
GLOBAL CONTINUATION OF THE EIGENVALUES OF A

PERTURBED LINEAR OPERATOR

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, MASSIMO FURI,
AND MARIA PATRIZIA PERA

Abstract. Let E,F be real Banach spaces and S the unit sphere of E. We

study a nonlinear eigenvalue problem of the type Lx + εN(x) = λCx, where
ε, λ are real parameters, L : E → F is a Fredholm linear operator of index

zero, C : E → F is a compact linear operator, and N : S → F is a compact

map. Given a solution (x, ε, λ) ∈ S × R × R of this problem, we say that
the first element x of the triple is a unit eigenvector corresponding to the

eigenpair (ε, λ).
Assuming that λ0 ∈ R is such that the kernel of L−λ0C is odd dimensional

and a natural transversality condition between the operators L − λ0C and

C is satisfied, we prove that, in the set of all the eigenpairs, the connected
component containing (0, λ0) is either unbounded or meets an eigenpair (0, λ1),

with λ1 6= λ0. Our approach is topological and based on the classical Leray–

Schauder degree.

Dedicated to the memory of our friend and outstanding mathematician Russell Johnson

1. Introduction

Let L be a self-adjoint operator defined on a real Hilbert space H, and let
N : H → H be a (nonlinear) continuous map. Consider the following so-called
nonlinear eigenvalue problem, depending on the real parameters ε, λ:

(1.1)

{
Lx+ εN(x) = λx,

‖x‖ = 1.

Under the assumptions that λ0 ∈ R is an isolated simple eigenvalue of L and that N
is Lipschitz continuous, R. Chiappinelli in [7] investigated a “persistence” property
of the eigenvalues and eigenvectors of problem (1.1) for small values of ε. More
precisely, he proved that, defined in a neighborhood V of 0 ∈ R, there exist two H-
valued Lipschitz curves, ε 7→ x1ε and ε 7→ x2ε, as well as two real Lipschitz functions,
ε 7→ λ1ε and ε 7→ λ2ε, such that for i = 1, 2 and ε ∈ V one has

Lxiε + εN(xiε) = λiεx
i
ε, ‖xiε‖ = 1.

In particular, when ε = 0, these four functions satisfy xi0 = xi, λi0 = λ0, where x1

and x2 are the two unit eigenvectors of L corresponding to the simple eigenvalue λ0.
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After the result of Chiappinelli, in a series of papers [8, 9, 10, 11, 6] the above
property of “local” persistence of the eigenvalues and eigenvectors was extended to
the case in which the multiplicity of the eigenvalue λ0 is bigger than one. In this
case the set of unit eigenvectors of L corresponding to λ0 is the (n−1)-dimensional
unit sphere Sn−1 = S ∩ Ker(L − λ0I), where S is the unit sphere in H, I is the
identity of H and n is the multiplicity of λ0.

Actually, the results of the recent papers [11, 6] are obtained in the more general
context of real Banach spaces. To better explain these results, consider the system

(1.2)

{
Lx+ εN(x) = λCx,
x ∈ ∂Ω,

where L,C : E → F are bounded linear operators between real Banach spaces, Ω
is an open subset of E containing the origin, and N : Ω→ F is a continuous map.

A solution of (1.2) is a triple (x, ε, λ) which satisfies the system. The first element
of the triple is a ∂Ω-eigenvector (or a unit eigenvector, when Ω is the unit ball of
E) of problem (1.2) corresponding to the eigenpair (ε, λ). The solutions and the
eigenpairs with ε = 0 are said to be trivial.

In [6] we studied the system (1.2), assuming that N is a locally α-Lipschitz map,
where α stands for the Kuratowski measure of noncompactness [16] (see also [2]).
Observe that this condition includes the case in which N is the sum of a locally
Lipschitz (e.g. C1) map and a compact nonlinear operator.

In the main result of [6] we proved that if λ0 ∈ R is such that

• the operator L− λ0C is Fredholm of index zero,
• the set Σ = ∂Ω ∩Ker(L− λ0C) of the trivial ∂Ω-eigenvectors is nonempty

and compact,
• Ker(L− λ0C) is odd dimensional,
• the transversality condition (L− λ0C)(E) + C(Ker(L− λ0C)) = F holds,

then we get the persistence of at least one element of Σ.
All the cited results have a “local” nature since, as pointed out, they are valid

only for small values of the parameter ε. In this paper, instead, we investigate the
problem regarding the “global” continuation of eigenvalues and eigenvectors. For
this purpose, we restrict the setting of [6], assuming, in addition, that the operators
N and C are compact, and Ω is bounded. Obviously, because of the compactness
of C, the first one of the above four hypotheses is the same as requiring that L is
Fredholm of index zero. The second one is automatically satisfied, Ω being bounded.
Under these assumptions, our main result, Theorem 3.7 below, states the following
“global continuation” property of the eigenpairs:

In the set of all the eigenpairs of (1.2), the connected component containing
(0, λ0) is either unbounded or meets a trivial eigenpair (0, λ1) with λ1 6= λ0.

Going back to Chiappinelli’s problem, we observe that, what in (1.2) is the
operator C, in (1.1) is the identity I of a Hilbert space H. Therefore, if H is
infinite dimensional, I is not compact, and one may think that our global existence
result does not apply in this case. However, it does apply when some appropriate
assumptions on L are satisfied. For example, when L is a compact (not necessarily
self-adjoint) operator. In fact, in this case, putting λ = 1/µ and ε = −σ/µ, the
equation Lx+ εN(x) = λx becomes x+ σN(x) = µLx, which is of the form (1.2).
Obviously, our result applies also when L is of the type λ∗I − C, with λ∗ ∈ R and
C a compact operator.
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Our arguments are essentially topological and mainly based upon degree theory.
Let us point out that here we use the classical Leray–Schauder degree, while the
results in [6] were obtained applying a different degree theory, which was developed
in [3, 4] (see also [5, 18]) for a class of noncompact perturbations of Fredholm maps
of index zero between Banach spaces, called α-Fredholm maps, whose definition is
related to the measure of noncompactness α.

In the last section of the paper we provide some examples, more or less compli-
cated, illustrating our main result.

We leave as an open problem the validity of a corresponding “global contin-
uation” property of the solution triples (see Conjecture 3.9). Although such a
conjecture is supported by some examples, up to now we have not been able either
to prove or disprove it.

2. Preliminaries

We recall that a subset X of a metric space is locally compact if any point of X
admits a compact neighborhood in X. Obviously any compact set, as well as any
relatively open subset of a locally compact set, is locally compact. The union of
two locally compact sets needs not be locally compact (think about an open disk
in C and add a point to the boundary).

Let f : X → Y be a continuous map between metric spaces. We recall that f is
said to be proper if f−1(K) is compact for any compact subset K of Y . It is easy
to check that, in this case, f sends closed sets into closed sets. The map f is said
to be compact if f(A) is relatively compact whenever A ⊆ X is bounded.

