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We define a notion of degree for a class of perturbations of nonlinear Fredholm
maps of index zero between infinite dimensional real Banach spaces. Our notion
extends the degree introduced by Nussbaum for locally α-contractive perturbations
of the identity, as well as the recent degree for locally compact perturbations of
Fredholm maps of index zero defined in [3].

1. Introduction

In this paper we define a concept of degree for a special class of perturbations
of (nonlinear) Fredholm maps of index zero between (infinite dimensional real)
Banach spaces, called α-Fredholm maps. The definition is based on the following
two numbers (see e.g. [10]) associated with a map f : Ω → F from an open subset
of a Banach space E into a Banach space F :

α(f) = sup
{

α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}

,

ω(f) = inf
{

α(f(A))
α(A)

: A ⊆ Ω bounded, α(A) > 0
}

,

where α is the Kuratowski measure of noncompactness (in [10] ω(f) is denoted
by β(f), however, since ω is the last letter of the Greek alphabet, we prefer the
notation ω(f) as in [8]).

Roughly speaking, the α-Fredholm maps are of the type f = g − k, where g is
Fredholm of index zero and k satisfies, locally, the inequality

α(k) < ω(g).

These maps include locally compact perturbations of Fredholm maps (called quasi-
Fredholm maps, for short) since, when g is Fredholm and k is locally compact, one
has α(k) = 0 and ω(g) > 0, locally. Moreover, they also contain the α-contractive
perturbations of the identity (called α-contractive vector fields), where, following
Darbo [5], a map k is α-contractive if α(k) < 1.

The degree obtained in this paper is a generalization of the degree for quasi-
Fredholm maps defined for the first time in [14] by means of the Elworthy–Tromba
theory. The latter degree has been recently redefined in [3] avoiding the use of
the Elworthy–Tromba construction and using as a main tool a natural concept of
orientation for nonlinear Fredholm maps introduced in [1] and [2]. Our construction
is based on this new definition.

The paper ends by showing that for α-contractive vector fields our degree coin-
cides with the degree defined by Nussbaum in [12] and [13].
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2. Orientability for Fredholm maps

In this section we give a summary of the notion of orientability for nonlinear
Fredholm maps of index zero between Banach spaces introduced in [1] and [2].

The starting point is a preliminary definition of a concept of orientation for
linear Fredholm operators of index zero between real vector spaces (at this level no
topological structure is needed).

Recall that, given two real vector spaces E and F , a linear operator L : E → F
is said to be (algebraic) Fredholm if the spaces KerL and coKer L = F/ Im L are
finite dimensional. The index of L is the integer

indL = dim KerL− dim coKerL.

Given a Fredholm operator of index zero L, a linear operator A : E → F is called
a corrector of L if

i) Im A has finite dimension,
ii) L + A is an isomorphism.

We denote by C(L) the nonempty set of correctors of L and we define in C(L) the
following equivalence relation. Given A,B ∈ C(L), consider the automorphism

T = (L + B)−1(L + A) = I − (L + B)−1(B −A)

of E. Clearly, the image of K = (L+B)−1(B−A) is finite dimensional. Hence, given
any finite dimensional subspace E0 of E containing the image of K, the restriction
of T to E0 is an automorphism of E0. Therefore, its determinant is well defined
and nonzero. It is easy to check that this value does not depend on E0 (see [1]).
Thus, the determinant of T , detT in symbols, is well defined as the determinant of
the restriction of T to any finite dimensional subspace of E containing the image
of K.

We say that A is equivalent to B or, more precisely, A is L-equivalent to B, if

det
(
(L + B)−1(L + A)

)
> 0.

In [1] it is shown that this is actually an equivalence relation on C(L) with two
equivalence classes. This equivalence relation provides a concept of orientation of
a linear Fredholm operator of index zero.

Definition 2.1. Let L be a linear Fredholm operator of index zero between two
real vector spaces. An orientation of L is the choice of one of the two equivalence
classes of C(L), and L is oriented when an orientation is chosen.

Given an oriented operator L, the elements of its orientation are called the
positive correctors of L.

Definition 2.2. An oriented isomorphism L is said to be naturally oriented if the
trivial operator is a positive corrector, and this orientation is called the natural
orientation of L.

We now consider the notion of orientation in the framework of Banach spaces.
From now on, and throughout the paper, E and F denote two real Banach spaces,
L(E,F ) is the Banach space of bounded linear operators from E into F , and
Φ0(E,F ) is the open subset of L(E,F ) of the Fredholm operators of index zero.
Given L ∈ Φ0(E,F ), the symbol C(L) now denotes, with an abuse of notation, the
set of bounded correctors of L, which is still nonempty.
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Of course, the definition of orientation of L ∈ Φ0(E,F ) can be given as the
choice of one of the two equivalence classes of bounded correctors of L, according
to the equivalence relation previously defined.

In the context of Banach spaces, an orientation of a linear Fredholm operator
of index zero induces, by a sort of stability, an orientation to any sufficiently close
operator. Precisely, consider L ∈ Φ0(E,F ) and a corrector A of L. Since the set of
the isomorphisms from E into F is open in L(E,F ), A is a corrector of every T in
a suitable neighborhood W of L. If, in addition, L is oriented and A is a positive
corrector of L, then any T in W can be oriented by taking A as a positive corrector.
This fact leads us to the following notion of orientation for a continuous map with
values in Φ0(E,F ).

Definition 2.3. Let X be a topological space and h : X → Φ0(E,F ) be continuous.
An orientation of h is a continuous choice of an orientation α(x) of h(x) for each
x ∈ X, where ‘continuous’ means that for any x ∈ X there exists A ∈ α(x) which is
a positive corrector of h(x′) for any x′ in a neighborhood of x. A map is orientable
when it admits an orientation and oriented when an orientation is chosen.

Remark 2.4. It is possible to prove (see [2, Proposition 3.4]) that two equivalent
correctors A and B of a given L ∈ Φ0(E,F ) remain T -equivalent for any T in
a neighborhood of L. This implies that the notion of ‘continuous choice of an
orientation’ in Definition 2.3 is equivalent to the following one:

• for any x ∈ X and any A ∈ α(x), there exists a neighborhood W of x such
that A ∈ α(x′) for all x′ ∈ W .

