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In a recent paper we gave a notion of degree for a class of perturbations of
nonlinear Fredholm maps of index zero between real infinite dimensional Banach
spaces. Our purpose here is to extend that notion in order to include the degree
introduced by Nussbaum for local α-condensing perturbations of the identity, as
well as the degree for locally compact perturbations of Fredholm maps of index zero
recently defined by the first and third authors.

1. Introduction

In a recent paper [1] we defined a concept of degree for a special class of non-
compact perturbations of nonlinear Fredholm maps of index zero between (infinite
dimensional real) Banach spaces, called α-Fredholm maps. The definition of these
maps is based on the following two numbers (see e.g. [12]) associated with a map
f : Ω → F from an open subset of a Banach space E to a Banach space F :

α(f) = sup
{

α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}

,

ω(f) = inf
{

α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}

,

where α is the Kuratowski measure of noncompactness (in [12] ω(f) is denoted by
β(f), however, we prefer here the more recent notation ω(f) as in [11]).

Roughly speaking, an α-Fredholm map is of the type f = g − k, with the in-
equality

α(k) < ω(g)

satisfied locally. These maps include locally compact perturbations of Fredholm
maps (quasi-Fredholm maps for short) since, when g is Fredholm and k is locally
compact, one has α(k) = 0 and ω(g) > 0, locally. Moreover, they also contain local
α-contractive perturbations of the identity, where, following Darbo [6], a map k is
α-contractive if α(k) < 1.

The purpose of this paper is to give an extension of the notion of the degree for
α-Fredholm maps to a more general class of noncompact perturbations of Fredholm
maps, still defined in terms of the numbers α and ω. This class of maps, that we call
weakly α-Fredholm, includes local α-condensing perturbations of the identity, where
a map k is α-condensing if α(k(A)) < α(A), for every A such that 0 < α(A) < +∞.
We show that, for local α-condensing perturbations of the identity, our degree
coincides with the degree defined by Nussbaum in [14] and [15].

2000 Mathematics Subject Classification. Primary 47H11; Secondary 47A53, 47H09.
Key words and phrases. Degree theory, Fredholm maps, measure of noncompactness.

1



2 P. BENEVIERI, A. CALAMAI, AND M. FURI

For an interesting, although partial, extension of the Leray–Schauder degree to
a large class of maps (called quasi-ruled Fredholm maps) we mention the work of
M. Efendiev (see [9], [10] and references therein). This class of maps has nonempty
intersection with our class of weakly α-Fredholm maps. However, our degree is
integer valued and, as said before, extends completely the Nussbaum degree (and,
consequently, the Leray–Schauder degree). This is not the case of the degree by
Efendiev, since it takes values in the non-negative integers.

2. Orientability for Fredholm maps

In this section we summarize the notion of orientability for nonlinear Fredholm
maps of index zero between Banach spaces introduced in [2] and [3].

The starting point is a concept of orientation for linear Fredholm operators of
index zero between real Banach spaces. From now on and in the rest of the paper,
E and F will denote two real Banach spaces. Recall that a bounded linear operator
L : E → F is said to be Fredholm if dim KerL and dim coKerL are finite. The
index of L is

indL = dim KerL− dim coKerL.

Given a Fredholm operator of index zero L : E → F , a bounded linear operator
A : E → F with finite dimensional image is called a corrector of L if L + A
is an isomorphism. On the (nonempty) set C(L) of correctors of L we define an
equivalence relation as follows. Let A,B ∈ C(L) be given and consider the following
automorphism of E:

T = (L + B)−1(L + A) = I − (L + B)−1(B −A).

The operator K = (L+B)−1(B−A) clearly has finite dimensional image. Hence,
given any nontrivial finite dimensional subspace E0 of E containing the image of K,
the restriction of T to E0 is an automorphism. Therefore, its determinant is well
defined and nonzero. It is easy to check that this does not depend on the choice of
E0 (see [2]). Thus, the determinant of T is well defined as the determinant of the
restriction of T to any nontrivial finite dimensional subspace of E containing the
image of K. We say that A is equivalent to B or, more precisely, A is L-equivalent
to B if

det
(
(L + B)−1(L + A)

)
> 0.

As shown in [2], this is actually an equivalence relation on C(L) with two equiv-
alence classes.

Definition 2.1. Let L be a linear Fredholm operator of index zero between two
real Banach spaces. An orientation of L is the choice of one of the two equivalence
classes of C(L), and L is oriented when an orientation is chosen.

Given an oriented operator L, the elements of its orientation are called positive
correctors of L.

Definition 2.2. An oriented isomorphism L is said to be naturally oriented if the
trivial operator is a positive corrector, and this orientation is called the natural
orientation of L.

An orientation of a Fredholm operator of index zero induces an orientation to
any sufficiently close operator. Precisely, consider a Fredholm operator of index
zero L and a corrector A of L. Since the set of the isomorphisms from E into
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F is open in the space L(E,F ) of bounded linear operators, A turns out to be a
corrector of every T in a suitable neighborhood U of L in L(E,F ). Therefore, if L
is oriented and A is a positive corrector of L, any T ∈ U can be oriented taking A
as a positive corrector of T . This fact allows us to give a notion of orientation for
a continuous map with values in the set Φ0(E,F ) of Fredholm operators of index
zero from E into F .

Definition 2.3. Let X be a topological space and h : X → Φ0(E,F ) a continuous
map. An orientation of h is a continuous choice of an orientation α(x) of h(x) for
each x ∈ X, where ‘continuous’ means that for any x ∈ X there exists A ∈ α(x)
which is a positive corrector of h(x′) for any x′ in a neighborhood of x. A map
is orientable when it admits an orientation and oriented when an orientation is
chosen.

Remark 2.4. It is possible to prove (see [3, Proposition 3.4]) that two equivalent
correctors A and B of a given L ∈ Φ0(E,F ) remain T -equivalent for any T in
a neighborhood of L. This implies that the notion of ‘continuous choice of an
orientation’ in Definition 2.3 is equivalent to the following one:

• for any x ∈ X and any A ∈ α(x), there exists a neighborhood U of x such
that A ∈ α(x′) for all x′ ∈ U .