Ler E be a real Banach space. A compact vector field on a subset X of E is a
map of the type f = I − g, where I denotes the identity of E and g : X → E is a
compact map. One can check that, in this case, f is proper on any bounded and
closed subset of X.

Let Ω be a (possibly empty) bounded and open subset of E. Denote by Ω and
∂Ω the closure and the boundary of Ω, respectively. Call admissible any pair (f,Ω),
where f : X → E is a compact vector field such that Ω ⊆ X and 0 /∈ f(∂Ω). A
map H : Ω× [0, 1]→ E of the type (x, t) 7→ x−G(x, t) is said to be an admissible
homotopy if the image of G is relatively compact and (H(·, t),Ω) is an admissible
pair for any t ∈ [0, 1].

In a seminal paper [15], Jean Leray and Juliusz Pawel Schauder extended the
Brouwer topological degree to the infinite dimensional context by proving the ex-
istence of a function that to any admissible pair assigns an integer, denoted by
degLS(f,Ω) and called the Leray–Schauder degree of f in Ω (with target 0 ∈ E),
satisfying the following fundamental properties:

• (Normalization) Let Ω be a bounded open subset of E and let I be the
identity of E. If 0 ∈ Ω, then

degLS(I,Ω) = 1.

• (Additivity) Let (f,Ω) be an admissible pair, and Ω1, Ω2 two disjoint open
subsets of Ω such that f−1(0) ∩ Ω ⊆ Ω1 ∪ Ω2. Then,

degLS(f,Ω) = degLS(f,Ω1) + degLS(f,Ω2).

• (Homotopy invariance) If H : Ω × [0, 1] → E is an admissible homotopy,
then degLS(H(·, t),Ω) does not depend on t ∈ [0, 1].



4 P. BENEVIERI, A. CALAMAI, M. FURI, AND M.P. PERA

Other properties can be deduced from the above fundamental ones (see [1] for
an axiomatic approach to degree theory). We only mention three of them.

• (Excision) Let (f,Ω) be an admissible pair, and Ω0 an open subset of Ω
such that f−1(0) ∩ Ω ⊆ Ω0. Then,

degLS(f,Ω) = degLS(f,Ω0).

• (Boundary dependence) Let (f1,Ω) and (f2,Ω) be two admissible pairs. If
f1(x) = f2(x) for all x ∈ ∂Ω, then

degLS(f1,Ω) = degLS(f2,Ω).

• (Existence) Let (f,Ω) be an admissible pair. If

degLS(f,Ω) 6= 0,

then the equation f(x) = 0 has at least one solution in Ω.

In some sense, degLS(f,Ω) is an algebraic count of the solutions in Ω of the
equation f(x) = 0.

Let f be a linear compact vector field on E. That is, f = I − A, where A is a
compact linear operator acting on E. Clearly, given a bounded open neighborhood
Ω of the origin 0 ∈ E and µ ∈ R, the pair (I − µA,Ω) is admissible if and only if µ
is not a characteristic value of A; that is, if and only if λ = 1/µ is not an eigenvalue
of A. In [15] it was shown that if (I − µA,Ω) is admissible, then degLS(I − µA,Ω)
is either 1 or −1. Moreover, if µ0 is a characteristic value of A, then the function
µ 7→ degLS(I − µA,Ω), defined for 1/µ not in the spectrum σ(A) of A, has a sign-
jump crossing µ0 if and only if the algebraic multiplicity of µ0 is odd. Recall that
the algebraic multiplicity of µ0 is the dimension of ∪∞n=1 Ker(I − µ0A)n, which is
necessarily finite, due to the compactness of A, but greater than or equal to the
geometric multiplicity of µ0, which is the dimension of Ker(I − µ0A). Clearly, the
two multiplicities coincide if and only if Ker(I−µ0A) = Ker(I−µ0A)2. It is known
that the set of characteristic values of a compact operator is closed in R, and any
such value is isolated.

Let E and F be two real Banach spaces and let L(E,F ) denote the Banach space
of all bounded linear operators from E into F .

Let L,C ∈ L(E,F ) and consider the equation Lx − λCx = 0 depending on a
parameter λ ∈ R. By abuse of terminology, one says that λ0 is an eigenvalue of
Lx − λCx = 0 if this equation admits nontrivial solutions. Therefore, hereafter,
if A is an endomorphism of E, the two statements “λ0 is an eigenvalue of the
operator A” and “λ0 is an eigenvalue of the equation Ax = λx” will be regarded as
equivalent. Of course, for coherence, if µ0 is a characteristic value of A, we could
equivalently say that µ0 is an eigenvalue of the equation x−µAx = 0. Nevertheless,
we will avoid using this terminology for the sake of clarity.

Recall that an operator L ∈ L(E,F ) is called Fredholm if both the spaces KerL
and coKerL := F/L(E) have finite dimension. Consequently, the image L(E) of L
is closed in F . In fact, in the context of Banach spaces, the open mapping theorem
implies that the image of a bounded linear operator is closed, whenever it admits
a closed complement.

The index of a Fredholm operator L is the integer

indL = dim KerL− dim coKerL.

One can easily check that any linear operator from Rk to Rs has index k − s.
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A Fredholm operator of index r ∈ Z will be called a Φr-operator, or a Φ-operator
if its index is not specified. The set of Fredholm operators of index r from E into
F will be denoted by Φr(E,F ), while Φ(E,F ) is the set of all Fredholm operators.

It is known that, given any r ∈ Z, Φr(E,F ) is an open subset of L(E,F );
therefore, so is the set Φ(E,F ).

The following important properties of Fredholm operators will be utilized in
Section 4:

• If L ∈ Φr(E,F ) and C ∈ L(E,F ) is compact, then L+ C ∈ Φr(E,F );

• The composition of two Fredholm operators is a Fredholm operator whose
index is the sum of the indices of the composite operators.

3. Results

Let E and F be real Banach spaces. Consider the problem

(3.1)

{
Lx+ εN(x) = λCx,

x ∈ ∂Ω,

where ε, λ ∈ R and L, C, N , Ω satisfy the following basic assumptions:

• L : E → F is a linear Fredholm operator of index zero;
• C : E → F is a compact linear operator;
• Ω is a bounded open neighborhood of the origin of E;
• N : D → F is a compact map whose domain D ⊆ E contains the

boundary ∂Ω of Ω.

A solution of (3.1) is a triple (x, ε, λ) which satisfies the system. The first element
x ∈ ∂Ω is a ∂Ω-eigenvector (or a unit eigenvector, when Ω is the unit ball of E) of
problem (3.1) corresponding to the eigenpair (ε, λ).

The solutions and the eigenpairs with ε = 0 are said to be trivial. Therefore, all
the other solutions or eigenpairs are called nontrivial.