As a straightforward consequence of Definition 2.3, if h : X → Φ0(E,F ) is ori-
entable and g : Y → X is any continuous map, then the composition hg is orientable
as well. In particular, if h is oriented, then hg inherits in a natural way an orien-
tation from the orientation of h. Thus, if

H : X × [0, 1] → Φ0(E,F )

is an oriented homotopy and t ∈ [0, 1] is given, the partial map Ht = Hit, where
it(x) = (x, t), inherits an orientation from H.

The following proposition shows an important property of the notions of orienta-
tion and orientability for maps into Φ0(E,F ). Such a property may be regarded as
a sort of continuous transport of the orientation along a homotopy (see [2, Theorem
3.14]).

Proposition 2.5. Let X be a topological space and consider a homotopy

H : X × [0, 1] → Φ0(E,F ).

Assume that for some t ∈ [0, 1] the partial map Ht = H(·, t) is oriented. Then there
exists and is unique an orientation of H such that the orientation of Ht is inherited
from that of H.

Definition 2.3 and Remark 2.4 allow us to define a notion of orientability for
Fredholm maps of index zero between Banach spaces. Recall that, given an open
subset Ω of E, a map g : Ω → F is Fredholm if it is C1 and its Fréchet derivative,
g′(x), is a Fredholm operator for all x ∈ Ω. The index of g at x is the index of
g′(x) and g is said to be of index n if it is of index n at any point of its domain.
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Definition 2.6. An orientation of a Fredholm map of index zero g : Ω → F is an
orientation of the derivative g′ : Ω → Φ0(E,F ), and g is orientable, or oriented, if
so is g′ according to Definition 2.3.

The notion of orientability of Fredholm maps of index zero is mainly discussed
in [1] and [2], where the reader can find examples of orientable and nonorientable
maps and a comparison with an earlier notion given by Fitzpatrick, Pejsachowicz
and Rabier in [9]. Here we recall a property (Theorem 2.8 below) that is the
analogue for Fredholm maps of the continuous transport of an orientation along a
homotopy stated in Proposition 2.5. We need first the following definition.

Definition 2.7. Let Ω be an open subset of E and G : Ω×[0, 1] → F a C1 homotopy.
Assume that any partial map Gt is Fredholm of index zero. An orientation of G is
an orientation of the partial derivative

∂1G : Ω× [0, 1] → Φ0(E,F ), (x, t) 7→ (Gt)′(x),

and G is orientable, or oriented, if so is ∂1G according to Definition 2.3.

From the above definition it follows immediately that if G is oriented, any partial
map Gt inherits an orientation from G.

Theorem 2.8 below is a straightforward consequence of Proposition 2.5.

Theorem 2.8. Let G : Ω× [0, 1] → F be a C1 homotopy and assume that any Gt

is a Fredholm map of index zero. If a given Gt is orientable, then G is orientable.
If, in addition, Gt is oriented, then there exists and is unique an orientation of G
such that the orientation of Gt is inherited from that of G.

We conclude this section by showing how the orientation of a Fredholm map g
is related to the orientations of domain and codomain of suitable restrictions of
g. This argument will be crucial in the definition of the degree for quasi-Fredholm
maps.

Let g : Ω → F be an oriented map and Z a finite dimensional subspace of F
transverse to g. By classical transversality results, M = g−1(Z) is a differentiable
manifold of the same dimension as Z. In addition, M is orientable (see [1, Re-
mark 2.5 and Lemma 3.1]). Here we show how the orientation of g and a chosen
orientation of Z induce an orientation on any tangent space TxM .

Let Z be oriented. Choose any x ∈ M and let A be any positive corrector of
g′(x) with image contained in Z (the existence of such a corrector is ensured by the
transversality of Z to g). Then, orient the tangent space TxM in such a way that
the isomorphism

(g′(x) + A)|TxM : TxM → Z

is orientation preserving. As proved in [3], the orientation of TxM does not depend
on the choice of the positive corrector A, but just on the orientation of Z and g′(x).
With this orientation, we call M the oriented Fredholm g-preimage of Z.

3. Orientability and degree for quasi-Fredholm maps

In this section we summarize the main ideas in the construction of a topological
degree for quasi-Fredholm maps. See [3] for details. We start by recalling the
construction of an orientation for this class of maps.

As before, E and F are real Banach spaces, and Ω is an open subset of E. A
map k : Ω → F is called locally compact if for any x0 ∈ Ω the restriction of k to
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a convenient neighborhood of x0 is a compact map (that is, a map whose image is
contained in a compact subset of F ).

Definition 3.1. A map f : Ω → F is said to be quasi-Fredholm provided that
f = g − k, where g is Fredholm of index zero and k is locally compact. The map g
is called a smoothing map of f .

The following definition provides an extension to quasi-Fredholm maps of the
concept of orientability.

Definition 3.2. A quasi-Fredholm map f : Ω → F is orientable if it has an ori-
entable smoothing map.

If f is an orientable quasi-Fredholm map, any smoothing map of f is orientable.
Indeed, given two smoothing maps g0 and g1 of f , consider the homotopy

G(x, t) = (1− t)g0(x) + tg1(x), (x, t) ∈ Ω× [0, 1]. (3.1)

Notice that any Gt is Fredholm of index zero, since it differs from g0 by a C1 locally
compact map. By Theorem 2.8, if g0 is orientable, then g1 is orientable as well.

Let f : Ω → F be an orientable quasi-Fredholm map. To define a notion of
orientation of f , consider the set S(f) of the oriented smoothing maps of f . We
introduce in S(f) the following equivalence relation. Given g0, g1 in S(f), consider,
as in formula (3.1), the straight-line homotopy G joining g0 and g1. We say that g0

is equivalent to g1 if their orientations are inherited from the same orientation of
G, whose existence is ensured by Theorem 2.8. It is immediate to verify that this
is an equivalence relation.

Definition 3.3. Let f : Ω → F be an orientable quasi-Fredholm map. An orien-
tation of f is the choice of an equivalence class in S(f).

In the sequel, if f is an oriented quasi-Fredholm map, the elements of the chosen
class of S(f) will be called positively oriented smoothing maps of f .