As a straightforward consequence of Definition 2.3, if h : X → Φ0(E,F ) is
orientable and g : Y → X is any continuous map, then the composition hg is
orientable as well. In particular, if h is oriented, then hg inherits in a natural
way an orientation from the orientation of h. This holds, for example, for the
restriction of h to any subset A of X, since h|A is the composition of h with the
inclusion A ↪→ X. Moreover, if H : X × [0, 1] → Φ0(E,F ) is an oriented homotopy
and λ ∈ [0, 1] is given, the partial map Hλ = Hiλ, where iλ(x) = (x, λ), inherits an
orientation from H.

The following proposition shows an important property of the notion of ori-
entability for continuous maps in Φ0(E,F ), which is, roughly speaking, a sort of
continuous transport of an orientation along a homotopy (see [3, Theorem 3.14]).

Proposition 2.5. Consider a homotopy H : X × [0, 1] → Φ0(E,F ). Assume that,
for some λ ∈ [0, 1], the partial map Hλ = H(·, λ) is oriented. Then there exists a
unique orientation of H such that the orientation of Hλ is inherited from that of
H.

Let us now give a notion of orientability for Fredholm maps of index zero between
Banach spaces. Recall that, given an open subset Ω of E, a map g : Ω → F is a
Fredholm map if it is C1 and its Fréchet derivative, g′(x), is a Fredholm operator
for all x ∈ Ω. The index of g at x is the index of g′(x) and g is said to be of index
n if it is of index n at any point of its domain.

Definition 2.6. An orientation of a Fredholm map of index zero g : Ω → F is an
orientation of the continuous map g′ : x 7→ g′(x), and g is orientable, or oriented, if
so is g′ according to Definition 2.3.

The notion of orientability of Fredholm maps of index zero is discussed in depth
in [2] and [3], where the reader can find examples of orientable and nonorientable
maps. Here we recall a property (Theorem 2.8 below) which is the analogue for
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Fredholm maps of the continuous transport of an orientation along a homotopy, as
seen in Proposition 2.5. We need first the following definition.

Definition 2.7. Let H : Ω × [0, 1] → F be a C1 homotopy. Assume that any
partial map Hλ is Fredholm of index zero. An orientation of H is an orientation
of the map

∂1H : Ω× [0, 1] → Φ0(E,F ), (x, λ) 7→ (Hλ)′(x),
and H is orientable, or oriented, if so is ∂1H according to Definition 2.3.

From the above definition it follows immediately that if H oriented, an orienta-
tion of any partial map Hλ is inherited from H.

Theorem 2.8 below is a straightforward consequence of Proposition 2.5.

Theorem 2.8. Let H : Ω×[0, 1] → F be C1 and assume that any Hλ is a Fredholm
map of index zero. If a given Hλ is orientable, then H is orientable. If, in addition,
Hλ is oriented, there exists a unique orientation of H such that the orientation of
Hλ is inherited from that of H.

We conclude this section by showing that the orientation of a Fredholm map
g is related to the orientations of domain and codomain of suitable restrictions of
g. This argument will be crucial in the definition of the degree for quasi-Fredholm
maps.

Let g : Ω → F be an oriented map and Z a finite dimensional subspace of F ,
transverse to g. By classical transversality results, M = g−1(Z) is a differentiable
manifold of the same dimension as Z. In addition, M is orientable (see [2, Remark
2.5 and Lemma 3.1]). In particular, let us show how, given any x ∈ M , the
orientation of g and a chosen orientation of Z induce an orientation on the tangent
space TxM of M at x.

Let Z be oriented. Consider x ∈ M and a positive corrector A of g′(x) with image
contained in Z (the existence of such a corrector is ensured by the transversality of
Z to g). Then, orient TxM in such a way that the isomorphism

(g′(x) + A)|TxM : TxM → Z

is orientation preserving. As proved in [4], the orientation of TxM does not depend
on the choice of the positive corrector A, but only on the orientations of Z and
g′(x). With this orientation, we call M the oriented g-preimage of Z.

3. Orientability and degree for quasi-Fredholm maps

In this section we recall the concept of degree for quasi-Fredholm maps. This
degree was defined for the first time in [16] by means of the Elworthy–Tromba notion
of Fredholm structure on a differentiable manifold. Here we summarize the simple
approach given in [4] which is based on the concept of orientation for nonlinear
Fredholm maps and avoids the Elworthy–Tromba theory.

The starting point is the definition of orientability for quasi-Fredholm maps.

Definition 3.1. Let Ω be an open subset of E, g : Ω → F a Fredholm map of
index zero and k : Ω → F a locally compact map. The map f : Ω → F , defined by
f = g − k, is called a quasi-Fredholm map and g is a smoothing map of f .

The following definition provides an extension to quasi-Fredholm maps of the
concept of orientability.
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Definition 3.2. A quasi-Fredholm map f : Ω → F is orientable if it has an
orientable smoothing map.

If f is an orientable quasi-Fredholm map, any smoothing map of f is orientable.
Indeed, given two smoothing maps g0 and g1 of f , consider the homotopy H :
Ω× [0, 1] → F , defined by

H(x, λ) = (1− λ)g0(x) + λg1(x). (3.1)

Notice that any Hλ is Fredholm of index zero, since it differs from g0 by a C1 locally
compact map. By Theorem 2.8, if g0 is orientable, then g1 is orientable as well.

Let f : Ω → F be an orientable quasi-Fredholm map. To define a notion of
orientation of f , consider the set S(f) of the oriented smoothing maps of f . We
introduce in S(f) the following equivalence relation. Given g0, g1 in S(f), consider,
as in formula (3.1), the straight-line homotopy H joining g0 and g1. We say that
g0 is equivalent to g1 if their orientations are inherited from the same orientation of
H, whose existence is ensured by Theorem 2.8. It is immediate to verify that this
is an equivalence relation. If the domain of f is connected, any smoothing map has
two orientations and, hence, S(f) has exactly two equivalence classes.

