
ON THE DEGREE FOR ORIENTED QUASI-FREDHOLM

MAPS: ITS UNIQUENESS AND ITS EFFECTIVE

EXTENSION OF THE LERAY–SCHAUDER DEGREE

PIERLUIGI BENEVIERI, ALESSANDRO CALAMAI, AND MASSIMO FURI

Abstract. In a previous paper, the first and third author developed a
degree theory for oriented locally compact perturbations of C1 Fredholm
maps of index zero between real Banach spaces. In the spirit of a cele-
brated Amann–Weiss paper, we prove that this degree is unique if it is
assumed to satisfy three axioms: Normalization, Additivity and Homo-
topy invariance. Taking into account that any compact vector field has
a canonical orientation, from our uniqueness result we shall deduce that
the above degree provides an effective extension of the Leray–Schauder
degree.
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1. Introduction

In [6] the first and third author, by means of the celebrated “finite re-
duction method” (see [9] and references therein), developed a degree theory
for (oriented) locally compact perturbations of C1 Fredholm maps of index
zero between real Banach spaces, called (oriented) quasi-Fredholm maps for
short. Fundamental for the construction of this degree is the simple notion
of orientation that they introduced in [4, 5] for C1 Fredholm maps of index
zero between real Banach manifolds and the adaptation in [6] of this concept
to quasi-Fredholm maps.

In their celebrated paper [1] of 1973, Amann and Weiss showed that both
the Brouwer degree and the Leray–Schauder degree are uniquely determined
by three properties, namely Normalization, Additivity and Homotopy invari-
ance, which they considered as axioms. As pointed out in [1], the uniqueness
of the Brouwer degree had been previously established by Führer (see [14]
and [15]).

In this paper, following the general spirit of Amann–Weiss, we obtain an
analogous result concerning the degree for oriented quasi-Fredholm maps.
Namely, Theorem 6.1 below, which asserts that there exists at most one
integer-valued map, defined on the class of the admissible pairs, satisfying a
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specific Normalization property (stated for naturally oriented invertible lin-
ear operators) with the more classical Additivity and Homotopy invariance
properties. Actually, our uniqueness result holds true even if the degree is
regarded as a real-valued function. In fact, the image of such a map must
be contained in Z (precisely, it turns out to coincide with Z).

We point out that several authors tried to extend the validity of the
Amann–Weiss axioms to different degree theories. Let us mention the paper
[22] by Nussbaum about noncompact vector fields, the article [7] by the
first and third author regarding oriented C1 Fredholm maps of index zero
between real Banach manifolds, and the paper by the third author with Pera
and Spadini [16] about the fixed point index on differentiable manifolds.

As far as we know, the question of determining a degree for nonlinear
Fredholm maps of index zero traced back to the pioneering works of Cac-
cioppoli [10] and Smale [29], who independently defined a modulo 2 degree.

Since the decade of 1970, many authors addressed the problem of defining
an integer-valued degree for Fredholm maps. Among them we cite Elwor-
thy and Tromba [11, 12] and Fitzpatrick, Pejsachowicz and Rabier [13] who
defined a notion of degree for C2 Fredholm maps between real Banach man-
ifolds. The definition in [11, 12] was obtained by introducing a concept of
orientation for real Banach manifolds (based on the rather unnatural concept
of Fredholm structure), and the one in [13] by defining, for the first time, a
notion of orientation for Fredholm maps between real Banach manifolds.

Regarding the integer-valued degree in the C1 case, as far as we know,
the first approach was presented by Borisovic, Zvjagin and Sapronov in the
survey paper [9] (see also the papers [18, 32, 33, 34, 36]). The construction in
[9] is based on a finite-dimensional reduction method developed by Sapronov
[28] and which goes back to Caccioppoli [10]. Such an approach avoids the
use of the Sard-Smale theorem and hence needs only the assumption of C1-
differentiability. Yet, in [9] the crucial concept of orientation for Banach
manifolds still relies on Fredholm structures.

Later, an integer-valued degree for oriented C1 Fredholm maps of index
zero was introduced in two independent papers: in [26] by Pejsachowicz
and Rabier for maps between Banach spaces and in [4] by the first and
third author for maps between Banach manifolds. Concerning the notions
of orientability in [13, 26] and in [4], we stress that these concepts are not
equivalent in the non-flat framework of Banach manifolds, even if, as shown
in [24] by Pejsachowicz, they agree in Banach spaces. However, regarding
the orientation (and not merely the orientability), the two concepts are not
equivalent even in the flat case. In fact, according to the definition in [4],
any orientable map has at least two different orientations (and exactly two if
its domain is connected), but following the notion in [13] this is not so for a
constant map from Rn into itself. Moreover, we point out that, in [4], thanks
to the simplicity of the notion of orientation, the construction of degree
does not require any Leray–Schauder theory, and the invariance of degree
under a homotopy (x, λ) 7→ H(x, λ) holds under the minimal assumption
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that H is continuous and continuously differentiable with respect to the
first variable, plus the hypothesis that the partial derivative with respect
to the first variable (x, λ) 7→ ∂1H(x, λ) is an oriented map (in the sense of
Definition 3.5 below).

Recall that a compact vector field is a Fredholm map of index zero only if
it is C1. Hence, a remarkable motivation to consider quasi-Fredholm maps
is to provide a full extension of the Leray–Schauder degree. In [19] Mawhin
extended the Leray–Schauder approach by defining a coincidence degree for
compact perturbations of a linear Fredholm operator of index zero. As far
as we know, in his paper, a purely algebraic notion of orientation of a non-
invertible linear Fredholm operator of index zero appears for the first time.

Independent definitions of degree for quasi-Fredholm maps have been
given in [35] by Zvyagin and Ratiner (making use of the notion of Fred-
holm structure), in [27] by Rabier and Salter (for oriented maps), and in
the already mentioned article [6] that, inexplicably, was kept frozen for too
long by the journal (it was received on december 16, 2003). More recently,
a further generalization has been developed by Väth [31] in the framework
of multivalued maps (see also [23]).

In the setting of quasi-Fredholm maps, a crucial point is the lack of a
universally accepted notion of orientation. Here we will follow the simple
approach introduced in [4, 5, 6] and pursued in [31].

As already pointed out, in the very general and quite comprehensive
monograph [31], Väth extends the degree for quasi-Fredholm maps in the set-
ting of multivalued maps. This degree is defined (see [31, Definition 13.1.13])
by means of three properties which can be thought as axioms, one of them
being a finite-dimensional reduction. However, these properties, from which
Väth deduces the uniqueness of the degree, are different from the axioms
that we consider here, which are a natural extension of the Amann–Weiss
ones.

In the last section of this paper we make use of Theorem 6.1 as well as the
uniqueness result by Amann and Weiss to prove that the degree for oriented
quasi-Fredholm maps introduced in [6] provides an effective generalization of
the Leray–Schauder degree. For this purpose, we show that it is possible to
identify, in a canonical way (related to what in [4, 5, 6] is called the natural
orientation of the identity map), the class of the Leray–Schauder admissible
pairs with a subclass of the pairs which are admissible for the degree of the
oriented quasi-Fredholm maps. With this identification, the restriction of
the last degree to this subclass coincides with the Leray–Schauder degree.

As a final remark, we stress that in [2, 3] we defined a concept of topo-
logical degree for a special class of oriented noncompact perturbations of
nonlinear Fredholm maps of index zero, called α-Fredholm maps. The defi-
nition of these maps is related to the Kuratowski measure of noncompactness
and extends the degree in [21] by Nussbaum. The α-Fredholm maps are of
the type f = g − k, where we require the noncompact perturbation k to
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have some suitable property of relative compactness with respect to the ori-
ented C1 Fredholm map g. While the degree of an oriented quasi-Fredholm
map f is independent of the representation f = g − k, g being a smoothing
map of f , it is not clear if the degree for α-Fredholm maps depends on the
representation. We leave this study to further investigation.

2. Preliminaries

Let f : X → Y be a continuous map between topological spaces. We
recall that f is said to be compact if its image, Img f := f(X), is relatively
compact in Y . Thus, f is called locally compact if for any x ∈ X there exists
a neighborhood U of x such that the restriction f |U is compact.

