
GLOBAL CONTINUATION OF PERIODIC SOLUTIONS FOR

RETARDED FUNCTIONAL DIFFERENTIAL EQUATIONS ON

MANIFOLDS

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, MASSIMO FURI,

AND MARIA PATRIZIA PERA

Abstract. We consider T -periodic parametrized retarded functional differen-

tial equations, with infinite delay, on (possibly) noncompact manifolds. Using
a topological approach, based on the notions of degree of a tangent vector

field and of the fixed point index, we prove a global continuation result for

T -periodic solutions of such equations.
Our main theorem is a generalization to the case of retarded equations

of a global continuation result obtained by the last two authors for ordinary

differential equations on manifolds. As corollaries we obtain a Rabinowitz type
global bifurcation result and a continuation principle of Mawhin type.

Dedicated to our friend and outstanding mathematician Jean Mawhin

1. Introduction

In this paper we prove a global continuation result for periodic solutions of the
following retarded functional differential equation (RFDE for short) on a manifold,
depending on a parameter λ ≥ 0:

(1.1) x′(t) = λf(t, xt).

Let us present the setting of the problem. Consider a boundaryless smooth m-
dimensional manifold M ⊆ Rk and, given any p ∈M , let TpM ⊆ Rk stand for the

tangent space of M at p. Denote by M̃ := BU((−∞, 0],M) the set of bounded
and uniformly continuous maps from (−∞, 0] into M , and observe that this is a

metric space, as a subset of the Banach space R̃k := BU((−∞, 0],Rk) with the

usual supremum norm. Given T > 0, let f : R× M̃ → Rk be a continuous function
verifying the following conditions:

1. f(t, ϕ) = f(t+ T, ϕ), ∀ (t, ϕ) ∈ R× M̃ ;

2. f(t, ϕ) ∈ Tϕ(0)M , ∀ (t, ϕ) ∈ R× M̃ ;

3. f is locally Lipschitz in the second variable.

A solution of (1.1) is a function x with values in the ambient manifold M , defined
on an open real interval J with inf J = −∞, bounded and uniformly continuous
on any closed half-line (−∞, b] ⊂ J , such that the equality x′(t) = λf(t, xt) is
eventually verified. We use here the standard notation in functional equations:

whenever it makes sense, xt ∈ M̃ denotes the function θ 7→ x(t+ θ).
To proceed with the exposition of our problem, we need some further notation.

Given p ∈ M , p− denotes the constant p-valued function defined on R, or on any
convenient subinterval of R. The actual domain of p− will be clear from the context.
Moreover, given any A ⊆M , A− stands for the set {p− : p ∈ A}. All the functions
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of A− will be considered defined on the same interval, suggested by the context.
By CT (M) we mean the set of all continuous T -periodic maps x : R → M . This
set, which contains M−, is a metric subspace of the Banach space CT (Rk) with the
standard supremum norm. We call (λ, x) ∈ [0,+∞)× CT (M) a T -periodic pair of
the equation (1.1) if x : R → M is a solution of (1.1) corresponding to λ. Among
these pairs we distinguish the trivial ones; that is, the elements of the set {0}×M−,
which can be isometrically identified with M . Notice that any T -periodic pair of
the type (0, x) is trivial, since the function x turns out to be necessarily constant.
An element p ∈M will be called a bifurcation point of (1.1) if any neighborhood of
(0, p−) in [0,+∞)×CT (M) contains nontrivial T -periodic pairs. Roughly speaking,
p ∈ M is a bifurcation point if any of its neighborhoods in M contains T -periodic
orbits corresponding to arbitrarily small values of λ > 0.

The main outcome of this paper, Theorem 3.3 below, is a global continuation
result for T -periodic solutions of the equation (1.1). That is, given an open subset
Ω of [0,+∞) × CT (M), it is a result which provides sufficient conditions for the
existence of a global bifurcating branch in Ω, meaning a connected subset of Ω of
nontrivial T -periodic pairs whose closure in Ω is noncompact and intersects the
set of trivial T -periodic pairs. The proof of Theorem 3.3 is based on a relation,
obtained in a technical result, Lemma 3.8 below, between the degree (in an open
subset of M) of the tangent vector field

w(p) =
1

T

∫ T

0

f(t, p−) dt, p ∈M,

and the fixed point index of a sort of Poincaré T -translation operator acting inside
the Banach space C([−T, 0],Rk).

The prelude of our approach can be found in some papers of the last two authors
(see for instance [9]), where the notions of degree of a tangent vector field and of
fixed point index of a suitable Poincaré T -translation operator are related in order
to get continuation results for ODEs on differentiable manifolds.

Theorem 3.3 extends and unifies two results recently obtained by the authors
in [1] and [2]. In [1] the ambient manifold M is not necessarily compact, but our
investigation regards delay differential equations with finite time lag. On the other
hand, in [2] we consider RFDEs with infinite delay; nevertheless in this case M is
compact and the map f is defined on R×C((−∞, 0],M) with a topology which is
too weak, making the continuity assumption on f a too heavy condition.

We point out that, in order to obtain our continuation result for RFDEs with
infinite delay without assuming the compactness of the ambient manifold M , we
had to tackle strong technical difficulties. Therefore, we were forced to undertake a
thorough preliminary investigation on the general properties of RFDEs with infinite
delay on (possibly) noncompact manifolds. This was the purpose of our recent
paper [3].

In our opinion the existence of a global bifurcating branch ensured by Theorem
3.3 should hold also without the assumption that f is locally Lipschitz in the second
variable. However, we are not able to prove or disprove this conjecture, because of
some difficulties arising in this case. One is that the uniqueness of the initial value
problem for the equation (1.1) is not ensured and, consequently, a Poincaré T -trans-
lation operator is not defined as a single valued map. A classical tool to overcome
this obstacle, and usually applied in analogous problems, consists in considering a
sequence of C1 maps approximating f . In our situation, however, because of the
peculiar domain of f , we do not know how to realize this approach, and this is
another difficulty.
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We conclude the paper with some consequences of Theorem 3.3. One is a Ra-
binowitz type global bifurcation result [31], obtained by assuming that the degree
of the above tangent vector field w is nonzero on an open subset of M . Another
corollary is deduced when M is compact: we get an existence result already proved
in [4], and we extend an analogous one obtained in [2] in which the continuity
assumption on f is too heavy. A third interesting case occurs when the degree
of w is nonzero on a relatively compact open subset of M and suitable a priori
bounds hold for the T -periodic orbits of the equation (1.1): in this case we obtain
a continuation principle à la Mawhin [22, 23].