Hereafter, the set of the solutions of (3.1) will be denoted by S and the set of
the eigenpairs by E . Notice that E is the projection of S into R2.

In the special case in which D = E and N is linear, the choice of Ω is unimpor-
tant. Therefore, in this case, we will assume that Ω is the unit (open) ball of E,
and problem (3.1) might be written as

(3.2)

{
Lx+ εNx = λCx,

‖x‖ = 1.

Anyhow, whether or not N is linear, when Ω is the unit ball, the expression x ∈ ∂Ω
could be replaced by ‖x‖ = 1.

Our main result concerning problem (3.1) is Theorem 3.7 below, which asserts,
in particular, that, if KerL is odd dimensional and the transversality condition

(3.3) L(E) + C(KerL) = F

is satisfied, then, in the set of all the eigenpairs, the connected component containing
the “starting” eigenpair (0, 0) is either unbounded or meets a trivial eigenpair,
different from the starting one.

In order to prove Theorem 3.7 we need some preliminary results.

The next remark will be useful in order to check that the transversality condition
(3.3) holds for some examples that we will provide in Section 4. Recalling that the
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sum of a Fredholm operator L and a compact operator C is Fredholm of the same
index as L, in some examples L will be replaced by L−λ0C, with λ0 ∈ R. This will
be convenient in checking the condition (3.7) below, whose (3.3) is a special case.

Remark 3.1. Let L ∈ Φ0(E,F ) and C ∈ L(E,F ). Then, (3.3) is equivalent to
each one of the following conditions:

(3.4) L(E)⊕ C(KerL) = F,

(3.5) u ∈ KerL and Cu ∈ L(E) =⇒ u = 0.

The assertion “(3.3)=⇒ (3.4)” is an easy consequence of the fact that KerL and
coKerL have the same dimension, while the converse implication is obvious.

To see that (3.4) and (3.5) are equivalent, observe that from (3.4) one gets
that dimC(KerL) equals codimL(E), which is the same as dim KerL. Hence C
is injective on KerL, and this implies (3.5), since L(E) ∩ C(KerL) = {0}. The
converse implication is also true because, if (3.5) holds, the restriction of C to
KerL is one-to-one and, consequently, C(KerL) has the same dimension as KerL,
which equals the codimension of L(E). Thus, (3.4) follows, since (3.5) implies
L(E) ∩ C(KerL) = {0}.

Remark 3.2. Let, as above, L ∈ Φ0(E,F ) and C ∈ L(E,F ). Assume that KerL
is nontrivial and the transversality condition (3.3) is satisfied. Then λ = 0 is an
isolated eigenvalue of the equation Lx− λCx = 0. That is, there exists c > 0 such
that L− λC is invertible if 0 < |λ| < c.

One way to check the above assertion is by writing L − λC in a block-matrix
form according to the splittings

(3.6) E = E1 ⊕KerL, F = L(E)⊕ C(KerL),

where E1 is any closed complement of KerL and the decomposition of F is according
to condition (3.4) in Remark 3.1. We get

L− λC =

(
L11 − λC11 0

−λC21 −λC22

)
,

which can be represented as the composition

L− λC =

(
I11 0

0 −λI22

)(
L11 − λC11 0

C21 C22

)
,

where, in the left matrix, I11 and I22 are the identities on L(E) and C(KerL), re-
spectively. Since L11 and C22 are invertible, so is the right matrix for |λ| sufficiently
small. Hence, for the same values of λ, except λ = 0, L− λC is invertible.

Remark 3.3. Let L ∈ Φ0(E,F ) and C ∈ L(E,F ). Assume that KerL is nontrivial
and the transversality condition (3.3) is satisfied. Given λ∗ ∈ R such that L− λ∗C
is invertible, consider the endomorphism L = (L− λ∗C)−1L of E. Then

KerL = KerLn, ∀n ∈ N.
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To check the assertion, according to the splittings (3.6), one can write L in a
block-matrix form as

L =

[(
I11 0

0 −λ∗I22

)(
L11 − λ∗C11 0

C21 C22

)]−1(
L11 0

0 0

)

=

(
(L11 − λ∗C11)−1 0

H C−122

) I11 0

0 − 1
λ∗
I22

( L11 0

0 0

)

=

 (L11 − λ∗C11)−1L11 0

HL11 0

 .

From this representation of L one can easily deduce that KerL = KerL2. Thus, by
induction, one gets KerL = KerLn for all n ∈ N. The above assertion now follows
from the equality KerL = KerL, which is obvious.

In order to prove Theorem 3.7, three preliminary lemmas are needed. The first
one is related to the following transversality condition at an eigenvalue λ0 ∈ R of
the equation Lx− λCx = 0, of which (3.3) is the special case with λ0 = 0:

(3.7) (L− λ0C)(E) + C(Ker(L− λ0C)) = F.

Lemma 3.4 (On algebraic multiplicity). Let L ∈ Φ0(E,F ) and let C ∈ L(E,F ) be
a compact operator. If λ0 ∈ R is an eigenvalue of the equation Lx− λCx = 0 and
the transversality condition (3.7) is satisfied, then L−λC is invertible, provided that
|λ−λ0| is nonzero and sufficiently small. Moreover, if λ∗ ∈ R is such that L−λ∗C
is invertible, then λ0 − λ∗ is a characteristic value of the compact endomorphism
(L− λ∗C)−1C of E, whose algebraic multiplicity equals dim Ker(L− λ0C).

Proof. Notice that (3.7) may be regarded as the transversality condition (3.3) for
the equation Mx − σCx = 0, where M = L − λ0C and σ = λ − λ0. Therefore,
taking into account Remark 3.3, one gets

(3.8) KerM = KerMn, ∀n ∈ N,
where M = (M − σ∗C)−1M and σ∗ = λ∗ − λ0. Thus, from the equality

M = I + σ∗(M − σ∗C)−1C,

that can be easily verified by composing both its sides with the invertible operator
M − σ∗C ∈ L(E,F ), one gets that −σ∗ = λ0 − λ∗ is a characteristic value of
(M − σ∗C)−1C. Since this operator is equal to (L− λ∗C)−1C, one has

M = I + (λ∗ − λ0)(L− λ∗C)−1C.

The assertion now follows from (3.8) and the definition of the algebraic multiplicity
of a characteristic value of a compact endomorphism. �

Lemma 3.5 below appears very natural and intuitive. Its proof, however, seems
to us not to be trivial and we are unable to provide a simpler one.

Lemma 3.5 (On circumnavigation). Let K be a compact subset of a plane P and
U an open neighborhood of K in P. Assume that a straight line L in P meets K
just at one point p. If two points in L \ {p} are opposite and sufficiently close to
p, then in U \K there exists a closed path, running through them, whose winding
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number around p is nonzero. In particular, the points belong to the same connected
component of U \K.