As for the case of Fredholm maps of index zero, the orientation of quasi-Fredholm
maps verifies a homotopy invariance property, stated in Theorem 3.6 below. We
need first some definitions.

Definition 3.4. A map H : Ω× [0, 1] → F of the type

H(x, t) = G(x, t)−K(x, t)

is called a homotopy of quasi-Fredholm maps provided that G is C1, any Gt is
Fredholm of index zero, and K is locally compact. In this case G is said to be a
smoothing homotopy of H.

We need a concept of orientability for homotopies of quasi-Fredholm maps. The
definition is analogous to that given for quasi-Fredholm maps. Let H : Ω×[0, 1] → F
be a homotopy of quasi-Fredholm maps. Let S(H) be the set of oriented smooth-
ing homotopies of H. Assume that S(H) is nonempty and define on this set an
equivalence relation as follows. Given G0 and G1 in S(H), consider the map

G : Ω× [0, 1]× [0, 1] → F

defined as
G(x, t, s) = (1− s)G0(x, t) + sG1(x, t).
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We say that G0 is equivalent to G1 if their orientations are inherited from an
orientation of the map

(x, t, s) 7→ ∂1G(x, t, s).

The reader can easily verify that this is actually an equivalence relation on S(H).

Definition 3.5. A homotopy of quasi-Fredholm maps H : Ω × [0, 1] → F is said
to be orientable if S(H) is nonempty. An orientation of H is the choice of an
equivalence class of S(H).

The following homotopy invariance property of the orientation of quasi-Fredholm
maps is the analogue of Theorem 2.8 and a straightforward consequence of Propo-
sition 2.5.

Theorem 3.6. Let H : Ω × [0, 1] → F be a homotopy of quasi-Fredholm maps. If
a partial map Ht is oriented, then there exists and is unique an orientation of H
such that the orientation of Ht is inherited from that of H.

Let us now summarize the construction of the degree.

Definition 3.7. Let f : Ω → F be an oriented quasi-Fredholm map and U an open
subset of Ω. The triple (f, U, 0) is said to be qF-admissible provided that f−1(0)∩U
is compact.

The degree is defined as a map from the set of all qF -admissible triples into
Z. The construction is divided in two steps. In the first one we consider triples
(f, U, 0) such that f has a smoothing map g with (f − g)(U) contained in a finite
dimensional subspace of F . In the second step this assumption is removed, the
degree being defined for general qF -admissible triples.

Step 1. Let (f, U, 0) be a qF -admissible triple and let g be a positively oriented
smoothing map of f such that (f − g)(U) is contained in a finite dimensional
subspace of F . As f−1(0)∩U is compact, there exist a finite dimensional subspace Z
of F and an open subset W of U containing f−1(0)∩U and such that g is transverse
to Z in W . We may assume that Z contains (f − g)(U). Choose any orientation of
Z and, as in Section 2, let the manifold M = g−1(Z)∩W be the oriented Fredholm
g|W -preimage of Z. One can easily verify that (f |M )−1(0) = f−1(0) ∩ U . Thus
(f |M )−1(0) is compact, and the Brouwer degree of the triple (f |M ,M, 0) is well
defined.

Definition 3.8. Let (f, U, 0) be a qF -admissible triple and let g be a positively
oriented smoothing map of f such that (f−g)(U) is contained in a finite dimensional
subspace of F . Let Z be a finite dimensional subspace of F and W ⊆ U an open
neighborhood of f−1(0) ∩ U such that

(1) Z contains (f − g)(U),
(2) g is transverse to Z in W .

Assume Z oriented and let M be the oriented Fredholm g|W -preimage of Z. Then,
the degree of (f, U, 0) is defined as

degqF (f, U, 0) = deg(f |M ,M, 0), (3.2)

where the right hand side of the above formula is the Brouwer degree of the triple
(f |M ,M, 0).
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In [3] it is proved that the above definition is well posed, in the sense that the
right hand side of (3.2) is independent of the choice of the smoothing map g, the
open set W and the oriented subspace Z.

Step 2. Let us now extend the definition of degree to general qF -admissible
triples.

Definition 3.9 (General definition of degree). Let (f, U, 0) be a qF -admissible
triple. Consider:

(1) a positively oriented smoothing map g of f ;
(2) an open neighborhood V of f−1(0)∩U such that V ⊆ U , g is proper on V

and (f − g)|V is compact;

(3) a continuous map ξ : V → F having bounded finite dimensional image and
such that

‖g(x)− f(x)− ξ(x)‖ < ρ, ∀x ∈ ∂V,

where ρ is the distance in F between 0 and f(∂V ).
Then, the degree of (f, U, 0) is given by

degqF (f, U, 0) = degqF (g − ξ, V, 0). (3.3)

Observe that the right hand side of (3.3) is well defined since the triple (g−ξ, V, 0)
is qF -admissible. Indeed, g − ξ is proper on V and thus (g − ξ)−1(0) is a compact
subset of V which is actually contained in V by assumption (3). Moreover, as
shown in [3], Definition 3.9 is well posed since degqF (g − ξ, V, 0) does not depend
on g, ξ and V .

Theorem 3.10 below collects the most important properties of the degree for
quasi-Fredholm maps (see [3] for the proof).

Theorem 3.10. The following properties of the degree hold:
1. (Normalization) If the identity I of E is naturally oriented, then

degqF (I, E, 0) = 1.

2. (Additivity) Given a qF-admissible triple (f, U, 0) and two disjoint open
subsets U1, U2 of U such that f−1(0) ∩ U ⊆ U1 ∪ U2, one has

degqF (f, U, 0) = degqF (f, U1, 0) + degqF (f, U2, 0).

3. (Excision) If (f, U, 0) is qF-admissible and U1 is an open subset of U con-
taining f−1(0) ∩ U , then

degqF (f, U, 0) = degqF (f, U1, 0).