Assume now that X and Y are metric spaces and f : X → Y is continuous.
The map f is called completely continuous if it is compact on any bounded
subset of X. The map f is said to be proper if f−1(K) is compact for any
compact subset K of Y and locally proper if any x ∈ X admits a closed
neighborhood in which f is proper. It is easy to check that f is proper if
and only if it is closed (i.e. it maps closed sets to closed sets) and f−1(y) is
compact for any y ∈ Y .

One can verify that (when it makes sense) the sum of a proper map plus
a compact map is a proper map. Thus, adding a locally proper map with a
locally compact map, one gets a locally proper map.

By abuse of terminology, if E and F are Banach spaces and L : E → F is
linear, then L is said to be a compact (linear) operator if it is locally compact
or, equivalently (in this special case), completely continuous. Notice that a
compact operator is necessarily bounded.

Let now E be a real vector space (here no additional structure is needed)
and denote by I the identity on E. Let T be an endomorphism of E which is
a finite dimensional linear perturbation of the identity; that is, the image of
the linear operator K = I − T is contained in a finite dimensional subspace
E0 of E. Thus T maps E0 into itself and, consequently, the determinant of
its restriction T0 : E0 → E0 is well defined. It is easy to check that such a
determinant does not depend on the choice of E0. Thus, it makes sense to
define the determinant of T , det(T ), as the determinant of the restriction
of T to any finite dimensional subspace of E containing the image of K (see
[17, § III-4] and references therein). One can easily check that, as in the
case when E is finite dimensional, T is invertible if and only if det(T ) 6= 0.

Let L(E) be the vector space of the endomorphisms of E and denote by
Ψ(E) the affine subspace of L(E) of the operators that are admissible for
the determinant. Namely,

Ψ(E) =
{
T ∈ L(E) : Img(I − T ) is finite dimensional

}
.

In many cases, a practical method for computing the determinant of an
operator T ∈ Ψ(E) is given by the following result (see [8]).
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Proposition 2.1. Let T ∈ L(E) and let E = E1 ⊕ E2. Assume that, with
this decomposition of E, the matrix representation of T is of the type(

I1 U
V S

)
where I1 is the identity operator on E1. If dim(E2) < +∞ (or, more gen-
erally, if S ∈ Ψ(E2) and the operators U and V have finite dimensional
image), then T ∈ Ψ(E) and det(T ) = det(S − V U).

3. Oriented Fredholm maps

In this section we recall the concept of orientability and orientation for
Fredholm maps of index zero between real Banach spaces introduced by the
first and third author in [4, 5]. The starting point is a concept of orientation
for Fredholm linear operators of index zero between real vector spaces.

Let E and F be real vector spaces (yet, here no additional structure is
needed). Let us recall that a linear operator L : E → F is said to be Fredholm
(see e.g. [30]) if both KerL and coKerL := F/ ImgL have finite dimension.
The index of L is defined as

indL = dim KerL− dim coKerL.

Of course, any linear operator from Rk to Rs is Fredholm of index k − s.
For short, a Fredholm operator of index n will be also called a Φn-operator,

or a Φ-operator if its index is not specified.
Given a Fredholm operator of index zero L : E → F , a linear operator

A : E → F is called a corrector of L if the following conditions hold:

• the image of A is finite-dimensional,
• L+A is an isomorphism.

Notice that the set of correctors of L is nonempty. This is true, and
of crucial importance in what follows, even when L does not need to be
corrected (i.e. when it is invertible). On the set C(L) of correctors of L
one has an equivalence relation as follows. Let A,B ∈ C(L) be given and
consider the following automorphism of E:

T = (L+B)−1(L+A) = I − (L+B)−1(B −A).

Since the operator K = (L+B)−1(B−A) has finite-dimensional image, T
is a finite dimensional (linear) perturbation of the identity. Thus, as pointed
out in Section 2, its determinant is well defined. We say that A is equivalent
to B or, more precisely, A is L-equivalent to B if

det
(
(L+B)−1(L+A)

)
> 0.

As shown in [4], this is actually an equivalence relation on C(L) with two
equivalence classes, and this provides a concept of orientation for Fredholm
operators of index zero between vector spaces.
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Definition 3.1 (Algebraic orientation of a Φ0-operator). Let L : E → F be
a Fredholm linear operator of index zero. An orientation of L is the choice
of one of the two equivalence classes of C(L), and L is oriented when an
orientation is chosen. Any of the two orientations of L is called opposite
to the other. If L is oriented, the elements of its orientation are called the
positive correctors of L.

The following notion of natural (and unnatural) orientation of an isomor-
phism will be useful throughout the paper.

Definition 3.2 (Natural algebraic orientation of an isomorphism). An ori-
ented isomorphism L is said to be naturally oriented if the trivial operator
is a positive corrector, and we will refer to this orientation as the natural
orientation of L. Conversely, L is unnaturally oriented if the trivial operator
is not a positive corrector; in this case L assumes the unnatural orientation.

Definition 3.3 (Sign of an oriented Φ0-operator). Let L : E → F be a
Φ0-operator. Its sign is the integer

signL =

 +1 if L is invertible and naturally oriented,
−1 if L is invertible and not naturally oriented,

0 if L is not invertible.

From now on, E and F will denote two real Banach spaces. Any Fredholm
operator between Banach spaces will be assumed to be bounded. Moreover,
L(E,F ) will denote the Banach space of bounded linear operators from E
into F and Φ0(E,F ) will be the open subset of L(E,F ) of the Fredholm
operators of index zero. Given L ∈ Φ0(E,F ), the symbol C(L) now denotes,
with a slight abuse of notation, the set of bounded correctors of L, which
is still nonempty. Of course, the definition of algebraic orientation of L ∈
Φ0(E,F ) can be given as the choice of one of the two equivalence classes of
bounded correctors of L, according to the above equivalence relation.

In the context of Banach spaces an orientation of a Fredholm operator of
index zero induces an orientation to any sufficiently close operator. Precisely,
consider L ∈ Φ0(E,F ) and a corrector A of L. Suppose that L is oriented
with A positive corrector. Since the set of the isomorphisms of E into F is
open in L(E,F ), then A is a corrector of every T in a suitable neighborhood
W of L in Φ0(E,F ). Thus, any T ∈ W can be oriented by taking A as a
positive corrector. This fact allows us to give the following definition.

Definition 3.4. Let X be a topological space and h : X → Φ0(E,F ) a
continuous map. An orientation of h is a continuous choice of an orientation
α(x) of h(x) for each x ∈ X, where ‘continuous’ means that for any x ∈ X
there exists A ∈ α(x) which is a positive corrector of h(x′) for any x′ in a
neighborhood of x. A map is orientable when it admits an orientation and
oriented when an orientation is chosen.

It is possible to prove (see [5, Proposition 3.4]) that two equivalent cor-
rectors A and B of a given L ∈ Φ0(E,F ) remain T -equivalent for any T in
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a neighborhood of L. This implies that the notion of ‘continuous choice of
an orientation’ in Definition 3.4 is equivalent to the following one:

for any x ∈ X and any A ∈ α(x), there exists a neighborhood U of
x such that A ∈ α(x′) for all x′ ∈ U .

According to [5], the notion of continuity in the definition of oriented map
can be regarded as a true continuity by introducing the following topological

space (which is actually a real Banach manifold). Let Φ̂0(E,F ) denote the
set of pairs (L,α) with L ∈ Φ0(E,F ) and α one of the two equivalence classes
of C(L). Given an open subset W of Φ0(E,F ) and an operator A ∈ L(E,F )
with finite dimensional image, consider the set

O(W,A) =
{

(L,α) ∈ Φ̂0(E,F ) : L ∈W, A ∈ α
}
.

The collection of sets obtained in this way is a basis for a topology on

Φ̂0(E,F ) and the natural projection p : (L,α) 7→ L is a double covering of
Φ0(E,F ). Observe also that the family of the restrictions of p to the open

subsets of Φ̂0(E,F ) in which p is injective is an atlas for a Banach manifold
structure modeled on L(E,F ).

It is easy to check that the following is an alternative definition of orien-
tation, and has the advantage that many properties of the orientable maps
can be directly deduced from well known results in covering space theory.

Definition 3.5 (Topological orientation for Φ0(E,F )-valued maps). Let
h : X → Φ0(E,F ) be a continuous map defined on a topological space X. An

orientation of h is a lift ĥ of h, that is, a continuous map ĥ : X → Φ̂0(E,F )

such that pĥ = h. The map h is called orientable when it admits a lift, and
oriented when one of its lifts has been chosen.

