as axioms. As

regards the sole finite dimensional case, the uniqueness of the Brouwer degree has been

previously established by Führer (see [9] and [10]).

In this paper we obtain an analogous result concerning our degree. Namely, we prove that

there exists at most one real valued map, defined in the class of the admissible triples, which

verifies a particular Normalization property (stated for oriented diffeomorphisms), with the

more classical Additivity and Homotopy invariance properties.

2. The concept of determinant in infinite dimension

Consider a real vector space E and denote by Ψ(E) the set of endomorphisms of E of the

form I −K, where K has finite dimensional image. It is known (see e.g. [11]) that a notion

of determinant is well defined for the operators of Ψ(E). Precisely, let T = I−K ∈ Ψ(E) be

given. If E0 is any nontrivial finite dimensional subspace of E containing the image of K, the

determinant of the restriction of T to E0 is well defined. It is easy to verify that this value

does not depend on E0. Thus, the determinant detT of T is defined as the determinant of

the restriction of T to any nontrivial finite dimensional subspace of E containing the image

of K.

This notion of determinant verifies the following property, which generalized the analogous

well known result in finite dimension. For the details see [4, Proposition 3.1].

Lemma 2.1. Let E and F be two real vector spaces. If S : F → E is an isomorphism and

T ∈ Ψ(E), then S−1TS ∈ Ψ(F ) and det(S−1TS) = det(T ).

3. Orientability for Fredholm maps

The section is devoted to a summary of the notion of orientability for nonlinear Fredholm

maps of index zero between Banach manifolds, introduced in [2, 3].

As a first step we consider two real vector spaces E and F and we give a definition

of orientation for a linear Fredholm operator L : E → F (at this level no topological

structure is needed). Let us recall that L is said to be (algebraic) Fredholm if KerL and

coKerL = F/ ImL are finite dimensional. The index of L is the integer

indL = dim KerL− dim coKerL.

Given a Fredholm operator of index zero L, we call corrector of L a linear operator

A : E → F such that

i) ImA has finite dimension,

ii) L+A is an isomorphism.

It is easy to check that the set C(L) of correctors of L is nonempty. We define in C(L)

the following equivalence relation. Given A,B ∈ C(L), consider the automorphism

T = (L+B)−1(L+A) = I − (L+B)−1(B −A)

of E. Clearly, K := (L + B)−1(B − A) has finite dimensional image. Therefore, the

determinant of T is well defined and nonzero. We say that A is equivalent to B or, more

precisely, A is L-equivalent to B, if

det
(
(L+B)−1(L+A)

)
> 0.
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In [2] it is shown that this is actually an equivalence relation on C(L) with two equivalence

classes. This relation provides a concept of orientation of L.

Definition 3.1. Let L be a linear Fredholm operator of index zero between real vector

spaces. Each one of the two classes of C(L) is an orientation of L, and L is oriented when

one of them is chosen. Any of the two orientations of L is called opposite to the other. If L

is oriented, the elements of its orientation are called the positive correctors of L.

The following notions of natural and unnatural orientations of an isomorphism will be

often mentioned throughout the paper.

Definition 3.2. An oriented isomorphism L is said to be naturally oriented if the trivial

operator is a positive corrector, and we will refer to this orientation as the natural orientation

of L. Conversely, L is unnaturally oriented if the trivial operator is not a positive corrector;

in this case L assumes the unnatural orientation. The sign of an oriented isomorphism L is

defined as signL = 1 if L is naturally oriented and signL = −1 otherwise.

From now on, the real vector spaces E and F will have the additional structure of Banach

spaces. Any Fredholm operator between Banach spaces will be assumed to be bounded.

Moreover, L(E,F ) will denote the Banach space of bounded linear operators from E into F

and Φ0(E,F ) will be the open subset of L(E,F ) of the Fredholm operators of index zero.

Given L ∈ Φ0(E,F ), the symbol C(L) now denotes, with a slight abuse of notation, the set

of bounded correctors of L, which is still nonempty. Of course, the definition of orientation

of L ∈ Φ0(E,F ) can be given as the choice of one of the two equivalence classes of bounded

correctors of L, according to the above equivalence relation.

In the context of Banach spaces an orientation of a bounded linear Fredholm operator

of index zero induces an orientation to any sufficiently close operator. Precisely, consider

L ∈ Φ0(E,F ) and a corrector A of L. Suppose that L is oriented with A positive corrector.