4. (Existence) If (f, U, 0) is qF-admissible and

degqF (f, U, 0) 6= 0,

then the equation f(x) = 0 has a solution in U .
5. (Homotopy invariance) Let H : U × [0, 1] → F be an oriented homotopy of

quasi-Fredholm maps. If H−1(0) is compact, then degqF (Ht, U, 0) does not
depend on t ∈ [0, 1].
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4. Measures of noncompactness

In this section we recall the definition and properties of the Kuratowski measure
of noncompactness [11], together with some related concepts. For general reference,
see e.g. Deimling [6].

From now on the spaces E and F are assumed to be infinite dimensional. As
before Ω is an open subset of E.

The Kuratowski measure of noncompactness α(A) of a bounded subset A of E
is defined as the infimum of the real numbers d > 0 such that A admits a finite
covering by sets of diameter less than d. If A is unbounded, we set α(A) = +∞.
We summarize the following properties of the measure of noncompactness. Given
A ⊆ E, by co A we denote the closed convex hull of A.

Proposition 4.1. Let A,B ⊆ E. Then
(1) α(A) = 0 if and only if A is compact;
(2) α(λA) = |λ|α(A) for any λ ∈ R;
(3) α(A + B) ≤ α(A) + α(B);
(4) if A ⊆ B, then α(A) ≤ α(B);
(5) α(A ∪B) = max{α(A), α(B)};
(6) α(co A) = α(A).

Properties (1)–(5) are straightforward consequences of the definition, while the
last one is due to Darbo [5].

Given a continuous map f : Ω → F , let α(f) and ω(f) be as in the Introduction.
It is important to observe that α(f) = 0 if and only if f is completely continuous
(that is, the restriction of f to any bounded subset of Ω is a compact map) and
ω(f) > 0 only if f is proper on bounded closed sets. For a complete list of properties
of α(f) and ω(f) we refer to [10]. We need the following one concerning linear
operators.

Proposition 4.2. Let L : E → F be a bounded linear operator. Then ω(L) > 0 if
and only if Im L is closed and dim Ker L < +∞.

As a consequence of Proposition 4.2 one gets that a bounded linear operator
L : E → F is Fredholm if and only if ω(L) > 0 and ω(L∗) > 0, where L∗ is the
adjoint of L.

Let f be as above and fix p ∈ Ω. We recall the definitions of αp(f) and ωp(f)
given in [4]. Let B(p, r) denote the open ball in E centered at p with radius r.
Suppose that B(p, r) ⊆ Ω and consider

α(f |B(p,r)) = sup
{

α(f(A))
α(A)

: A ⊆ B(p, r), α(A) > 0
}

.

This is nondecreasing as a function of r. Hence, we can define

αp(f) = lim
r→0

α(f |B(p,r)).

Clearly αp(f) ≤ α(f) for any p ∈ Ω. In an analogous way, we define

ωp(f) = lim
r→0

ω(f |B(p,r)),

and we have ωp(f) ≥ ω(f) for any p. It is easy to show that the main properties of
α and ω hold, with minor changes, as well for αp and ωp (see [4]).



A DEGREE THEORY FOR A CLASS OF PERTURBED FREDHOLM MAPS 9

Proposition 4.3. Let f : Ω → F be continuous and p ∈ Ω. Then

(1) if f is locally compact, αp(f) = 0;

(2) if ωp(f) > 0, f is locally proper at p.

Clearly, for a bounded linear operator L : E → F , the numbers αp(L) and ωp(L)
do not depend on the point p and coincide, respectively, with α(L) and ω(L).
Furthermore, for the C1 case we get the following result.

Proposition 4.4 ([4]). Let f : Ω → F be of class C1. Then, for any p ∈ Ω we have
αp(f) = α(f ′(p)) and ωp(f) = ω(f ′(p)).

Observe that if f : Ω → F is a Fredholm map, as a straightforward consequence
of Propositions 4.2 and 4.4, we obtain ωp(f) > 0 for any p ∈ Ω.

As an application of Proposition 4.4 one could deduce the following result.

Proposition 4.5 ([4]). Let g : Ω → F and ϕ : Ω → R be of class C1, with ϕ(x) ≥ 0.
Consider the product map f : Ω → F defined by f(x) = ϕ(x)g(x). Then, for any
p ∈ Ω we have αp(f) = ϕ(p)αp(g) and ωp(f) = ϕ(p)ωp(g).

By means of Proposition 4.5 one can easily find examples of maps f such that
α(f) = ∞ and αp(f) < ∞ for any p, and examples of maps f with ω(f) = 0 and
ωp(f) > 0 for any p (see [4]). Moreover, in [4] there is an example of a map f such
that α(f) > 0 and αp(f) = 0 for any p.

In the sequel we will deal with maps G defined on the product space E × R. In
order to define α(p,t)(G), we consider the norm

||(p, t)|| = max{||p||, |t|}.

The natural projection of E × R onto the first factor will be denoted by π1.

Remark 4.6. With the above norm, π1 is nonexpansive. Therefore α(π1(X)) ≤
α(X) for any subset X of E × R. More precisely, since R is finite dimensional, if
X ⊆ E × R is bounded, we have α(π1(X)) = α(X).

5. Definition of degree

This section is devoted to the construction of a concept of degree for a class of
triples that we shall call α-admissible. We start with two definitions.

Definition 5.1. Let g : Ω → F be an oriented map, k : Ω → F a continuous map
and U an open subset of Ω. The triple (g, U, k) is said to be α-admissible if

i) αp(k) < ωp(g) for any p ∈ U ;

ii) the solution set S = {x ∈ U : g(x) = k(x)} is compact.

Definition 5.2. Let (g, U, k) be an α-admissible triple and V = {V1, . . . , VN} a
finite covering of open balls of its solution set S. We say that V is an α-covering
of S (relative to (g, U, k)) if for any i ∈ {1, . . . , N} the following properties hold:

i) the ball Ṽi of double radius and same center as Vi is contained in U ;

ii) α(k|
eVi

) < ω(g|
eVi

).
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Let (g, U, k) be an α-admissible triple and V = {V1, . . . , VN} an α-covering of
the solution set S. We define the following sequence {Cn} of convex closed subsets
of E:

C1 = co

(
N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi)}

)
,

and, inductively,

Cn = co

(
N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}

)
, n ≥ 2.