According to Definition 3.5, an orientation of h is a continuous map

ĥ : X → Φ̂0(E,F ) of the form ĥ : x 7→ (h(x), α(x)). Thus ĥ is completely
determined by its second component α. For this reason, when it is conve-
nient, we shall merely call α an orientation of h, which is in the spirit of
Definition 3.4.

In order to make clear (as well as formally correct) our axiomatic treat-
ment of the degree for oriented quasi-Fredholm maps, it is important to
recall that, given any set Y , there exists only one function from the empty
set into Y , and this is called the empty function to Y . This notion derives
from the definition of function f from a set X to a set Y (written f : X → Y )
as a triple f = (X,Y,Γ), where Γ, the graph of f , is a subset of X ×Y with
the following property:

If x ∈ X then ∃! y ∈ Y, denoted by f(x), such that (x, y) ∈ Γ. (3.1)

The first set of (X,Y,Γ) is the domain of f and the second is the codomain.
The empty function into Y is the triple (∅, Y, ∅), whose graph is necessarily
empty, as the unique subset of the Cartesian product ∅ × Y . Notice that,
for this triple, (3.1) is satisfied, being a vacuous truth.
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One can easily show that if h : X → Φ0(E,F ) is orientable with nonempty
domain, then it admits at least two orientations. If, in addition, X is con-
nected, then h admits exactly two orientations (one opposite to the other).
Of course, if X is empty, then h admits only one orientation: the empty

function ĥ : X → Φ̂0(E,F ). Moreover, from the theory of covering spaces,
one can deduce that if X is simply connected and locally path connected,
then h is orientable (see e.g. [5]).

As a straightforward consequence of Definition 3.5, if h : X → Φ0(E,F )
is oriented and h′ : Y → X is any continuous map, then the composition
hh′ inherits in a natural way an orientation from h. In this case we say
that the two oriented maps, as well as the corresponding orientations, are
compatible among them. This is the case, for example, for the restriction of
h to any subset X ′ of X, since h|X′ is the composition of h with the inclusion
X ′ ↪→ X. In this case, the orientation of h|X′ inherited by h will be called
the oriented restriction of h to X ′. Another important example occurs when
H : X × [0, 1] → Φ0(E,F ) is an oriented homotopy and λ ∈ [0, 1] is given.
In this case the partial map Hλ = H(·, λ) inherits an orientation from H,
being the composition HJλ, where Jλ(x) = (x, λ). The following theorem
shows that, in some sense, the converse is true. Such a result can be seen
as a sort of continuous transport of an orientation along a homotopy, and
it is a straightforward consequence of the theory of covering spaces (see [5,
Theorem 3.14]).

Theorem 3.6 (Orientation transport for Φ0(E,F )-valued maps). Given a
homotopy H : X × [0, 1] → Φ0(E,F ), assume that for some λ ∈ [0, 1] the
partial map Hλ = H(·, λ) is oriented. Then, there exists and is unique
an orientation of H which is compatible with (the oriented map) Hλ. In
particular, H0 and H1 are either both orientable or both non-orientable.

The following consequence of Theorem 3.6, together with Corollary 3.14,
will be useful in the proof of Proposition 4.3 below.

Corollary 3.7. Let G : X × [0, 1]× [0, 1]→ Φ0(E,F ) be a continuous map.
Assume that the partial map G(0,0) = G(·, 0, 0) is oriented. Then, there
exists and is unique an orientation of G which is compatible with G(0,0).

Proof. Consider the homotopy H : X × [0, 1]→ Φ0(E,F ) given by

H(x, λ) = G(x, λ, 0).

According to Theorem 3.6, H can be, and will be, oriented with the unique
orientation compatible with H0 = G(0,0). Now, denote by Y the product
X × [0, 1] and consider the homotopy K : Y × [0, 1]→ Φ0(E,F ) given by

K(y, µ) = G(x, λ, µ), where we put y = (x, λ).

Observe that K0 = K(·, 0) = H. Hence, again because of Theorem 3.6, K
admits a unique orientation compatible with K0. Consequently, identifying
G with K, we get the assertion. �
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Let us now recall the notion of orientability for Fredholm maps of index
zero between real Banach spaces, given in [4, 5].

Recall that, given an open subset Ω of E, a map g : Ω→ F is a Fredholm
map if it is C1 and its Fréchet derivative, Dg(x), is a Fredholm operator for
all x ∈ Ω. The index of g at x is the index of Dg(x) and g is said to be of
index n if it is of index n at any point of its domain.

Through this paper, the empty function g : ∅ → F will be regarded as
Fredholm of index zero. This is formally correct and convenient for us, even
if it seems peculiar. In fact, the assertion “if x ∈ ∅ then Dg(x) is Fredholm
of index zero” is true, being a vacuous truth.

Hereafter, a nonlinear Fredholm map of index zero will be also called a
Φ0-map. Notice that a Φ0-operator L : E → F is also a Φ0-map, being
differentiable at any x ∈ E with DL(x) = L.

According to a result of Smale (see [29]), a Fredholm map defined on an
open subset of a Banach space is locally proper.

Definition 3.8 (Topological orientation of a Φ0-map). An orientation of a
Fredholm map of index zero g : Ω → F is an orientation of the derivative
Dg : x 7→ Dg(x), in the sense of Definition 3.5. Moreover, g is orientable, or
oriented, if so is Dg.

Observe that, if g : Ω → F in an oriented Φ0-map and V is an open
subset of Ω, then the restriction g|V of g to V inherits, in a natural way,
an orientation from g. This restriction, with the orientation inherited by g,
will be called the oriented restriction of g to V .

Unless otherwise stated, to avoid cumbersome notation, if g is oriented,
the symbol g|V will denote the oriented restriction of g to V . Of course, if
V = ∅, then g|V has only one possible orientation: the empty function

D̂g|∅ : ∅ → Φ̂0(E,F ),

which is the unique lift of Dg|∅ : ∅ → Φ0(E,F ).
We point out that if L : E → F is a Φ0-operator, then it is orientable if

regarded as a Φ0-map; that is, in the sense of Definition 3.8. In fact, at any
x ∈ E, the derivative DL(x) coincides with L, which can be ‘constantly’
oriented according to Definition 3.1. Unless otherwise stated, for such an
operator the two notions of orientation, the algebraic and the topological,
will be identified. The same convention is assumed even when one considers
the restriction L|Ω of L to any open subset Ω of E.

Definition 3.9 (Natural topological orientation of a diffeomorphism). An
oriented deffeomorphism φ : U → V between two open subsets U ⊆ E and
V ⊆ F is said to be naturally oriented if the trivial operator is a positive
corrector of Dφ(x) for any x ∈ U . We will refer to this orientation as the
natural orientation of φ. Conversely, φ is unnaturally oriented if the trivial
operator is not a positive corrector of Dφ(x) for all x ∈ U ; in this case φ
assumes the unnatural orientation.
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The following result, in particular, gives a sufficient condition for the
orientability of a Φ0-map (see [4]).

Proposition 3.10. Let g : Ω → F be a Fredholm map of index zero. If g
is orientable and Ω is nonempty, then g admits at least two orientations.
If, in addition, Ω is connected, then g admits exactly two orientations (one
opposite to the other). If Ω is empty, then g is orientable and admits only
one orientation. If Ω is simply connected, then g is orientable.

Let Ω be open in E and let H : Ω× [0, 1]→ F be a continuous map. We
say that H is a homotopy of Φ0-maps or, simply, a Φ0-homotopy if it is
continuously differentiable with respect to the first variable and any partial
map Hλ is a Φ0-map.

Definition 3.11 (Topological orientation of a Φ0-homotopy). An orienta-
tion of a Φ0-homotopy H : Ω × [0, 1] → F is an orientation of the partial
derivative map

∂1H : Ω× [0, 1]→ Φ0(E,F ), (x, λ) 7→ DHλ(x),

according to Definition 3.5. Moreover, H is orientable, or oriented, if so is
∂1H.

Notice that, if a Φ0-homotopy H : Ω× [0, 1]→ F is oriented and λ ∈ [0, 1]
is given, then the partial map Hλ : Ω → F inherits an orientation which is
compatible with H. The following straightforward consequence of Theorem
3.6 shows that the converse is true.

Theorem 3.12 (Orientation transport for Φ0-maps). Let H : Ω× [0, 1]→ F
be a Φ0-homotopy. Given λ ∈ [0, 1], assume that the partial map Hλ is
oriented. Then there exists and is unique an orientation of H which is
compatible with Hλ.