Since the set of the isomorphisms of E into F is open in L(E,F ), then A is a corrector of

every T in a suitable neighborhood W of L in Φ0(E,F ). Thus, any T ∈W can be oriented

by taking A as a positive corrector. This fact leads us to the following definition.

Definition 3.3. Let X be a topological space and h : X → Φ0(E,F ) a continuous map. An

orientation of h is a continuous choice of an orientation α(x) of h(x) for each x ∈ X, where

‘continuous’ means that for any x ∈ X there exists A ∈ α(x) which is a positive corrector of

h(x′) for any x′ in a neighborhood of x. A map is orientable when it admits an orientation

and oriented when an orientation is chosen.

The properties of this notion of orientation are discussed in [2, 3]. Here we recall just

those results which will be used in the sequel.

Proposition 3.4. An orientable map h : X → Φ0(E,F ) admits at least two orientations.

If, in particular, X is connected, then h admits exactly two orientations. In addition, if X

is simply connected and locally path connected, then h is orientable.

Remark 3.5. Referring to the above proposition, let α be an orientation of h and, for any

x ∈ X, assign to h(x) the opposite orientation α(x) of α(x). We obtain in this way an

orientation of h, which we call the opposite orientation of α. This explains why h admits at

least two orientations.

Notice that the set in which two orientations α and β of h coincide is open. For this

reason the set where β equals the opposite orientation α of α is open. Thus it turns out to

be open the set in which α and β do not coincide. Therefore, if X is connected, h admits

exactly two orientations, one the opposite of the other.

In the case when h(x) is an isomorphism for all x ∈ X, withX not necessarily connected, it

is easy to see, by Definition 3.3, that h is orientable and admits (at least) the two orientations,

say α and β, such that, for every x ∈ X, α(x) is the natural orientation of h(x) and β(x) is
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the unnatural one. We will call these orientations of h the natural and unnatural orientation,

respectively.

Definition 3.3 allows us to give a notion of orientability for Fredholm maps of index zero

between Banach spaces. Recall that, given an open subset Ω of E, a C1 map g : Ω → F is

Fredholm of index n if its Fréchet derivative, Dg(x), is a Fredholm operator of index n for

all x ∈ Ω.

Definition 3.6. An orientation of a Fredholm map of index zero g : Ω→ F is an orientation

of the derivative Dg : Ω→ Φ0(E,F ), and g is orientable, or oriented, if so is Dg according

to Definition 3.3.

The above definition can be extended to the context of real Banach manifolds. Recall

that, given two real Banach manifolds M and N , a C1 map f : M → N is Fredholm of index

n if its Fréchet derivative, Df(x) : TxM → Tf(x)N , is Fredholm of index n for any x ∈ M .

Actually, if M and N are such that there exists a Fredholm map of index zero f : M → N ,

then the two manifolds can be modeled on the same Banach space. Thus, we will proceed

by assuming that M and N are two real Banach manifolds, modeled on a Banach space E.

Definition 3.7. Let f : M → N be a Fredholm map of index zero. An orientation α of f is

a continuous choice of an orientation α(x) of Df(x) for any x ∈M ; where ‘continuous’ means

that, given a selection of positive correctors {Ax ∈ α(x)}x∈M , and two charts, φ : U → E of

M and ψ : V → E of N , with f(U) ⊆ V , the family of linear operators{
Dψ(f(φ−1(z)))Aφ−1(z)Dφ

−1(z)
}
z∈φ(U)

defines an orientation of the composite map ψfφ−1 : φ(U)→ E. The map f is orientable if

admits an orientation and oriented when an orientation is chosen.

The next property will play a role in the proof of Lemma 5.5.

Remark 3.8. Let f : M → N be an oriented map and call α its orientation. Consider two

charts, φ : U → E of M and ψ : V → E of N , with f(U) ⊆ V and U connected. Given

u0 ∈ U , let Au0
belong to α(u0). Without loss of generality suppose that, for any u in U ,

the operator Au, defined as

Au := Dψ−1(ψ(f(u)))
(
Dψ(f(u0))Au0

Dφ−1(φ(u0))
)
Dφ(u),

is a corrector of Df(u). Then, by Definitions 3.3 and 3.7, it is easy to see that Au is actually

a positive corrector of Df(u), that is, belongs to α(u). Roughly speaking, this property

asserts that, since there is a sort of continuous dependence on u of Au, then, if u is close to

u0, Au is a positive corrector of Df(u).

