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ABSTRACT. We prove a global bifurcation result for T-periodic solutions of the T-periodic delay differ-
ential equation z’(t) = Af(t, z(t), z(t — 1)) depending on a real parameter A > 0. The approach is based
on the fixed point index theory for maps on ANR'’s.

1. INTRODUCTION

Let M C R* be a smooth manifold with (possibly empty) boundary, and let
f:RxMxM—RF
be a continuous map which is T-periodic in the first variable and tangent to M in the second one; that is
fE+T,p,q) = f(t,p,q) € T,M, V(t,p,q) e Rx M x M,

where T, M C RF denotes the tangent space of M at p. Consider the delay differential equation

() = Af(t,z(t),z(t — 1)) (1.1)

depending on a nonnegative real parameter \. By a T-periodic pair of the above equation we mean a
pair (A, z), where A > 0 and z : R — M is a T-periodic solution of (1.1) corresponding to A. The set of
the T-periodic pairs of (1.1) is regarded as a subset of [0, +00) x Cp(M), where Cp (M) is the set of the
continuous T-periodic maps from R to M with the metric induced by the Banach space Cr(R¥) of the
continuous T-periodic R¥-valued maps (with the standard supremum norm). A T-periodic pair (\,x)
will be called trivial if A = 0. In this case = is a constant M-valued map and will be identified with a
point of M.

Under the assumptions that M is compact with nonzero Euler—Poincaré characteristic, that 7" > 1,
and that f satisfies a natural inward condition along the boundary of M (when nonempty), we prove the
existence of an unbounded — with respect to A — connected branch of nontrivial T-periodic pairs whose
closure intersects the set of the trivial T-periodic pairs in a nonempty set called set of bifurcation points.
Our result extends an analogous one of the last two authors for the undelayed case (see [6] and [7]).

This unusual notion of bifurcation goes back to Ambrosetti and Prodi: in [14] they used the expression
atypical bifurcation, also called co-bifurcation in [5].

We point out that the assumption 7" > 1 is crucial for the method used here, based on fixed point
index theory for locally compact maps on ANR’s and applied to a Poincaré-type T-translation operator.
In a forthcoming paper we will tackle the case 0 < T' < 1, in which the T-translation operator is not
locally compact (actually, not locally condensing).
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2. PRELIMINARY RESULTS

Let M be an arbitrary subset of R¥. We recall the notions of tangent cone and tangent space of M at
a given point p in the closure M of M. The definition of tangent cone is equivalent to the classical one
introduced by Bouligand in [2].

Definition 2.1. A vector v € R is said to be inward to M at p € M if there exist two sequences {a,, }
in [0,400) and {p,} in M such that

pn —p and an(pn _p) — 0.

The set Cp, M of the vectors which are inward to M at p is called the tangent cone of M at p. The tangent
space T, M of M at p is the vector subspace of R* spanned by CpM. A vector v of R¥ is said to be
tangent to M at p if v € T, M.

To simplify some statements and definitions we put C, M = T,,M = () whenever p € R* does not belong
to M (this can be regarded as a consequence of Definition 2.1 if one replaces the assumption p € M with
p € R¥). Observe that T),M is the trivial subspace {0} of R¥ if and only if p is an isolated point of M.
In fact, if p is an accumulation point, then, given any {p,} in M\{p} such that p, — p, the sequence
{an(pn - p)}, with a,, = 1/||pn — pl|, admits a convergent subsequence whose limit is a unit vector.

One can show that in the special and important case when M is a d-manifold, i.e. a smooth manifold
with (possibly empty) boundary M, then T, M has the same dimension as M for all p € M. Moreover,
CpM is a closed half-space in T, M (delimited by T,0M) if p € OM, and C,M =T,M if p € M\OM.