Definition 3.13 (Induced orientation). Due to Theorem 3.12, if two maps,
f0 and f1, are joined by a Φ0-homotopy H and f0 is oriented, then f1 can
be oriented according to the unique orientation of H which is compatible
with f0. In this case we shall say that “f1 has the orientation induced by f0

through H” or simply that “f1 has the orientation directly induced by f0”
when H is the straight-line homotopy (x, λ) 7→ λf1(x) + (1− λ)f0(x).

The following direct consequence of Corollary 3.7 will be useful in the
proof of Proposition 4.3 below.

Corollary 3.14. Let G : Ω× [0, 1]× [0, 1]→ F be C1 and assume that any
G(λ,µ) is Fredholm of index zero. If G(0,0) is oriented, then there exists and
is unique an orientation of G which is compatible with G(0,0).

We conclude this section by showing that the orientation of a Fredholm
map g is related to the orientations of domain and codomain of suitable
restrictions of g. This argument is crucial in the definition of the degree for
oriented quasi-Fredholm maps.
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Let g : Ω→ F be a Fredholm map of index zero and Z a finite dimensional
subspace of F , transverse to g. We recall that Z is said to be transverse to
g at x ∈ Ω if ImgDg(x) + Z = F . The space Z is transverse to g if it is
transverse at any point of the domain of g.

From classical transversality results, it follows that M = g−1(Z) is a
differentiable manifold of the same dimension as Z. Assume that g is ori-
entable. It is possible to prove that M is orientable. The proof can be found
in [4, Remark 2.5 and Lemma 3.1]. Here, let us show how, given any x ∈M ,
an orientation of g and an orientation of Z induce an orientation on the
tangent space TxM of M at x.

Assume that g is oriented and let Z be oriented too. Consider x ∈M and
a positive corrector A of Dg(x) with image contained in Z (the existence of
such a corrector is ensured by the transversality of Z to g). Then, orient
TxM in such a way that the isomorphism

(Dg(x) +A)|TxM : TxM → Z

is orientation preserving. As proved in [6], the orientation of TxM does not
depend on the choice of the positive corrector A, but only on the orientations
of Z and Dg(x). With this orientation, we call M the oriented g-preimage
of Z.

4. Oriented quasi-Fredholm maps

In this section we recall the concept of orientability and orientation, intro-
duced by the first and third author in [6], for locally compact perturbations
of Fredholm maps of index zero between real Banach spaces.

Let f : Ω→ F be a continuous map defined on an open subset of E. For
short, we say that f is a quasi-Fredholm map (or a qF-map) if there exists
a Fredholm map of index zero g : Ω→ F , called a smoothing map of f , such
that the difference k = g − f is a locally compact map.

Notice that, if F = E and f admits the identity among its smoothing
maps, then f is a locally compact vector field.

In what follows, unless otherwise stated, f will denote a quasi-Fredholm
map from an open subset Ω of E to F , and S(f) will stand for the family
of smoothing maps of f .

Remark 4.1. Observe that, if g0 is a smoothing map of f , then any other
element of the family S(f) is obtained by adding to g0 an arbitrary C1

locally compact map h : Ω→ F . Therefore, S(f) is an affine subspace of the
real vector space C(Ω, F ) of the continuous maps from Ω to F . Precisely,
S(f) = g0 + H, where H is the subspace of C(Ω, F ) consisting of the C1

locally compact maps.

The following definition provides an extension to quasi-Fredholm maps of
the concept of orientability.

Definition 4.2. A quasi-Fredholm map f : Ω→ F is orientable if it has an
orientable smoothing map.
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If f is orientable, then any smoothing map of f is orientable. Indeed,
given g0, g1 ∈ S(f), consider the homotopy H : Ω× [0, 1]→ F defined by

H(x, λ) = (1− λ)g0(x) + λg1(x). (4.1)

Since S(f) is a convex set (see Remark 4.1), H is Φ0-homotopy. Thus,
because of Theorem 3.12, if g0 is orientable, then g1 is orientable as well.

Observe also that, if a given map g0 ∈ S(f) is oriented, then any other
map g ∈ S(f) can be oriented by transporting the orientation of g0 up
to g along the line segment joining g0 with g (i.e. applying Theorem 3.12
to the straight-line homotopy joining g0 with g). Is it correct to define
this collection of oriented maps an orientation of the family S(f)? The
answer is yes if for any pair of oriented maps of the collection, say g1 and
g2, the unique orientation of the straight-line homotopy joining g1 with g2

which is compatible with g1 (ensured by Theorem 3.12) is compatible also
with g2. This, as we shall see, is a direct consequence of Proposition 4.3
below. Therefore, from now on, by an orientation of the family S(f) we
shall mean that to any map in S(f) is assigned an orientation with the
following property: the orientations of any pair of smoothing maps of f are
compatible with an orientation of the straight-line homotopy joining these
two maps.

To define a notion of orientation of f , consider the set Ŝ(f) of the ori-

ented smoothing maps of f . We introduce in Ŝ(f) the following equivalence

relation. Given g0, g1 in Ŝ(f), consider, as in formula (4.1), the straight-line
homotopy H joining g0 and g1. We say that g0 is equivalent to g1, g0 ∼ g1 in
symbols, if the unique orientation of H which is compatible with g0 (ensured
by Theorem 3.12) is as well compatible with g1. In other words, according to
Definition 3.13, g0 is equivalent to g1 if the second map has the orientation
directly induced by the first one.

For the sake of completeness we give here the proof of Proposition 4.3
below, that in [6] was omitted.

Proposition 4.3. The above is an equivalence relation in Ŝ(f).

Proof. Reflexivity and symmetry are immediate to be verified. To prove

transitivity, let g0, g1 and g2 belong to Ŝ(f), and suppose g0 ∼ g1 and
g1 ∼ g2.

Consider the C1 map G : Ω× [0, 1]× [0, 1]→ F defined as

G(x, λ, µ) = (1− µ)
(
(1− λ)g0(x) + λg1(x)

)
+ µg2(x).

Notice that any partial map G(λ,µ) = G(·, λ, µ) is a convex combination
of g0, g1 and g2. Consequently, because of Remark 4.1, it lies in S(f)
and, in particular, it is Fredholm of index zero. Therefore, according to
Corollary 3.14, we may assume that G is oriented with the unique orientation
compatible with G(0,0) = g0. Let us show that this orientation is compatible
with g1 and g2, as well.
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Consider the straight-line homotopy G : Ω× [0, 1]→ F , given by

G(x, λ) = (1− λ)g0(x) + λg1(x) = G(x, λ, 0),

and orient it with the orientation inherited from G. Because of Theorem
3.12, G is the unique oriented homotopy compatible with g0. Since g0 ∼ g1,
G is as well compatible with g1. Consequently, G, being compatible with G,
is compatible also with g1 = G(1,0).

The same argument applies to the homotopy Ĝ : Ω× [0, 1]→ F , given by

Ĝ(x, µ) = (1− µ)g1(x) + µg2(x) = G(x, 1, µ),

showing that G is compatible with g2 = G(1,1).
Finally, since G is compatible with both g0 and g2, orienting the straight-

line homotopy joining these two smoothing maps with the orientation in-
herited from G, we get that g0 ∼ g2. �

Observe that, because of of Theorem 3.12 and Proposition 4.3, an equiv-

alence class of Ŝ(f) may be regarded as an orientation of the family S(f).
The following definition provides an extension to quasi-Fredholm maps of

the concept of orientation given in Definition 3.8.

Definition 4.4. Let f : Ω → F be an orientable quasi-Fredholm map. An

orientation of f is an equivalence class of Ŝ(f). In particular, if f is a locally
compact vector field (i.e. F = E and the identity of E is a smoothing map
of f), then it admits a distinguished orientation, called canonical : the one
determined by the natural orientation of the identity.

Obviously, if the Banach space E is finite dimensional, then any contin-
uous map f : Ω → E on an open subset of E is quasi-Fredholm. More pre-
cisely, it is a locally compact vector field and, consequently, it is orientable
and, unless otherwise stated, we will assume it as canonically oriented.