Proof. We may assume that K is a subset of R2 (with the usual x and y coor-
dinates), that p is the origin of R2, that the line L is the y-axis, and that the
neighborhood U is bounded.

Let us first show that there exists a C∞ function ϕ : R2 → R with the following
properties:

(1) ∂ϕ
∂y (0, y) y > 0 for all y 6= 0;

(2) max{ϕ(x, y) : (x, y) ∈ K} < min{ϕ(x, y) : (x, y) ∈ ∂U}.
To see this, we seek ϕ among the functions of the type

(x, y) 7→ k ψ(x, y) + ω(x/a)y2,

where a and k are positive constants, ψ is a nonnegative smooth function which
vanishes exactly on the closed set K ∪L, and ω : R→ [0, 1] is smooth, zero outside
the interval (−2, 2) and such that ω(x) = 1 for |x| ≤ 1. The existence of the
functions ψ and ω is a well known fact in real analysis and differential geometry.

Notice that k ψ(0, y) + ω(0/a)y2 ≡ y2 for all a and k. Therefore, property (1) is
satisfied by any function of the above class.

We need to find a and k in order to satisfy (2). For this purpose, we first choose
a in such a way that α(a) < β(a), where

α(a) = max{y2 : (x, y) ∈ K, |x| ≤ 2a}
and

β(a) = min{y2 : (x, y) ∈ ∂U, |x| ≤ 2a}.
This is possible because of the compactness of K and ∂U , and the fact that K ∩L
is the origin of R2, which is contained in U . Actually, it is easy to verify that the
two functions α and β are monotone and that, as t → 0+, one has α(t) → 0 and
β(t)→ ` > 0, where ` = min{y2 : (0, y) ∈ ∂U}.

Thus, for any k > 0 we have

max{k ψ(x, y) + ω(x/a)y2 : (x, y) ∈ K} ≤ α(a)

and
min{k ψ(x, y) + ω(x/a)y2 : (x, y) ∈ ∂U, |x| ≤ a} ≥ β(a).

Consequently, if we take k such that

kmin{ψ(x, y) : (x, y) ∈ ∂U, |x| ≥ a} ≥ β(a),

the function
ϕ(x, y) := k ψ(x, y) + ω(x/a)y2

satisfies condition (2), as well. In fact, recalling that a has been chosen such that
α(a) < β(a), one has

max{ϕ(x, y) : (x, y) ∈ K} ≤ α(a)

and
β(a) ≤ min{ϕ(x, y) : (x, y) ∈ ∂U}.

In what follows, a point in L \ {p} is sufficiently close to p when it belongs to
the open neighborhood V = {(x, y) ∈ U : ϕ(x, y) < β(a)} of K.

Because of Sard’s Lemma, there exists a value c, between the two numbers α(a)
and β(a), which is regular for the restriction of ϕ to U . Consequently, ϕ−1(c) ∩ U
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is a compact, one-dimensional, boundaryless manifold. In fact, it is a finite union
of pairwise disjoint smooth Jordan curves contained in U \K (see e.g. [17]). Notice
that, due to the property (1) of ϕ, on the y-axis there are exactly two points, p+
and p−, belonging to ϕ−1(c), and these points belong to V , therefore they are
“sufficiently close to p”. One of them, say p+, must be above the origin and the
other one below (actually, due to the particular choice of ϕ, we have p+ = (0,

√
c)

and p− = (0,−
√
c)).

We claim that p+ and p− belong to the same curve of ϕ−1(c). In fact, if the
curve containing p+ did not contain p−, its intersection number with the y-axis,
due to the transversal intersection ensured by property (1) of ϕ, would be either
1 or −1, depending on the orientations of the curve and the y-axis (see e.g. [14]).
This would contradict the fact that the intersection number of a Jordan curve with
a straight line is zero, and our claim is proved.

Obviously the Jordan curve of ϕ−1(c) containing p+ and p− lies in V . Moreover,
it surrounds the point p, meaning that p is contained in the bounded region enclosed
by the curve.

To prove the assertion take, in (L \ {p}) ∩ V , two points, q+ and q−, which are
opposite with respect to p. Consider a parametrization γ0 : S1 → V \K of the above
Jordan curve containing p+ and p− and modify γ0 homotopically (with values in
V \K) in such a way that the final path γ1 runs through q+ and q− (this can be
done, for example, by modifying portions of the path just by moving along the line
L and remaining in V \ {p}). Now, recall that the winding number of a Jordan
curve around a surrounded point is either 1 or −1, according to the orientation.
Thus, due to the homotopy invariance property of the winding number, the final
path satisfies the assertion. �

Lemma 3.6 below is a Whyburn-type topological result and is crucial to the proof
of Theorem 3.7 below.

Lemma 3.6 ([13]). Let Y0 be a compact subset of a locally compact metric space Y .
Assume that every compact subset of Y containing Y0 has nonempty boundary.
Then Y \Y0 contains a connected set whose closure in Y is noncompact and inter-
sects Y0.

We are now ready to state and prove our main result regarding problem (3.1).

Theorem 3.7 (Global continuation of eigenpairs). Consider the problem{
Lx+ εN(x) = λCx,

x ∈ ∂Ω,

where L : E → F is a Fredholm operator of index zero between real Banach spaces,
C : E → F is a compact linear operator, Ω is a bounded open neighborhood of the
origin of E, N : D → F is a compact map whose domain D contains the boundary
∂Ω of Ω, ε and λ are real parameters.

Assume that, for some λ0 ∈ R, Ker(L−λ0C) is odd dimensional and the transver-
sality condition

(L− λ0C)(E) + C(Ker(L− λ0C)) = F

is satisfied. Then, in the set of all the eigenpairs (ε, λ) of the problem, the connected
component containing (0, λ0) is either unbounded or meets a trivial eigenpair (0, λ1)
with λ1 6= λ0.
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Proof. We will prove first that the set E of the eigenpairs of (3.1) is closed.
Then, we will show that there exists a function δ : R2 → Z which is locally

constant on the open set R2 \ E and has the property that λ 7→ δ(0, λ) has a
sign-jump crossing λ0.

Finally, we will apply Lemma 3.6 to a suitable pair (Y, Y0) of subsets of E , whose
assertion, if denied, would contradict Lemma 3.5.

Without loss of generality we may assume that N is defined (and compact) on
the whole space E. In fact, because of the Dugundji Extension Theorem (see [12]),
the restriction of N to ∂Ω admits a continuous extension to E whose values are
contained in the convex closure of N(∂Ω), which is a compact set.

Define Ψ: E × R2 → F by

Ψ(x, ε, λ) = Lx+ εN(x)− λCx.

