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Abstract. We prove a global bifurcation result for T -periodic solutions of the T -periodic delay differ-

ential equation x′(t) = λf(t, x(t), x(t− 1)) depending on a real parameter λ ≥ 0. The approach is based

on the fixed point index theory for maps on ANR’s.

1. Introduction

Let M ⊆ Rk be a smooth manifold with (possibly empty) boundary, and let

f : R×M ×M → Rk

be a continuous map which is T -periodic in the first variable and tangent to M in the second one; that is

f(t + T, p, q) = f(t, p, q) ∈ TpM , ∀ (t, p, q) ∈ R×M ×M ,

where TpM ⊆ Rk denotes the tangent space of M at p. Consider the delay differential equation

x′(t) = λf(t, x(t), x(t− 1)) (1.1)

depending on a nonnegative real parameter λ. By a T -periodic pair of the above equation we mean a
pair (λ, x), where λ ≥ 0 and x : R → M is a T -periodic solution of (1.1) corresponding to λ. The set of
the T -periodic pairs of (1.1) is regarded as a subset of [0,+∞)×CT (M), where CT (M) is the set of the
continuous T -periodic maps from R to M with the metric induced by the Banach space CT (Rk) of the
continuous T -periodic Rk-valued maps (with the standard supremum norm). A T -periodic pair (λ, x)
will be called trivial if λ = 0. In this case x is a constant M -valued map and will be identified with a
point of M .

Under the assumptions that M is compact with nonzero Euler–Poincaré characteristic, that T ≥ 1,
and that f satisfies a natural inward condition along the boundary of M (when nonempty), we prove the
existence of an unbounded – with respect to λ – connected branch of nontrivial T -periodic pairs whose
closure intersects the set of the trivial T -periodic pairs in a nonempty set called set of bifurcation points.
Our result extends an analogous one of the last two authors for the undelayed case (see [6] and [7]).

This unusual notion of bifurcation goes back to Ambrosetti and Prodi: in [14] they used the expression
atypical bifurcation, also called co-bifurcation in [5].

We point out that the assumption T ≥ 1 is crucial for the method used here, based on fixed point
index theory for locally compact maps on ANR’s and applied to a Poincaré-type T -translation operator.
In a forthcoming paper we will tackle the case 0 < T < 1, in which the T -translation operator is not
locally compact (actually, not locally condensing).
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2. Preliminary results

Let M be an arbitrary subset of Rk. We recall the notions of tangent cone and tangent space of M at
a given point p in the closure M of M . The definition of tangent cone is equivalent to the classical one
introduced by Bouligand in [2].

Definition 2.1. A vector v ∈ Rk is said to be inward to M at p ∈ M if there exist two sequences {αn}
in [0,+∞) and {pn} in M such that

pn → p and αn(pn − p) → v.

The set CpM of the vectors which are inward to M at p is called the tangent cone of M at p. The tangent
space TpM of M at p is the vector subspace of Rk spanned by CpM . A vector v of Rk is said to be
tangent to M at p if v ∈ TpM .

To simplify some statements and definitions we put CpM = TpM = ∅ whenever p ∈ Rk does not belong
to M (this can be regarded as a consequence of Definition 2.1 if one replaces the assumption p ∈ M with
p ∈ Rk). Observe that TpM is the trivial subspace {0} of Rk if and only if p is an isolated point of M .
In fact, if p is an accumulation point, then, given any {pn} in M\{p} such that pn → p, the sequence{
αn(pn − p)

}
, with αn = 1/‖pn − p‖, admits a convergent subsequence whose limit is a unit vector.

One can show that in the special and important case when M is a ∂-manifold, i.e. a smooth manifold
with (possibly empty) boundary ∂M , then TpM has the same dimension as M for all p ∈ M . Moreover,
CpM is a closed half-space in TpM (delimited by Tp∂M) if p ∈ ∂M , and CpM = TpM if p ∈ M\∂M .

Let, as above, M be a subset of Rk, and let g : R×M ×M → Rk be a continuous map. We say that
g is tangent to M in the second variable or, for short, that g is a vector field on M if g(t, p, q) ∈ TpM

for all (t, p, q) ∈ R × M × M . In particular, g will be said inward (to M) if g(t, p, q) ∈ CpM for all
(t, p, q) ∈ R ×M ×M . If M is a closed subset of a boundaryless smooth manifold N ⊆ Rk, we will say
that g is away from N\M if g(t, p, q) 6∈ Cp(N\M) for all (t, p, q) ∈ R×M ×M .