In the sequel, if a quasi-Fredholm map f is oriented, any element in the

chosen class of Ŝ(f) will be called a positively oriented smoothing map of f .
Observe that if two oriented smoothing maps of f : Ω→ F are equivalent

and V is an open subset of Ω, then the oriented restrictions to V of these

two smoothing maps are equivalent in the set Ŝ(f |V ). Thus, if f is oriented,
the restriction f |V inherits, in a natural way, an orientation by f . This
restriction, together with the orientation inherited by f , will be called the
oriented restriction of f to V . Notice that if V is empty, the oriented
restriction of f to V is unique, and this does not depend on the orientation
of f .

Hereafter, unless otherwise stated, if f is an oriented quasi-Fredholm map
defined on Ω and V ⊆ Ω is open, with the symbol f |V we shall mean the
oriented restriction of f to V .

Here is the analogue for quasi-Fredholm maps of Proposition 3.10.

Proposition 4.5. Let f : Ω→ F be a quasi-Fredholm map. If f is orientable
and Ω is nonempty, then f admits at least two orientations. If, in addition,
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Ω is connected, then f admits exactly two orientations (one opposite to the
other). If Ω is empty, then f is orientable and admits only one orientation.
If Ω is simply connected, then f is orientable.

As for Fredholm maps of index zero, the property of quasi-Fredholm maps
of being or not being orientable is homotopic invariant, as shown in Theorem
4.8 below. We need first some definitions.

Definition 4.6. Let H : Ω× [0, 1]→ F be a map of the form

H(x, λ) = G(x, λ)−K(x, λ),

where G is C1, any Gλ is Fredholm of index zero and K is locally compact.
We call H a quasi-Fredholm homotopy and G a smoothing homotopy of H.

The definition of orientability for quasi-Fredholm homotopies is analogous
to that given for quasi-Fredholm maps. Let H : Ω × [0, 1] → F be a quasi-

Fredholm homotopy. Let Ŝ(H) be the set of oriented smoothing homotopies

of H. Assume that Ŝ(H) is nonempty and define on this set an equivalence

relation as follows. Given G0 and G1 in Ŝ(H), consider the map

H : Ω× [0, 1]× [0, 1]→ F

defined as

H(x, λ, µ) = (1− µ)G0(x, λ) + µG1(x, λ).

We say that G0 is equivalent to G1 if their orientations are inherited from
an orientation of the map

(x, λ, µ) 7→ ∂1H(x, λ, µ).

As in Proposition 4.3, it is possible to prove that this is actually an

equivalence relation on Ŝ(H).

Definition 4.7. A quasi-Fredholm homotopy H : Ω × [0, 1] → F is said to

be orientable if Ŝ(H) is nonempty. An orientation of H is an equivalence

class of Ŝ(H).

The following result regarding the continuous transport of an orientation
of a quasi-Fredholm map along a homotopy is the analogue of Theorem 3.12.

Theorem 4.8 (Orientation transport for qF-maps). Let H : Ω× [0, 1]→ F
be a quasi-Fredholm homotopy. If a partial map Hλ is oriented, then there
exists and is unique an orientation of H which is compatible with Hλ.

5. Degree for oriented quasi-Fredholm maps

In this section we summarize the construction of the degree for oriented
quasi-Fredholm maps introduced by the first and third author in [6]. See
also [2] and [3] for extensions of this degree to a class of maps involving the
Kuratowski measure of non-compactness.
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Definition 5.1. Let f : Ω→ F be an oriented quasi-Fredholm map and U
an open subset of Ω. The pair (f, U) is said to be admissible for the degree
(of f in U at 0 ∈ E) provided that f−1(0) ∩ U is compact.

The degree defined in [6] is a map that to every admissible pair (f, U)
assigns an integer, deg(f, U) in symbols, verifying the following three funda-
mental properties. Recall that if V ⊆ Ω is open, f |V stands for the oriented
restriction of f to V .

• (Normalization) Let L : E → F be a naturally oriented isomorphism.
Then

deg(L,E) = 1.

• (Additivity) Let (f, U) be an admissible pair, and U1, U2 two disjoint
open subsets of U such that f−1(0) ∩ U ⊆ U1 ∪ U2. Then,

deg(f, U) = deg(f |U1 , U1) + deg(f |U2 , U2).

• (Homotopy invariance) Let H : U × [0, 1]→ F be an oriented quasi-
Fredholm homotopy. If H−1(0) is compact, then deg(Hλ, U) does
not depend on λ ∈ [0, 1].

With the notation of Definition 4.6, we do not know if the Homotopy in-
variance property still holds by replacing the assumption that the smoothing
homotopy G of H is C1 with the weaker hypothesis that it is continuous
and continuously differentiable with respect to the first variable. For sure
this is true when the locally compact perturbation K is zero (see [4]).

We observe that if two maps f1, f2 : Ω → F differ by a locally compact
map and one is quasi-Fredholm, so is the other one. More precisely, they
have the same family of smoothing maps. Therefore, if one is oriented, f1

for example, then f2 can be oriented by choosing the same equivalence class
of oriented smoothing maps defining the orientation of f1. As in Definition
3.13 we shall say that f2 has the orientation directly induced by f1.

Definition 5.2. Let f : Ω → F be an oriented quasi-Fredholm map and
U an open subset of Ω. Given y ∈ F , the triple (f, U, y) is said to be
admissible for the degree (of f in U at y ∈ E) if so is the pair (f − y, U)
with the orientation of f − y directly induced by f . In this case deg(f, U, y)
is a convenient alternative notation for the integer deg(f − y, U).

The construction of the degree for admissible pairs consists of two steps.
In the first one we consider pairs (f, U) such that f has a smoothing map
g with (f − g)(U) contained in a finite dimensional subspace of F . In the
second step we remove this assumption, defining the degree for all admissible
pairs.

Step 1. Let (f, U) be an admissible pair and let g be a positively oriented
smoothing map of f such that (f−g)(U) is contained in a finite dimensional
subspace of F . As f−1(0) ∩ U is compact, there exist a finite dimensional
subspace Z of F and an open neighborhood W ⊆ U of f−1(0) ∩ U such that
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g is transverse to Z in W . Assume that Z contains (f − g)(U). Choose any
orientation of Z and orient the C1-manifold M = g−1(Z)∩W in such a way
that it is the oriented g|W -preimage of Z. Let f |M denote the restriction
of f to M , as domain, and to Z, as codomain. One can easily verify that
(f |M )−1(0) = f−1(0) ∩ U . Thus (f |M )−1(0) is compact and, consequently,
the Brouwer degree, degB(f |M ,M, 0), of the triple (f |M ,M, 0) is well de-
fined. With this notation, we can give the following definition of degree for
(f, U).

Definition 5.3. The degree of the admissible pair (f, U) is the integer

deg(f, U) = degB(f |M ,M, 0). (5.1)

In [6] it is proved that the above definition is well posed, in the sense that
the right hand side of (5.1) is independent of the choice of the smoothing
map g, the open set W and the oriented subspace Z.

Step 2. Let us now extend the definition of degree to general admissible
pairs.

Definition 5.4. Let (f, U) be an admissible pair. Consider:

(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of f−1(0) ∩ U such that V ⊆ U and g is

proper on V and (f − g)|V has relatively compact image;

(3) a continuous map ξ : V → F having bounded finite dimensional
image and such that

‖g(x)− f(x)− ξ(x)‖ < ρ, ∀x ∈ ∂V,
where ρ is the distance in F between 0 and the set f(∂V ), which is
closed, since f is proper on V as the sum of the proper map g|V and
the compact map (f − g)|V .

Then,
deg(f, U) = deg(g − ξ, V ). (5.2)

Observe that the right hand side of (5.2) is well defined since the pair
(g − ξ, V ) is admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0)
is a compact subset of V which is actually contained in V by assumption
(3) above.

In [6] it is proved that Definition 5.4 is well posed since formula (5.2) does
not depend on g, ξ and V .

6. Uniqueness of the degree for oriented quasi-Fredholm maps

In this section we prove the main result of the paper. Namely, Theorem
6.1 below, which asserts that there exists at most one real function defined on
the class of quasi-Fredholm admissible pairs verifying the three fundamental
properties: Normalization, Additivity and Homotopy invariance. Thus, this
function coincides with the degree for oriented quasi-Fredholm maps and is
integer valued.
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Theorem 6.1. Let T denote the class of all admissible pairs and assume
that d : T → R is a function verifying the following three axioms:

• (Normalization) Let L : E → F be a naturally oriented isomorphism.
Then

d(L,E) = 1.