This map is proper on bounded closed sets, as a compact perturbation of the
operator (x, ε, λ) 7→ Lx which, being Fredholm (of index 2), is proper on bounded
closed subsets of E × R2. Let

S =
{

(x, ε, λ) ∈ ∂Ω× R2 : Ψ(x, ε, λ) = 0
}

= Ψ−1(0) ∩
(
∂Ω× R2

)
be the closed subset of E × R2 of the solution triples of (3.1). Due to the above
property of the map Ψ, any bounded subset of S is relatively compact. This implies
that the set E of the eigenpairs of (3.1), which is the projection of S into R2, is
closed. In particular, it is locally compact.

As pointed out in Remark 3.2, the transversality condition (3.7) ensures the
existence of λ∗ ∈ R such that the operator L − λ∗C is invertible. Composing Ψ
with (L− λ∗C)−1, we obtain a map Φ: E × R2 → E given by

Φ(x, ε, λ) = x+ ε(L− λ∗C)−1N(x)− (λ− λ∗)(L− λ∗C)−1Cx.

Problem (3.1) is clearly equivalent to

(3.9)

{
Φ(x, ε, λ) = 0,

x ∈ ∂Ω,

and, consequently, Φ(x, ε, λ) 6= 0 for any (x, ε, λ) ∈ ∂Ω× (R2 \ E).
Now, observe that, given any (ε, λ) ∈ R2, the map Φ(·, ε, λ) is a compact vector

field on E and, given (ε, λ) ∈ R2, the Leray–Schauder degree of Φ(·, ε, λ) in Ω is
defined whenever (ε, λ) /∈ E . Thus, we may define δ : R2 → Z by

δ(ε, λ) =

{
degLS(Φ(·, ε, λ),Ω) if (ε, λ) ∈ R2 \ E ,
0 if (ε, λ) ∈ E .

Notice that, because of the boundary dependence property of the degree, the
function δ depends only on the restriction of N to ∂Ω. Moreover, due to the
homotopy invariance property, δ is constant in the components of the set R2 \ E ,
which, being open in R2, is locally path connected. In particular, taking into
account that 0 ∈ Ω, given any λ ∈ R, the linearity of the compact vector field

Φ(·, 0, λ) = I − (λ− λ∗)(L− λ∗C)−1C

implies that, in the components of R2 \E containing points with ε = 0, the constant
is either 1 or −1 (see [15]).
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According to Lemma 3.4, the eigenvalue λ0 of the equation Lx − λCx = 0 is
isolated. Thus, there exists c > 0 such that δ(0, λ) = ±1 for 0 < |λ− λ0| < c.

We claim that the odd dimensionality of Ker(L− λ0C) implies that λ 7→ δ(0, λ)
has a sign-jump crossing λ0. To see this, observe first that, if (0, λ) ∈ R2 \ E , then

δ(0, λ) = degLS(I − (λ− λ∗)A,Ω),

where A is the compact operator (L − λ∗C)−1C. Now, according to Lemma 3.4,
µ0 = λ0 − λ∗ is a characteristic value of A, whose algebraic multiplicity equals the
dimension of Ker(L− λ0C) which, by assumption, is odd. Thus, as pointed out in
Section 2, our claim is a consequence of a well known property of the degree of a
linear compact vector field.

Let E0 = {(ε, λ) ∈ E : ε = 0} denote the set of the trivial eigenpairs, and
let E∗ = E \ E0 be the set of the nontrivial ones. Since A = (L − λ∗C)−1C is a
compact linear operator, it admits a countable number of isolated characteristic
values µ = λ− λ∗. Consequently, the topology of E0 is the discrete one. Therefore,
since E0 is closed in E , so is any subset of E0.

Denote by Y0 the subset of E0 corresponding to the characteristic value µ0 =
λ0 − λ∗ of A (i.e. Y0 is the singleton {(0, λ0)}) and consider the disjoint union

Y = E∗ ∪ Y0.

We want to apply Lemma 3.6 to the metric pair (Y, Y0). To accomplish this goal
we need to show, first, that Y is locally compact. Of course Y is union of two locally
compact sets: E∗, which is relatively open in E , and Y0, which is compact. However,
as pointed out before, the union of two locally compact spaces needs not be locally
compact. Nevertheless, the required property of Y can be shown by observing that
Y is equal to E \ (E0 \ Y0) and, consequently, it is a relatively open subset of the
locally compact space E (recall that any subset of E0 is closed in E).

Considering Lemma 3.6, we now show that the set E∗ = Y \ Y0 of the nontrivial
eigenpairs of (3.1) contains a connected set whose closure in Y is noncompact and
intersects Y0.

Assume that this is false. Then, according to Lemma 3.6, in Y there exists a
compact set K ⊇ Y0 such that ∂K = ∅. In particular, K is relatively open in Y
and, therefore, there exists an open set U of R2 such that U ∩ Y = K. Due to the
fact that E \ Y = E0 \ Y0 is a closed subset of R2 which does not intersect Y , we
may assume (taking U smaller, if necessary) that U is disjoint from E \ Y , so that
U ∩ E = K. Consequently, U \K does not intersect E and, as pointed out before,
in this open set the integer valued function δ is locally constant.

Now, according to Lemma 3.5, if (0, λ+) and (0, λ−) are two points opposite
(0, λ0) and sufficiently close to it, then they belong to the same connected compo-
nent of U \K. Thus δ(0, λ+) = δ(0, λ−), contradicting the fact that the function
λ 7→ δ(0, λ) has a sign-jump at λ0. The contradiction, because of Lemma 3.6,
implies the existence of a connected subset S of E∗ = Y \ Y0 whose closure in Y

is noncompact and intersects Y0. Now, denote by Ŝ the connected component, in

E , containing Y0 = {(0, λ0)}. Clearly Ŝ contains the closure in Y of S (recall that
the closure of a connected set is connected), as well as the closure S of S in E
(which is the same as the closure in R2, E being closed). If Ŝ is unbounded, then
our assertion holds true. If it is bounded, then, being closed in E (as well as in
R2), it is a compact set. Therefore, it must contain at least one point (0, λ1) of
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E \ Y = E0 \ Y0, since otherwise its closure in Y would coincide with the closure in
E and would be compact. Hence, also in this case, our assertion holds true. �

Remark 3.8. Let, as above, E denote the set of all the eigenpairs of (3.1). From
the proof of Theorem 3.7, and the existence property of the Leray–Schauder degree,
one can easily deduce that if a given pair (ε∗, λ∗) belongs to a connected component
of R2 \ E whose intersection with the λ-axis is nonempty, then the equation

Lx+ ε∗N(x)− λ∗Cx = 0

admits at least one solution in Ω.

We close this section with a conjecture that, if true, would extend Theorem 3.7
in the special case when Ω is the unit ball.