Given a vector field g : R×M ×M → Rk (on M), consider the following delay differential equation:

x′(t) = g(t, x(t), x(t− 1)). (2.1)

By a solution of (2.1) we mean a continuous function x : J → M , defined on a (possibly unbounded)
real interval with length greater than 1, which is of class C1 on the subinterval (inf J +1, supJ) of J and
verifies x′(t) = g(t, x(t), x(t− 1)) for all t ∈ J with t > inf J + 1.

Given g as above and given a continuous map ϕ : [−1, 0] → M , consider the following initial value
problem: {

x′(t) = g(t, x(t), x(t− 1)),
x(t) = ϕ(t), t ∈ [−1, 0].

(2.2)

A solution of this problem is a solution x : J → M of (2.1) such that J ⊇ [−1, 0] and x(t) = ϕ(t) for all
t ∈ [−1, 0].

The following technical lemma regards the existence of a persistent solution of problem (2.2).

Lemma 2.2. Let M be a compact subset of a boundaryless smooth manifold N ⊆ Rk and assume that g

is a vector field on M which is away from N\M . Then problem (2.2) admits a solution defined on the
whole half line [−1,+∞).
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Proof. First of all, notice that we may extend g to a vector field g1 on N . Indeed, since M is closed in
N , because of the Tietze Extension Theorem, g has an Rk-valued (continuous) extension to R×N ×N .
It is sufficient to consider the component of this extension which is tangent to N in the second variable.

Now, let us use g1 to define a suitable new extension g̃ : R × Rk × Rk → Rk of g. Let U ⊆ Rk be a
tubular neighborhood of N and let r : U → N be the associated retraction (if N is an open set of Rk,
then U = N and r is the identity). Let σ : Rk → [0, 1] be a continuous function with compact support,
suppσ, contained in U and such that σ(p) = 1 if p ∈ M (observe that U is an open neighborhood of M

in Rk). Define g̃ by

g̃(t, p, q) =

{
σ(p)σ(q)g1(t, r(p), r(q)) if p, q ∈ U,

0 otherwise.

Now, consider the following auxiliary problem depending on n ∈ N:{
x′(t) = g̃(t, x(t− 1

n ), x(t− 1)), t > 0,

x(t) = ϕ(t), t ∈ [−1, 0].
(2.3)

Clearly problem (2.3) has a solution defined on [−1, 1/n] and, given a solution on [−1, β], one can extend
it to the interval [−1, β + 1/n]. Thus, problem (2.3) has a global solution xn : [−1,+∞) → Rk.

Define µ : [0,+∞) → R by

µ(t) = max
{
‖g̃(τ, p, q)‖ : τ ∈ [0, t], p, q ∈ supp σ

}
.

Notice that µ is continuous because of the compactness of suppσ. For all n ∈ N and all t > 0, we have
‖x′n(t)‖ ≤ µ(t) and, consequently,

‖xn(t)‖ ≤ ‖ϕ(0)‖+
∫ t

0

µ(s) ds, t ≥ 0.

Thus, by Ascoli’s Theorem, we may assume that, as n →∞, {xn(t)} converges to a continuous function
x(t), uniformly on compact subsets of [−1,+∞). Because of this, {x′n(t)} converges to g̃(t, x(t), x(t−1)),
uniformly on compact subsets of (0,+∞). Therefore, by classical results, one gets x′(t) = g̃(t, x(t), x(t−1))
for all t > 0. Thus, the assertion follows if we show that x(t) lies entirely in M .

Let us show first that x(t) ∈ N for all t ≥ 0 (this could be false if g̃ were an arbitrary continuous exten-
sion of g). Clearly x(t) belongs (for all t ≥ 0) to the compact subset suppσ of the tubular neighborhood
U . Thus, the C1 function

δ(t) = ‖x(t)− r(x(t))‖2

is well defined for t ≥ 0 and verifies δ(0) = 0. Assume, by contradiction, that x(t) /∈ N for some t > 0.
This means that δ(t) > 0 for some t > 0 and, consequently, its derivative must be positive at some τ > 0.
That is,

δ′(τ) = 2
〈
x(τ)− r(x(τ)), g̃(τ, x(τ), x(τ − 1))− w(τ)

〉
> 0,

where 〈·, ·〉 denotes the inner product in Rk, and w(τ) is the derivative at t = τ of the curve t 7→ r(x(t)).
This is a contradiction since both the vectors g̃(τ, x(τ), x(τ − 1)) and w(τ) are tangent to N at r(x(τ))
and, consequently, orthogonal to x(τ)− r(x(τ)).