The following result is the analogue for Fredholm maps of Proposition 3.4 (see [2, 3]).

Proposition 3.9. An orientable map f : M → N admits at least two orientations. If, in

particular, M is connected, then f admits exactly two orientations. In addition, if M is

simply connected, then f is orientable.

Remark 3.10. Given f : M → N , if Df(x) is invertible for every x ∈ M , then f can be

oriented in such a way that Df(x) is naturally oriented for every x ∈ M . We call this

orientation the natural orientation of f . Analogously, if Df(x) is unnaturally oriented for

every x ∈M , we say that f has the unnatural orientation (see also Remark 3.5).

Definition 3.11. Let H : M × [0, 1] → N be a C1 map. We call H a Fredholm homotopy

if it is Fredholm of index 1 or, equivalently, if any partial map Ht : x 7→ H(x, t) (defined on

M) is Fredholm of index zero. An orientation α of H is a continuous choice of an orientation

α(x, t) of DHt(x) for any (x, t) ∈ M × [0, 1]; where ‘continuous’ means that given any two
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charts, φ : U → E of M and ψ : V → E of N , with H(U × [0, 1]) ⊆ V , the following map,

from φ(U)× [0, 1] into Φ0(E), defined by

(z, t) 7→ Dψ(H(φ−1(z), t))DHt(φ
−1(z))Dφ−1(z),

can be oriented (according to Definition 3.3) choosing as positive correctors the operators

Dψ(H(φ−1(z), t))ADφ−1(z),

with A ∈ α(φ−1(z), t) and (z, t) ∈ φ(U) × [0, 1] . The map H is orientable if it admits an

orientation and oriented when an orientation is chosen.

Given an oriented Fredholm homotopy H : M × [0, 1] → N , it is immediate to observe

that any partial map Ht : M → N is oriented. Conversely, we have the following result (see

[2, 3]).

Proposition 3.12. Given a Fredholm homotopy H : M × [0, 1] → N , suppose that Ht is

orientable for a given t ∈ [0, 1]. Then H is orientable. In addition, assume that Ht is

oriented and call α its orientation. Then there exists a unique orientation of H, say β, such

that β(x, t) = α(x) for any x ∈M .

4. Degree for oriented maps

In this section we give a summary of the construction, given in [2, 3], of the degree for

oriented Fredholm maps of index zero between Banach manifolds.

Definition 4.1. Let f : M → N be an oriented Fredholm map of index zero. Given an

open subset U of M and an element y ∈ N , the triple (f, U, y) is said to be admissible if

f−1(y) ∩ U is compact.

The degree is defined as a map which to every admissible triple (f, U, y) assigns an integer,

deg(f, U, y), in such a way that the following three fundamental properties hold:

i) (Normalization) Let f : M → N be a diffeomorphism onto an open subset of N . If

f is naturally oriented, then

deg(f,M, y) = 1, ∀y ∈ f(M).

ii) (Additivity) Given an admissible triple (f, U, y) and two disjoint open subsets U1,

U2 of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, then,

deg(f, U, y) = deg(f |U1
, U1, y) + deg(f |U2

, U2, y).

iii) (Homotopy invariance) Let H : M × [0, 1]→ N be an oriented Fredholm homotopy.

Let y : [0, 1]→ N be a continuous path. If the set

{(x, t) ∈M × [0, 1] : H(x, t) = y(t)}

is compact, then deg(Ht,M, y(t)) does not depend on t ∈ [0, 1].

The degree is first defined in the special case when (f, U, y) is a regular triple, that is,

when (f, U, y) is admissible and y is a regular value for f in U . This implies that f−1(y)∩U
is a finite set. In this case we define

deg(f, U, y) =
∑

x∈f−1(y)∩U

signDf(x), (4.1)

where, recalling Definition 3.2, signDf(x) = 1 if Df(x) : TxM → TyN is naturally oriented,

and signDf(x) = −1 otherwise.