The different and related cases of RFDEs with finite delay in Euclidean spaces
have been investigated by many authors. For general reference we suggest the mono-
graph by Hale and Verduyn Lunel [17]. We refer also to the works of Gaines and
Mawhin [12], Nussbaum [26, 27] and Mallet-Paret, Nussbaum and Paraskevopoulos
[21]. For RFDEs with infinite delay in Euclidean spaces we recommend the article
of Hale and Kato [16], the book by Hino, Murakami and Naito [18], and the more
recent paper of Oliva and Rocha [30]. For RFDEs with finite delay on manifolds
we suggest the papers of Oliva [28, 29]. Finally, for RFDEs with infinite delay on
manifolds we cite [3].

2. Preliminaries

2.1. Fixed point index. We recall that a metrizable space X is an absolute neigh-
borhood retract (ANR) if, whenever it is homeomorphically embedded as a closed
subset C of a metric space Y, there exist an open neighborhood V of C in Y and
a retraction r : V → C (see e.g. [5, 14]). Polyhedra and differentiable manifolds
are examples of ANRs. Let us also recall that a continuous map between topologi-
cal spaces is called locally compact if each point in its domain has a neighborhood
whose image is contained in a compact set.

Let X be a metric ANR and consider a locally compact (continuous) X -valued
map k defined on a subset D(k) of X . Given an open subset U of X contained
in D(k), if the set of fixed points of k in U is compact, the pair (k, U) is called
admissible. We point out that such a condition is clearly satisfied if U ⊆ D(k),

k(U) is compact and k(p) 6= p for all p in the boundary of U . To any admissible
pair (k, U) one can associate an integer indX (k, U) – the fixed point index of k in
U – which satisfies properties analogous to those of the classical Leray–Schauder
degree [20]. The reader can see for instance [6, 13, 25, 27] for a comprehensive
presentation of the index theory for ANRs. As regards the connection with the
homology theory we refer to standard algebraic topology textbooks (e.g. [7, 32]).

We summarize below the main properties of the fixed point index.

• (Existence) If indX (k, U) 6= 0, then k admits at least one fixed point in U .

• (Normalization) If X is compact, then indX (k,X ) = Λ(k), where Λ(k)
denotes the Lefschetz number of k.

• (Additivity) Given two disjoint open subsets U1, U2 of U , if any fixed
point of k in U is contained in U1 ∪ U2, then indX (k, U) = indX (k, U1) +
indX (k, U2).

• (Excision) Given an open subset U1 of U , if k has no fixed points in U\U1,
then indX (k, U) = indX (k, U1).

• (Commutativity) Let X and Y be metric ANRs. Suppose that U and V are
open subsets of X and Y respectively and that k : U → Y and h : V → X
are locally compact maps. Assume that the set of fixed points of either hk
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in k−1(V ) or kh in h−1(U) is compact. Then the other set is compact as
well and indX (hk, k−1(V )) = indY(kh, h−1(U)).

• (Generalized homotopy invariance) Let I be a compact real interval and W
an open subset of X×I. For any λ ∈ I, denote Wλ = {x ∈ X : (x, λ) ∈W}.
Let H : W → X be a locally compact map such that the set {(x, λ) ∈ W :
H(x, λ) = x} is compact. Then indX (H(·, λ),Wλ) is independent of λ.

2.2. Degree of a vector field. Let us recall some basic notions on degree theory
for tangent vector fields on differentiable manifolds. Let v : M → Rk be a continuous
(autonomous) tangent vector field on a smooth manifold M , and let U be an open
subset of M . We say that the pair (v, U) is admissible (or, equivalently, that v is
admissible in U) if v−1(0) ∩ U is compact. In this case one can assign to the pair
(v, U) an integer, deg(v, U), called the degree (or Euler characteristic, or rotation)
of the tangent vector field v in U which, roughly speaking, counts algebraically the
number of zeros of v in U (for general references see e.g. [15, 19, 24, 33]). Notice
that the condition for v−1(0)∩U to be compact is clearly satisfied if U is a relatively
compact open subset of M and v(p) 6= 0 for all p in the boundary of U .

As a consequence of the Poincaré–Hopf theorem, when M is compact, deg(v,M)
equals χ(M), the Euler–Poincaré characteristic of M .

In the particular case when U is an open subset of Rk, deg(v, U) is just the
classical Brouwer degree of v in U when the map v is regarded as a vector field;
namely, the degree deg(v, U, 0) of v in U with target value 0 ∈ Rk. All the standard
properties of the Brouwer degree in the flat case, such as homotopy invariance,
excision, additivity, existence, still hold in the more general context of differentiable
manifolds. To see this, one can use an equivalent definition of degree of a tangent
vector field based on the fixed point index theory as presented in [9] and [10].

Let us stress that, actually, in [9] and [10] the definition of degree of a tangent
vector field on M is given in terms of the fixed point index of a Poincaré-type
translation operator associated to a suitable ODE on M . Such a definition provides
a formula that will play a central role in Lemma 3.8 below, and this will be a crucial
step in the proof of our main result.

We point out that no orientability of M is required for deg(v, U) to be defined.
This highlights the fact that the extension of the Brouwer degree for tangent vector
fields in the non-flat case does not coincide with the one regarding maps between
oriented manifolds with a given target value (as illustrated, for example, in [19, 24]).
This dichotomy of the notion of degree in the non- flat situation is not evident in
Rk: it is masked by the fact that an equation of the type f(x) = y can be written
as f(x) − y = 0. Anyhow, in the context of RFDEs (ODEs included), it is the
degree of a vector field that plays a significative role.

It is known that, if (v, U) is admissible, then

(2.1) deg(v, U) = (−1)m deg(−v, U),

where m denotes the dimension of M . Moreover, if v has an isolated zero p and U
is an isolating (open) neighborhood of p, then deg(v, U) is called the index of v at
p. The excision property ensures that this is a well-defined integer.

2.3. Retarded functional differential equations. Given an arbitrary subset A
of Rk, we denote by BU((−∞, 0], A) the set of bounded and uniformly continuous
maps from (−∞, 0] into A. For brevity, we will use the notation

Ã := BU((−∞, 0], A).
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Notice that R̃k is a Banach space, being closed in the space BC((−∞, 0],Rk) of
the bounded and continuous functions from (−∞, 0] into Rk (endowed with the
standard supremum norm).

Throughout the paper, the norm in Rk will be denoted by | · | and the norm in

the infinite dimensional space R̃k by ‖ · ‖. Thus, the distance between two elements

φ and ψ of Ã will be denoted ‖φ− ψ‖, even when φ− ψ does not belong to Ã. We

observe that Ã, as a metric space, is complete if and only if A is closed in Rk.