It remains to show that x(t) ∈ M for all t > 0. Let s = inf{t > 0 : x(t) 6∈ M}, and assume by
contradiction s < +∞ (here we adopt the convention inf ∅ = +∞). Let {tn} be a sequence converging
to s and such that x(tn) ∈ N\M . Clearly x(s) ∈ M and tn > s for all n ∈ N. We have

lim
n→∞

x(tn)− x(s)
tn − s

= x′(s) = g(s, x(s), x(s− 1)) .
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This implies, because of the definition of tangent cone, that the vector g(s, x(s), x(s − 1)) belongs to
Cx(s)(N\M), contradicting the fact that the vector field g is away from N\M . �

From now on M will be a compact ∂-manifold in Rk. In this case one may regard M as a subset of a
smooth boundaryless manifold N of the same dimension as M (see e.g. [11]). It is not hard to show that
a vector field g on M is away from the complement N\M if and only if it is strictly inward ; meaning
that g is inward and g(t, p, q) 6∈ Tp∂M for all (t, p, q) ∈ R× ∂M ×M .

Proposition 2.3. Let M ⊆ Rk be a compact ∂-manifold and let g be an inward vector field on M . Then,
problem (2.2) admits a solution defined on the whole half line [−1,+∞).

Proof. As already pointed out, we may regard M as a subset of a smooth boundaryless manifold N of
the same dimension as M . Let ν : M → Rk be any strictly inward tangent vector field on M . For
example, define ν(p) for any p ∈ ∂M as the unique unitary vector belonging to CpM ∩Tp∂M⊥, and then
extend ν to a tangent vector field on the whole manifold M (by removing the normal component of the
extension ensured by the Tietze Extension Theorem). For any n ∈ N, define the strictly inward vector
field gn : R×M ×M → Rk by gn(t, p, q) = g(t, p, q) + ν(p)/n, and let xn : [−1,+∞) → M be a solution
of the initial value problem {

x′(t) = gn(t, x(t), x(t− 1)), t > 0,

x(t) = ϕ(t), t ∈ [−1, 0],

whose existence is ensured by Lemma 2.2. As in the proof of Lemma 2.2, one can show that {xn(t)} has a
subsequence which converges (uniformly on compact subsets of [−1,+∞)) to a solution of problem (2.2),
and we are done. �

The following result regards uniqueness and continuous dependence on data of the solutions of prob-
lem (2.2). Its proof is standard and, therefore, will be omitted.

Proposition 2.4. Let g be as in Proposition 2.3 and assume, moreover, that it is of class C1. Then,
problem (2.2) admits a unique solution on [−1,+∞). Moreover, if {gn} is a sequence of C1 inward vector
fields on M which converges uniformly to g and {ϕn} is a sequence of continuous maps from [−1, 0] to
M which converges uniformly to ϕ, then the sequence of the solutions of the initial value problems{

x′(t) = gn(t, x(t), x(t− 1)), t > 0,

x(t) = ϕn(t), t ∈ [−1, 0].

converges uniformly on compact subsets of [−1,+∞) to the solution of (2.2).

3. Fixed point index

This section is devoted to summarizing the main properties of the fixed point index in the context of
ANR’s. Let X be a metric ANR and consider a locally compact (continuous) X-valued map k defined
on a subset D(k) of X. Given an open subset U of X contained in D(k), if the set of fixed points of k in
U is compact, the pair (k, U) is called admissible. It is known that to any admissible pair (k, U) we can
associate an integer indX(k, U) - the fixed point index of k in U - which satisfies properties analogous to
those of the classical Leray–Schauder degree [10]. The reader can see for instance [1], [9], [12] or [13] for a
comprehensive presentation of the index theory for ANR’s. As regards the connection with the homology
theory we refer to standard algebraic topology textbooks (e.g. [3], [15]).