Definition 3.3. Let f : Ω → F be an orientable quasi-Fredholm map. An orien-
tation of f is the choice of an equivalence class in S(f).

By the above construction, given an orientable quasi-Fredholm map f , an orien-
tation of a smoothing map g determines uniquely an orientation of f . Therefore,
in the sequel, if f is oriented, we will refer to a positively oriented smoothing map
of f as an element in the chosen class of S(f).

As for Fredholm maps of index zero, the orientation of quasi-Fredholm maps
verifies a homotopy invariance property, as shown in Theorem 3.6 below. We need
first some definitions.

Definition 3.4. Let H : Ω× [0, 1] → F be a map of the form

H(x, λ) = G(x, λ)−K(x, λ),

where G is C1, any Gλ is Fredholm of index zero and K is locally compact. We
call H a homotopy of quasi-Fredholm maps and G a smoothing homotopy of H.

We need a concept of orientability for homotopies of quasi-Fredholm maps. The
definition is analogous to that given for quasi-Fredholm maps. Let H : Ω×[0, 1] → F
be a homotopy of quasi-Fredholm maps. Let S(H) be the set of oriented smooth-
ing homotopies of H. Assume that S(H) is nonempty and define on this set an
equivalence relation as follows. Given G0 and G1 in S(H), consider the map

H : Ω× [0, 1]× [0, 1] → F,

defined as
H(x, λ, s) = (1− s)G0(x, λ) + sG1(x, λ).

We say that G0 is equivalent to G1 if their orientations are inherited from an
orientation of the map

(x, λ, s) 7→ ∂1H(x, λ, s).

The reader can easily verify that this is actually an equivalence relation on S(H).
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Definition 3.5. A homotopy of quasi-Fredholm maps H : Ω × [0, 1] → F is said
to be orientable if S(H) is nonempty. An orientation of H is the choice of an
equivalence class of S(H).

The following homotopy invariance property of the orientation of quasi-Fredholm
maps is the analogue of Theorem 2.8. The proof is a straightforward consequence
of Proposition 2.5.

Theorem 3.6. Let H : Ω× [0, 1] → F be a homotopy of quasi-Fredholm maps. If
a partial map Hλ is oriented, then there exists and is unique an orientation of H
such that the orientation of Hλ is inherited from that of H.

Let us now summarize the construction of the degree.

Definition 3.7. Let f : Ω → F be an oriented quasi-Fredholm map and U an
open subset of Ω. The triple (f, U, 0) is said to be qF-admissible provided that
f−1(0) ∩ U is compact.

The construction of the degree for qF -admissible triples is in two steps. In the
first one we consider triples (f, U, 0) such that f has a smoothing map g with
(f − g)(U) contained in a finite dimensional subspace of F . In the second step we
remove this assumption, defining the degree for all qF -admissible triples.

Step 1. Let (f, U, 0) be a qF -admissible triple and let g be a positively oriented
smoothing map of f such that (f − g)(U) is contained in a finite dimensional
subspace of F . As f−1(0)∩U is compact, there exist a finite dimensional subspace
Z of F and an open neighborhood W of f−1(0) in U , such that g is transverse to Z
in W . We may assume that Z contains (f − g)(U). Let M = g−1(Z)∩W . As seen
at the end of Section 2, let Z be oriented and orient M in such a way that it is the
oriented g|W -preimage of Z. One can easily verify that (f |M )−1(0) = f−1(0) ∩ U .
Thus (f |M )−1(0) is compact, and the Brouwer degree of the triple (f |M ,M, 0) turns
out to be well defined.

Definition 3.8. Let (f, U, 0) be a qF -admissible triple and let g be a positively
oriented smoothing map of f such that (f−g)(U) is contained in a finite dimensional
subspace of F . Let Z be a finite dimensional subspace of F and W an open
neighborhood of f−1(0) in U such that

(1) Z contains (f − g)(U),
(2) g is transverse to Z in W .

Assume Z oriented and let M be the oriented g|W -preimage of Z. Then, the degree
of (f, U, 0) is defined as

degqF (f, U, 0) = degB(f |M ,M, 0), (3.2)

where the right hand side of the above formula is the Brouwer degree of the triple
(f |M ,M, 0).

In [4] it is proved that the above definition is well posed in the sense that the
right hand side of (3.2) is independent of the choice of the smoothing map g, the
open set W and the subspace Z.

Step 2. Let us now extend the definition of degree to general qF -admissible
triples.

Definition 3.9. Let (f, U, 0) be a qF -admissible triple. Consider:
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(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of f−1(0)∩U such that V ⊆ U , g is proper on V

and (f − g)|V is compact;
(3) a continuous map ξ : V → F having bounded finite dimensional image and

such that
‖g(x)− f(x)− ξ(x)‖ < ρ, ∀x ∈ ∂V,

where ρ is the distance in F between 0 and f(∂V ).
Then,

degqF (f, U, 0) = degqF (g − ξ, V, 0). (3.3)

Observe that the right hand side of (3.3) is well defined since the triple (g−ξ, V, 0)
is qF -admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0) is a compact
subset of V which is actually contained in V by assumption (3).

In [4] it is proved that Definition 3.9 is well posed since formula (3.3) does not
depend on g, ξ and V .

We conclude the section by listing some properties of the degree. The proof of
this result is in [4].

Theorem 3.10. The following properties of the degree hold:
1. (Normalization) Let U be an open neighborhood of 0 in E and let the identity

I of E be naturally oriented. Then,

degqF (I, U, 0) = 1.

2. (Additivity) Given a qF-admissible triple (f, U, 0) and two disjoint open
subsets U1, U2 of U such that f−1(0) ∩ U ⊆ U1 ∪ U2, then

degqF (f, U, 0) = degqF (f, U1, 0) + degqF (f, U2, 0).

3. (Excision) Given a qF-admissible triple (f, U, 0) and an open subset U1 of
U such that f−1(0) ∩ U ⊆ U1, then

degqF (f, U, 0) = degqF (f, U1, 0).