• (Additivity) Let (f, U) be an admissible pair, and U1, U2 two disjoint
open subsets of U such that f−1(0) ∩ U ⊆ U1 ∪ U2. Then,

d(f, U) = d(f |U1 , U1) + d(f |U2 , U2).

• (Homotopy invariance) Let H : U × [0, 1]→ F be an oriented quasi-
Fredholm homotopy. If H−1(0) is compact, then d(Hλ, U) does not
depend on λ ∈ [0, 1].

Then d = deg.

The proof of Theorem 6.1 will proceed as follows. First of all, we will
show that if L : E → F is an unnaturally oriented isomorphism, then

d(L,E) = −1. (6.1)

Afterwards, using the above equality and the Homotopy invariance property,
we will prove that, given a diffeomorphism φ : U → V between two open sets
U ⊆ E and V ⊆ F , if 0 ∈ V and x = φ−1(0), then

d(φ,U) =

{
+1 if Dφ(x) is naturally oriented,

−1 otherwise.
(6.2)

Hence, as a consequence of formulas (6.1) and (6.2), and of the first two
fundamental properties, we will show that, for every admissible pair (f, U)
such that f |U is C1 and 0 is a regular value of f in U , we have

d(f, U) =
∑

x∈f−1(0)∩U

signDf(x). (6.3)

The next step will be the proof of the uniqueness of d on the subclass
of T of the pairs (f, U) such that f is C1 on U . This will be obtained
by the Homotopy invariance property and the local properness of nonlinear
Fredholm maps.

At that point, to prove the uniqueness of d on T we will use as a crucial
tool an aproximation result for compact maps in Banach spaces (see Propo-
sition 6.8 below) which is based on a result by Pejsachowicz and Rabier
(Lemma 6.7).

Finally, since the function deg verifies the three fundamental properties,
we will get d = deg.

This process will be developed in a number of steps.

Step 1. This is a preliminary part in which we show some properties of d
which follow from the Additivity and the Homotopy invariance properties.
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Given any oriented quasi-Fredholm map f , the pair (f, ∅) is admissible,
being the empty set compact. By the Additivity property, we get

d(f, ∅) = d(f |∅, ∅) + d(f |∅, ∅),
and

d(f |∅, ∅) = d(f |∅, ∅) + d(f |∅, ∅).
Hence, one has

d(f, ∅) = d(f |∅, ∅) = 0.

By the above equality and the Additivity we obtain the following (often
neglected) Localization property.

Proposition 6.2 (Localization). Let f : Ω→ F be an oriented quasi-Fred-
holm map, U an open subset of Ω. If (f, U) is an admissible pair, then

d(f, U) = d(f |U , U),

where f |U denotes the oriented restriction of f to U .

Proof. By the Additivity one has

d(f, U) = d(f |U , U) + d(f |∅, ∅).
Then, the assertion follows being d(f |∅, ∅) = 0. �

Another consequence of the Additivity (and of the Localization) is the
Excision property, which basically assert that d(f, U) depends only on the
behavior of f in any neighborhood of f−1(0) ∩ U .

Proposition 6.3 (Excision). If (f, U) is admissible and V is an open subset
of U such that f−1(0) ∩ U ⊆ V , then (f, V ) is admissible and

d(f, U) = d(f, V ).

Proof. The pair (f, V ) is clearly admissible. From the Additivity and the
fact that d(f |∅, ∅) = 0 one gets

d(f, U) = d(f |V , V ).

On the other hand, the Localization implies that

d(f, V ) = d(f |V , V ),

and the assertion follows. �

From the Excision we obtain the Existence property.

Proposition 6.4 (Existence). Let d(f, U) be nonzero. Then, the equation
f(x) = 0 admits at least one solution in U .

Proof. Assume that f−1(0) ∩ U is empty. By the Excision property, taking
V = ∅, we get

d(f, U) = d(f, ∅) = 0,

which contradicts the assumption. �
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The following is an immediate consequence of the Additivity and the
Localization properties.

Proposition 6.5 (Classical Additivity). Given an admissible pair (f, U)
and two disjoint open subsets U1, U2 of U such that f−1(0) ∩ U ⊆ U1 ∪ U2,
one has

d(f, U) = d(f, U1) + d(f, U2).

The reader who is familiar with the degree theory probably observes that
the above property is the classical version of the Additivity which is usually
mentioned in the literature. Actually, we believe not possible to deduce the
Localization property of d : T → R by replacing the Additivity property
with the above classical version.

As in Definition 5.2, given an oriented quasi-Fredholm map f : Ω → F ,
an open subset U of Ω and y ∈ F , if the pair (f − y, U) is admissible (with
the orientation of f − y directly induced by f), then d(f, U, y) denotes the
number d(f − y, U). In this case the triple (f, U, y) is said to be admissible
and y is called the target point. Notice that, because of Proposition 6.4, if
d(f, U, y) 6= 0, then the equation f(x) = y has at least one solution in U .

The next property shows that, for an important class of admissible triples,
the degree depends continuously on the target point y ∈ F .

Proposition 6.6 (Continuous dependence). Let f : Ω → F be an oriented
quasi-Fredholm map and U an open set whose closure U is contained in Ω.
Assume that f is proper on U and let y belong to the open set F \ f(∂U).
Then (f, U, y) is admissible and d(f, U, y) depends only on the connected
component of F \ f(∂U) containing y. In particular, if U = Ω = E and
f : E → F is proper, then d(f,E, y) does not depend on y ∈ F .

Proof. The set F \ f(∂U) is open, since f , being proper, maps the closed
set ∂U onto the closed set f(∂U). Thus, there exists a ball B centered at y
which does not intersect f(∂U).

Fix any z ∈ B and let C denote the line segment joining y with z. Since
f is proper on U , f−1(C) ∩ U is a compact set, and it is contained in U
being C ∩ f(∂U) = ∅. In particular, (f, U, y) is admissible.

Now, the Homotopy invariance property implies d(f, U, z) = d(f, U, y),
since the closed set{

(x, λ) ∈ U × [0, 1] : f(x) = (1− λ)y + λz
}

is contained in the compact subset (f−1(C) ∩ U)× [0, 1] of U × [0, 1]. Con-
sequently, z ∈ B being arbitrary, the map that to any q ∈ F \f(∂U) assigns
d(f, U, q) ∈ R is locally constant, and this implies the assertion. �

Step 2. Let L : E → F be an oriented isomorphism. In this step we
prove that

d(L,E) = signL.
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If L is naturally oriented, from the Normalization property we get

d(L,E) = 1 = signL.

Thus, we assume that L is unnaturally oriented, and we need to show that
d(L,E) = −1.

Fix any nonzero vector w ∈ E and call E2 the one-dimensional subspace
of E spanned by w. As a consequence of the Hahn–Banach Theorem there
exists a closed subspace E1 of E such that

E = E1 ⊕ E2.

Thus, any element x of E can be uniquely written as

x = v + tw, (6.4)

with v ∈ E1 and t ∈ R.
Taking into account (6.4), define f : E → F by

f(v + tw) = L (v + |t|w) .

Observe that f is a quasi-Fredholm map and L is one of its smoothing maps.
In fact, one has

f(v + tw) = L(v + tw)− h(tw),

where

h(tw) =

{
0 if t ≥ 0

2ty if t < 0.

Notice that f coincides with L in the closure E+ of the open half space

E+ := {v + tw : t > 0} and with the isomorphism L̃ ∈ L(E,F ), defined as

L̃(v + tw) = L(v − tw),

in the closure E− of E− := {v + tw : t < 0}.
Clearly, L̃ is another smoothing map of f , since the difference L − L̃ is

the linear operator v + tw 7→ 2tw, which is locally compact (having finite
dimensional image) and C1 (being linear).

Orient f according to the assumed unnatural orientation of the smoothing

map L. This implies that L̃, as another smoothing map of f , receives an
orientation which is compatible with that of f , and this can be obtained by
transporting the orientation of L along the straight-line homotopy joining

L with L̃. Le us show that this orientation of L̃ is the natural one.
Since L and L̃ are isomorphisms, they are, in particular, proper maps.