Let us summarize the main properties of the index.
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i) (Existence) If indX(k, U) 6= 0, then k admits at least one fixed point in U .
ii) (Normalization) If X is compact, then indX(k,X) = Λ(k), where Λ(k) denotes the Lefschetz

number of k.
iii) (Additivity) Given two open disjoint subsets U1, U2 of U such that any fixed point of k in U is

contained in U1 ∪ U2, then indX(k, U) = indX(k, U1) + indX(k, U2).
iv) (Excision) Given an open subset U1 of U such that k has no fixed point in U\U1, then indX(k, U) =

indX(k, U1).
v) (Commutativity) Let X and Y be metric ANR’s. Suppose that U and V are open subsets of X

and Y respectively and that k : U → Y and h : V → X are locally compact maps. Assume that
one of the sets of fixed points of hk in k−1(V ) or kh in h−1(U) is compact. Then, the other set
is compact as well and indX(hk, k−1(V )) = indY (kh, h−1(U)).

vi) (Generalized homotopy invariance) Let I be a compact real interval and Ω an open subset of
X × I. For any λ ∈ I, denote Ωλ = {x ∈ X : (x, λ) ∈ Ω}. Let H : Ω → X be a locally
compact map such that the set {(x, λ) ∈ Ω : H(x, λ) = x} is compact. Then indX(H(·, λ),Ωλ) is
independent of λ.

The last property is actually a slight generalization (and a consequence) of the standard homotopy
invariance which deals with maps defined on Cartesian products U × I (U open in X).

4. Branches of periodic solutions

From now on we will adopt the following notation. By M we mean a compact ∂-manifold in Rk and
by C([−1, 0],M) the (complete) metric space of the M -valued (continuous) functions defined on [−1, 0]
with the metric induced by the Banach space C([−1, 0], Rk). Given T > 0, by CT (Rk) we denote the
Banach space of the continuous T -periodic maps x : R → Rk (with the standard supremum norm) and
by CT (M) we mean the metric subspace of CT (Rk) of the M -valued maps.

Let f : R × M × M → Rk be an inward vector field on M which is T -periodic in the first variable.
Consider the following delay differential equation depending on a parameter λ ≥ 0:

x′(t) = λf(t, x(t), x(t− 1)). (4.1)

We will say that (λ, x) ∈ [0,+∞) × CT (M) is a T -periodic pair (of (4.1)) if x : R → M is a T -periodic
solution of (4.1) corresponding to λ. A T -periodic pair of the type (0, x) is said to be trivial. In this case
the function x is constant and will be identified with a point of M , and viceversa.

A pair (λ, ϕ) ∈ [0,+∞) × C([−1, 0],M) will be called a T -starting pair (of (4.1)) if there exists
x ∈ CT (M) such that x(t) = ϕ(t) for all t ∈ [−1, 0] and (λ, x) is a T -periodic pair. A T -starting pair of
the type (0, ϕ) will be called trivial. Clearly, the map ρ : (λ, x) 7→ (λ, ϕ) which associates to a T -periodic
pair (λ, x) the corresponding T -starting pair (λ, ϕ) is continuous (ϕ being the restriction of x to the
interval [−1, 0]). Moreover, if f is C1, from Proposition 2.4 it follows that ρ is actually a homeomorphism
between the set of T -periodic pairs and the set of T -starting pairs.

Given p ∈ M , it is convenient to regard the pair (0, p) both as a trivial T -periodic pair and as a trivial
T -starting pair. With this in mind, notice that the restriction of the map ρ to {0}×M ⊆ [0,+∞)×CT (M)
as domain and to {0} ×M ⊆ [0,+∞)× C([−1, 0],M) as codomain is the identity.

An element p0 ∈ M will be called a bifurcation point of the equation (4.1) if every neighborhood of
(0, p0) in [0,+∞)×CT (M) contains a nontrivial T -periodic pair (i.e. a T -periodic pair (λ, x) with λ > 0).
The following result provides a necessary condition for a point p0 ∈ M to be a bifurcation point.



6 P. BENEVIERI, A. CALAMAI, M. FURI, AND M.P. PERA

Proposition 4.1. Assume that p0 ∈ M is a bifurcation point of the equation (4.1). Then the tangent
vector field w : M → Rk defined by

w(p) =
1
T

∫ T

0

f(t, p, p) dt

vanishes at p0.