Conjecture 3.9 (Global continuation of solution triples). Let L,C,N satisfy the
basic assumptions of problem (3.1). Assume that Ω is the unit ball of E and that
λ0 ∈ R is such that Ker(L−λ0C) is odd dimensional and the transversality condition

(L− λ0C)(E) + C(Ker(L− λ0C)) = F

is satisfied. Then, there exists a unit eigenvector x0 ∈ E, corresponding to the
trivial eigenpair (0, λ0), such that, in the set S of all the solutions of (3.1), the
connected component containing (x0, 0, λ0) is either unbounded or reaches a trivial
solution (x1, 0, λ1) with λ1 6= λ0.

4. Examples

Here we provide examples illustrating how Theorem 3.7 applies, as well as ex-
amples showing that the assumptions of this theorem, such as the transversality
condition (3.7) and the odd dimensionality of the kernel of the unperturbed oper-
ator, cannot be omitted.

According to the notation of Theorem 3.7, in each example it will be clear what
the spaces E and F , the operators L, N and C, the open subset Ω of E, and the
starting eigenvalue λ0 of the unperturbed equation Lx = λCx are.

The following is, perhaps, the simplest example showing the existence of a
bounded branch of eigenpairs connecting two different trivial elements.

Example 4.1. Let E = F = R2, with the standard x and y coordinates, and
consider the linear problem

(4.1)

 x+ εy = λx,
y + εx = −λy,
x2 + y2 = 1.

Here, Ω is the unit open disk of R2. Obviously, the operators are L : (x, y) 7→ (x, y),
N : (x, y) 7→ (y, x) and C : (x, y) 7→ (x,−y). The unperturbed problem has two
eigenvalues, λ0 = 1 and λ1 = −1.

As one can easily check, the set E of the eigenpairs of (4.1) is the unit circle
ε2 + λ2 = 1. Therefore, the connected component of E containing the trivial
element (0, λ0) = (0, 1) is bounded and meets (0,−1).

The eigenpairs (ε, λ) can be represented, parametrically, as (− sin θ, cos θ), with
θ ∈ [0, 2π] and, given θ, the kernel of the linear operator

L− (sin θ)N − (cos θ)C
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is spanned by the unit eigenvector

u(θ) = (x(θ), y(θ)) = (cos(θ/2), sin(θ/2)).

Obviously, another continuous curve of unit eigenvectors of problem (4.1) is given
by θ 7→ −u(θ), θ ∈ [0, 2π]. Both the curves u and −u are not closed. They can be
“glued” to create a unique (continuous) closed curve whose image contains all the
unit eigenvectors of (4.1). This curve, say v : [0, 4π]→ R2, is given by

v(θ) = (cos(θ/2), sin(θ/2)).

Notice that the kernel of L− λ0C is the x-axis, which is odd dimensional. The
image under C of this kernel is again the x-axis, which is orthogonal to the image
of L− λ0C. Thus, all the assumptions of Theorem 3.7 are satisfied.

Incidentally, we point out that, in this example, the assertion of Conjecture 3.9
is satisfied. In fact, for example, the connected set of solution triples

C =
{(
u(θ),− sin θ, cos θ

)
: θ ∈ [0, π]

}
contains two trivial elements: the “starting one”

(
u(0), 0, λ0

)
=
(
(1, 0), 0, 1

)
, as well

as the “reached one”
(
u(π), 0, λ1

)
=
(
(0,−1), 0,−1

)
. Obviously, in the set S of the

solutions of (4.1), the connected component containing C has the same property.

In the following example, the unperturbed equation Lx = λCx has a unique
eigenvalue, λ0 = 0. Since, as we shall see, all the assumption of Theorem 3.7 are
satisfied, one concludes that there is an unbounded connected set of eigenpairs
emanating from the trivial eigenpair (0, 0).

Example 4.2. Let E denote the 1-codimensional closed subspace of the Banach
space C1([0, 2π],R) of the functions x satisfying the condition x(0) = x(2π) and let
F = C0([0, 2π],R). Consider the problem

(4.2)

{
x′(t) + ε sin t = λx(t),

x(0) = x(2π), x ∈ ∂Ω,

where Ω is the unit ball of the space E endowed with the Banach norm

‖x‖ =
1

2

(
sup

{
|x(t)| : t ∈ [0, 2π]

}
+ sup

{
|x′(t)| : t ∈ [0, 2π]

})
.

The above problem can be written in the form{
Lx+ εN(x) = λCx,

‖x‖ = 1,

where

• L : E → F is the bounded linear operator x 7→ x′;
• N : E → F is the (constant) map defined by N(x)(t) = sin t;
• C is the (compact) inclusion of E into F .

Observe that the operator L is Fredholm of index zero, because it is the com-
position of the inclusion E ↪→ C1([0, 2π],R), which is Fredholm of index −1, with
the differential operator x ∈ C1([0, 2π],R) 7→ x′ ∈ F , which is Fredholm of index 1
(being surjective with 1-dimensional kernel).
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Clearly, the unique eigenvalue of the unperturbed equation Lx = λCx is λ0 = 0.
The kernel of L is composed of the constant functions. Therefore, the transversal-
ity condition (3.7) is trivially satisfied, C being the inclusion and the image of L
consisting of the functions in C0([0, 2π],R) with zero average.

Since the assumptions of Theorem 3.7 are satisfied and the unperturbed operator
L − λC has only one eigenvalue, the set E of the eigenpairs of our problem is
necessarily unbounded. More precisely, in the space E , the component containing
(0, 0) is unbounded. Actually, this is true not only when N is the constant map
defined above, but also when it is any compact map from E into F . For example,
the existence of an unbounded branch emanating from (0, 0) survives if in problem
(4.2) we replace ε sin t with εg(t, x(t)), where g : [0, 2π]×R→ R is any continuous
function. In fact, the map N : E → F defined by N(x)(t) = g(t, x(t)) is compact,
because it is the composition of the compact inclusion of E into F with a continuous
selfmap of F .

In our specific case (4.2), standard computations show that, given (ε, λ), the
problem

(4.3)

{
x′(t) + ε sin t = λx(t),

x(0) = x(2π)

has a solution
x(t) =

ε

1 + λ2
(
λ sin t+ cos t

)
,

which is unique if and only if λ 6= 0, and its norm is |ε|/
√

1 + λ2.
Thus, given a pair (ε, 0), the function ε cos t is a particular solution. Conse-

quently, when λ = 0, problem (4.3) has infinitely many solutions: x(t) = c+ ε cos t
(c ∈ R), with ‖x‖ = |c|/2 + |ε|.

Therefore, recalling that ∂Ω is the unit sphere, the set E is the union of three
connected sets. One is the horizontal set [−1, 1] × {0}, corresponding to the case
λ = 0. The other two are the left and right branches of the hyperbola

ε2 − λ2 = 1.

Thus, E is a connected set, since both the branches of the hyperbola have a point
in common with the above horizontal set: (−1, 0) for the left branch and (1, 0) for
the right one.