Let, as above, M be a subset of R¥, and let g : R x M x M — RF be a continuous map. We say that
g is tangent to M in the second variable or, for short, that g is a vector field on M if g(t,p,q) € T,M
for all (t,p,q) € R x M x M. In particular, g will be said inward (to M) if g(t,p,q) € C,M for all
(t,p,q) € R x M x M. If M is a closed subset of a boundaryless smooth manifold N C R* we will say
that ¢ is away from N\M if g(t,p,q) & Cp(N\M) for all (¢,p,q) € R x M x M.

Given a vector field g : R x M x M — RF (on M), consider the following delay differential equation:

2/ (t) = g(t,z(t), z(t — 1)). (2.1)

By a solution of (2.1) we mean a continuous function x : J — M, defined on a (possibly unbounded)
real interval with length greater than 1, which is of class C! on the subinterval (inf J + 1,sup J) of J and
verifies 2'(t) = g(t, z(t), z(t — 1)) for all ¢ € J with ¢ > inf J + 1.

Given g as above and given a continuous map ¢ : [—1,0] — M, consider the following initial value
problem:
! — —
$( ):<,0(t), te [*130]'
A solution of this problem is a solution z : J — M of (2.1) such that J D [—1,0] and x(t) = ¢(t) for all
te[-1,0].

The following technical lemma regards the existence of a persistent solution of problem (2.2).

Lemma 2.2. Let M be a compact subset of a boundaryless smooth manifold N C R* and assume that g
is a vector field on M which is away from N\M. Then problem (2.2) admits a solution defined on the
whole half line [—1,+00).
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Proof. First of all, notice that we may extend g to a vector field g; on N. Indeed, since M is closed in
N, because of the Tietze Extension Theorem, g has an R¥-valued (continuous) extension to R x N x N.
It is sufficient to consider the component of this extension which is tangent to /N in the second variable.

Now, let us use g; to define a suitable new extension g : R x R x R¥ — RF of g. Let U C R* be a
tubular neighborhood of N and let r : U — N be the associated retraction (if N is an open set of R¥,
then U = N and r is the identity). Let o : R¥ — [0, 1] be a continuous function with compact support,
supp o, contained in U and such that o(p) =1 if p € M (observe that U is an open neighborhood of M
in R¥). Define g by

. _ Joo(@)gi(t,r(p),r(a)) ifp,qel,
g(t,p,q) = .
0 otherwise.

Now, consider the following auxiliary problem depending on n € N:

o/ (t) = glt,a(t — 2),a(t— 1)), t>0,
{ (t) = o(t), te[~1,0]. (23)

Clearly problem (2.3) has a solution defined on [—1,1/n] and, given a solution on [—1, §], one can extend
it to the interval [—1, 3 + 1/n]. Thus, problem (2.3) has a global solution x,, : [~1,+00) — R¥.
Define p : [0, +00) — R by

pu(t) = max {||g(r,p,q)|| : 7 € [0,], p,q € suppo}.

Notice that p is continuous because of the compactness of suppo. For all n € N and all ¢ > 0, we have
|z, ()] < p(t) and, consequently,
t

len ()]l < (0] + / u(s)ds, ¢ 0.

Thus, by Ascoli’s Theorem, we may assume that, as n — oo, {2, (¢)} converges to a continuous function
x(t), uniformly on compact subsets of [—1, +00). Because of this, {z (¢)} converges to g(t, x(¢), z(t —1)),
uniformly on compact subsets of (0, +00). Therefore, by classical results, one gets 2’ (t) = (¢, z(t), z(t—1))
for all ¢ > 0. Thus, the assertion follows if we show that x(t) lies entirely in M.

Let us show first that z(¢) € N for all t > 0 (this could be false if g were an arbitrary continuous exten-
sion of g). Clearly z(t) belongs (for all ¢ > 0) to the compact subset supp o of the tubular neighborhood
U. Thus, the C' function

3(t) = [l(t) — r(a(®))I?
is well defined for ¢ > 0 and verifies §(0) = 0. Assume, by contradiction, that z(t) ¢ N for some ¢t > 0.
This means that §(¢) > 0 for some ¢ > 0 and, consequently, its derivative must be positive at some 7 > 0.
That is,
§'(1) = 2(a(r) — r(z(7)), 9(r,2(7),z(r = 1)) —w(r)) >0,

where (-, -) denotes the inner product in R¥, and w(7) is the derivative at t = 7 of the curve t + r(z(t)).
This is a contradiction since both the vectors (7, z(7),z(7 — 1)) and w(7) are tangent to N at r(z(7))
and, consequently, orthogonal to x(7) — r(z(7)).