Now, given any admissible triple (f, U, y), let us recall that, as a byproduct of Sard–Smale

Lemma [12], we know that the set of regular values of f is dense in N . Thus, using also

the fact that Fredholm maps are locally proper, we prove (see [2, Lemma 3.2]) that, given
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any admissible triple (f, U, y), if U1 and U2 are sufficiently small open neighborhoods of

f−1(y) ∩ U , and y1, y2 ∈ N are two regular values for f , sufficiently close to y, then

deg(f, U1, y1) = deg(f, U2, y2).

This property implies that the following definition of degree for general admissible triples

is well posed.

Definition 4.2. Let (f, U, y) be admissible and let W be any open neighborhood of f−1(y)∩
U such that W ⊆ U and f is proper on W . Let V be an open connected neighborhood of y

in N which is disjoint from f(∂W ). Define

deg(f, U, y) = deg(f,W, z),

where z is any regular value for f |W belonging to V .

5. Uniqueness of the degree

In this section we prove the main result of the paper, i.e. that there exists at most one

real map, defined in the class of all admissible triples, which verifies the three fundamental

properties: Normalization, Additivity and Homotopy invariance. Thus, such a map turns

out to be integer valued and necessarily coincides with the degree for oriented Fredholm maps

between real Banach manifolds, whose definition has been recalled in the above section.

We proceed as follows. Let T be the family of all admissible triples and call d : T → R a

map which verifies the three fundamental properties. We prove first that, if f : M → N is

an unnaturally oriented diffeomorphism into N , then

d(f,M, y) = −1, ∀y ∈ f(M). (5.1)

Therefore, as a consequence of the above equality and the first two fundamental proper-

ties, we show that, for every regular triple (f, U, y), one has

d(f, U, y) =
∑

x∈f−1(y)∩U

signDf(x). (5.2)

The above formula ensures the uniqueness of d on the subfamily of T of regular triples.

Moreover, by the Homotopy invariance property and by using, as a crucial tool, the local

properness of nonlinear Fredholm maps, we prove the uniqueness of d. Finally, since the

function deg verifies the three fundamental properties, one has d = deg.

To help the reader we divide the section in four steps.

Step 1. This is a preliminary part in which we show some properties of d following from

the Additivity.

Given any oriented Fredholm map f : M → N , the triple (f, ∅, y) is admissible for all

y ∈ N , being the empty set compact. Therefore, by the Additivity property, we get

d(f, ∅, y) = d(f |∅, ∅, y) + d(f |∅, ∅, y),

and

d(f |∅, ∅, y) = d(f |∅, ∅, y) + d(f |∅, ∅, y)

Hence, one has

d(f, ∅, y) = d(f |∅, ∅, y) = 0.

By the above equality and the Additivity we obtain the following (often neglected) Lo-

calization property.

Proposition 5.1 (Localization). Let (f, U, y) be an admissible triple. Then,

d(f, U, y) = d(f |U , U, y).
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Proof. By the Additivity one has

d(f, U, y) = d(f |U , U, y) + d(f |∅, ∅, y).

Then, the assertion follows being d(f |∅, ∅, y) = 0. �

Another consequence of the Additivity (and of the Localization) is the Excision property,

which basically assert that d(f, U, y) depends only on the behavior of f in any neighborhood

of f−1(y) ∩ U .

Proposition 5.2 (Excision). If (f, U, y) is admissible and V is an open subset of U such

that f−1(y) ∩ U ⊆ V , then (f, V, y) is admissible and

d(f, U, y) = d(f, V, y).

Proof. The triple (f, V, y) is clearly admissible. From the Additivity and the fact that

d(f |∅, ∅, y) = 0, it follows

d(f, U, y) = d(f |V , V, y).

On the other hand, the Localization implies that

d(f, V, y) = d(f |V , V, y).

Thus, the assertion follows. �

From the Excision we obtain the Existence property.

Proposition 5.3 (Existence). Let d(f, U, y) be nonzero. Then, the equation f(x) = y admits

at least one solution in U .

Proof. Assume that f−1(y) ∩ U is empty. By the Excision property, taking V = ∅, we get

d(f, U, y) = d(f, ∅, y) = 0,

which contradicts the assumption. �

Remark 5.4. As an immediate consequence of the Additivity and the Localization prop-

erties it follows that, given an admissible triple (f, U, y) and two disjoint open subsets U1,

U2 of U such that f−1(y) ∩ U ⊆ U1 ∪ U2, one has

d(f, U, y) = d(f, U1, y) + d(f, U2, y). (5.3)

The reader who is familiar with the degree theory probably observes that the above

equality (5.3) is the classical version of the Additivity property, which is usually mentioned

in the literature. Actually, we believe not possible to prove the above Localization property

by means of this classical version of the Additivity.