Observe that, by induction, Cn+1 ⊆ Cn and S ⊆ Cn for any n ≥ 1. Then the set

C∞ =
⋂
n≥1

Cn

turns out to be closed, convex, and containing S. Consequently, if S is nonempty,
so is C∞. To emphasize the fact that the set C∞ is uniquely determined by the
covering V, sometimes it will be denoted by CV∞. Let us prove two other crucial
properties of C∞:

(1) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C∞)} ⊆ C∞, for any i = 1, . . . , N ;
(2) C∞ is compact.

To verify the first one, fix i ∈ {1, . . . , N} and let x ∈ Vi be such that g(x) ∈
k(Ṽi ∩ C∞). In particular, it follows g(x) ∈ k(Ṽi) and, consequently, x ∈ C1.
Moreover, for any n ≥ 1 we have g(x) ∈ k(Ṽi ∩ Cn) and this implies x ∈ Cn+1.
Hence, x ∈ C∞, and the first property holds.

To check the compactness of C∞, we prove that α(Cn) → 0 as n → ∞. Let
n ≥ 2 be fixed. By the properties of the measure of noncompactness (see Section 4)
we have

α(Cn) = α

(
N⋃

i=1

{x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}

)
= max

1≤i≤N
α
(
{x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}

)
.

Fix i ∈ {1, . . . , N}, and denote

An,i = {x ∈ Vi : g(x) ∈ k(Ṽi ∩ Cn−1)}.

Since An,i ⊆ Ṽi, by definition we have α(An,i)ω(g|
eVi

) ≤ α(g(An,i)). Moreover,
g(An,i) ⊆ k(Ṽi ∩ Cn−1). Therefore, as ω(g|

eVi
) > 0, we have

α(An,i) ≤
1

ω(g|
eVi

)
α(g(An,i)) ≤

1
ω(g|

eVi
)
α(k(Ṽi ∩ Cn−1)).

On the other hand, by definition, α(k(Ṽi ∩ Cn−1)) ≤ α(k|
eVi

)α(Ṽi ∩ Cn−1), thus

α(An,i) ≤
α(k|

eVi
)

ω(g|
eVi

)
α(Ṽi ∩ Cn−1) = µiα(Ṽi ∩ Cn−1) ≤ µiα(Cn−1),

where by assumption µi = α(k|
eVi

)/ω(g|
eVi

) < 1. Finally,

α(Cn) = max
1≤i≤N

α(An,i) ≤ max
1≤i≤N

µiα(Cn−1) = µα(Cn−1),
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where µ = maxi µi < 1. Hence, α(Cn) → 0, and this implies that the set C∞ is
compact, as claimed.

Definition 5.3. Let (g, U, k) be an α-admissible triple, V = {V1, . . . , VN} an α-
covering of the solution set S and C a compact convex set. We say that (V, C) is
an α-pair (relative to (g, U, k)) if the following properties hold:

(1) U ∩ C 6= ∅;
(2) CV∞ ⊆ C;

(3) {x ∈ Vi : g(x) ∈ k(Ṽi ∩ C)} ⊆ C for any i = 1, . . . , N .

Remark 5.4. Given any α-admissible triple (g, U, k), it is always possible to find an
α-pair (V, C). Indeed, fix an α-covering V of the solution set S. If the corresponding
compact set CV∞ is nonempty, then, clearly, the pair (V, CV∞) verifies properties (1)–
(3). If CV∞ = ∅ (this can happen only if S = ∅), we may assume without loss of
generality that

U \
N⋃

i=1

Ṽi 6= ∅.

One can check that, given any p ∈ U \
⋃N

i=1 Ṽi, the pair (V, {p}) satisfies proper-
ties (1)–(3).

Let now (V, C) be an α-pair. Consider a retraction r : E → C, whose existence is
ensured by Dugundji’s Extension Theorem [7]. Denote V =

⋃N
i=1 Vi, and let W be

a (possibly empty) open subset of V containing S such that, for any i, x ∈ W ∩ Vi

implies r(x) ∈ Ṽi. For example, if ρ denotes the minimum of the radii of the balls
Vi, one may take as W the set

{x ∈ V : ‖x− r(x)‖ < ρ}.
Observe that property (3) above implies that the two equations g(x) = k(x) and
g(x) = k(r(x)) have the same solution set in W (notice that the composition kr is
defined in r−1(U)). The map kr is locally compact (even if not necessarily compact),
hence the triple (g−kr, W, 0) is admissible for the degree for quasi-Fredholm maps.
We define the degree of (g, U, k) as follows:

deg(g, U, k) = degqF (g − kr, W, 0),

where the right hand side is the degree defined in Section 3.

The following definition summarizes the above construction.

Definition 5.5. Let (g, U, k) be an α-admissible triple and (V, C) an α-pair. Con-
sider a retraction r : E → C. Let V = {V1, . . . , VN}, denote V =

⋃N
i=1 Vi, and let

W be an open subset of V containing S such that, for any i, x ∈ W ∩ Vi implies
r(x) ∈ Ṽi. We put

deg(g, U, k) = degqF (g − kr, W, 0).

In order to show that this definition is well posed, we have to prove that it is
independent of the choice of the α-pair (V, C), of the retraction r and of the open
set W . This is the purpose of the following proposition.

Proposition 5.6. Let (V, C) and (V ′, C ′) be two α-pairs relative to an α-admissible
triple (g, U, k), where

V = {V1, . . . , VN} and V ′ = {V ′1 , . . . , V ′M}.
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Consider two retractions r : E → C and r′ : E → C ′. Denote V =
⋃N

i=1 Vi, and let
W be an open subset of V containing S such that, for any i, x ∈ W ∩ Vi implies
r(x) ∈ Ṽi. Analogously, denote V ′ =

⋃M
j=1 V ′j , and let W ′ be an open subset of V ′

containing S such that, for any j, x′ ∈ W ′ ∩ V ′j implies r′(x′) ∈ Ṽ ′j . Then

degqF (g − kr, W, 0) = degqF (g − kr′,W ′, 0).