Proof. By assumption there exists a sequence {(λn, xn)} of T -periodic pairs such that λn > 0, λn → 0,
and xn(t) → p0 uniformly on R. Given n ∈ N, since xn(T ) = xn(0) and λn 6= 0, we get∫ T

0

f(t, xn(t), xn(t− 1)) dt = 0,

and the assertion follows passing to the limit. �

Our main result (Theorem 4.6 below) provides a sufficient condition for the existence of a bifurcation
point in M . More precisely, under the assumption that the Euler–Poincaré characteristic of M is nonzero,
we will prove the existence of a global bifurcating branch for the equation (4.1); that is, an unbounded
and connected set of nontrivial T -periodic pairs whose closure intersects the set {0} × M of the trivial
T -periodic pairs. We point out that, CT (M) being bounded, a global bifurcating branch is necessarily
unbounded with respect to λ. In particular, the existence of such a branch ensures the existence of a
T -periodic solution of the equation (4.1) for each λ ≥ 0.

Since M is an ANR, it is not difficult to show (see e.g. [4]) that the metric space C([−1, 0],M) is an
ANR as well (clearly of the same homotopy type as M). For the sake of simplicity, from now on, the
metric space C([−1, 0],M) will be denoted by X.

Suppose, for the moment, that f is C1 (this assumption will be removed in Theorem 4.6). Given λ ≥ 0
and ϕ ∈ X, consider in M the following delay differential (initial value) problem:{

x′(t) = λf(t, x(t), x(t− 1)), t > 0,

x(t) = ϕ(t), t ∈ [−1, 0].
(4.2)

When necessary, the unique solution of problem (4.2), ensured by Proposition 2.4, will be denoted by
x(λ,ϕ)(·) to emphasize the dependence on (λ, ϕ). Given λ ∈ [0,+∞), consider the Poincaré-type operator

Pλ : X → X

defined as Pλ(ϕ)(s) = x(λ,ϕ)(s + T ), s ∈ [−1, 0]. The following two propositions regard some crucial
properties of Pλ.

Proposition 4.2. The fixed points of Pλ correspond to the T -periodic solutions of the equation (4.1) in
the following sense: ϕ is a fixed point of Pλ if and only if it is the restriction to [−1, 0] of a T -periodic
solution.

Proof. (If) Obvious.
(Only if) Let ϕ ∈ X be such that Pλ(ϕ)(s) = x(λ,ϕ)(s + T ) = ϕ(s) for any s ∈ [−1, 0]. Define

η : [−1,+∞) → M by η(t) = x(λ,ϕ)(t + T ). Then, if t ∈ [−1, 0] we have

η(t) = x(λ,ϕ)(t + T ) = ϕ(t),
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and, if t > 0,

η′(t) = x′(λ,ϕ)(t + T )
= λf(t + T, x(λ,ϕ)(t + T ), x(λ,ϕ)(t + T − 1))
= λf(t, η(t), η(t− 1)).

That is, the function η is a solution of problem (4.2) and, because of the uniqueness of the solution, it
follows that

x(λ,ϕ)(t + T ) = η(t) = x(λ,ϕ)(t), t ∈ [−1,+∞).

Consequently, the T -periodic extension of x(λ,ϕ) to R is a solution of (4.1). �

Proposition 4.3. The map P : [0,+∞)×X → X, defined by (λ, ϕ) 7→ Pλ(ϕ), is continuous. Moreover,
if T ≥ 1, then P is locally compact.

Proof. The continuity of P is a consequence of Proposition 2.4. If T ≥ 1, the local compactness follows
from Ascoli’s Theorem. �

Let us remark that in the case when 0 < T < 1 the operator P is still continuous but not locally
compact.

If λ = 0, given ϕ ∈ X, problem (4.2) becomes{
x′(t) = 0, t > 0,

x(t) = ϕ(t), t ∈ [−1, 0].

In the interval [0,+∞) the solution of this problem is the constant map t 7→ ϕ(0). Thus,

P0(ϕ)(s) = ϕ(0), s ∈ [−1, 0].

Hence, P0 sends X into the subset of the constant functions (which can be identified with M), and its
restriction P0|M : M → M coincides with the identity. By the commutativity property of the fixed point
index, using the identification introduced above, we get

indX(P0, X) = indM (P0|M ,M).