Let M be a boundaryless smooth manifold in Rk. A continuous map

g : R× M̃ → Rk

is said to be a retarded functional tangent vector field over M if g(t, ϕ) ∈ Tϕ(0)M

for all (t, ϕ) ∈ R × M̃ . In the sequel, any map with this property will be briefly
called a functional field (over M).

Let us consider a retarded functional differential equation (RFDE ) of the type

(2.2) x′(t) = g(t, xt),

where g : R× M̃ → Rk is a functional field over M . Here, as usual and whenever it

makes sense, given t ∈ R, by xt ∈ M̃ we mean the function θ 7→ x(t+ θ).
A solution of (2.2) is a function x : J → M , defined on an open real interval

J with inf J = −∞, bounded and uniformly continuous on any closed half-line
(−∞, b] ⊂ J , and which verifies eventually the equality x′(t) = g(t, xt). That is,

x : J → M is a solution of (2.2) if xt ∈ M̃ for all t ∈ J and there exists τ ∈ J
such that x is C1 on the interval (τ, sup J) and x′(t) = g(t, xt) for all t ∈ (τ, sup J).
Observe that the derivative of a solution x may not exist at t = τ . However, the
right derivative D+x(τ) of x at τ always exists and is equal to g(τ, xτ ). Also, notice

that t 7→ xt is a continuous curve in M̃ , since x is uniformly continuous on any
closed half-line (−∞, b] of J .

A solution of (2.2) is said to be maximal if it is not a proper restriction of another
solution. As in the case of ODEs, Zorn’s lemma implies that any solution is the
restriction of a maximal solution.

Given η ∈ M̃ , let us associate to equation (2.2) the initial value problem

(2.3)

{
x′(t) = g(t, xt),
x0 = η .

A solution of (2.3) is a solution x : J → M of (2.2) such that sup J > 0, x′(t) =
g(t, xt) for t > 0, and x0 = η.

The continuous dependence of the solutions on initial data is stated in Theorem
2.1 below and is a staightforward consequence of Theorem 4.4 of [3].

Theorem 2.1. Let M be a boundaryless smooth manifold and g : R × M̃ → Rk a

functional field. Assume, for any η ∈ M̃ , the uniqueness of the maximal solution
of problem (2.3). Then, given T > 0, the set

D =
{
η ∈ M̃ : the maximal solution of (2.3) is defined up to T

}
is open and the map η ∈ D 7→ xηT ∈ M̃ , where xη(·) is the unique maximal solution
of problem (2.3), is continuous.

More generally, we will need to consider initial value problems depending on a
parameter, such as the equation (1.1) with the initial condition x0 = η. For these
problems the continuous dependence is ensured by the following consequence of
Theorem 2.1.
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Corollary 2.2 (continuous dependence). Let M be a boundaryless smooth manifold

and h : Rs × R × M̃ → Rk a parametrized functional field. For any α ∈ Rs and

η ∈ M̃ , assume the uniqueness of the maximal solution of the problem

(2.4)

{
x′(t) = h(α, t, xt),
x0 = η .

Then, given T > 0, the set

D′ =
{

(α, η) ∈ Rs × M̃ : the maximal solution of (2.4) is defined up to T
}

is open and the map (α, η) ∈ D′ 7→ x
(α,η)
T ∈ M̃ , where x(α,η)(·) is the unique

maximal solution of problem (2.4), is continuous.

Proof. Apply Theorem 2.1 to the problem{ (
β′(t), x′(t)

)
=
(
0, h(β(t), t, xt)

)
,(

β(0), x0

)
=
(
α, η

)
,

that can be regarded as an initial value problem of a RFDE on the ambient manifold
Rs ×M ⊆ Rs+k. �

In Theorem 2.1 and in Corollary 2.2 above the hypothesis of the uniqueness of
the maximal solution of problems (2.3) and (2.4) is essential in order to make their
statements meaningful. Sufficient conditions for the uniqueness are presented in
Remark 2.3 below.

Remark 2.3. A functional field g : R× M̃ → Rk is said to be compactly Lipschitz

(for short, c-Lipschitz ) if, given any compact subset Q of R×M̃ , there exists L ≥ 0
such that

|g(t, ϕ)− g(t, ψ)| ≤ L‖ϕ− ψ‖

for all (t, ϕ) , (t, ψ) ∈ Q. Moreover, we will say that g is locally c-Lipschitz if

for any (τ, η) ∈ R × M̃ there exists an open neighborhood of (τ, η) in which g
is c-Lipschitz. In spite of the fact that a locally Lipschitz map is not necessarily
(globally) Lipschitz, one could actually show that if g is locally c-Lipschitz, then it is
also (globally) c-Lipschitz. As a consequence, if g is locally Lipschitz in the second
variable, then it is c-Lipschitz as well. In [3] we proved that, if g is a c-Lipschitz

functional field, then problem (2.3) has a unique maximal solution for any η ∈ M̃ .

For a characterisation of compact subsets of M̃ see e.g. [8, Part 1, IV.6.5].

We close this section with the following lemma whose elementary proof is given
for the sake of completeness.

Lemma 2.4. Let F : X → Y be a continuous map between metric spaces and let
{γn} be a sequence of continuous functions from a compact interval [a, b] (or, more
generally, from a compact space) into X . If {γn(s)} converges to γ(s) uniformly
for s ∈ [a, b], then also F (γn(s))→ F (γ(s)) uniformly for s ∈ [a, b].

Proof. Notice that, if K is a compact subset of X , then for any ε > 0 there exists
δ > 0 such that x ∈ X , k ∈ K, distX (x, k) < δ imply distY(F (x), F (k)) < ε. Now,
our assertion follows immediately by taking the compact K to be the image of the
limit function γ : [a, b]→ X . �
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3. Branches of periodic solutions

Let M be a boundaryless smooth m-dimensional manifold in Rk. Given T > 0,
let

M̂ := C([−T, 0],M)

denote the metric subspace of C([−T, 0],Rk) of the M -valued continuous functions
on [−T, 0] and set

M̂∗ :=
{
ψ ∈ M̂ : ψ(−T ) = ψ(0)

}
.

Moreover, denote by CT (Rk) the Banach space of the continuous T -periodic maps
x : R→ Rk (with the standard supremum norm) and by CT (M) the metric subspace
of CT (Rk) of the M -valued maps. Observe that, since M is locally compact, then

M̂ and CT (M) (but not M̃) are locally complete. Moreover, they are complete if
and only if M is closed.