Proof. Consider a third covering V ′′ = {V ′′1 , . . . , V ′′T } of the solution set S of open
balls such that for any l ∈ {1, . . . , T} there exist i and j such that V ′′l ⊆ Vi ∩ V ′j .
In particular, V ′′ is still an α-covering of S. Consider the compact convex set CV

′′

∞ .
We distinguish two different cases.

i) CV
′′

∞ = ∅. In this case S = ∅ and, consequently, by the existence property of
the degree for quasi-Fredholm maps we have

degqF (g − kr, W, 0) = 0 and degqF (g − kr′,W ′, 0) = 0.

ii) CV
′′

∞ 6= ∅. In this case, (V ′′, CV′′

∞ ) is an α-pair. To simplify the notations,
denote C ′′∞ = CV

′′

∞ . Consider a retraction r′′ : E → C ′′∞. Denote V ′′ =
⋃T

l=1 V ′′l ,
and let W ′′ be an open subset of V ′′ containing S such that, for any l, x ∈ W ′′∩V ′′l

implies r′′(x) ∈ Ṽ ′′l . Clearly, to prove the assertion it is sufficient to show that

degqF (g − kr, W, 0) = degqF (g − kr′′,W ′′, 0).

Now, denote C∞ = CV∞ and let {Cn} and {C ′′n} be the sequences of sets defining
C∞ and C ′′∞, respectively. Since C ′′n ⊆ Cn for any n ≥ 1, it follows C ′′∞ ⊆ C∞. In
particular, C ′′∞ ⊆ C. Moreover, without loss of generality, we can assume that the
open set W ′′ is contained in W . Thus, by the excision property of the degree for
quasi-Fredholm maps we have

degqF (g − kr, W, 0) = degqF (g − kr, W ′′, 0). (5.1)

Consider the following homotopy:

H : W ′′ × [0, 1] → F,

H(x, t) = g(x)− k(tr(x) + (1− t)r′′(x)).
Let x ∈ W ′′, let V ′′l contain x for some l, and let Vi contain V ′′l for some i. Since
x ∈ W ′′ ⊆ W , we have r(x) ∈ Ṽi and r′′(x) ∈ Ṽ ′′l . Hence, as Ṽ ′′l ⊆ Ṽi, it follows
r′′(x) ∈ Ṽi and, consequently, H is well defined.

Let now (x, t) ∈ W ′′ × [0, 1] be a pair such that H(x, t) = 0. If x ∈ V ′′l for
some l, and V ′′l ⊆ Vi for some i, then both r(x) and r′′(x) belong to Ṽi ∩ C, since
r′′(x) ∈ C ′′∞ and C ′′∞ ⊆ C. Thus, tr(x) + (1 − t)r′′(x) ∈ Ṽi ∩ C and, in particular,
g(x) ∈ k(Ṽi ∩ C). This implies x ∈ C and, consequently, r(x) = x.

We want to show that, actually, x ∈ C ′′∞. Since r(x) = x, we have

tx + (1− t)r′′(x) ∈ Ṽ ′′l ∩ C

and, in particular, g(x) ∈ k(Ṽ ′′l ). Consequently, x ∈ C ′′1 . As C ′′∞ ⊆ C ′′1 , we
have r′′(x) ∈ C ′′1 , and tx + (1 − t)r′′(x) ∈ Ṽ ′′l ∩ C ′′1 since this is convex. Thus,
g(x) ∈ k(Ṽ ′′l ∩ C ′′1 ), and this implies x ∈ C ′′2 . Inductively, we get x ∈ C ′′n for any
n ≥ 1. Hence, x ∈ C ′′∞ and, consequently, r′′(x) = x.

Finally, g(x) = k(x), that is, x ∈ S. Therefore, the solution set

{(x, t) ∈ W ′′ × [0, 1] : H(x, t) = 0}



A DEGREE THEORY FOR A CLASS OF PERTURBED FREDHOLM MAPS 13

coincides with S×[0, 1]. Hence, we can apply the homotopy invariance of the degree
for quasi-Fredholm maps to get

degqF (g − kr, W ′′, 0) = degqF (g − kr′′,W ′′, 0),

and the assertion follows taking into account formula (5.1). �

6. Properties of the degree

Theorem 6.1. The following properties of the degree hold:
1. (Normalization) Let the identity I of E be naturally oriented. Then

deg(I, E, 0) = 1.

2. (Additivity) Given an α-admissible triple (g, U, k) and two disjoint open
subsets U1, U2 of U , assume that S = {x ∈ U : g(x) = k(x)} is contained
in U1 ∪ U2. Then

deg(g, U, k) = deg(g, U1, k) + deg(g, U2, k).

3. (Homotopy invariance) Let H : U × [0, 1] → F be a homotopy of the form
H(x, t) = G(x, t) − K(x, t), where G is of class C1, any Gt = G(·, t) is
Fredholm of index zero, K is continuous, and α(p,t)(K) < ω(p,t)(G) for
any pair (p, t) ∈ U × [0, 1]. Assume that G is oriented and that H−1(0)
is compact. Then deg(Gt, U,Kt) is well defined and does not depend on
t ∈ [0, 1].

Proof. 1. (Normalization) It follows easily from the normalization property of the
degree for quasi-Fredholm maps.

2. (Additivity) Let S1 = S ∩U1 and S2 = S ∩U2, so that S = S1 ∪S2. The fact
that the triples (g, U1, k) and (g, U2, k) are α-admissible is clear from the definition.

Let V1 = {V 1
1 , . . . , V 1

N} and V2 = {V 2
2 , . . . , V 2

M} be two α-coverings of S1 (rel-
ative to (g, U1, k)) and of S2 (relative to (g, U2, k)), respectively. For simplicity,
denote C1

∞ = CV
1

∞ and C2
∞ = CV

2

∞ . Then, consider the family

V = {V 1
1 , . . . , V 1

N , V 2
1 , . . . , V 2

M}.

Note that V is an α-covering of S. Consider the compact convex set C∞ = CV∞. By
definition, C∞ contains both C1

∞ and C2
∞; moreover, it has the following properties:

{x ∈ V 1
i : g(x) ∈ k(Ṽ 1

i ∩ C∞)} ⊆ C∞, i = 1, . . . , N ;

and
{x ∈ V 2

j : g(x) ∈ k(Ṽ 2
j ∩ C∞)} ⊆ C∞, j = 1, . . . ,M.