Moreover, the normalization property of the fixed point index implies that

indM (P0|M ,M) = indM (I|M ,M) = Λ(I|M ) = χ(M).

The latter equality follows from the fact that the Lefschetz number of the identity on a compact ANR
coincides with its Euler–Poincaré characteristic. Consequently,

indX(P0, X) = χ(M). (4.3)

The following result (see Lemma 1.4 of [8]) will play a crucial role in the proof of Lemma 4.5 and
Theorem 4.6 below.

Lemma 4.4. Let K be a compact subset of a locally compact metric space Z. Assume that any compact
subset of Z containing K has nonempty boundary. Then Z\K contains a connected set whose closure is
not compact and intersects K.
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Lemma 4.5 below regards the existence of an unbounded connected branch of nontrivial T -starting
pairs for equation (4.1) which emanates from the set of the trivial T -starting pairs. In the undelayed
case, the analogue of Lemma 4.5 (see [6, Theorem 1]) is in a finite dimensional context since, in that case,
the Poincaré operator Pλ maps M into itself.

Since we identify M with the subset of X of the constant maps, from now on {0}×M will be regarded
as a subset of [0,+∞) × X. Given a set G ⊆ [0,+∞) × X and λ ≥ 0, we will denote by Gλ the slice
{x ∈ X : (λ, x) ∈ G}.

Lemma 4.5. Let M be a compact ∂-manifold with nonzero Euler–Poincaré characteristic, and let f be a
C1 inward vector field on M which is T -periodic in the first variable, with T ≥ 1. Then, the equation (4.1)
admits a connected branch of nontrivial T -starting pairs whose closure in the set of the T -starting pairs
is not compact and intersects {0} ×M .

Proof. Let
S =

{
(λ, ϕ) ∈ [0,+∞)×X : (λ, ϕ) is a T -starting pair of (4.1)

}
.

Notice that, as a consequence of Proposition 4.3, the set S is locally compact. Moreover, the slice S0

coincides with M (regarded as the set of constant functions from [−1, 0] to M).
We apply Lemma 4.4 with {0}×M in place of K and with S in place of Z. Assume, by contradiction,

that there exists a compact set Ŝ ⊆ S containing {0}×M and with empty boundary in S. Thus, Ŝ is also
an open subset of the metric space S. Hence, there exists a bounded open subset U of [0,+∞)×X such
that Ŝ = U∩S. Since Ŝ is compact, the generalized homotopy invariance property of the fixed point index
implies that indX(Pλ, Uλ) does not depend on λ ∈ [0,+∞). Moreover, the slice Ŝλ = Uλ ∩ Sλ is empty
for some λ. This implies that indX(Pλ, Uλ) = 0 for any λ ∈ [0,+∞) and, in particular, indX(P0, U0) = 0.

Now, since U0 is an open subset of X containing M , by the excision property of the fixed point index,
taking into account equality (4.3), we get that

indX(P0, U0) = indX(P0, X) = χ(M) 6= 0,

which is a contradiction. Therefore, because of Lemma 4.4, there exists a connected subset of S whose
closure in S intersects {0} ×M and is not compact. �

Let S denote the set of the T -starting pairs of (4.1) and let A ⊆ S be a connected branch of nontrivial
T -starting pairs as in the assertion of Lemma 4.5. Since the map P : (λ, ϕ) 7→ Pλ(ϕ) is continuous, S is
a closed subset of [0,+∞)×X and, consequently, the closure A of A in S is the same as in [0,+∞)×X.
Thus, A cannot be bounded since, otherwise, it would be compact because of Ascoli’s Theorem. Moreover,
since X is bounded, the set A is necessarily unbounded in λ. This implies, in particular, that, under the
assumption that f is C1, the equation (4.1) has a T -periodic solution for any λ ≥ 0.

In Theorem 4.6 below, which deals with T -periodic pairs instead of T -starting pairs, the inward vector
field f is assumed to be merely continuous. Under the assumption that the Euler–Poincaré characteristic
of M is nonzero, the result asserts the existence of a global bifurcating branch of nontrivial T -periodic
pairs, which, CT (M) being bounded, must be unbounded with respect to λ.