Step 2. Let f : M → N be an unnaturally oriented diffeomorphism and y ∈ f(M) be

given. In this step we prove that d(f,M, y) = −1.

Let φ : U → Ũ be a chart, where

i) U is an open subset of M containing f−1(y);

ii) Ũ is an open subset of the Banach space E.

Up to an isomorphism, we can regard E as

E = R× E2. (5.4)

Without loss of generality, assume that

Ũ = (−1, 1)× Ṽ ,

where Ṽ is an open ball in E2 centered at zero. Up to a diffeomorphism between Ũ and

another open subset of E, we can assume, without loss of generality, that φ(f−1(y)) ∈
(1/2, 1)× Ṽ .

Let γ : (−1, 1)→ [0, 1) be a map verifying the following assumptions:
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i) γ is C1 and surjective;

ii) γ(t) = γ(−t), for any t;

iii) γ(t) = |t|, for any t ∈ (−1,−1/2] ∪ [1/2, 1);

iv) γ′(t) 6= 0, for any t 6= 0.

Clearly, condition iv) implies that γ is injective on [0, 1) and on (−1, 0], and, by condition

ii), γ′(0) = 0. Consider the C1 map Γ : Ũ → Ũ , defined as Γ(t, x) = (γ(t), x). Given any

fixed (t, x) ∈ Ũ , the Fréchet derivative of Γ at (t, x) can be represented, with respect to the

splitting (5.4), by the matrix

DΓ(t, x) =

(
γ′(t) 0

0 I2

)
,

where I2 stands for the identity of E2. It is immediate to observe that DΓ(t, x) is a Fredholm

operator of index zero, as sum of a Fredholm operator of index zero and a finite dimensional

operator. Hence, Γ is a Fredholm map of index zero.

Define g : U → N by

g(u) =
(
fφ−1Γφ

)
(u).

Since g is the composition of Fredholm maps of index zero, then it is Fredholm of index

zero (recall that the composition of two Fredholm maps of indices m and n is Fredholm of

index m+ n).

Figure 1. The two diffeomorphic sets U and Ũ .

-

@@R

φ

R

E2 Ṽ
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Call X the submanifold of U given by X = φ−1({0} × Ṽ ). Call U− and U+ the open

subsets of U given by

U− = φ−1((−1, 0)× Ṽ ) and U+ = φ−1((0, 1)× Ṽ ). (5.5)

Since Γ is a diffeomorphism on (−1, 0)× Ṽ and on (0, 1)× Ṽ , so are the restrictions of g to

U− and U+.

By Proposition 3.9, g is orientable because its domain is simply connected, being dif-

feomorphic to Ũ . Since U is connected, again by Proposition 3.9, g admits exactly two

orientations, which are uniquely determined by the choice of the orientation of Dg at a

chosen point of U .

An useful property concerning the orientations of g is stated in the following lemma.

Lemma 5.5. Consider any orientation β of g. Then β is the natural orientation of g on

U− if and only if it is the unnatural orientation on U+.
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Proof. Let us start by introducing the linear operator A0 : E → E, defined, with respect to

the decomposition (5.4), by the matrix

A0 =

(
1 0

0 0

)
.

Since Ũ is simply connected, then Γ is orientable. Let Γ be oriented in such a way that

A0 is a positive corrector of DΓ(0, 0) and call α this orientation. Let δ > 0 be such that A0

is still a positive corrector of DΓ(t, 0) for all t ∈ (−δ, δ). For any t ∈ (−δ, δ), t 6= 0, one has

(
DΓ(t, 0)

)−1(
DΓ(t, 0) +A0

)
=

(
1 + 1

γ′(t) 0

0 I2

)
.