We distinguish two different cases.
i) If C∞ = ∅, then S = ∅, hence S1 = ∅ and S2 = ∅. Consequently, applying

Definition 5.5, by the existence property of the degree for quasi-Fredholm maps it
follows

deg(g, U, k) = 0; deg(g, U1, k) = 0; deg(g, U2, k) = 0.

ii) If C∞ 6= ∅, consider a retraction r : E → C∞. Denote V 1 =
⋃N

i=1 V 1
i ,

V 2 =
⋃M

j=1 V 2
j and V = V 1 ∪ V 2. Let W be an open subset of V containing
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S such that, for any i, x ∈ W ∩ V 1
i implies r(x) ∈ Ṽ 1

i and, for any j, x′ ∈ W ∩ V 2
j

implies r(x′) ∈ Ṽ 2
j . By definition we have

deg(g, U, k) = degqF (g − kr, W, 0).

Since W is an open neighborhood of S in V , and V is the disjoint union of V 1

and V 2, we can assume W = W 1 ∪W 2, where W 1 ⊆ V 1 and W 2 ⊆ V 2. The open
sets W 1 and W 2 are disjoint. In addition, W 1 contains S1, and W 2 contains S2.
Therefore, by the additivity property of the degree for quasi-Fredholm maps, we
have

degqF (g − kr, W, 0) = degqF (g − kr, W 1, 0) + degqF (g − kr, W 2, 0).

Now, observe that (Vλ, C∞) is an α-pair relative to (g, Uλ, k), for λ = 1, 2. Conse-
quently,

deg(g, Uλ, k) = degqF (g − kr, Wλ, 0), λ = 1, 2, (6.1)
and the assertion follows.

3. (Homotopy invariance) For t ∈ [0, 1], let Σt denote the compact set {x ∈ U :
Gt(x) = Kt(x)}. Given any t, the fact that the triple (Gt, U, Kt) is α-admissible
follows easily from the compactness of Σt and observing that αp(Kt) ≤ α(p,t)(K)
and ωp(Gt) ≥ ω(p,t)(G) for all p ∈ U . Consequently, it is sufficient to show that the
integer-valued function

t 7→ deg(Gt, U, Kt)
is locally constant. To this purpose, fix τ ∈ [0, 1] and, given δ > 0, let Iδ denote
the interval [τ − δ, τ + δ] ∩ [0, 1]. It is possible to find δ > 0 and a finite family of
open balls V = {V1, . . . , VN} with the following properties:

i) V =
⋃N

i=1 Vi contains Σt for any t ∈ Iδ;

ii) the ball Ṽi of double radius and same center as Vi is contained in U ;
iii) α(K|

eVi×Iδ
) < ω(G|

eVi×Iδ
), for any i = 1, . . . , N .

In particular it follows that, for any t ∈ Iδ, V is an α-covering of Σt. As in the
construction of the sequence {Cn} in Section 5, for any fixed t ∈ Iδ we define the
following sequence of sets:

Ct
1 = co

(
N⋃

i=1

{x ∈ Vi : Gt(x) ∈ Kt(Ṽi)}

)
,

and, inductively,

Ct
n = co

(
N⋃

i=1

{x ∈ Vi : Gt(x) ∈ Kt(Ṽi ∩ Ct
n−1)}

)
, n ≥ 2.

Then we set Ct
∞ =

⋂
n≥1 Ct

n. We observe that Ct
∞ is compact and convex, moreover

it has the following property:

{x ∈ Vi : Gt(x) ∈ Kt(Ṽi ∩ Ct
∞)} ⊆ Ct

∞, i = 1, . . . , N.

Now, we define the following sequence {Ĉn} of convex closed subsets of E inde-
pendent of t:

Ĉ1 = co

(
π1

(
N⋃

i=1

{(x, t) ∈ Vi × Iδ : G(x, t) ∈ K(Ṽi × Iδ)}

))
,
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and, inductively,

Ĉn = co

(
π1

(
N⋃

i=1

{(x, t) ∈ Vi × Iδ : G(x, t) ∈ K((Ṽi ∩ Ĉn−1)× Iδ)}

))
, n ≥ 2.

Observe that, by induction, Ĉn+1 ⊆ Ĉn for any n ≥ 1. Then the set

Ĉ∞ =
⋂
n≥1

Ĉn

is closed and convex. We claim that the following properties of Ĉ∞ hold:
(1) Ĉ∞ is compact;

(2) Ĉ∞ contains Ct
∞ for any t ∈ Iδ;

(3) {x ∈ Vi : Gt(x) ∈ Kt(Ṽi ∩ Ĉ∞)} ⊆ Ĉ∞ for any i = 1, . . . , N and t ∈ Iδ.

Let us prove that Ĉ∞ is compact. For simplicity, for any n ≥ 2 and i ∈ {1, . . . , N}
we denote

Ân,i =
{
(x, t) ∈ Vi × Iδ : G(x, t) ∈ K((Ṽi ∩ Ĉn−1)× Iδ)

}
,

and we set Ân =
⋃N

i=1 Ân,i. Let n ≥ 2 be fixed. Since Ân ⊆ Ĉn×Iδ, by Remark 4.6
we have α(Ân) ≤ α(Ĉn × Iδ) = α(Ĉn). On the other hand,

α(Ĉn) = α(co (π1(Ân))) = α(π1(Ân)) ≤ α(Ân),

the last inequality due to the fact that π1 is nonexpansive. Consequently, we have

α
(
Ĉn

)
= α

(
Ân

)
= α

(
N⋃

i=1

Ân,i

)
= max

1≤i≤N
α
(
Ân,i

)
.

Now, fix i ∈ {1, . . . , N}. Since Ân,i ⊆ Ṽi × Iδ, by definition we have

α(Ân,i)ω(G|
eVi×Iδ

) ≤ α(G(Ân,i)).

Moreover, G(Ân,i) ⊆ K((Ṽi ∩ Ĉn−1)× Iδ). Therefore,

α(Ân,i) ≤
1

ω(G|
eVi×Iδ

)
α(G(Ân,i)) ≤

1
ω(G|

eVi×Iδ
)

α(K((Ṽi ∩ Ĉn−1)× Iδ)).