4. (Existence) Given a qF-admissible triple (f, U, 0), if

degqF (f, U, 0) 6= 0,

then the equation f(x) = 0 has a solution in U .
5. (Homotopy invariance) Let H : U × [0, 1] → F be an oriented homotopy of

quasi-Fredholm maps. If H−1(0) is compact, then degqF (Hλ, U, 0) is well
defined and does not depend on λ ∈ [0, 1].

4. Measures of noncompactness

In this section we recall the definition and properties of the Kuratowski measure
of noncompactness [13], together with some related concepts. For general reference,
see e.g. Deimling [7].

From now on the spaces E and F are assumed to be infinite dimensional. As in
the above section, Ω will stand for an open subset of E.

The Kuratowski measure of noncompactness α(A) of a bounded subset A of E
is defined as the infimum of the real numbers d > 0 such that A admits a finite
covering by sets of diameter less than d. If A is unbounded, we set α(A) = +∞.
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We summarize the following properties of the measure of noncompactness. Given
a subset A of E, we denote by co A the closed convex hull of A, and by [0, 1]A the
set

{λx : λ ∈ [0, 1] and x ∈ A}.

Proposition 4.1. Let A and B be subsets of E. Then
(1) α(A) = 0 if and only if A is compact;
(2) α(λA) = |λ|α(A) for any λ ∈ R;
(3) α(A + B) ≤ α(A) + α(B);
(4) if A ⊆ B, then α(A) ≤ α(B);
(5) α(A ∪B) = max{α(A), α(B)};
(6) α([0, 1]A) = α(A);
(7) α(co A) = α(A).

Properties (1)–(6) are straightforward consequences of the definition, while the
last one is due to Darbo [6].

Given a continuous map f : Ω → F , let α(f) and ω(f) be as in the Introduction.
It is important to observe that α(f) = 0 if and only if f is completely continuous
(that is, the restriction of f to any bounded subset of Ω is a compact map) and
ω(f) > 0 only if f is proper on bounded closed sets. For a complete list of properties
of α(f) and ω(f) we refer to [12]. We need the following one concerning linear
operators.

Proposition 4.2. Let L : E → F be a bounded linear operator. Then ω(L) > 0 if
and only if Im L is closed and dim Ker L < +∞.

As a consequence of Proposition 4.2 one gets that a bounded linear operator L
is Fredholm if and only if ω(L) > 0 and ω(L∗) > 0, where L∗ is the adjoint of L.

Let f be as above and fix p ∈ Ω. We recall the definitions of αp(f) and ωp(f)
given in [5]. Let B(p, s) denote the open ball in E centered at p with radius s.
Suppose that B(p, s) ⊆ Ω and consider

α(f |B(p,s)) = sup
{

α(f(A))
α(A)

: A ⊆ B(p, s), α(A) > 0
}

.

This is nondecreasing as a function of s. Hence, we can define

αp(f) = lim
s→0

α(f |B(p,s)).

Clearly αp(f) ≤ α(f) for any p ∈ Ω. In an analogous way, we define

ωp(f) = lim
s→0

ω(f |B(p,s)),

and we have ωp(f) ≥ ω(f) for any p. It is easy to show that the main properties of
α and ω hold, with minor changes, as well for αp and ωp (see [5]).

Proposition 4.3. Let f : Ω → F be continuous and p ∈ Ω. Then
(1) αp(λf) = |λ|αp(f) and ωp(λf) = |λ|ωp(f), for any λ ∈ R;
(2) ωp(f) ≤ αp(f);
(3) |αp(f)− αp(g)| ≤ αp(f + g) ≤ αp(f) + αp(g);
(4) ωp(f)− αp(g) ≤ ωp(f + g) ≤ ωp(f) + αp(g);
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(5) if f is locally compact, αp(f) = 0;

(6) if ωp(f) > 0, f is locally proper at p.

Clearly, for a bounded linear operator L : E → F , the numbers αp(L) and ωp(L)
do not depend on the point p and coincide, respectively, with α(L) and ω(L).
Furthermore, for the C1 case we get the following result.

Proposition 4.4 ([5]). Let f : Ω → F be of class C1. Then, for any p ∈ Ω we
have αp(f) = α(f ′(p)) and ωp(f) = ω(f ′(p)).

Observe that if f : Ω → F is a Fredholm map, as a straightforward consequence
of Propositions 4.2 and 4.4, we obtain ωp(f) > 0 for any p ∈ Ω.

The following proposition extends to the continuous case an analogous result
shown in [5] for C1 maps.

Proposition 4.5. Let g : Ω → F and σ : Ω → R be continuous. Consider the
product map f : Ω → F defined by f(x) = σ(x)g(x). Then, for any p ∈ Ω we have
αp(f) = |σ(p)|αp(g) and ωp(f) = |σ(p)|ωp(g).

Proof. Let p ∈ Ω be fixed, and assume first that σ(p) = 0. Fix ε > 0. As σ is
continuous, there exists s such that for any s ≤ s and any x ∈ B(p, s) one has
|σ(x)| ≤ ε and, consequently, f(x) ∈ [−ε, ε]g(x). It follows that f(A) ⊆ [−ε, ε]g(A)
for any A ⊆ B(p, s). Hence, α(f(A)) ≤ εα(g(A)) for any A ⊆ B(p, s), and this
implies α(f |B(p,s)) ≤ εα(g|B(p,s)). Taking the limit for s → 0 we have αp(f) ≤
εαp(g). Since ε is arbitrary, we conclude that αp(f) = 0.

In the general case, write

f(x) = σ(p)g(x) + f̃(x),

where f̃(x) = σ̃(x)g(x) = (σ(x) − σ(p))g(x). As σ̃(p) = 0, we have αp(f̃) = 0.
Therefore, by properties (1) and (3) in Proposition 4.3, we get αp(f) = αp(σ(p)g) =
|σ(p)|αp(g), as claimed. The case of ωp(f) is analogous. �

With an argument analogous to that used in [5], by means of Proposition 4.5 one
can easily find examples of continuous maps f such that α(f) = ∞ and αp(f) < ∞
for any p, and examples of continuous maps f with ω(f) = 0 and ωp(f) > 0 for
any p. Moreover, in [5] there is an example of a map f such that α(f) > 0 and
αp(f) = 0 for any p.