It remains to show that z(t) € M for all t > 0. Let s = inf{t > 0 : z(t) ¢ M}, and assume by
contradiction s < +oo (here we adopt the convention inf ) = +c0). Let {t,} be a sequence converging
to s and such that z(t,) € N\M. Clearly x(s) € M and t,, > s for all n € N. We have

lim oltn) —2(s) _ 2'(s) = g(s,x(s),x(s — 1)).

n— o0 tn — S
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This implies, because of the definition of tangent cone, that the vector g(s,z(s),z(s — 1)) belongs to
Co(s)(N\M), contradicting the fact that the vector field g is away from N\M. O

From now on M will be a compact d-manifold in R*. In this case one may regard M as a subset of a
smooth boundaryless manifold N of the same dimension as M (see e.g. [11]). It is not hard to show that
a vector field g on M is away from the complement N\M if and only if it is strictly inward; meaning
that ¢ is inward and ¢(¢,p, q) & T,0M for all (¢,p,q) € R x OM x M.

Proposition 2.3. Let M C R” be a compact 0-manifold and let g be an inward vector field on M. Then,
problem (2.2) admits a solution defined on the whole half line [—1,4+00).

Proof. As already pointed out, we may regard M as a subset of a smooth boundaryless manifold N of
the same dimension as M. Let v : M — R be any strictly inward tangent vector field on M. For
example, define v(p) for any p € M as the unique unitary vector belonging to C, M NT,0M=, and then
extend v to a tangent vector field on the whole manifold M (by removing the normal component of the
extension ensured by the Tietze Extension Theorem). For any n € N, define the strictly inward vector
field g, : R x M x M — R* by g,(t,p,q) = g(t,p,q) +v(p)/n, and let x, : [~1,+0c) — M be a solution
of the initial value problem

{ Jil(t) = gn(t,x(t),x(t - 1))? t>0,
z(t) = (1), te[-1,0],

whose existence is ensured by Lemma 2.2. As in the proof of Lemma 2.2, one can show that {z,(¢)} has a
subsequence which converges (uniformly on compact subsets of [—1, +00)) to a solution of problem (2.2),
and we are done. O

The following result regards uniqueness and continuous dependence on data of the solutions of prob-
lem (2.2). Its proof is standard and, therefore, will be omitted.

Proposition 2.4. Let g be as in Proposition 2.3 and assume, moreover, that it is of class C'. Then,
problem (2.2) admits a unique solution on [—1,+00). Moreover, if {g,} is a sequence of C* inward vector
fields on M which converges uniformly to g and {p,} is a sequence of continuous maps from [—1,0] to
M which converges uniformly to ¢, then the sequence of the solutions of the initial value problems

{ 2'(t) = gn(t,z(t),z(t — 1)), t>0,
z(t) = @n(t), te[-1,0].

converges uniformly on compact subsets of [—1,400) to the solution of (2.2).

3. FIXED POINT INDEX

This section is devoted to summarizing the main properties of the fixed point index in the context of
ANR’s. Let X be a metric ANR and consider a locally compact (continuous) X-valued map k defined
on a subset D(k) of X. Given an open subset U of X contained in D(k), if the set of fixed points of k in
U is compact, the pair (k,U) is called admissible. It is known that to any admissible pair (k,U) we can
associate an integer indx (k,U) - the fized point index of k in U - which satisfies properties analogous to
those of the classical Leray—Schauder degree [10]. The reader can see for instance [1], [9], [12] or [13] for a
comprehensive presentation of the index theory for ANR’s. As regards the connection with the homology
theory we refer to standard algebraic topology textbooks (e.g. [3], [15]).