Observe that in this example, as in the previous one, the assertion of Conjecture
3.9 is satisfied. For example, the set S of solution triples of problem (4.2) contains
the unbounded image of the (continuous) curve γ : [−1,+∞) → S starting from
the trivial triple (2, 0, 0) and given by

(4.4) γ(s) =


(
− 2s+ (s+ 1) cos(·), s+ 1, 0

)
if − 1 ≤ s ≤ 0,(

1√
1+s2

(
s sin(·) + cos(·)

)
,
√

1 + s2, s
)

if s ≥ 0.

In the following example the unperturbed operator L− λC has infinitely many
eigenvalues. Informally, two of them are connected by a bounded branch of eigen-
pairs, all the others are part of a unique unbounded branch.

Example 4.3. Let E = F = `2 and denote by {ei}i∈N the standard basis of
`2. Here as L we take the identity I of `2, which is obviously Fredholm of index
zero. The compact (linear) operator C is defined by Ce1 = e1, Ce2 = −e2 and
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Cei = 1
i ei, for i ≥ 3. The compact (nonlinear) map N is given by (ξ1, ξ2, ξ3, . . . ) 7→

(ξ2, ξ1,
1
3 ,

1
4 ,

1
5 , · · · ).

We consider the problem

(4.5)

{
x+ εN(x) = λCx,
‖x‖ = 1.

The transversality condition (3.7) is satisfied at any characteristic value of the
compact operator C. Moreover, for any of these values, the kernel of I − λC is
one-dimensional.

One can see that (4.5) admits infinitely many trivial eigenpairs: (0,−1), (0, 1),
(0, 3), (0, 4), (0, 5), and so on.

The set E of the eigenpairs has only two connected components. One is the
circle with equation ε2 +λ2 = 1. The other component is the union of the following
infinite set of straight lines: λ = ±ε+ 3, λ = ±ε+ 4, λ = ±ε+ 5, and so on.

The second set is connected, since any straight line intersects all the other ones
with opposite angular coefficient. However, this connected set is the projection
into R2 of infinitely many connected components in the set S of solution triples.
Actually, any such a component is a straight line in E ×R2, which is “parallel” to
R2 and satisfies the assertion of Conjecture 3.9. For example, the component over
the line λ = ε + 3 is the line {(e3, ε, λ) : λ = ε + 3}, while the component over
λ = −ε+ 3 is {(−e3, ε, λ) : λ = −ε+ 3}.

The component over the circle ε2 + λ2 = 1 is more complicated to describe.
However, it can be shown that it is a simple closed curve which satisfies the assertion
of Conjecture 3.9. In fact, it contains the trivial solutions (e1, 0, 1) and (e2, 0,−1).

In the following example, whose physical meaning is evident, λ0 = −1 is an
eigenvalue of the unperturbed equation Lx−λCx = 0. Although the transversality
condition (3.7) is satisfied, the trivial eigenpair (0,−1) is isolated in the set E of
all the eigenpairs. Thus, assuming that Theorem 3.7 holds true, the absence of a
branch starting from (0,−1) implies that the kernel of L− λ0C must be even. As
it is.

Example 4.4. Consider the differential equation

(4.6)

{
x′′(t) + εx′(t) = λx(t),

x(0) = x(2π), x′(0) = x′(2π),

with associated 2π-periodic boundary conditions.
Here as E we take the 2-codimensional closed subspace of the functions x ∈

C2([0, 2π],R) such that x(0) = x(2π) and x′(0) = x′(2π). As target space F
we consider C0([0, 2π],R). Since the perturbed problem is linear, without loss of
generality, we may assume that Ω is unit ball of E. Moreover

• L : E → F is the operator x 7→ x′′,
• N : E → F is the (linear) map x 7→ x′,
• C is the inclusion of E into F .

Notice that L is Fredholm of index zero, because it is the composition of the
inclusion of E into C2([0, 2π],R), which is Fredholm of index −2, with the operator

x ∈ C2([0, 2π],R) 7→ x′′ ∈ F,
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which is Fredholm of index 2 (being surjective with 2-dimensional kernel). The
unperturbed equation Lx − λCx = 0 has infinitely many eigenvalues. Namely,
0,−1,−4,−9, . . . ,−n2, . . . Here we consider λ0 = −1. The kernel of L − λ0C is
spanned by sin t and cos t. Therefore, the transversality condition (3.7) is satisfied,
since no linear combination of these two elements belongs to the image of the
operator L − λ0C, except the trivial one (see Remark 3.1). The map N , which in
this case is linear, is compact, because it is the composition of the compact inclusion
of E into C1([0, 2π],R) with the continuous map x 7→ x′. Obviously, the inclusion
C is compact as well.

One can verify that, when ε 6= 0 and λ 6= 0, the equation

Lx+ εN(x) = λCx

admits only the trivial solution. Therefore, the trivial eigenpair (0,−1) is isolated
in the set E of all the eigenpairs, showing that, in Theorem 3.7, the assumption
that the kernel of L− λ0C is odd dimensional cannot be removed.

Actually, as one can see, any other trivial eigenpair, except (0, 0), is isolated.
According to Theorem 3.7, the kernel of L being 1-dimensional, (0, 0) must belong
to an unbounded component of E . In fact, this component is the ε-axis.

The following is an example of a linear system of two coupled first order differen-
tial equations showing the existence of a bounded branch of eigenpairs connecting
two different trivial elements.

Example 4.5. Consider the following system of coupled differential equations with
2π-periodic boundary conditions:

(4.7)


x′(t) + x(t)− εx(t) = λy(t),

y′(t)− y(t)− εy(t) = −λx(t),

x(0) = x(2π), y(0) = y(2π).

In this example, E is the 2-codimensional closed subspace of the pairs of functions
(x, y) ∈ C1([0, 2π],R2) such that x(0) = x(2π) and y(0) = y(2π). The space F is
C0([0, 2π],R2). Since we are dealing with a linear problem, witout loss of generality,
we assume that Ω is the unit ball of E, endowed with any Banach norm among the
infinitely many equivalent ones of C1([0, 2π],R2). For example, we may consider
the folllowing:

‖z‖ = sup
{
|z(t)| : t ∈ [0, 2π]

}
+ sup

{
|z′(t)| : t ∈ [0, 2π]

}
,

where z(t) = (x(t), y(t)), and | · | denotes the Euclidean norm in R2.
Notice that E has codimension 2 in C1([0, 2π],R2) and, consequently, the oper-

ator L : E → F , given by (x, y) 7→ (x′ + x, y′ − y), is Fredholm of index zero. In
fact, L is the restriction to E of a surjective operator with 2-dimensional kernel.

The operators N and C are defined as (x, y) 7→ (−x,−y) and (x, y) 7→ (y,−x),
respectively. They are compact, because of the compact inclusion of C1([0, 2π],R2)
into C0([0, 2π],R2).