In the sequel we will consider also maps G defined on the product space E ×R.
In order to define α(p,λ)(G), we consider the norm

||(p, λ)|| = max{||p||, |λ|}.

The natural projection of E × R onto the first factor will be denoted by π1.

Remark 4.6. With the above norm, π1 is nonexpansive. Therefore α(π1(X)) ≤
α(X) for any subset X of E × R. More precisely, since R is finite dimensional, if
X ⊆ E × R is bounded, we have α(π1(X)) = α(X).

We conclude the section with the following technical result, which is a straight-
forward consequence of Proposition 4.5 and which will be useful in the construction
of the degree for weakly α-Fredholm maps (see Section 6 below).
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Corollary 4.7. Given a continuous map ϕ : Ω → F , consider the map

Φ : Ω× [0, 1] → F, Φ(x, λ) = λϕ(x).

Then, for any fixed pair (p, λ) ∈ Ω× [0, 1] we have

α(p,λ)(Φ) = λαp(ϕ).

Proof. Apply Proposition 4.5 and observe that, given p ∈ Ω and λ ∈ [0, 1], one has
α(p,λ)(ϕ) = αp(ϕ). �

5. Degree for α-Fredholm maps

In this section we sketch the construction of the degree for α-Fredholm maps
introduced in [1]. These maps are special noncompact perturbations of Fredholm
maps, defined in terms of the numbers αp and ωp. Precisely, an α-Fredholm map
f : Ω → F is of the form f = g − k, where g is a Fredholm map of index zero, k is
a continuous map and αp(k) < ωp(g) for every p.

The degree is given as an integer valued map defined on a class of triples that
we shall call admissible α-Fredholm triples. This class is recalled in the following
two definitions.

Definition 5.1. Let g : Ω → F be a Fredholm map of index zero, k : Ω → F
a continuous map, and U an open subset of Ω. The triple (g, U, k) is said to be
α-Fredholm if for any p ∈ U we have

αp(k) < ωp(g).

Definition 5.2. An α-Fredholm triple (g, U, k) is said to be admissible if
i) g is oriented;
ii) the solution set S = {x ∈ U : g(x) = k(x)} is compact.

Definition 5.3. Let (g, U, k) be an admissible α-Fredholm triple and

V = {V1, . . . , VN}
a finite covering of open balls of its solution set S. We say that V is an α-covering
of S (relative to (g, U, k)) if for any i ∈ {1, . . . , N} the following properties hold:

i) the ball Ṽi of double radius and same center as Vi is contained in U ;
ii) α(k|

eVi
) < ω(g|

eVi
).

Let (g, U, k) be an admissible α-Fredholm triple and V = {V1, . . . , VN} an α-
covering of the solution set S. We define the following sequence {Cn} of convex
closed subsets of E:

C1 = co

(
N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi)}

)
and, inductively,

Cn = co

(
N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}

)
, n ≥ 2.

Observe that, by induction, Cn+1 ⊆ Cn and S ⊆ Cn for any n ≥ 1. Then the set

C∞ =
⋂
n≥1

Cn
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turns out to be closed, convex, and containing S. Consequently, if S is nonempty,
so is C∞. To emphasize the fact that the set C∞ is uniquely determined by the
covering V, sometimes it will be denoted by CV∞. In addition C∞ verifies the
following two properties (see [1] for the proof):

(1) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C∞)} ⊆ C∞, for any i = 1, . . . , N ;
(2) C∞ is compact.

Definition 5.4. Let (g, U, k) be an admissible α-Fredholm triple, V = {V1, . . . , VN}
an α-covering of the solution set S, and C a compact convex set. We say that (V, C)
is an α-pair (relative to (g, U, k)) if the following properties hold:

(1) U ∩ C 6= ∅;
(2) C∞ ⊆ C;

(3) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C)} ⊆ C for any i = 1, . . . , N .

Remark 5.5. Given any admissible α-Fredholm triple (g, U, k), it is always possible
to find an α-pair (V, C). Indeed, assume that the solution set S is nonempty. Then,
given any α-covering V of S, the corresponding compact set CV∞ is nonempty as
well and, clearly, the pair (V, CV∞) verifies properties (1)–(3) in Definition 5.4. If,
on the other hand, S = ∅, one can check that ({∅}, {p}) is an α-pair for any p ∈ U .

Let (g, U, k) be an admissible α-Fredholm triple and let (V, C) be an α-pair.
Consider a retraction r : E → C, whose existence is ensured by Dugundji’s Exten-
sion Theorem [8]. Denote V =

⋃N
i=1 Vi, where {V1, . . . , VN} = V, and let W be a

(possibly empty) open subset of V containing S such that, for any i, x ∈ W ∩ Vi

implies r(x) ∈ Ṽi. For example, if ρ denotes the minimum of the radii of the balls
Vi, one may take as W the set

{x ∈ V : ‖x− r(x)‖ < ρ}.

Observe that property (3) above implies that the two equations g(x) = k(x) and
g(x) = k(r(x)) have the same solution set in W (notice that the composition kr
is defined in the open set r−1(U) containing W ). The map kr is locally compact
(even if not necessarily compact), hence the triple (g − kr, W, 0) is qF -admissible
(recall Definition 3.7). We define the degree of the triple (g, U, k), deg∗(g, U, k) in
symbols, as follows:

deg∗(g, U, k) = degqF (g − kr, W, 0),

where the right hand side is the degree defined in Section 3.

The following definition summarizes the above construction.