Let f : R × M̃ → Rk be a functional field over M . Given T > 0, assume that
f is T -periodic in the first variable. Consider the following RFDE depending on a
parameter λ ≥ 0:

(3.1) x′(t) = λf(t, xt).

As in the introduction, we call (λ, x) ∈ [0,+∞) × CT (M) a T -periodic pair (of
(3.1)) if the function x : R → M is a (T -periodic) solution of (3.1) corresponding
to λ. Let us denote by X the set of all T -periodic pairs of (3.1). Lemma 3.1 below
states some properties of X that will be used in the sequel.

Lemma 3.1. The set X is closed in [0,+∞)× CT (M) and locally compact.

Proof. Let
{

(λn, xn)
}

be a sequence of T -periodic pairs of (3.1) converging to

(λ0, x0) in [0,+∞)×CT (M). Because of Lemma 2.4, f(t, xnt ) converges uniformly
to f(t, x0

t ) for t ∈ R. Thus, (xn)′(t) = λnf(t, xnt ) → λ0f(t, x0
t ) uniformly and,

therefore, (x0)′(t) = λ0f(t, x0
t ), that is (λ0, x0) belongs to X. This proves that X

is closed in [0,+∞)× CT (M).
Now, as observed above, CT (M) is locally complete. Consequently X is locally

complete as well, as a closed subset of a locally complete space. Moreover, by using
Ascoli’s theorem, we get that it is actually a locally compact space. �

We recall that, given p ∈M , with the notation p− we mean the constant p-val-
ued function defined on some real interval that will be clear from the context.
Moreover, a T -periodic pair of the type (0, p−) is said to be trivial, and an element
p ∈M is a bifurcation point of the equation (3.1) if any neighborhood of (0, p−) in
[0,+∞)×CT (M) contains a nontrivial T -periodic pair (i.e. a T -periodic pair (λ, x)
with λ > 0). In some sense, p is a bifurcation point if, for λ > 0 sufficiently small,
there are T -periodic orbits of (3.1) arbitrarily close to p.

In the sequel, we are interested in the existence of branches of nontrivial T -pe-
riodic pairs that, roughly speaking, emanate from a trivial pair (0, p−), with p a
bifurcation point of (3.1). To this end, we introduce the mean value tangent vector
field w : M → Rk given by

(3.2) w(p) =
1

T

∫ T

0

f(t, p−) dt.

Throughout the paper w will play a crucial role in obtaining our continuation results
for (3.1). First, in Theorem 3.2 below, we provide a necessary condition for p ∈M
to be a bifurcation point.

Theorem 3.2. Let x ∈ CT (M) be such that (0, x) is an accumulation point of
nontrivial T -periodic pairs of (3.1). Then, there exists p ∈ M such that x(t) = p,
for any t ∈ R, and w(p) = 0. Thus, any bifurcation point of (3.1) is a zero of w.
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Proof. By assumption there exists a sequence
{

(λn, xn)
}

of T -periodic pairs of (3.1)
such that λn > 0, λn → 0, and xn(t)→ x(t) uniformly on R. As proved in Lemma
3.1, the set X of the T -periodic pairs is closed in [0,+∞)×CT (M). Thus, the pair
(0, x) belongs to X and, consequently, the function x must be constant, say x = p−

for some p ∈M . Clearly, the point p is a bifurcation point of (3.1).
Now, given n ∈ N, recalling that xn(T ) = xn(0) and that λn 6= 0, we get∫ T

0

f(t, xnt ) dt = 0.

Observe that the sequence of curves t 7→ (t, xnt ) ∈ R × M̃ converges uniformly
to t 7→ (t, p−) for t ∈ [0, T ]. Hence, because of Lemma 2.4, f(t, xnt ) → f(t, p−)
uniformly for t ∈ [0, T ] and the assertion follows passing to the limit in the above
integral. �

Let now Ω be an open subset of [0,+∞) × CT (M). Our main result (Theorem
3.3 below) provides a sufficient condition for the existence of a bifurcation point p in
M with (0, p−) ∈ Ω. More precisely, we give conditions which ensure the existence
of a connected subset of Ω of nontrivial T -periodic pairs of equation (3.1) (a global
bifurcating branch for short), whose closure in Ω is noncompact and intersects the
set of trivial T -periodic pairs contained in Ω.

Theorem 3.3. Let M ⊆ Rk be a boundaryless smooth manifold, f : R× M̃ → Rk
a functional field on M , T -periodic in the first variable and locally Lipschitz in the
second one, and w : M → Rk the autonomous tangent vector field

w(p) =
1

T

∫ T

0

f(t, p−) dt .

Let Ω be an open subset of [0,+∞)×CT (M) and let j : M → [0,+∞)×CT (M) be
the map p 7→ (0, p−). Assume that deg(w, j−1(Ω)) is defined and nonzero. Then,
there exists a connected subset of Ω of nontrivial T -periodic pairs of equation (3.1)
whose closure in Ω is noncompact and intersects {0} × CT (M) in a (nonempty)
subset of

{
(0, p−) ∈ Ω : w(p) = 0

}
.

Remark 3.4 (On the meaning of global bifurcating branch). In addition to the

hypotheses of Theorem 3.3, assume that f sends bounded subsets of R × M̃ into
bounded subsets of Rk, and that M is closed in Rk (or, more generally, that the
closure Ω of Ω in [0,+∞)× CT (M) is complete).

Then a connected subset Γ of Ω as in Theorem 3.3 is either unbounded or, if
bounded, its closure Γ in Ω reaches the boundary ∂Ω of Ω.

To see this, assume that Γ is bounded. Then, being f(Γ) bounded, because of
Ascoli’s theorem, Γ is actually totally bounded. Thus, Γ is compact, being totally
bounded and, additionally, complete since Γ is contained in Ω. On the other hand,
according to Theorem 3.3, the closure ΓΩ of Γ in Ω is noncompact. Consequently,
the set Γ \ ΓΩ is nonempty, and this means that Γ reaches the boundary of Ω.

The proof of Theorem 3.3 requires some preliminary steps. In the first one we
define a parametrized Poincaré-type T -translation operator whose fixed points are
the restrictions to the interval [−T, 0] of the T -periodic solutions of (3.1). For this

purpose, we need to introduce a suitable backward extension of the elements of M̂ .
The properties of such an extension are contained in Lemma 3.5 below, obtained in
[11]. In what follows, by a T -periodic map on an interval J we mean the restriction
to J of a T -periodic map defined on R.