Theorem 4.6. Let M be a compact ∂-manifold with nonzero Euler–Poincaré characteristic, and let f

be an inward vector field on M , T -periodic in the first variable, with T ≥ 1. Then, the equation (4.1)
admits an unbounded connected set of nontrivial T -periodic pairs whose closure meets the set of the trivial
T -periodic pairs.
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Proof. The proof will be divided into two steps. In the first one f is assumed to be C1 (so that Lemma
4.5 applies) and in the second one f is merely continuous.

Step 1. Assume that f is of class C1. Let Σ ⊆ [0,+∞) × CT (M) denote the set of the T -periodic
pairs of (4.1) and S ⊆ [0,+∞)×X the set of the T -starting pairs (of the same equation). Let A ⊆ S be
a connected branch of nontrivial T -starting pairs as in the assertion of Lemma 4.5. As already pointed
out, the map ρ : Σ → S, which associates to any T -periodic pair (λ, x) the corresponding T -starting pair
(λ, ϕ), is a homeomorphism. Moreover, the restriction of ρ to {0}×M ⊆ Σ as domain and to {0}×M ⊆ S

as codomain is the identity. Thus, the subset ρ−1(A) of Σ is connected, made up of nontrivial T -periodic
pairs, its closure in Σ is not compact and meets the set {0} × M of the trivial T -periodic pairs. One
can easily check that Σ is closed in [0,+∞) × CT (M) and, because of Ascoli’s Theorem, any bounded
subset of Σ is relatively compact. Thus ρ−1(A) must be unbounded and its closure in Σ is the same as
in [0,+∞)× CT (M).

Step 2. Suppose now that f is continuous and let, as in the previous step, Σ denote the set of the T -
periodic pairs of (4.1). As already pointed out, Σ is a closed, locally compact subset of [0,+∞)×CT (M).

We apply Lemma 4.4 with {0}×M in place of K and with Σ in place of Z. Assume, by contradiction,
that there exists a compact set Σ̂ ⊆ Σ containing {0}×M and with empty boundary in the metric space
Σ. Thus, Σ̂ is also an open subset of Σ and, consequently, both Σ̂ and Σ\Σ̂ are closed in [0,+∞)×CT (M).
Hence, there exists a bounded open subset W of [0,+∞)× CT (M) such that Σ̂ ⊆ W and ∂W ∩ Σ = ∅.

Let now {fn} be a sequence of C1 inward vector fields on M , T -periodic in the first variable, and such
that

{
fn(t, p, q)

}
converges to f(t, p, q) uniformly on [0, T ] × M × M . Given any n ∈ N, let Σn denote

the set of the T -periodic pairs of the equation

x′(t) = λfn(t, x(t), x(t− 1)).

Since W is bounded and contains {0} × M , the previous step implies that for any n ∈ N there exists a
pair (λn, xn) ∈ Σn ∩ ∂W . We may assume λn → λ0 and, by Ascoli’s Theorem, xn(t) → x0(t) uniformly.
Since

{
λnfn(t, p, q)

}
converges to λ0f(t, p, q) uniformly on [0, T ]×M ×M , x0(t) is a T -periodic solution

of the equation

x′(t) = λ0f(t, x(t), x(t− 1)).

That is, (λ0, x0) is a T -periodic pair of (4.1) and, consequently, (λ0, x0) belongs to ∂W ∩ Σ, which is a
contradiction. Therefore, by Lemma 4.4 one can find a connected branch C of nontrivial T -periodic pairs
of (4.1) whose closure in Σ (which is the same as in [0,+∞) × CT (M)) intersects {0} × M and is not
compact. Finally, C cannot be bounded since, otherwise, because of Ascoli’s Theorem, its closure would
be compact. This completes the proof. �

Observe that from Proposition 4.1 and Theorem 4.6 we can deduce the following well known conse-
quence of the Poincaré–Hopf Theorem: If w is an inward tangent vector field on a compact ∂-manifold
with nonzero Euler–Poincaré characteristic, then w must vanish at some point.

5. Examples

In this section we give three examples illustrating how our main result applies. In the first one M ⊆ Rk

is the closure of an open ball; in the second one M is an annulus in R2n+1; and in the third one M is a
(two dimensional) sphere in R3. As before, any point p ∈ M will be identified with the constant function
which assigns p to any t ∈ R. All the maps are tacitly assumed to be continuous.
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Example 5.1. Let f : R× Rk × Rk → Rk be T -periodic in the first variable, with T ≥ 1. Assume that
the inner product 〈f(t, p, q), p〉 is negative for ‖p‖ large and all (t, q) ∈ R× Rk.