Let us summarize the main properties of the index.
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i) (Ezistence) If indx (k,U) # 0, then k admits at least one fixed point in U.

ii) (Normalization) If X is compact, then indx(k, X) = A(k), where A(k) denotes the Lefschetz
number of k.

iii) (Additivity) Given two open disjoint subsets Uy, Uy of U such that any fixed point of k in U is
contained in Uy U Uy, then indx (k,U) = indx (k,Uy) + indx (k, Us).

iv) (FEzcision) Given an open subset U; of U such that & has no fixed point in U\Uj, then indx (k,U) =
indx (k,Uy).

v) (Commutativity) Let X and Y be metric ANR’s. Suppose that U and V are open subsets of X
and Y respectively and that k: U — Y and h: V — X are locally compact maps. Assume that
one of the sets of fixed points of hk in k=1(V) or kh in h=*(U) is compact. Then, the other set
is compact as well and indx (hk, k~1(V)) = indy (kh, h=1(U)).

vi) (Generalized homotopy invariance) Let I be a compact real interval and € an open subset of
X x I. For any A € I, denote 2\ = {z € X : (z,)) € Q}. Let H : Q — X be a locally
compact map such that the set {(z,\) € Q: H(x,\) = x} is compact. Then indx (H(-, A), ) is
independent of \.

The last property is actually a slight generalization (and a consequence) of the standard homotopy
invariance which deals with maps defined on Cartesian products U x I (U open in X).

4. BRANCHES OF PERIODIC SOLUTIONS

From now on we will adopt the following notation. By M we mean a compact d-manifold in R* and
by C([-1,0], M) the (complete) metric space of the M-valued (continuous) functions defined on [—1,0]
with the metric induced by the Banach space C([—1,0],R¥). Given T > 0, by Cr(R¥) we denote the
Banach space of the continuous T-periodic maps = : R — R* (with the standard supremum norm) and
by Cr(M) we mean the metric subspace of Cr(R¥) of the M-valued maps.

Let f : R x M x M — RF be an inward vector field on M which is T-periodic in the first variable.
Consider the following delay differential equation depending on a parameter \ > 0:

() = MNf(t,z(t), z(t — 1)). (4.1)

We will say that (A, x) € [0,+00) x Cp(M) is a T-periodic pair (of (4.1)) if z : R — M is a T-periodic
solution of (4.1) corresponding to A\. A T-periodic pair of the type (0, z) is said to be trivial. In this case
the function x is constant and will be identified with a point of M, and viceversa.

A pair (A, @) € [0,+00) x C([—1,0], M) will be called a T-starting pair (of (4.1)) if there exists
x € Cp(M) such that z(t) = ¢(t) for all ¢ € [-1,0] and (A, z) is a T-periodic pair. A T-starting pair of
the type (0, ¢) will be called trivial. Clearly, the map p : (A, x) — (A, ¢) which associates to a T-periodic
pair (A, z) the corresponding T-starting pair (), ¢) is continuous (¢ being the restriction of z to the
interval [—1,0]). Moreover, if f is C1, from Proposition 2.4 it follows that p is actually a homeomorphism
between the set of T-periodic pairs and the set of T-starting pairs.

Given p € M, it is convenient to regard the pair (0, p) both as a trivial T-periodic pair and as a trivial
T-starting pair. With this in mind, notice that the restriction of the map p to {0} x M C [0, +00) x Cr (M)
as domain and to {0} x M C [0,4+00) x C([—1,0], M) as codomain is the identity.

An element py € M will be called a bifurcation point of the equation (4.1) if every neighborhood of
(0,po) in [0, +00) x C (M) contains a nontrivial T-periodic pair (i.e. a T-periodic pair (A, z) with A > 0).
The following result provides a necessary condition for a point pg € M to be a bifurcation point.
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Proposition 4.1. Assume that pg € M is a bifurcation point of the equation (4.1). Then the tangent
vector field w : M — R* defined by
1 T
= — t dt
T /O f(t.p,p)

Proof. By assumption there exists a sequence {(\, z,)} of T-periodic pairs such that A, > 0, A\, — 0,
and x,(t) — po uniformly on R. Given n € N, since z,(T) = z,(0) and A, # 0, we get

vanishes at pg.