Definition 5.6. Let (g, U, k) be an admissible α-Fredholm triple and (V, C) an α-
pair. Consider a retraction r : E → C. Denote V =

⋃N
i=1 Vi, where {V1, . . . , VN} =

V. Let W be an open subset of V containing S such that, for any i, x ∈ W ∩ Vi

implies r(x) ∈ Ṽi. We set

deg∗(g, U, k) = degqF (g − kr, W, 0). (5.1)

As proved in [1], the above definition is well posed since the right hand side of
formula (5.1) is independent of the choice of the α-pair (V, C), of the retraction r
and of the open set W .
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We conclude this section by stating the most important properties of the degree.
Actually, in [1] only the fundamental properties (that is, normalization, additivity
and homotopy invariance) were stated and proved. The excision and existence
properties are easy consequences of the additivity.

Theorem 5.7. The following properties hold:
1. (Normalization) Let the identity I of E be naturally oriented. Then

deg∗(I, E, 0) = 1.

2. (Additivity) Given an admissible α-Fredholm triple (g, U, k) and two disjoint
open subsets U1, U2 of U , assume that S = {x ∈ U : g(x) = k(x)} is
contained in U1 ∪ U2. Then

deg∗(g, U, k) = deg∗(g, U1, k) + deg∗(g, U2, k).

3. (Excision) Given an admissible α-Fredholm triple (g, U, k) and an open sub-
set U1 of U , assume that S is contained in U1. Then

deg∗(g, U, k) = deg∗(g, U1, k).

4. (Existence) Given an admissible α-Fredholm triple (g, U, k), if

deg∗(g, U, k) 6= 0,

then the equation g(x) = k(x) has a solution in U .
5. (Homotopy invariance) Let H : U × [0, 1] → F be a homotopy of the form

H(x, λ) = G(x, λ) − K(x, λ), where G is of class C1, any Gλ = G(·, λ)
is Fredholm of index zero, K is continuous, and α(p,λ)(K) < ω(p,λ)(G) for
any pair (p, λ) ∈ U × [0, 1]. Assume that G is oriented and that H−1(0)
is compact. Then deg∗(Gλ, U, Kλ) is well defined and independent of λ ∈
[0, 1].

6. Degree for weakly α-Fredholm maps

We present here an extension of the degree for α-Fredholm maps to a more
general class of maps, called weakly α-Fredholm. These are of the form f = g − k :
Ω → F , where g is Fredholm of index zero, k is continuous and the following
condition is verified: for any p ∈ Ω there exists s > 0 such that for any A ⊆ B(p, s)
with α(A) > 0 we have α(k(A)) < ωp(g)α(A).

The reader can verify that α-Fredholm maps are also weakly α-Fredholm.

As in the previous section, this degree is an integer valued map defined on a
special class of triples, called admissible weakly α-Fredholm.

Definition 6.1. Let g : Ω → F be a Fredholm map of index zero, k : Ω → F a
continuous map and U an open subset of Ω. The triple (g, U, k) is said to be weakly
α-Fredholm if for any p ∈ U there exists s > 0 such that for any A ⊆ B(p, s) with
α(A) > 0 we have

α(k(A)) < ωp(g)α(A).

Let (g, U, k) be a weakly α-Fredholm triple. As a consequence of Definition 6.1,
given p ∈ U there exists s > 0 such that

α(k(A)) < α(g(A)), for any A ⊆ B(p, s) with α(A) > 0.

Thus, any compact subset of U admits a neighborhood as in the following definition.
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Definition 6.2. Let (g, U, k) be a weakly α-Fredholm triple, and Q a compact
subset of U . An open neighborhood V of Q is said to be an α-neighborhood of Q
(relative to (g, U, k)) if the following properties hold:

i) V ⊆ U and k(V ) is bounded;
ii) α(k(A)) < α(g(A)), for any A ⊆ V with α(A) > 0.

Lemma 6.3. Let (g, U, k) be a weakly α-Fredholm triple, Q a compact subset of U ,
and V an α-neighborhood of Q (relative to (g, U, k)). Then, the homotopy

Ψ : V × [0, 1] → F, Ψ(x, λ) = g(x)− λk(x)

is proper.

Proof. Let C ⊆ F be compact. We need to show that the set D = Ψ−1(C) is
compact. As in Section 4, let π1 denote the natural projection of E × R onto the
first factor. Notice that, given x ∈ π1(D), we have g(x) ∈ C + [0, 1]k(x). Thus,

g(π1(D)) ⊆ C + [0, 1]k(π1(D)).

Consequently, by the properties of the measure of noncompactness,

α(g(π1(D))) ≤ α(C) + α(k(π1(D))) = α(k(π1(D))).

As V is an α-neighborhood of Q, property ii) in Definition 6.2 implies α(π1(D)) = 0.
Moreover, by Remark 4.6, since D ⊆ π1(D)× [0, 1] we have

α(D) ≤ α(π1(D)× [0, 1]) = α(π1(D)) = 0.

Hence, α(D) = 0. Therefore D is compact, being closed in E × [0, 1] (recall Propo-
sition 4.1). �

As a consequence of this result we deduce the following property.

Corollary 6.4. Let Ψ be as in Lemma 6.3. Then, any partial map Ψ(·, λ) is proper
on V .

We introduce now the concept of admissible weakly α-Fredholm triple.

Definition 6.5. A weakly α-Fredholm triple (g, U, k) is said to be admissible if
i) g is oriented;
ii) the solution set S = {x ∈ U : g(x) = k(x)} is compact.