The above composition is a finite dimensional perturbation of the identity of E. Hence, its

determinant is well defined (see Section 2 ) and coincides with 1+ 1
γ′(t) , which is negative for

any negative t sufficiently close to zero, and positive for any positive t. Therefore, recalling

the equivalence relation defined in Section 3, the trivial operator is a positive corrector of

DΓ(t, 0) if t ∈ (0, δ), whereas it is not a positive corrector if t is negative and close to

zero. In other words, DΓ(t, 0) is naturally oriented if t ∈ (0, δ) and unnaturally oriented if

t is negative and close to zero. In addition, as the two restrictions of Γ to (0, 1) × Ṽ and

(−1, 0)× Ṽ are diffeomorphisms, then α(t, x) is the natural orientation of DΓ(t, x) for every

(t, x) ∈ (0, 1) × Ṽ , since we have proved that α(t, 0) is the natural orientation of DΓ(t, 0)

for some positive t. Analogously, α(t, x) is the unnatural orientation of DΓ(t, x) for every

(t, x) ∈ (−1, 0)× Ṽ .

Denote u0 := φ−1(0, 0) and ψ := φf−1 : f(U) → Ũ , which is a diffeomorphism. For any

u ∈ U , consider the linear operator Bu : TuM → Tg(u)N , defined as

Bu = Dψ−1
(
ψ(g(u))

)
A0Dφ(u) = Dψ−1

(
Γ(φ(u))

)
A0Dφ(u).

This operator has clearly finite dimensional image. In addition, a straightforward computa-

tion shows that, for any u,

Dψ(g(u))
(
Dg(u) +Bu

)
Dφ−1(φ(u)) = DΓ(φ(u)) +A0.

This implies that Bu is a corrector of Dg(u) for u close to u0.

Without loss of generality, we may suppose that Bu0
belongs to β(u0). By the property

of the orientation recalled in Remark 3.8, one has that Bu ∈ β(u) for any u in a suitable

neighborhood, say O, of u0 in U . Fix u ∈ O. One has(
Dg(u)

)−1 (
Dg(u) +Bu

)
=
(
Dg(u)

)−1 (
Dg(u) +Bu

)
Dφ−1(φ(u))Dφ(u) =

(
Dg(u)

)−1 [
D(fφ−1Γ)(φ(u)) +

(
Dψ−1(ψ(g(u)))A0

)]
Dφ(u) =(

Dg(u)
)−1

Dψ−1(ψ(g(u)))Dψ(g(u))[
D(fφ−1Γ)(φ(u)) +

(
Dψ−1(ψ(g(u)))A0

) ]
Dφ(u) =

(
Dg(u)

)−1
Dψ−1(ψ(g(u)))

[
DΓ(φ(u)) +A0

]
Dφ(u) =

(
Dφ(u)

)−1 (
DΓ(φ(u))

)−1 [
DΓ(φ(u)) +A0

]
Dφ(u).

The equality between the first and the last term of the above formula and Lemma 2.1 say

that the determinant of
(
Dg(u)

)−1(
Dg(u)+Bu

)
and that of

(
DΓ(φ(u))

)−1[
DΓ(φ(u))+A0

]
coincide. Therefore, recalling how Γ is oriented, β(u) turns out to be the natural orientation

of Dg(u) if u ∈ O ∩ U+, and the unnatural orientation of Dg(u) if u ∈ O ∩ U−. As U+ and

U− are connected, β is the natural orientation of g on U+ and the unnatural one on U−.
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Analogously, one can prove that the opposite orientation β of β is the natural orientation

of g on U− and the unnatural one on U+. This concludes the proof. �

Consider W+ = φ−1
(
(1/2, 1) × Ṽ

)
and observe that g coincides with f in W+, since

γ(t) = t for every t ∈ (1/2, 1).

Let us choose the orientation of g that coincides in W+ with the orientation of f . That

is, g is unnaturally oriented in W+. The Localization property implies that d(g,W+, y) and

d(f,W+, y) coincide.

Let p+ be the unique element in W+ such that g(p+) = y. Denote (tp+ , xp+) = φ(p+) and

p− = φ−1(−tp+ , xp+). By the definition of γ, one immediately has that g−1(y) = {p−, p+}.
Consider W− = φ−1

(
(−1,−1/2)× Ṽ

)
, which is clearly open in U , disjoint from W+ and

contains p−. Applying Lemma 5.5, we have that g|W− is a naturally oriented diffeomorphism.

The triple (g, U, y) is admissible and, by the Additivity property,

d(g, U, y) = d(g|W+
,W+, y) + d(g|W− ,W−, y). (5.6)

Let us show that the above value is zero. In fact, consider the homotopy

H : U × [−1, 1]→ N, H(u, s) = g(u),

and the path

σ : [−1, 1]→ N, σ(s) =
(
fφ−1

)
(stp+ , xp+).