Lemma 3.5. There exist an open neighborhood U of M̂∗ in M̂ and a continuous

map from U to M̃ , ψ 7→ ψ̃, with the following properties:
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1) ψ̃ is an extension of ψ;

2. ψ̃ is T -periodic on (−∞,−T ];

3. ψ̃ is T -periodic on (−∞, 0], whenever ψ ∈ M̂∗.

Let now U be an open subset of M̂ as in the previous lemma and let f be as in
Theorem 3.3. Given λ ≥ 0 and ψ ∈ U , consider the initial value problem

(3.3)

{
x′(t) = λf(t, xt),

x0 = ψ̃,

where ψ̃ is the extension of ψ as in Lemma 3.5.
Let

D =
{

(λ, ψ) ∈ [0,+∞)× U : the maximal solution of (3.3) is defined up to T
}
.

The set D is nonempty since it contains {0} × U (notice that, for λ = 0, the
solution of problem (3.3) is constant for t > 0). Moreover, it follows by Corollary

2.2 that D is open in [0,+∞)× M̂ .

Given (λ, ψ) ∈ D, denote by x(λ,ψ̃) the maximal solution of problem (3.3) and
define

P : D → M̂

by

P (λ, ψ)(θ) = x(λ,ψ̃)(θ + T ), θ ∈ [−T, 0].

Observe that P (λ, ψ) is the restriction of x
(λ,ψ̃)
T ∈ M̃ to the interval [−T, 0].

The following lemmas regard crucial properties of the operator P . The proof of
the first one is standard and will be omitted.

Lemma 3.6. The fixed points of P (λ, ·) correspond to the T -periodic solutions of
the equation (3.1) in the following sense: ψ is a fixed point of P (λ, ·) if and only if
it is the restriction to [−T, 0] of a T -periodic solution.

Lemma 3.7. The operator P is continuous and locally compact.

Proof. The continuity of P follows immediately from the continuous dependence on

data stated in Corollary 2.2 and by the continuity of the map ψ 7→ ψ̃ of Lemma 3.5

and of the map that associates to any ϕ ∈ M̃ its restriction to the interval [−T, 0].
Let us prove that P is locally compact. Take (λ0, ψ0) ∈ D and denote for

simplicity by x0 the maximal solution x(λ0,ψ̃0) of (3.3) corresponding to (λ0, ψ̃0).
Clearly, x0 is defined at least up to T and P (λ0, ψ0)(θ) = x0(θ + T ) for any θ ∈
[−T, 0]. Set

K = {(t, x0
t ) ∈ R× M̃ : t ∈ [0, T ]}.

Observe that K is compact, being the image of [0, T ] under the (continuous) curve

t 7→ (t, x0
t ). Let O be an open neighborhood of K in R × M̃ and c > 0 such that

|f(t, ϕ)| ≤ c for all (t, ϕ) ∈ O. Let us show that there exists an open neighborhood

W of (λ0, ψ0) in D such that if (λ, ψ) ∈W , then (t, x
(λ,ψ̃)
t ) ∈ O for t ∈ [0, T ], where

x(λ,ψ̃) is the maximal solution of (3.3) corresponding to (λ, ψ̃). By contradiction,
for any n ∈ N suppose there exist (λn, ψn) ∈ D and tn ∈ [0, T ] such that (λn, ψn)→
(λ0, ψ0) and (tn, xntn) /∈ O, where xn denotes the maximal solution x(λn,ψ̃n) of (3.3)

corresponding to (λn, ψ̃n). We may assume tn → τ ∈ [0, T ]. Now, from the fact

that in M̃ the convergence is uniform we get the equicontinuity of the sequence
{xnT }. This easily implies that (tn, xntn) → (τ, x0

τ ). A contradiction, since O is
open and (τ, x0

τ ) belongs to K ⊆ O. Thus, the existence of the required W is
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proved. Consequently, for any (λ, ψ) ∈ W , the maximal solution x(λ,ψ̃) of (3.3)

corresponding to (λ, ψ̃) is such that |(x(λ,ψ̃))′(t)| = |λf(t, x
(λ,ψ̃)
t )| ≤ |λ|c for all

t ∈ [0, T ].
Therefore, by Ascoli’s theorem and taking into account the local completeness

of M̂ , we get that P maps W into a compact subset of M̂ . This proves that P is
locally compact. �

The following result establishes the relationship between the fixed point index
of the Poincaré-type operator P (λ, ·) and the degree of the mean value vector field
w. It will be crucial in the proof of Lemma 3.10.

Lemma 3.8. Let V be an open subset of M̂ such that V ∩ {p− ∈ M̂ : w(p) = 0} is
compact and let ε > 0 be such that

a) [0, ε]× V is contained in the domain D of P ;

b) P ([0, ε]× V) is relatively compact;

c) P (λ, ψ) 6= ψ for 0 < λ ≤ ε and ψ in the boundary ∂V of V.

Consider the open set V = {p ∈ M : p− ∈ V}. Then, deg(−w, V ) is well defined
and

ind
M̂

(P (λ, ·),V) = deg(−w, V ), 0 < λ ≤ ε.

Proof. Let U be an open subset of M̂ as in Lemma 3.5. Given λ ≥ 0, µ ∈ [0, 1] and
ψ ∈ U , consider the initial value problem

(3.4)

{
x′(t) = λ

(
(1− µ)f(t, xt) + µw(x(t))

)
,

x0 = ψ̃,

where ψ̃ is associated to ψ as in Lemma 3.5. Since f is locally Lipschitz in the
second variable, then it is easy to see that w is locally Lipschitz as well. Hence, for
any λ ∈ [0,+∞) and µ ∈ [0, 1], the uniqueness of the solution of problem (3.4) is

ensured (recall Remark 2.3). Denote by x(λ,ψ̃,µ) the maximal solution of problem
(3.4), and put

E =
{

(λ, ψ, µ) ∈ [0,+∞)× U × [0, 1] : x(λ,ψ̃,µ) is defined up to T
}

and

D′ =
{

(λ, ψ) ∈ [0,+∞)× U : (λ, ψ, µ) ∈ E for all µ ∈ [0, 1]
}
.

Corollary 2.2 implies that E is open in [0,+∞)× U × [0, 1]. Therefore D′ is open

in [0,+∞) × M̂ , because of the compactness of [0, 1]. Moreover, observe that the
slice D′0 of D′ at λ = 0 coincides with U and that D′ is contained into the domain

D of the operator P defined above. Define H : D′ × [0, 1]→ M̂ by

H(λ, ψ, µ)(θ) = x(λ,ψ̃,µ)(θ + T ), θ ∈ [−T, 0].