Thus, our problem can be written as

(4.8)

{
Lx+ εN(x) = λCx,

‖x‖ = 1,
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The system of two coupled differential equations

(4.9)

{
x′(t) + x(t)− εx(t) = λy(t),

y′(t)− y(t)− εy(t) = −λx(t)

can be represented in a matrix form as(
x′(t)

y′(t)

)
=

(
ε− 1 λ

−λ ε+ 1

)(
x(t)

y(t)

)
,

where, given ε and λ, the eigenvalues of the matrix

A(ε, λ) =

(
ε− 1 λ

−λ ε+ 1

)

are ε±
√

1− λ2. Therefore, if |λ| > 1 there are nontrivial 2π-periodic solutions of

(4.9) if and only if ε = 0 and λ is such that
√
λ2 − 1 ∈ N, and these solutions are

non-constant. If |λ| ≤ 1, the system admits nontrivial 2π-periodic solutions if and
only if ε2 + λ2 = 1, and these solutions are constant.

Consequently the set E of the eigenpairs of (4.8) is{
(ε, λ) ∈ R2 : ε2 + λ2 = 1

}
∪
{

(0, λ) ∈ R2 : λ = ±
√

1 + n2, n ∈ N
}
.

Observe that any trivial eigenpair (0, λ0) with |λ0| > 1 is isolated in the set E .
Therefore, according to Therem 3.7, if the transversality condition (3.7) is satisfied

(below we will show that it is satisfied if λ0 =
√

2), the kernel of the operator
L− λ0C must be even dimensional; thus, in this case, 2-dimensional.

As in the Example 4.1, the eigenpairs of the circle {(ε, λ) ∈ R2 : ε2 + λ2 = 1}
can be represented parametrically. In this case we set (ε, λ) = (cosα, sinα), with
α ∈ [0, 2π]. Thus, as one can show, given any α, the kernel of the linear operator

L+ (cosα)N − (sinα)C

is the straight line through the origin of E and the constant function

zα : [0, 2π]→ E, t 7→ (cos(α/2), sin(α/2)),

whose norm is one, z′α being the null function.
If we consider (zπ/2, 0, 1) as a starting trivial solution of (4.7), we see that even

in this example the assertion of the Conjecture 3.9 is satisfied. In fact, in the space
S of the solution triples of (4.7), the connected component containing (zπ/2, 0, 1)

is the image of the curve α ∈ [0, 4π] 7→ (zα, cosα, sinα). The projection into R2

of this component, i.e. the circle {(ε, λ) ∈ R2 : ε2 + λ2 = 1}, is the connected
component in E containing the trivial eigenpair (0, λ0) = (0, 1) for which, as we
shall see, the transversality condition is satisfied. This component, according to
Theorem 3.7, contains another trivial eigenpair, which is (0,−1).

We close this example by checking the transversality condition (3.7) at the eigen-

values 1 and
√

2 of the unperturbed operator L− λC.
Let us consider, first, λ0 = 1. As we have seen above, the kernel of the unper-

turbed operator L − λ0C (i.e. L − C in this case) is the straight line through the

origin of E and the constant function zπ/2 : t 7→ (
√

2/2,
√

2/2). Let us determine
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the image of L − C. We claim that a necessary condition for a pair of functions
(u, v) ∈ C0([0, 2π],R2) to belong to the image of L− C is the following one:∫ 2π

0

(
u(t)− v(t)

)
dt = 0.

In fact, if (u, v) is in the image of L − C, then there exists a pair of functions
(x, y) ∈ E such that x′ + x − y = u and y′ − y + x = v, and our claim follows
immediately by integrating the function

u− v = (x′ + x− y)− (y′ − y + x)

from 0 to 2π, and recalling the boundary conditions on x and y. Now, observe
that the necessary condition for (u, v) to be in the image of L−C is also sufficient,
because of the fact that L−C ∈ Φ0(E,F ) and, consequently, (L−C)(E) must be
1-codimensional in F (recall that C is a compact operator and L ∈ Φ0(E,F )). Now,
once one knows both the kernel and the image of L−λ0C, to investigate whether or
not the unperturbed problem satisfies (at λ0) the transversality condition (3.7) is
an easy task. For example, one may utilize Remark 3.1, replacing L with L− λ0C
(which is still Fredholm of index zero, C being a compact operator). The condition
(3.7) is satisfied at λ0 = 1.

Let us now consider the case λ0 =
√

2. The kernel of L−
√

2C is generated by
the following two linearly independent elements of E:

(
√

2 sin t, cos t+ sin t), (
√

2 cos t, cos t− sin t).

This implies, in particular, that the image of L −
√

2C has codimension 2 in F .
Therefore, it is the set of zeroes of two linearly independent functionals on F . Some
computations show that two of these functionals are given by

φ1(u, v) =

∫ 2π

0

(
α1(t)u(t) + β1(t)v(t)

)
dt

and

φ2(u, v) =

∫ 2π

0

(
α2(t)u(t) + β2(t)v(t)

)
dt,

where

α1(t) =
√

2 sin t, β1(t) = cos t− sin t, α2(t) =
√

2 cos t, β2(t) = − cos t− sin t.

To check the validity of our assertion, one should take into account that if the
condition “φ1(u, v) = 0 and φ2(u, v) = 0” is necessary for (u, v) to be in the image

of L−
√

2C, then it is also sufficient, due to the fact that if two subspaces of F of
the same finite codimension have the property that one is contained in the other,
then they coincide.

Finally, since we know the kernel and the image of L −
√

2C, it is not diffi-
cult to show that even in this case the transversality condition (3.7) is satisfied.

Thus, the non-existence of a connected subset of eigenpairs containing (0,
√

2) and
satisfying the assertion of Theorem 3.7 can be exclusively attributed to the even
dimensionality of Ker (L−

√
2C).

We close with a very simple example showing that, in Theorem 3.7, the transver-
sality assumption cannot be removed.
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Example 4.6. Let E = F = R2, with the standard x and y coordinates, and
consider the linear problem

(4.10)

 −εy = λx,
x+ εx = λy,
x2 + y2 = 1.

Here, the operators L, N and C are, respectively, (x, y) 7→ (0, x), (x, y) 7→ (−y, x)
and (x, y) 7→ (x, y). The unperturbed equation Lx − λCx has a unique (double)
eigenvalue, λ0 = 0, and the kernel of L−λ0C = L is 1-dimensional. As one can easily
verify, in the set E of the eigenpairs of problem (4.10), the connected component
containing the trivial eigenpair (0, 0) is the circle ε(ε− 1) + λ2 = 0. Therefore, the
assertion of Theorem 3.7 is not satisfied, implying that the condition

(L− λ0C)(E) + C(Ker(L− λ0C)) = F

does not hold. Consequently, in Theorem 3.7, this transversality assumption is not
superfluous.
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