The homotopy H is clearly a Fredholm homotopy, which we assume oriented with the

orientation induced by that of g.

The set S = {(u, s) ∈ U × [−1, 1] : H(u, s) = σ(s)} is compact, since it coincides with

φ−1([0, tp+ ]× {xp}).
This argument allows us to apply the Homotopy invariance property. Thus, d(g, U, σ(s))

is well defined and independent of s. Since g−1(σ(−1)) is empty and σ(1) = y, by the

Existence property one has

d(g, U, σ(−1)) = 0.

Hence, d(g, U, y) = 0 and then, recalling formula (5.6),

d(g|W+ ,W+, y) = −d(g|W− ,W−, y).

By the Normalization property we have deg(g|W− ,W−, y) = 1. In addition, since the

restrictions of f and g to W+ coincide, then d(f |W+
,W+, y) = d(g|W+

,W+, y). Hence

d(f |W+
,W+, y) = −1.

Finally, by Localization and Excision, we obtain d(f,M, y) = −1.

Step 3. We are now in the position to prove formula (5.2). Let (f, U, y) be a regular triple.

We know that f−1(y) ∩ U is a finite set, say {x1, ..., xn}. Since Df(xi) is an isomorphism

for any i = 1, ..., n, we can apply the Inverse Function Theorem, obtaining that there

exist n pairwise disjoint neighborhoods U1, ..., Un of x1, ..., xn, respectively, such that each

restriction f |Ui is a diffeomorphism onto an open subset of N . By the Additivity property

we have

d(f, U, y) =

n∑
i=1

d(f |Ui
, Ui, y).

On the other hand, by the above step 2 and the Normalization property, it follows

d(f |Ui
, Ui, y) = signDf(xi)

and this proves formula (5.2).

Step 4. In this final step we conclude the proof of the uniqueness of d. As a consequence

we obtain that d = deg on the whole family T .
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Let (f, U, y) be an admissible triple. Since f is locally proper, we can consider an open

subset W of U , containing f−1(y) ∩ U , such that W ⊆ U and f is proper on W . By the

Excision property (Proposition 5.2) we have

d(f, U, y) = d(f,W, y).

Being f a closed map on W , we can take a regular value z of f |W and a continuous path σ :

[0, 1]→ N with σ(0) = y, σ(1) = z and such that the set {(u, t) ∈W × [0, 1] : f(u) = y(t)}
is compact. By the Homotopy invariance property and formula (5.2) one has

d(f,W, y) = d(f,W, z) =
∑

x∈f−1(y)∩W

signDf(x),

and this shows the uniqueness of d.

At the end of this procedure we have obtained that any map defined on the class T of all

admissible triples and verifying the three fundamental properties is actually the degree.
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[3] P. Benevieri and M. Furi, On the concept of orientability for Fredholm maps between real Banach

manifolds, Topol. Methods Nonlinear Anal. 16 (2000), 279–306.

[4] P. Benevieri, M. Furi, M.P. Pera, M. Spadini, About the sign of oriented Fredholm operators between

Banach spaces Z. Anal. Anwendungen 22, n. 3 (2003), 619–645.

[5] A. Dold, Lectures on algebraic topology, Springer- Verlag, Berlin, 1972.

[6] K.D. Elworthy and A.J. Tromba, Differential structures and Fredholm maps on Banach manifolds, in

“Global Analysis”, S. S. Chern and S. Smale Eds., Proc. Symp. Pure Math., Vol. 15, 1970, 45–94.

[7] K.D. Elworthy and A.J. Tromba, Degree theory on Banach manifolds, in “Nonlinear Functional Anal-

ysis”, F. E. Browder Ed., Proc. Symp. Pure Math., Vol. 18 (Part 1), 1970, 86–94.

[8] M.P. Fitzpatrick, J. Pejsachowicz and P.J. Rabier, Orientability of Fredholm Families and Topological

Degree for Orientable Nonlinear Fredholm Mappings, Journal of Functional Analysis 124 (1994), 1–39.

[9] L. Führer, Theorie des Abbildungsgrades in endlichdimensionalen Räumen, Dissertation, Freie Univ.
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