Thus, their respective restrictions to the closed sets E+ and E− are proper
as well. Consequently, so is the map f , which can be regarded as obtained by
glueing the above two restrictions. Because of Proposition 6.6, this implies
that d(f,E, y) does not depend on the target point y ∈ F (recall that
d(f, U, y) is an alternative notation for the number d(f − y, U)). Therefore,
as f is not surjective, from the Existence property (Proposition 6.4) we
obtain d(f,E, y) = 0 for all y ∈ F . Thus, in particular, d(f,E, y) = 0,
where y = f(w).
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Observe that f−1(y) = {−w,w}, with −w ∈ E− and w ∈ E+. Hence, by
the the Additivity property, we get

0 = d(f,E, y) = d(f |E− , E−, y) + d(f |E+ , E+, y). (6.5)

Now consider d(f |E+ , E+, y). Since the oriented restrictions f |E+ and L|E+

coincide, we obtain

d(f |E+ , E+, y) = d(L|E+ , E+, y).

Thus, because of the Localization and Excision properties (propositions 6.2
and 6.3, respectively), we get the equality

d(f |E+ , E+, y) = d(L,E, y).

Analogously, we have

d(f |E− , E−, y) = d(L̃, E, y).

Consequently, taking into account (6.5), we obtain

d(L,E, y) + d(L̃, E, y) = 0,

and recalling that the maps L and L̃ are proper on E, we equivalently have

d(L,E) + d(L̃, E) = 0.

Hence, to prove our assertion we need to show that L̃ is naturally oriented,

so that d(L̃, E) = 1. For this purpose, consider the homotopy

G : E × [0, 1]→ F, G(x, λ) = (1− λ)Lx+ λL̃x,

and orient it with the unique orientation which is compatible with L. Thus
any operator

Gλ = (1− λ)L+ λL̃, λ ∈ [0, 1]

is oriented, and G1 = L̃, as a smoothing map of f , receives the orientation
which is compatible with that of f .

Let us show that the corrector A of L, defined by

A(v + tw) = −4ty,

is a positive corrector. In fact, the composition

L−1(L+A) : E → E

acts as follows: v + tw 7→ v − 3tw. Hence, its restriction to the one-
dimensional space E2 has determinant −3. Thus, A is not L-equivalent
to the trivial operator of E and, since L is unnaturally oriented, A is a
positive corrector of L.

Now, observe that A is a corrector of any linear operator

Gλ = (1− λ)L+ λL̃, λ ∈ [0, 1].

In fact, one can verify that

(Gλ +A)(v + tw) = Lv − (3 + 2λ)ty
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and, consequently, Gλ +A is an isomorphism for all λ ∈ [0, 1]. This implies
that A is a positive corrector of any oriented operator Gλ, λ ∈ [0, 1].

Finally, consider the composition

L̃−1(L̃+A) : E → E, given by L̃−1(L̃+A)(v + tw) = v + 5tw.

The determinant of the restriction L̃−1(L̃ + A)|E2 : E2 → E2 is 5, which

means that L̃ is naturally oriented. Thus, the proof of step 2 is complete.

Step 3. Let f : U → F be a diffeomorphism of an open subset U of E
onto an open subset V of F such that 0 ∈ V . In this step we prove that

d(f, U) = signDf(x), (6.6)

where x = f−1(0). Consider the homotopy H : U × [0, 1]→ F defined as

H(x, λ) = (1− λ)f(x) + λDf(x)(x− x).

It is immediate to see that H is C1, H(x, λ) = 0 for every λ ∈ [0, 1] and the
Fréchet derivative at x of any partial map Hλ = H(·, λ) is

DHλ(x) = Df(x).

As Df(x) is an isomorphism, the Implicit Function Theorem and the com-
pactness of [0, 1] imply the existence of a neighborhood W of x in U such
that, for any λ ∈ [0, 1], the equation H(x, λ) = 0 admits in W the unique
solution x. This implies that H−1(0) ∩ (W × [0, 1]) is compact and, conse-
quently, by the Homotopy invariance property, one has

d(f,W ) = d(Df(x)− q,W ),

where q = Df(x)x.
Notice that Df(x) : E → F is an isomorphism, being the Fréchet deriva-

tive at a given point of a diffeomorphism. Thus, from the Excision property,
we get

d(Df(x)− q,W ) = d(Df(x)− q, E)

Moreover, since Df(x) is a proper map, d(Df(x) − y,E) does not depend
on y ∈ F (see Proposition 6.6). Consequently,

d(f,W ) = d(Df(x), E),

and the equality (6.6) follows from the previous step 2 (and the Excision
property).

Step 4. We are now in the position to prove formula (6.3). Let (f, U)
be an admissible pair such that f is C1 on U and 0 is a regular value for
f |U . We know that f−1(0)∩U is a finite set, say {x1, ... , xn}. Since Df(xi)
is an isomorphism for any i = 1, ... , n, we can apply the Inverse Func-
tion Theorem, obtaining that there exist n pairwise disjoint neighborhoods
U1, ... , Un of x1, ... , xn, respectively, such that each restriction f |Ui is a dif-
feomorphism onto an open neighborhood of 0. By the Classical Additivity
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property (Proposition 6.5) we have

d(f, U) =
n∑
i=1

d(f, Ui).

On the other hand, by the above step 3, we obtain

d(f, Ui) = signDf(xi)

and this proves formula (6.3).

Step 5. Here we show the uniqueness of d on the class T2 (⊆ T ) of the
pairs (f, U) with f of class C1 on U .

Let (f, U) be an admissible pair such that f is C1 on U . Since f is locally
proper, there exists an open subset W of U , containing f−1(0) ∩ U , such
that W ⊆ U and f is proper on W . By the Excision property we have

d(f, U) = d(f,W ).

By the Continuous dependence property (Proposition 6.6), we see that
d(f −y,W ) depends only on the connected component V of F \f(∂W ) con-
taining 0. This component is an open set, since, as f is proper in W , f(∂W )
is closed in F . Therefore, taking into account the Sard–Smale theorem [29],
we may compute d(f,W ) by choosing a regular value y ∈ V for f |W . In
fact, because of formula (6.3), one has

d(f,W ) = d(f − y,W ) =
∑

x∈f−1(y)∩W

signDf(x),

and this shows the uniqueness of d on T2.

Step 6. Here we show that the uniqueness of d on T2 implies the unique-
ness of d on the class T1 (⊆ T ) of those admissible pairs (f, U) such that
f has a smoothing map g with the property that (f − g)(U) is contained
in a finite dimensional subspace of F . This step contains one of the most
important difficulties of our process.

As is well know, a continuous real map, defined in a compact subset
of Rn, can be uniformly approximated by a smooth map defined on the
whole Rn. As far as we know, an analogous result does not hold if Rn
is replaced by a general Banach space E, unless the compact domain of
the map is contained in a finite-dimensional subspace of E (recall that any
finite-dimensional subspace of E is the image of a bounded linear projec-
tor). Thanks to the following lemma by Pejsachowicz and Rabier (see [25,
Theorem 7.1]), an approximation result like the one in the finite dimen-
sional case holds true even when the domain of the map is contained in a
finite-dimensional submanifold of E.

Lemma 6.7 (Pejsachowicz–Rabier). Let M be a finite-dimensional C1 sub-
manifold of E, and K a compact subset of M . Then, there exist a finite-
dimensional subspace E1 of E and a C1 diffeomorphism φ : E → E such
that φ(K) ⊆ E1.
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Proposition 6.8. Let K be a compact subset of E. Assume that there exists
a finite dimensional submanifold M of E containing K. Let γ : K → R be
a continuous map. Then, given a positive ε, there exists a bounded C1 map
η : E → R such that

sup
x∈K
|γ(x)− η(x)| < ε.

Proof. According to Lemma 6.7, let φ : E → E be a C1 diffeomorphism

such that K̃ = φ(K) is contained in a finite-dimensional subspace E1 of E.

Consider γ̃ : K̃ → R defined as γ̃(x) = γ(φ−1(x)). As K̃ is compact, given a

positive ε, there exists a bounded C1 map ξ̃ : E1 → R such that

sup
y∈K̃
|γ̃(y)− ξ̃(y)| < ε.

Define ξ : E → R by ξ(x) = ξ̃(P (x)), where P is a bounded linear pro-
jector onto E1, and let η : E → R be such that η(x) = ξ(φ(x)). It follows
that

sup
x∈K
|γ(x)− η(x)| = sup

x∈K
|γ̃(φ(x))− ξ̃(φ(x))| = sup

y∈K̃
|γ̃(y)− ξ̃(y)| < ε,

and this proves the assertion. �

Let (f, U) be an admissible pair and let g be a positively oriented smooth-
ing map of f such that (f − g)(U) is contained in a finite dimensional sub-
space of F . As f−1(0) ∩ U is compact, there exist a finite dimensional
subspace Z of F and an open neighborhood W of f−1(0)∩U in U such that
the following conditions hold:

• g is transverse to Z in W ;
• Z contains (f − g)(U);

As already seen, the set M = g−1(Z)∩W is a boundaryless C1 manifold
of the same dimension as Z. Let us now consider an open subset V of W
such that

• f−1(0) ∩ U ⊆ V ⊆ V ⊆W ;
• g is proper and bounded on V ;
• f − g is a compact map on V .