Let us prove that the equation
x′(t) = λf(t, x(t), x(t− 1)) (5.1)

admits a connected branch of T -periodic pairs (λ, x) ∈ (0,+∞) × CT (Rk) which is unbounded with
respect to λ and whose closure in [0,+∞)×CT (Rk) contains a pair of the type (0, p0) with p0 ∈ Rk such
that w(p0) = 0, where w : Rk → Rk is the average wind velocity defined by

w(p) =
1
T

∫ T

0

f(t, p, p) dt.

By assumption, there exists r > 0 such that 〈f(t, p, q), p〉 is negative for ‖p‖ = r and all (t, q) ∈ R×Rk.
Let M = B(0, r), where B(0, r) denotes the open ball in Rk centered at 0 with radius r. Clearly, f is an
inward vector field on M (it is actually strictly inward). Moreover, χ(M) = 1 since M is contractible.
Hence, Proposition 4.1 and Theorem 4.6 apply to the equation (5.1).

Example 5.2. Let k ∈ N be odd and let f : R×Rk ×Rk → Rk be T -periodic in the first variable, with
T ≥ 1. Assume that f(t, p, q) is centrifugal for ‖p‖ > 0 small and centripetal for ‖p‖ large.

Let us show how Theorem 4.6 applies to prove that the equation

x′(t) = f(t, x(t), x(t− 1))

has a T -periodic solution x(t) satisfying the condition x(t) 6= 0 for all t ∈ R. Incidentally, observe that the
above equation admits the trivial solution since, f being continuous, as a consequence of the centrifugal
hypothesis on f we must have f(t, 0, q) = 0 for all (t, q) ∈ R× Rk.

Because of the centrifugal and centripetal assumptions, there exist r1, r2 > 0, with r1 < r2, such that
for all (t, q) ∈ R×Rk the inner product 〈f(t, p, q), p〉 is positive when ‖p‖ = r1 and negative when ‖p‖ = r2.
Let M be the annulus B(0, r2)\B(0, r1). Clearly, f is an inward vector field on M . Moreover, χ(M) = 2
since M is homotopically equivalent to the (even dimensional) sphere Sk−1. Hence, Theorem 4.6 implies
that, for any λ ≥ 0, the equation

x′(t) = λf(t, x(t), x(t− 1))

has a solution lying on the annulus M .

In the above example, the assumption that the dimension k is odd cannot be removed. In fact, if k is
any even natural number, we may define a centrifugal-centripetal vector field f : R× Rk × Rk → Rk by

f(t, p, q) = Ap + (1− ‖p‖)p,

where A is the k×k matrix associated with the linear operator (p1, p2, . . . , pk) 7→ (−p2, p1, . . . ,−pk, pk−1).
Observe that f is an autonomous (and undelayed) vector field; therefore, given any T > 0, it may be
regarded as T -periodic. However, all the periodic solutions of

x′ = Ax + (1− ‖x‖)x

have period 2π since they are as well solutions of the linear differential equation x′ = Ax. In fact, because
of the centrifugal-centripetal property of f , they must lie in the unit sphere Sk−1.

Example 5.3. Consider the following system of delay differential equations:
x′1(t) = −x2(t)x3(t− 1)
x′2(t) = x1(t)x3(t− 1)− x3(t) sin t

x′3(t) = x2(t) sin t .
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Let us show that this system has a 2π-periodic solution lying on the unit sphere S2 of R3.
Let f : R× S2 × S2 → R3 be defined by

f(t, p, q) = (−p2q3, p1q3 − p3 sin t, p2 sin t),

where p = (p1, p2, p3) and q = (q1, q2, q3) belong to S2. Clearly, f is an inward vector field on S2, since
∂S2 = ∅ and 〈f(t, p, q), p〉 = 0 for all (t, q) ∈ R × S2. Moreover, it is 2π-periodic with respect to t ∈ R.
We need to prove that the equation

x′(t) = λf(t, x(t), x(t− 1))

admits a 2π-periodic solution (on S2) for λ = 1. This is a consequence of Theorem 4.6, since χ(S2) = 2.
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[3] A. Dold, Lectures on algebraic topology, Springer-Verlag, Berlin, 1972.
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