T
/ ft,zn(t), 2ot —1))dt =0,
0
and the assertion follows passing to the limit. g

Our main result (Theorem 4.6 below) provides a sufficient condition for the existence of a bifurcation
point in M. More precisely, under the assumption that the Euler—Poincaré characteristic of M is nonzero,
we will prove the existence of a global bifurcating branch for the equation (4.1); that is, an unbounded
and connected set of nontrivial T-periodic pairs whose closure intersects the set {0} x M of the trivial
T-periodic pairs. We point out that, Cp(M) being bounded, a global bifurcating branch is necessarily
unbounded with respect to A. In particular, the existence of such a branch ensures the existence of a
T-periodic solution of the equation (4.1) for each A > 0.

Since M is an ANR, it is not difficult to show (see e.g. [4]) that the metric space C([—1,0], M) is an
ANR as well (clearly of the same homotopy type as M). For the sake of simplicity, from now on, the
metric space C([—1,0], M) will be denoted by X.

Suppose, for the moment, that f is C' (this assumption will be removed in Theorem 4.6). Given A > 0
and ¢ € X, consider in M the following delay differential (initial value) problem:

a'(t) = Af(t,x(t), z(t — 1)), t>0,
{ 2(t) = (1), te[-1,0]. (42)

When necessary, the unique solution of problem (4.2), ensured by Proposition 2.4, will be denoted by
T () (-) to emphasize the dependence on (A, ). Given A € [0, +00), consider the Poincaré-type operator

P X—-X

defined as Py(p)(s) = (x4 (s +T), s € [-1,0]. The following two propositions regard some crucial
properties of Pj.

Proposition 4.2. The fized points of Py correspond to the T-periodic solutions of the equation (4.1) in
the following sense: ¢ is a fized point of Py if and only if it is the restriction to [—1,0] of a T-periodic
solution.

Proof. (If) Obvious.
(Only if) Let ¢ € X be such that Py\(p)(s) = o) (8 +T) = @(s) for any s € [~1,0]. Define
n:[=1,+00) — M by n(t) = x(x ) (t +T). Then, 1ft 6 [ 1 ,0] we have

n(t) =20 +T) = @(1),
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and, if ¢t > 0,
n'(t)

xb\’w) (t+T)

A(t+T, Z(r,0) (t+T), Z(xp) t+T-1))

That is, the function 7 is a solution of problem (4.2) and, because of the uniqueness of the solution, it
follows that

x()\,tp)(t + T) = 77(75) = T(\p) (t)a te [_17 +OO)

Consequently, the T-periodic extension of 2y ) to R is a solution of (4.1). O

Proposition 4.3. The map P : [0,400) x X — X, defined by (A, p) — Px(y), is continuous. Moreover,
if T > 1, then P is locally compact.

Proof. The continuity of P is a consequence of Proposition 2.4. If T" > 1, the local compactness follows
from Ascoli’s Theorem. O

Let us remark that in the case when 0 < 7' < 1 the operator P is still continuous but not locally
compact.

If A =0, given ¢ € X, problem (4.2) becomes
{ '(t)

(t)
In the interval [0, +00) the solution of this problem is the constant map ¢ — ¢(0). Thus,

BPo(p)(s) = ¢(0), s €[-1,0].

Hence, P, sends X into the subset of the constant functions (which can be identified with M), and its
restriction Pyl : M — M coincides with the identity. By the commutativity property of the fixed point
index, using the identification introduced above, we get

0, t>0,
(p(t), te [_1a0]'

8

indx(Po,X) = iDdM(P0|M, M)
Moreover, the normalization property of the fixed point index implies that

The latter equality follows from the fact that the Lefschetz number of the identity on a compact ANR
coincides with its Euler—Poincaré characteristic. Consequently,

indx (P, X) = x(M). (4.3)

The following result (see Lemma 1.4 of [8]) will play a crucial role in the proof of Lemma 4.5 and
Theorem 4.6 below.