Clearly, H(·, ·, 0) coincides with P on D′, while H(·, ·, 1) is the (infinite dimensional)
operator associated to the undelayed problem{

x′(t) = λw(x(t)),

x0 = ψ̃.

As in Lemmas 3.6 and 3.7, one can show that the fixed points of H(λ, ·, µ) corre-
spond to the T -periodic solutions of the equation

x′(t) = λ
(
(1− µ)f(t, xt) + µw(x(t)),

and that H is continuous and locally compact.
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The assertion now will follow by proving some intermediate results on the ho-
motopy H. These results will be carried out in several steps. In what follows
set

Z =
{
p ∈M : w(p) = 0

}
and, according to our notation,

Z− =
{
p− ∈ M̂ : p ∈ Z

}
.

Step 1. There exist σ > 0 and an open subset V ′ of M̂ , containing V ∩ Z−, with
V ′ ⊆ V, and such that

a’) [0, σ]× V ′ ⊆ D′ (i.e. for 0 ≤ λ ≤ σ, H(λ, ·, ·) is defined in V ′ × [0, 1]);

b’) H([0, σ]× V ′ × [0, 1]) is relatively compact.

To prove Step 1, observe that {0} × (V ∩ Z−)× [0, 1] is compact and contained

in D′ × [0, 1], which is open in [0,+∞) × M̂ × [0, 1], and recall that H is locally
compact.

Step 2. For small values of λ > 0, H(λ, ψ, µ) 6= ψ for any ψ ∈ ∂V ′ and µ ∈ [0, 1].
By contradiction, suppose there exists a sequence {(λn, ψn, µn)} in D′ × [0, 1]

such that λn > 0, λn → 0, ψn ∈ ∂V ′ and H(λn, ψn, µn) = ψn. Without loss of
generality, taking into account b’), we may assume that ψn → ψ0 and also that

µn → µ0. Denote by xn the T -periodic solution x(λn,ψ̃n,µn) of (3.4) corresponding

to (λn, ψ̃n, µn). Since ψn is the restriction of xn to [−T, 0], then {xn(t)} converges
uniformly on R to x0(t), where x0 is the solution of (3.4) corresponding to the fixed
point ψ0 of H(0, ·, µ0). Therefore, there exists p ∈ M such that x0(t) = p for any
t ∈ R and, as in the proof of Theorem 3.2, we can show that w(p) = 0. Thus,
ψ0 = p− belongs to ∂V ′ ∩ Z−, contradicting the choice of V ′. This proves Step 2.

Step 3. For small values of λ > 0, H(λ, ψ, 0) 6= ψ for any ψ ∈ V\V ′.
The proof is analogous to that of Step 2, noting that H(λ, ψ, 0) = P (λ, ψ) for

(λ, ψ) ∈ D′ and taking into account assumption b) and the fact that V\V ′ is closed

in M̂ .
Step 4. Let k : V ′ → M be defined by k(ψ) = ψ(0) and consider the open set

V ′ = {p ∈ M : p− ∈ V ′}. Then, there exists σ′ ∈ (0, σ] such that H(λ, ψ, 1) 6= ψ
for any (λ, ψ) ∈ (0, σ′]× (V ′\k−1(V ′)).

By contradiction, suppose there exists a sequence {(λn, ψn)} in D′ such that
λn > 0, λn → 0, ψn ∈ V ′\k−1(V ′) and H(λn, ψn, 1) = ψn. Without loss of gen-
erality, taking into account b’), we may assume that ψn → ψ0. Therefore, by the
continuity of H, we get H(0, ψ0, 1) = ψ0, so that ψ0 is a constant function of
V ′\k−1(V ′). This is impossible, since any constant function of V ′ is contained in
k−1(V ′).

Step 5. Let V ′ and σ′ be as in Step 4 and let Q : [0, σ′]×V ′ →M be the T -trans-

lation operator Q(λ, p) = x(λ,p−,1)(T ), where x(λ,p−,1) is the maximal solution of
the undelayed problem {

x′(t) = λw(x(t)),
x0 = p−.

Then, for small values of λ, indM (Q(λ, ·), V ′) is defined and

ind
M̂

(H(λ, ·, 1),V ′) = indM (Q(λ, ·), V ′) .

To see this, let k : V ′ →M be as in Step 4 and, given λ ∈ (0, σ′], define hλ : V ′ →
M̂ by hλ(p)(θ) = x(λ,p−,1)(θ + T ), θ ∈ [−T, 0]. Clearly, k is a locally compact
map since it takes values in the locally compact space M . Moreover, hλ is actually
compact since hλ(V ′) is contained inH([0, σ]×V ′×[0, 1]) which is relatively compact
by b’) of Step 1. Now, observe that the composition hλk coincides with H(λ, ·, 1)
in k−1(V ′) and that the set of fixed points of H(λ, ·, 1) in V ′ is compact by b’) of
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Step 1 and is contained in k−1(V ′) by Step 4. Thus, the set of fixed points of hλk
in k−1(V ′) is compact so that, by applying the commutativity property of the fixed
point index to the maps k and hλ, we get

ind
M̂

(hλk, k
−1(V ′)) = indM (khλ, h

−1
λ (V ′)).

Consequently, since it is easy to verify that the composition khλ coincides with
Q(λ, ·) in h−1

λ (V ′), we obtain

ind
M̂

(H(λ, ·, 1), k−1(V ′)) = indM (Q(λ, ·), h−1
λ (V ′),

and, because of Step 4, by the excision property of the index,

ind
M̂

(H(λ, ·, 1),V ′) = ind
M̂

(H(λ, ·, 1), k−1(V ′)).

To complete the proof of Step 5, let us show that, for λ sufficiently small, Q(λ, p) 6= p
for p ∈ V ′\h−1

λ (V ′). By contradiction, suppose there exists a sequence {(λn, pn)} in

[0, σ′]×V ′ such that λn > 0, λn → 0, pn ∈ V ′\h−1
λn

(V ′) and Q(λn, pn) = pn. Hence,

there exists a sequence {ψn} in V ′ such that ψn(0) = pn and H(λn, ψn, 1) = ψn.
Because of b’) of Step 1, we may assume that ψn → ψ0, so that, in particular,
pn → p0, where p0 = ψ0(0). Now, by an argument similar to that used in the
proof of Theorem 3.2, we get that ψ0 is constant and w(p0) = 0. Thus, p0 ∈ Z.
Moreover, since

⋂
λ>0(V ′\h−1

λ (V ′)) = ∂V ′, we also obtain that p0 belongs to ∂V ′,
contradicting the choice of V ′. Finally, again by excision, we get

indM (Q(λ, ·), h−1
λ (V ′) = indM (Q(λ, ·), V ′),

and, thus, Step 5 is proved.