The subset
S = g−1(g(V ) ∩ Z) ∩ V

of E turns out to be compact, due, in particular, to the fact that Z is finite-
dimensional and that g is proper on V . In addition, S is contained in the
manifold M .

Now, let δ be the positive distance between 0 and f(∂V ), and let k = g−f .
We are in the position to apply a straightforward consequence of Proposition
6.8 to the restriction k|S , obtaining a compact C1 map k∗ : E → F , having
image contained in Z and such that

sup
x∈S
‖k∗(x)− k(x)‖ < δ/2.
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Consider the homotopy H : V × [0, 1]→ F defined as

H(x, λ) = g(x)− λk(x)− (1− λ)k∗(x).

Notice that the restriction H of H to V ×[0, 1] is a quasi-Fredholm homotopy,
which is orientable since so is its partial map H1 = f . Orient H with the
unique orientation compatible H1. Our purpose is to apply the Homotopy
invariance property and show that

d(g − k, V ) = d(g − k∗, V ). (6.7)

To obtain the above equality it is sufficient to verify that the set

C =
{

(x, λ) ∈ V × [0, 1] : H(x, λ) = 0
}

is compact. Since g is proper on V and k and k∗ are compact on V , it
follows that H is proper. To prove the compactness of the above set C, it

is sufficient to check that H
−1

(0) does not intersect ∂V × [0, 1], i.e. that C

coincides with H
−1

(0). Let (x, λ) ∈ H
−1

(0) be given. Observe that k(x)
and k∗(x) belong to Z. Hence, g(x) belongs to Z too. Therefore, x ∈ S by
the definition of this set. Consequently,

‖k∗(x)− k(x)‖ < δ/2.

Suppose now, by contradiction, that x ∈ ∂V . We have

‖H(x, λ)‖ = ‖g(x)− λk(x)− (1− λ)k∗(x)‖ ≥
‖f(x)‖ − (1− λ)‖k(x)− k∗(x)‖ ≥
δ − δ/2 = δ/2 > 0.

Therefore, we obtain that, if (x, λ) is any element in H
−1

(0), then x does

not belong to ∂V . Consequently, C coincides with the compact set H
−1

(0).
Thus, by the Homotopy invariance property we get the computation formula
(6.7), which, because of the previous step, implies the uniqueness of d on
the subclass T1 of T .

Step 7. In this final step we conclude the process, showing the uniqueness
of d on the whole class T .

Let (f, U) be an admissible pair. Consider:

• a positively oriented smoothing map g of f ;
• an open neighborhood V of f−1(0) such that V ⊆ U , g is proper on
V and (f − g)|V is compact;

• a continuous map ξ : V → F having bounded finite dimensional
image and such that

‖g(x)− f(x)− ξ(x)‖ < δ, ∀x ∈ ∂V,

where δ is the distance in F between 0 and f(∂V ).

Consider the homotopy H : V × [0, 1]→ F , defined as

H(x, λ) = (1− λ)f(x) + λ
(
g(x)− ξ(x)).
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The restriction H of H to V × [0, 1] is a quasi-Fredholm homotopy, being
a compact perturbation of the map (x, λ) 7→ g(x). In addition, H−1(0) is
a compact subset of V × [0, 1]. Assume that H is oriented with the unique
orientation compatible with f . Therefore we are in the position to apply
the Homotopy invariance property showing that

d(f, V ) = d(g − ξ, V ).

This proves the uniqueness of d.

7. The Leray–Schauder case

In this section we show that the degree for oriented quasi-Fredholm maps
provides a generalization of the Leray–Schauder degree, in the sense that
there exists a “canonical” embedding j of the class of the Leray–Schauder
admissible pairs into the class T (of the quasi-Fredholm admissible pairs)
such that the composition of j with deg : T → Z coincides with the Leray–
Schauder degree degLS (see Theorem 7.1 below).

Let, as before, E denote any real Banach space. Recall that a continuous
map f : X → E, defined on a subset of E, is called a compact vector field
(on X) if it differs from the identity by a completely continuous map. Given
a compact vector field f : U → E on the closure of a bounded open subset of
E, the pair (f, U) is said to be Leray–Schauder admissible (LS-admissible,
for short) provided that f−1(0) ⊆ U (i.e. 0 6∈ f(∂U)). In this case, an
integer, degLS(f, U), is defined and called Leray–Schauder degree of f in
U . Denoting by CLS the class of the LS-admissible pairs, this degree is a
function degLS : CLS → Z that is known to satisfy the following three basic
properties:

• (LS-normalization) Let U be a bounded open subset of E and let I
denote the identity of E. If 0 ∈ U , then

degLS(I|U , U) = 1.

• (LS-additivity) Let (f, U) be an LS-admissible pair, and U1, U2 two
disjoint open subsets of U such that f−1(0) ⊆ U1 ∪ U2. Then,

degLS(f, U) = degLS(f |U1
, U1) + degLS(f |U2

, U2).

• (LS-homotopy invariance) Let H : U × [0, 1]→ F be a homotopy of
compact vector fields on U . If H−1(0) is contained in U× [0, 1], then
degLS(H(·, λ), U) does not depend on λ ∈ [0, 1].

We recall that a famous result of Amann and Weiss [1] asserts that degLS
is the unique map satisfying the above three properties. This fact will be
crucial in the proof of Theorem 7.1 below.

We define now a “canonical” one-to-one map j from the class CLS of the
LS-admissible pairs onto a subclass TLS of T .

Notice that a compact vector field on an open subset of a real Banach
space is, in particular, a locally compact vector field (which is, we recall, a
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quasi-Fredholm map having the identity among its smoothing maps). Thus,
according to Definition 4.4, a compact vector field has a distinguished ori-
entation: the canonical one (that is, the one directly induced by the natural
orientation of the identity).

Let j : CLS → T be the map defined by j(f, U) = (f |U , U), where the
orientation of the restriction f |U is the canonical one.

Clearly, j(f, U) belongs to the class T of the admissible pairs. In fact,
with the notation of Definition 5.1, Ω coincides with U and f−1(0) ∩ U is
compact since f is proper on its domain U and such that f−1(0) ⊆ U .

The map j is clearly one-to-one, since if two continuous maps defined on U
do not coincide, they necessarily have different restrictions to U . Moreover,
one can check that the image of j is the subclass TLS of T of the pairs (g, U)
with the following properties:

• U is a bounded open subset of a real Banach space E;

• g : U → E is a canonically oriented compact vector field on U ;

• g admits a continuous extension f : U → E;

• 0 6∈ f(∂U).

The following result shows that if in T we identify CLS with its image
j(CLS) = TLS , then deg : T → Z may be regarded as an extension of the
Leray–Schauder degree degLS : CLS → Z.

Theorem 7.1. For any LS-admissible pair (f, U) one has

deg
(
j(f, U)

)
= degLS(f, U).

Proof. Because of the uniqueness result due to Amann and Weiss [1], it is
enough to check that that the map d∗ : CLS → Z defined by

d∗(f, U) = deg
(
j(f, U)

)
verifies the above three basic properties of the Laray–Schauder degree:
LS-normalization, LS-additivity, and LS-homotopy invariance.

This follows easily from the properties of deg : T → Z. Indeed, observe
that the LS-normalization property is a consequence of the Normalization
property of deg, the Localization property of d (Proposition 6.2), and the
fact that (because of Theorem 6.1) d = deg. The LS-additivity property is
trivially satisfied. Moreover, regarding the LS-homotopy invariance prop-
erty, notice that if H : U × [0, 1]→ E is a homotopy of compact vector fields
on U , then its restriction to U × [0, 1] is an oriented quasi-Fredholm homo-
topy, provided that any partial map Hλ|U : U → E is canonically oriented
(as it is in the pair (Hλ|U , U) = j(Hλ, U)). Finally, since U is bounded, H
is a proper map. Consequently, H−1(0) is compact. �
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