Lemma 4.4. Let K be a compact subset of a locally compact metric space Z. Assume that any compact
subset of Z containing K has nonempty boundary. Then Z\K contains a connected set whose closure is
not compact and intersects K.
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Lemma 4.5 below regards the existence of an unbounded connected branch of nontrivial T-starting
pairs for equation (4.1) which emanates from the set of the trivial T-starting pairs. In the undelayed
case, the analogue of Lemma 4.5 (see [6, Theorem 1]) is in a finite dimensional context since, in that case,
the Poincaré operator Py maps M into itself.

Since we identify M with the subset of X of the constant maps, from now on {0} x M will be regarded
as a subset of [0,+00) x X. Given a set G C [0,+00) x X and A > 0, we will denote by G the slice
{reX:(\x)eG}.

Lemma 4.5. Let M be a compact O-manifold with nonzero Euler—Poincaré characteristic, and let f be a
C' inward vector field on M which is T-periodic in the first variable, with T > 1. Then, the equation (4.1)
admits a connected branch of nontrivial T-starting pairs whose closure in the set of the T-starting pairs
is not compact and intersects {0} x M.

Proof. Let
S={(\ ) €0,+00) x X : (A, ) is a T-starting pair of (4.1)}.

Notice that, as a consequence of Proposition 4.3, the set S is locally compact. Moreover, the slice Sy
coincides with M (regarded as the set of constant functions from [—1,0] to M).

We apply Lemma 4.4 with {O} x M in place of K and with S in place of Z. Assume, by contradiction,
that there exists a compact set Scs containing {0} x M and with empty boundary in S. Thus, S is also
an open subset of the metric space S. Hence, there exists a bounded open subset U of [0, +00) x X such
that S = UNS. Since S is compact, the generalized homotopy invariance property of the fixed point index
implies that indx (P, U,) does not depend on A € [0, 4+00). Moreover, the slice §>\ = U, NS, is empty
for some A. This implies that indx (Py,Uy) = 0 for any A € [0, +00) and, in particular, ind x (P, Up) = 0.

Now, since Uy is an open subset of X containing M, by the excision property of the fixed point index,
taking into account equality (4.3), we get that

indx(P(hUo) = lndx(Po,X) = X(M) 7é O,

which is a contradiction. Therefore, because of Lemma 4.4, there exists a connected subset of S whose
closure in S intersects {0} x M and is not compact. O

Let S denote the set of the T-starting pairs of (4.1) and let A C S be a connected branch of nontrivial
T-starting pairs as in the assertion of Lemma 4.5. Since the map P : (A, ¢) — Py (i) is continuous, S is
a closed subset of [0, +-00) x X and, consequently, the closure A of A in S is the same as in [0, +00) x X.
Thus, A cannot be bounded since, otherwise, it would be compact because of Ascoli’s Theorem. Moreover,
since X is bounded, the set A is necessarily unbounded in A. This implies, in particular, that, under the
assumption that f is C!, the equation (4.1) has a T-periodic solution for any A > 0.

In Theorem 4.6 below, which deals with T-periodic pairs instead of T-starting pairs, the inward vector
field f is assumed to be merely continuous. Under the assumption that the Euler—Poincaré characteristic
of M is nonzero, the result asserts the existence of a global bifurcating branch of nontrivial T-periodic
pairs, which, Cp(M) being bounded, must be unbounded with respect to A.

Theorem 4.6. Let M be a compact O-manifold with nonzero Euler—Poincaré characteristic, and let f
be an inward vector field on M, T-periodic in the first variable, with T > 1. Then, the equation (4.1)
admits an unbounded connected set of nontrivial T-periodic pairs whose closure meets the set of the trivial
T-periodic pairs.
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Proof. The proof will be divided into two steps. In the first one f is assumed to be C* (so that Lemma
4.5 applies) and in the second one f is merely continuous.