Let us now go back to the proof of our lemma. Step 1 and Step 2 above imply

that there exist ε′ > 0 and an open subset V ′ of M̂ , containing V ∩Z−, with V ′ ⊆ V
and such that, if 0 < λ ≤ ε′, then ind

M̂
(H(λ, ·, µ),V ′) is defined and is independent

of µ ∈ [0, 1]. Moreover, in case reducing ε′, by Step 3 and by assumption b), it
follows that, for λ ∈ (0, ε′], the fixed points of H(λ, ·, 0) = P (λ, ·) in V are a compact
subset of V ′. Therefore, by the excision property and the homotopy invariance of
the index, we get

ind
M̂

(P (λ, ·),V) = ind
M̂

(P (λ, ·),V ′) = ind
M̂

(H(λ, ·, 0),V ′) = ind
M̂

(H(λ, ·, 1),V ′).
On the other hand, by Step 5, if λ > 0 is sufficiently small, we have

ind
M̂

(H(λ, ·, 1),V ′) = indM (Q(λ, ·), V ′).
Moreover, as shown in [9],

indM (Q(λ, ·), V ′) = deg(−w, V ′).
Finally, notice that deg(−w, V ) is well-defined since V ∩Z is compact being home-
omorphic to V ∩ Z−. Also observe that there are no zeros of w in V \V ′. Thus, by
the excision property of the degree, we obtain

deg(−w, V ′) = deg(−w, V ).

This shows that, for small values of λ > 0, ind
M̂

(P (λ, ·),V) = deg(−w, V ). The
assertion of the lemma now follows by applying the homotopy invariance of the
fixed point index to P (λ, ·) on V. �

Lemma 3.10 below, whose proof makes use the following Wyburn’s type topo-
logical lemma, is another important step in the construction of the proof of Theo-
rem 3.3.

Lemma 3.9 ([10]). Let K be a compact subset of a locally compact metric space
Y . Assume that any compact subset of Y containing K has nonempty boundary.
Then Y \K contains a connected set whose closure is noncompact and intersects K.
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Before presenting Lemma 3.10, we introduce the sets

S = {(λ, ψ) ∈ D : P (λ, ψ) = ψ} and S+ = {(λ, ψ) ∈ S : λ > 0},
and we recall that Z ⊆M denotes the set of zeros of the tangent vector field w.

Lemma 3.10. Let Y be a locally compact open subset of ({0}×Z−)∪S+. Assume
that K := Y ∩ ({0}×Z−) is compact, and that deg(w, V ) 6= 0, where V ⊆M is an
isolating neighborhood of {p ∈ M : (0, p−) ∈ K}. Then the pair (Y,K) verifies the
assumptions of Lemma 3.9.

Proof. First of all, observe that, by Lemma 3.7, S is closed in D and locally com-
pact. In addition, K is clearly nonempty being deg(w, V ) 6= 0. Now, let G be an
open subset of D such that

G ∩
(

({0} × Z−) ∪ S+

)
= Y.

To prove the assertion, suppose by contradiction that there exists a compact open
neighborhood C of K in Y . Consequently, we can find an open subset W of G such
that W ⊆ G and C = W ∩ Y = W ∩ Y . Therefore, denoted by G0 the slice

G0 = {ψ ∈ M̂ : (0, ψ) ∈ G},

we have that G0 ∩ Z− is a compact subset of M̂ and is contained in the open
slice W0 ⊆ W 0 ⊆ G0 of W at λ = 0. Let V be an open subset of W0 such that
V ⊆ V ⊆W0 and V ∩Z− = W0 ∩Z−. Since C is compact and because of the local
compactness of P , we may suppose that P (W ) is relatively compact. Consequently,
there exists ε > 0 such that

1. [0, ε]× V ⊆W ;

2. P (λ, ψ) 6= ψ for ψ ∈Wλ\V and 0 < λ ≤ ε (here, as usual, Wλ denotes the

slice {ψ ∈ M̂ : (λ, ψ) ∈W}).
Notice that P ([0, ε]×V) is relatively compact. This follows easily from the above

condition 1 and the relative compactness of P (W ).
We can now apply Lemma 3.8 and the excision properties of the fixed point

index and of the degree, obtaining, for any 0 < λ ≤ ε,
(3.5) ind

M̂
(P (λ, ·),Wλ) = ind

M̂
(P (λ, ·),V) = deg(−w, V ),

where V = {p ∈ M : p− ∈ V}. Observe that V is an isolating neighborhood of
{p ∈ M : (0, p−) ∈ K}. Thus, by formula (2.1), by the above equalities (3.5) and
the assumption deg(w, V ) 6= 0, we get

ind
M̂

(P (λ, ·),Wλ) 6= 0, 0 < λ ≤ ε.
Since C is compact, by the generalized homotopy invariance property of the fixed
point index, we get that ind

M̂
(P (λ, ·),Wλ) does not depend on λ > 0. Hence,

ind
M̂

(P (λ, ·),Wλ) 6= 0, ∀λ > 0.

On the other hand, because of the compactness of C, for some positive λ the slice
Cλ = {ψ ∈Wλ : P (λ, ψ) = ψ} is empty. Thus,

ind
M̂

(P (λ, ·),Wλ) = 0,

and we have a contradiction. Therefore, (Y,K) verifies the assumptions of Lemma
3.9 and the proof is complete. �

Proof of Theorem 3.3. Let ρ : [0,+∞)×CT (M)→ [0,+∞)×M̂∗ be the isometry
given by ρ(λ, x) = (λ, ψ), where ψ is the restriction of x to the interval [−T, 0]. As
previously, let X ⊆ [0,+∞)×CT (M) denote the set of the T -periodic pairs of (3.1)
and, as in Lemma 3.10, let S be the set of the pairs (λ, ψ) such that P (λ, ψ) = ψ.
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Observe that S is actually contained in [0,+∞)×M̂∗. Taking into account Lemma
3.6, X and S correspond under ρ. Analogously to the definition of S+, let us denote

X+ = {(λ, x) ∈ X : λ > 0}.
In addition, consider

ZT = {p− ∈ CT (M) : w(p) = 0}.
Theorem 3.2 implies that ({0}×ZT )∪X+ is a closed subset of X. Therefore, it

is locally compact, since so is X according to Lemma 3.1. Now, consider

Y T = Ω ∩
(
({0} × ZT ) ∪X+

)
.