Given an admissible weakly α-Fredholm triple (g, U, k) and an α-neighborhood
V of S, let us show that, for ε > 0 sufficiently small, (g, V, (1−ε)k) is an admissible
α-Fredholm triple. To see this observe first that, by Definition 6.1, αp(k) ≤ ωp(g)
for any p ∈ U . Therefore, for any p ∈ U and any positive ε < 1 we have

αp((1− ε)k) = (1− ε)αp(k) < ωp(g)

and, consequently, (g, U, (1−ε)k) is an α-Fredholm triple. We claim that, for ε > 0
small, this triple is admissible (i.e. Sε = {x ∈ V : g(x) = (1− ε)k(x)} is compact).
Observe that, by Corollary 6.4, the map g − k is proper on V . Thus, the number

δ = inf{‖g(x)− k(x)‖ : x ∈ ∂V } (6.1)

is positive. Moreover, set

γ = sup{‖k(x)‖ : x ∈ ∂V }. (6.2)
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As k(V ) is bounded, it follows that γ is finite. Now, given x ∈ ∂V and ε <
min{1, δ/γ} (we put δ/γ = +∞ if γ = 0), we have

‖g(x)− (1− ε)k(x)‖ ≥ ‖g(x)− k(x)‖ − ε‖k(x)‖ ≥ δ − εγ > 0

and, consequently, the equation g(x) = (1− ε)k(x) has no solutions on ∂V . Since,
by Corollary 6.4, the map g− (1−ε)k is proper on V , it follows that Sε is compact.
Hence, (g, V, (1− ε)k) is an admissible α-Fredholm triple. This argument suggests
the following definition.

Definition 6.6. Let (g, U, k) be an admissible weakly α-Fredholm triple, and V
an α-neighborhood of the solution set S. Put δ and γ as in (6.1) and (6.2). If
0 < ε < min{1, δ/γ}, we set

deg(g, U, k) = deg∗(g, V, (1− ε)k).

The next proposition shows that the above definition is well posed.

Proposition 6.7. Let (g, U, k) be an admissible weakly α-Fredholm triple, and let
V1 and V2 be two α-neighborhoods of the solution set S. Put

δi = inf{‖g(x)− k(x)‖ : x ∈ ∂Vi} and γi = sup{‖k(x)‖ : x ∈ ∂Vi}, i = 1, 2.

If 0 < εi < min{1, δi/γi}, for i = 1, 2, then

deg∗(g, V1, (1− ε1)k) = deg∗(g, V2, (1− ε2)k).

Proof. Since the intersection of two α-neighborhoods of S is still an α-neighborhood,
without loss of generality we can assume that V1 ⊇ V2. Set

δ3 = inf{‖g(x)− k(x)‖ : x ∈ V 1 \ V2} and γ3 = sup{‖k(x)‖ : x ∈ V 1 \ V2},
and fix a positive ε3 < min{ε1, ε2, δ3/γ3}. We claim that

deg∗(g, Vi, (1− εi)k) = deg∗(g, Vi, (1− ε3)k), i = 1, 2.

To see this, consider the homotopy

H : V 1 × [0, 1] → F,

H(x, λ) = g(x)− (1− (1− λ)ε1 − λε3)k(x).
We have H(x, λ) = G(x, λ)−K(x, λ), where

G(x, λ) = g(x) and K(x, λ) = (1− (1− λ)ε1 − λε3)k(x).

Hence, by Corollary 4.7, for any fixed (p, λ) ∈ V 1 × [0, 1] we have

α(p,λ)(K) = (1− (1− λ)ε1 − λε3)αp(k) < ωp(g) = ω(p,λ)(G).

Moreover, given x ∈ ∂V1 and λ ∈ [0, 1], we have

‖G(x, λ)−K(x, λ)‖ ≥ ‖g(x)− k(x)‖ − ((1− λ)ε1 + λε3)‖k(x)‖ ≥ δ1 − ε1γ1 > 0.

Since, by Lemma 6.3, the map H is proper, from the latter inequality it follows
that the solution set {(x, λ) ∈ V1 × [0, 1] : H(x, λ) = 0} is compact. Hence, we can
apply the homotopy invariance property of the degree for α-Fredholm triples, and
we have

deg∗(g, V1, (1− ε1)k) = deg∗(g, V1, (1− ε3)k).
In an analogous way, we have

deg∗(g, V2, (1− ε2)k) = deg∗(g, V2, (1− ε3)k),

as claimed.
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Now, given x ∈ V 1 \ V2, we have

‖g(x)− (1− ε3)k(x)‖ ≥ ‖g(x)− k(x)‖ − ε3‖k(x)‖ ≥ δ3 − ε3γ3 > 0.

Therefore, we can apply the excision property of the degree for α-Fredholm triples,
obtaining

deg∗(g, V1, (1− ε3)k) = deg∗(g, V2, (1− ε3)k),

and the assertion follows. �

7. Properties of the degree

We start this section by introducing the concept of weakly α-Fredholm homotopy.
Given λ ∈ [0, 1] and σ > 0, we denote Iσ = (λ− σ, λ + σ) ∩ [0, 1].

Definition 7.1. Let Ω ⊆ E be open, and H : Ω× [0, 1] → F a continuous map of
the form

H(x, λ) = G(x, λ)−K(x, λ).

We say that H a weakly α-Fredholm homotopy if G is C1, any Gλ is Fredholm of
index zero, and for any pair (p, λ) ∈ Ω× [0, 1] there exist s, σ > 0 such that for any
D ⊆ B(p, s)× Iσ with α(D) > 0 we have

α(K(D)) < ω(p,λ)(G)α(D).

Theorem 7.2. The following properties of the degree hold:
1. (Normalization) Let the identity I of E be naturally oriented. Then

deg(I, E, 0) = 1.

2. (Additivity) Given an admissible weakly α-Fredholm triple (g, U, k) and two
disjoint open subsets U1, U2 of U , assume that S = {x ∈ U : g(x) = k(x)}
is contained in U1 ∪ U2. Then

deg(g, U, k) = deg(g, U1, k) + deg(g, U2, k).

3. (Homotopy invariance) Let H : U × [0, 1] → F be a weakly α-Fredholm
homotopy of the form H(x, λ) = G(x, λ) − K(x, λ). Assume that G is
oriented and that H−1(0) is compact. Then deg(Gλ, U, Kλ) is well defined
and does not depend on λ ∈ [0, 1].

Proof. 1. (Normalization) It coincides with the normalization property of the degree
for admissible α-Fredholm triples (and of course for qF -admissible triples).