Step 1. Assume that f is of class C'. Let ¥ C [0,+00) x Cr(M) denote the set of the T-periodic
pairs of (4.1) and S C [0,400) x X the set of the T-starting pairs (of the same equation). Let A C S be
a connected branch of nontrivial T-starting pairs as in the assertion of Lemma 4.5. As already pointed
out, the map p: ¥ — S, which associates to any T-periodic pair (A, z) the corresponding T-starting pair
(A, ¢), is a homeomorphism. Moreover, the restriction of p to {0} x M C ¥ as domain and to {0} xM C S
as codomain is the identity. Thus, the subset p~1(A) of ¥ is connected, made up of nontrivial T-periodic
pairs, its closure in ¥ is not compact and meets the set {0} x M of the trivial T-periodic pairs. One
can easily check that ¥ is closed in [0, +00) X Cp(M) and, because of Ascoli’s Theorem, any bounded
subset of ¥ is relatively compact. Thus p~1(A) must be unbounded and its closure in ¥ is the same as
in [0, 400) x Cp(M).

Step 2. Suppose now that f is continuous and let, as in the previous step, ¥ denote the set of the T-
periodic pairs of (4.1). As already pointed out, ¥ is a closed, locally compact subset of [0, +00) x Cr(M).

We apply Lemma 4.4 with {0} x M in place of K and with ¥ in place of Z. Assume, by contradiction,
that there exists a compact set ) C ¥ containing {0} x M and with empty boundary in the metric space
Y. Thus, 3 is also an open subset of ¥ and, consequently, both S and E\f) are closed in [0, +00) X Cp(M).
Hence, there exists a bounded open subset W of [0, 4+00) x Cp(M) such that & C W and OW N'E = 0.

Let now {f,,} be a sequence of C! inward vector fields on M, T-periodic in the first variable, and such
that {f,(t,p,q)} converges to f(t,p,q) uniformly on [0,7] x M x M. Given any n € N, let ¥,, denote
the set of the T-periodic pairs of the equation

2 (t) = Malt, o(t), 2t - 1)).

Since W is bounded and contains {0} x M, the previous step implies that for any n € N there exists a
pair (A, x,) € X, NOW. We may assume A, — Ag and, by Ascoli’s Theorem, x,,(t) — xo(t) uniformly.
Since {)\nfn(t,p, q)} converges to Ag f(t, p, q) uniformly on [0,T] x M x M, xo(t) is a T-periodic solution
of the equation
2’ (t) = Xof(t,z(t), z(t — 1)).

That is, (Ao, o) is a T-periodic pair of (4.1) and, consequently, (Ao, zo) belongs to OW N X, which is a
contradiction. Therefore, by Lemma 4.4 one can find a connected branch C' of nontrivial T-periodic pairs
of (4.1) whose closure in ¥ (which is the same as in [0, +00) x Cp(M)) intersects {0} x M and is not
compact. Finally, C' cannot be bounded since, otherwise, because of Ascoli’s Theorem, its closure would
be compact. This completes the proof. O

Observe that from Proposition 4.1 and Theorem 4.6 we can deduce the following well known conse-
quence of the Poincaré-Hopf Theorem: If w is an inward tangent vector field on a compact 0-manifold
with nonzero Fuler—Poincaré characteristic, then w must vanish at some point.