Observe that Y T is locally compact, being open in ({0} × ZT ) ∪X+. Then,

Y := ρ(Y T )

is locally compact and open in ({0}×Z−)∪S+. Denote by KT and K the subsets
of Y T and Y defined as

KT = {(λ, x) ∈ Y T : λ = 0} and K = ρ(KT ).

Now, observe that j−1(Ω) is an isolating neighborhood of

{p ∈M : (0, p−) ∈ K}.
Since deg(w, j−1(Ω)) 6= 0, we can apply Lemma 3.10, concluding that (Y,K) ver-
ifies the assumptions of Lemma 3.9. Therefore, also (Y T ,KT ) verifies the same
assumptions, since the pairs (Y,K) and (Y T ,KT ) correspond under the isometry
ρ. Therefore, Lemma 3.9 implies that Y T \KT contains a connected set Γ whose
closure (in Y T ) is noncompact and intersects KT . Now, observe that, according to
Theorem 3.2, Y T is closed in Ω. Thus the closures of Γ in Y T and in Ω coincide.
This concludes the proof. �

We give now some consequences of Theorem 3.3. The first one is in the spirit of
a celebrated result due to P. H. Rabinowitz [31].

Corollary 3.11 (Rabinowitz type global bifurcation result). Let M and f be as
in Theorem 3.3. Assume that M is closed in Rk and that f sends bounded subsets

of R × M̃ into bounded subsets of Rk. Let V be an open subset of M such that
deg(w, V ) 6= 0, where w is the mean value tangent vector field defined in formula
(3.2). Then, equation (3.1) has a connected subset of nontrivial T -periodic pairs
whose closure contains some (0, p−), with p ∈ V , and is either unbounded or goes
back to some (0, q−), where q /∈ V .

Proof. Let Ω be the open set obtained by removing from [0,+∞) × CT (M) the
closed set {(0, q−) : q /∈ V }. In other words,

Ω =
(
[0,+∞)× CT (M)

)
\
(
{0} × (M \ V )−

)
.

Observe that Ω is complete, due to the closedness of M . Consider, by Theorem 3.3,
a connected set Γ ⊆ Ω of nontrivial T -periodic pairs with noncompact closure (in
Ω) and intersecting {0} ×CT (M) in a subset of {(0, p−) ∈ Ω : w(p) = 0}. Suppose
that Γ is bounded. From Remark 3.4 it follows that Γ \ ΓΩ, where ΓΩ denotes the
closure of Γ in Ω, is nonempty and hence contains a point (0, q−) which does not
belong to Ω, that is, such that q /∈ V . �

Remark 3.12. The assumption of Corollary 3.11 above on the existence of an
open subset V of M such that deg(w, V ) 6= 0 is clearly satisfied in the case when
w has an isolated zero with nonzero index. For example, if w(p) = 0 and w is C1

with injective derivative w′(p) : TpM → Rk, then p is an isolated zero of w and
its index is either 1 or −1. In fact, in this case, w′(p) sends TpM into itself and,
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consequently, its determinant is well defined and nonzero. The index of p is just
the sign of this determinant (see e.g. [24]).

The next consequence of Theorem 3.3 provides an existence result for T -periodic
solutions already obtained in [4]. Moreover, it improves an analogous result in [2],
in which the map f is continuous on R × C((−∞, 0],M), with the compact-open
topology in C((−∞, 0],M). In fact, such a coarse topology makes the assumption
of the continuity of f a more restrictive condition than the one we require here.

Corollary 3.13. Let M and f be as in Theorem 3.3. Assume that f sends

bounded subsets of R × M̃ into bounded subsets of Rk. In addition, suppose that
M is compact with Euler-Poincaré characteristic χ(M) 6= 0. Then, equation (3.1)
has a connected unbounded set of nontrivial T -periodic pairs whose closure meets
{0} × CT (M). Therefore, since CT (M) is bounded, equation (3.1) has a T -periodic
solution for any λ ≥ 0.

Proof. Choose V = M . By the Poincaré-Hopf theorem we have

deg(w,M) = χ(M) 6= 0,

where w is the mean value tangent vector field defined in formula (3.2). The as-
sertion follows from Corollary 3.11. �

Corollary 3.14 below is a kind of continuation principle in the spirit of a well
known result due to Jean Mawhin for ODEs in Rk [22, 23], and extends an analogous
one for ODEs on differentiable manifolds [10]. In what follows, by a T -periodic orbit
of x′(t) = λf(t, xt) we mean the image of a T -periodic solution of this equation.

Corollary 3.14 (Mawhin type continuation principle). Let M and f be as in
Theorem 3.3 and let w be the mean value tangent vector field defined in formula

(3.2). Assume that f sends bounded subsets of R× M̃ into bounded subsets of Rk.
Let V be a relatively compact open subset of M and assume that

1. w(p) 6= 0 along the boundary ∂V of V ;

2. deg(w, V ) 6= 0;

3. for any λ ∈ (0, 1], the T -periodic orbits of x′(t) = λf(t, xt) lying in V do
not meet ∂V .

Then, the equation

x′(t) = f(t, xt)

has a T -periodic orbit in V.

Proof. Define Ω = [0, 1)× CT (V ). Observe that CT (V ) = CT (V ). Therefore,

∂Ω =
(
{1} × CT (V )

)
∪
(
[0, 1)× CT (V ) \ CT (V )

)
.

According to Theorem 3.3, call Γ a connected subset of Ω of nontrivial T -pe-
riodic pairs of equation x′(t) = λf(t, xt), whose closure in Ω is noncompact and
intersects {0} × CT (M) in a subset of {(0, p−) ∈ Ω : w(p) = 0}.

As V has compact closure in M , then the closure of Ω in [0,+∞) × CT (M) is
complete, being

Ω = [0, 1]× CT (V ).

Since f sends bounded subsets of R × M̃ into bounded subsets of Rk, recalling
Remark 3.4, one has that the closure Γ of Γ in the whole space (which coincides
with the closure in Ω) must intersect ∂Ω.

Now, because of the above condition 3, Γ cannot contain elements of (0, 1) ×
CT (V ) \ CT (V ). In addition, condition 1 and Theorem 3.2 imply that Γ does
not contain elements of {0} ×

(
CT (V ) \ CT (V )

)
. Therefore, the nonempty set
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Γ ∩ ∂Ω is composed by pairs of the form (1, x), where x is a T -periodic solution of
x′(t) = f(t, xt) whose image is contained in V . �
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