2. (Additivity) Let S1 = S ∩ U1 and S2 = S ∩ U2, so that S = S1 ∪ S2. Clearly
S1 and S2 are compact and, consequently, the triples (g, U1, k) and (g, U2, k) are
admissible.

Let V be an α-neighborhood of S relative to (g, U, k), and let V1 = V ∩ U1 and
V2 = V ∩ U2. Clearly, V1 and V2 are two disjoint α-neighborhoods of S1 and S2

relative to (g, U1, k) and (g, U2, k), respectively. By Definition 6.6, choosing ε > 0
sufficiently small we have

deg(g, U, k) = deg∗(g, V, (1− ε)k)

and
deg(g, Ui, k) = deg∗(g, Vi, (1− ε)k), i = 1, 2.
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On the other hand, the additivity property of the degree for α-Fredholm triples
implies

deg∗(g, V, (1− ε)k) = deg∗(g, V1, (1− ε)k) + deg∗(g, V2, (1− ε)k),

and the assertion follows.

3. (Homotopy invariance) For λ ∈ [0, 1], let Σλ denote the set {x ∈ U : Gλ(x) =
Kλ(x)}. Given any λ, the fact that (Gλ, U, Kλ) is an admissible weakly α-Fredholm
triple follows easily from the compactness of Σλ and observing that ωp(Gλ) ≥
ω(p,λ)(G) for any p ∈ U .

To verify that the property holds, it is sufficient to show that the integer valued
function

λ 7→ deg(Gλ, U, Kλ)
is locally constant. To this purpose, fix τ ∈ [0, 1] and, given ρ > 0, denote Jρ =
[τ − ρ, τ + ρ] ∩ [0, 1]. It is possible to find ρ > 0 and an open subset V of U with
the following properties:

i) V contains Σλ for any λ ∈ Jρ;
ii) V ⊆ U and K(V × Jρ) is bounded;
iii) α(K(D)) < α(G(D)), for any D ⊆ V × Jρ with α(D) > 0.

In particular, V is an α-neighborhood of Σλ relative to (Gλ, U,Kλ) for any λ ∈ Jρ.
Consider the map

Ψ̂ : V × Jρ × [0, 1] → F, Ψ̂(x, λ, µ) = G(x, λ)− µK(x, λ).

Using an argument analogous to the proof of Lemma 6.3, one can show that Ψ̂ is
proper. Now, let λ ∈ Jρ be fixed. Set

δλ = inf{‖Gλ(x)−Kλ(x)‖ : x ∈ ∂V } and γλ = sup{‖Kλ(x)‖ : x ∈ ∂V }
and, analogously,

δ = inf{‖G(x, λ)−K(x, λ)‖ : x ∈ ∂V × Jρ}
and

γ = sup{‖K(x, λ)‖ : x ∈ ∂V × Jρ}.
Fix a positive ε < min{1, δ/γ}. As δ ≤ δλ and γ ≥ γλ, it follows that ε < δλ/γλ.
Consequently, by Definition 6.6, we have

deg(Gλ, U,Kλ) = deg∗(Gλ, V, (1− ε)Kλ).

Now, consider the following homotopy:

Ĥ : V × Jρ → F,

Ĥ(x, λ) = G(x, λ)− (1− ε)K(x, λ).
Notice that for any fixed pair (p, λ) ∈ V × Jρ we have

α(p,λ)((1− ε)K) < ω(p,λ)(G).

Moreover, Ĥ is proper since it coincides with the partial map Ψ̂(·, ·, 1 − ε). As
the equation Ĥ(x, λ) = 0 has no solutions on ∂V × Jρ, it follows that Ĥ−1(0) is
a compact subset of V × Jρ. Therefore, the homotopy invariance property of the
degree for α-Fredholm triples implies that deg∗(Gλ, V, (1− ε)Kλ) does not depend
on λ ∈ Jρ. Hence, deg(Gλ, U, Kλ) is independent of λ ∈ Jρ, and this completes the
proof. �
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8. Comparison with the Nussbaum degree for local α-condensing
vector fields

The purpose of this section is to show that, in a sense to be specified, our concept
of degree extends the degree for local α-condensing perturbations of the identity,
introduced by Nussbaum in [14] and [15].

Let f : Ω → F be a continuous map. We recall the following definitions. The
map f is said to be α-contractive if α(f(A)) ≤ µα(A) for some µ < 1 and any
A ⊆ Ω. The map f is said to be α-condensing if α(f(A)) < α(A) for any A ⊆ Ω
such that 0 < α(A) < +∞. If for any p ∈ Ω there exists a neighborhood Vp of p such
that f |Vp

is α-contractive (resp. α-condensing), f is said to be local α-contractive
(resp. local α-condensing).

In [14] and [15], Nussbaum developed a degree theory for triples of the form
(I − k, U, 0), where k is local α-condensing. Precisely, let U be an open subset of
Ω and k : Ω → E a local α-condensing map. Assume that the set S = {x ∈ U :
(I − k)(x) = 0} is compact. Then, the triple (I − k, U, 0) is admissible for the
Nussbaum degree (N -admissible, for short). We will denote by degN (I − k, U, 0)
the Nussbaum degree of an N -admissible triple.

Let (I − k, U, 0) be an N -admissible triple. According to Definition 6.5, (I, U, k)
is an admissible weakly α-Fredholm triple provided that I is oriented. We claim
that, if we assign the natural orientation to I, it follows that

deg(I, U, k) = degN (I − k, U, 0).

Indeed, let V be an α-neighborhood of S relative to (I, U, k). By the excision
property of the Nussbaum degree we have

degN (I − k, U, 0) = degN (I − k, V, 0).

Now, if ε > 0 is sufficiently small we have

degN (I − k, V, 0) = degN (I − (1− ε)k, V, 0)

by the definition of the Nussbaum degree, and

deg(I, U, k) = deg∗(I, V, (1− ε)k)

by Definition 6.6. The claim now follows from the fact that the degree for α-
Fredholm triples and the Nussbaum degree coincide on the class of local α-contrac-
tive vector fields, provided that the identity is naturally oriented (see [1]).
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