5. EXAMPLES

In this section we give three examples illustrating how our main result applies. In the first one M C R¥
is the closure of an open ball; in the second one M is an annulus in R?**!; and in the third one M is a
(two dimensional) sphere in R3. As before, any point p € M will be identified with the constant function
which assigns p to any ¢ € R. All the maps are tacitly assumed to be continuous.
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Example 5.1. Let f: R x R x R* — R* be T-periodic in the first variable, with 7" > 1. Assume that
the inner product (f(¢,p,q),p) is negative for ||p|| large and all (¢,q) € R x R¥.
Let us prove that the equation
z'(t) = N(t,z(t), z(t — 1)) (5.1)
admits a connected branch of T-periodic pairs (\,z) € (0,+00) x Cr(R¥) which is unbounded with
respect to A and whose closure in [0, +-00) x C7(R*) contains a pair of the type (0, py) with py € R* such
that w(pg) = 0, where w : R¥ — R¥ is the average wind velocity defined by

T
w(p) = %/0 f(t,p,p) dt.

By assumption, there exists 7 > 0 such that (f(¢,p, q), p) is negative for ||p|| = r and all (¢, q) € R x R¥.
Let M = B(0,r), where B(0,r) denotes the open ball in R¥ centered at 0 with radius r. Clearly, f is an
inward vector field on M (it is actually strictly inward). Moreover, x(M) = 1 since M is contractible.
Hence, Proposition 4.1 and Theorem 4.6 apply to the equation (5.1).

Example 5.2. Let £ € N be odd and let f: R x R x R*¥ — R* be T-periodic in the first variable, with
T > 1. Assume that f(¢,p,q) is centrifugal for ||p|| > 0 small and centripetal for ||p|| large.
Let us show how Theorem 4.6 applies to prove that the equation

a'(t) = f(t,x(t), x(t — 1))
has a T-periodic solution z(t) satisfying the condition x(t) # 0 for all ¢ € R. Incidentally, observe that the

above equation admits the trivial solution since, f being continuous, as a consequence of the centrifugal
hypothesis on f we must have f(t,0,q) = 0 for all (¢,q) € R x R*.

Because of the centrifugal and centripetal assumptions, there exist 1,7y > 0, with 1 < ro, such that
for all (¢,q) € RxRF the inner product (f(,p, q), p) is positive when ||p|| = 71 and negative when ||p|| = r2.
Let M be the annulus B(0,r2)\B(0,r1). Clearly, f is an inward vector field on M. Moreover, x(M) = 2
since M is homotopically equivalent to the (even dimensional) sphere S*~!. Hence, Theorem 4.6 implies
that, for any A > 0, the equation

' (t) = Mf(t,z(t),z(t — 1))

has a solution lying on the annulus M.

In the above example, the assumption that the dimension k is odd cannot be removed. In fact, if & is
any even natural number, we may define a centrifugal-centripetal vector field f : R x R x R¥ — RF by

ft,p,q) = Ap+ (1 — [Ipl)p,

where A is the k x k matrix associated with the linear operator (p1,pa,...,px) — (—D2,P1, .-+, —Dk, Dk—1)-
Observe that f is an autonomous (and undelayed) vector field; therefore, given any 7' > 0, it may be
regarded as T-periodic. However, all the periodic solutions of

¥ =Ax+ (1 —|jz|])z
have period 27 since they are as well solutions of the linear differential equation z’ = Az. In fact, because

of the centrifugal-centripetal property of f, they must lie in the unit sphere S*~1.

Example 5.3. Consider the following system of delay differential equations:
w1 (t) = =z (t)zs(t — 1)
2h(t) = z1(t)xs(t — 1) — x3(t) sint

ah(t) = xo(t) sint.
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Let us show that this system has a 2m-periodic solution lying on the unit sphere S? of R3.
Let f:R x S? x §?2 — R? be defined by

f(t7pa Q) = (_p2q3a b143 — P3 Siﬂt, D2 Sint)a

where p = (p1,p2,p3) and ¢ = (q1,q2, g3) belong to S?. Clearly, f is an inward vector field on S, since

052

=0 and (f(t,p,q),p) = 0 for all (t,q) € R x S?. Moreover, it is 2m-periodic with respect to ¢t € R.

We need to prove that the equation

' (t) = Mf(t,z(t),z(t — 1))

admits a 2m-periodic solution (on S2) for A = 1. This is a consequence of Theorem 4.6, since x(S5?) = 2.
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