On the other hand, by definition we have

α(K((Ṽi ∩ Ĉn−1)× Iδ)) ≤ α(K|
eVi×Iδ

)α((Ṽi ∩ Ĉn−1)× Iδ),

and, by Remark 4.6, α((Ṽi ∩ Ĉn−1)× Iδ) = α(Ṽi ∩ Ĉn−1). Hence

α(Ân,i) ≤
α(K|

eVi×Iδ
)

ω(G|
eVi×Iδ

)
α(Ṽi ∩ Ĉn−1) = νiα(Ṽi ∩ Ĉn−1) ≤ νiα(Ĉn−1),

where by assumption νi = α(K|
eVi×Iδ

)/ω(G|
eVi×Iδ

) < 1. Finally,

α(Ĉn) = max
1≤i≤N

α(Ân,i) ≤ max
1≤i≤N

νiα(Ĉn−1) ≤ να(Ĉn−1),

where ν = maxi νi < 1. Thus, α(Ĉn) → 0 as n →∞, and this implies that the set
Ĉ∞ is compact, as claimed.

For any fixed t ∈ Iδ, the inclusion Ct
∞ ⊆ Ĉ∞ follows immediately from the fact

that Ct
n ⊆ Ĉn for any n ≥ 1.
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To verify the third property, fix i ∈ {1, . . . , N} and t ∈ Iδ, and let x ∈ Vi be
such that Gt(x) ∈ Kt(Ṽi ∩ Ĉ∞). In particular, we have Gt(x) ∈ Kt(Ṽi), and this
implies x ∈ Ĉ1. Moreover, for any n ≥ 2 we have Gt(x) ∈ Kt(Ṽi∩ Ĉn−1). It follows
(x, t) ∈ Ân,i, and, consequently, x ∈ π1(Ân,i). Therefore, x ∈ Ĉn for any n ≥ 2.
Hence, x ∈ Ĉ∞, and property (3) holds.

Since τ ∈ [0, 1] is arbitrary, the assertion follows if we show that deg(Gt, U, Kt)
is independent of t ∈ Iδ. We distinguish two different cases.

i) Ĉ∞ = ∅. In this case Ct
∞ = ∅ for any t ∈ Iδ, hence Σt = ∅ for any t.

Consequently, applying Definition 5.5, by the existence property of the degree for
quasi-Fredholm maps we have deg(Gt, U, Kt) = 0 for any t ∈ Iδ.

ii) Ĉ∞ 6= ∅. In this case, as properties (1)–(3) of Ĉ∞ hold, for any fixed t ∈ Iδ

the pair (V, Ĉ∞) is an α-pair relative to the triple (Gt, U,Kt). Consider a retraction
r : E → Ĉ∞. Let W be an open subset of V containing V ∩ Ĉ∞ such that, for any
i, x ∈ W ∩ Vi implies r(x) ∈ Ṽi. In particular, for any fixed t ∈ Iδ the open set W
contains Σt. Thus, by definition we have

deg(Gt, U, Kt) = degqF (Gt −Ktr, W, 0), t ∈ Iδ.

Consider the following homotopy:

Ĥ : W × Iδ → F

Ĥ(x, t) = G(x, t)−K(r(x), t).

This is a homotopy of quasi-Fredholm maps, since it is continuous and the map
(x, t) 7→ K(r(x), t) is locally compact. Moreover, Ĥ−1(0) is compact, as it is closed
in the compact set H−1(0). Then, the homotopy invariance property of the degree
for quasi-Fredholm maps implies that degqF (Gt −Ktr, W, 0) does not depend on t.
Hence, deg(Gt, U,Kt) is independent of t ∈ Iδ, and we are done. �

7. Comparison with other degree theories

The purpose of this section is to show that our concept of degree extends the
degree for quasi-Fredholm maps summarized in Section 3, and that it agrees with
the Nussbaum degree [13] for the class of locally α-contractive vector fields.

7.1. Degree for quasi-Fredholm maps. Let f : Ω → F be an oriented quasi-
Fredholm map and U an open subset of Ω. We recall that the triple (f, U, 0) is
qF -admissible provided that f−1(0) ∩ U is compact.

Let (f, U, 0) be a qF -admissible triple and let f = g − k, where g is a positively
oriented smoothing map of f and k is locally compact. As pointed out in Section 4,
we have ωp(g) > 0 and αp(k) = 0 for any p ∈ U . Hence, the triple (g, U, k) is
α-admissible. We claim that

deg(g, U, k) = degqF (f, U, 0).

Indeed, let V = {V1, . . . , VN} be an α-covering of S = {x ∈ U : g(x) = k(x)}
relative to the triple (g, U, k), and consider the compact convex set C∞ = CV∞. We
distinguish two different cases.
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i) If C∞ = ∅, then S = ∅. Consequently, by the existence property of the degree
for quasi-Fredholm maps and by Definition 5.5, we have

degqF (f, U, 0) = 0 and deg(g, U, k) = 0.

ii) If C∞ 6= ∅, consider a retraction r : E → C∞. Denote V =
⋃N

i=1 Vi, and
let W be a (possibly empty) open subset of V containing S such that, for any i,
x ∈ W ∩ Vi implies r(x) ∈ Ṽi. By definition we have

deg(g, U, k) = degqF (g − kr, W, 0).

On the other hand, as S ⊆ W , by the excision property of the degree for quasi-
Fredholm maps we have

degqF (f, U, 0) = degqF (f,W, 0).

Consider the following homotopy:

H : W × [0, 1] → F,

H(x, t) = g(x)− k(tr(x) + (1− t)x).

Let x ∈ W , and let Vi contain x for some i. Since r(x) ∈ Ṽi and x ∈ Ṽi, it follows
tr(x) + (1− t)x ∈ Ṽi for any t ∈ [0, 1], and this shows that H is well defined.

As in the proof of Proposition 5.6 one gets

H−1(0) ∩
(
W × [0, 1]

)
= S × [0, 1].

Hence, we can apply the homotopy invariance of the degree for quasi-Fredholm
maps, obtaining

degqF (g − kr, W, 0) = degqF (g − k,W, 0),
and the claim follows.

7.2. Degree for locally α-contractive vector fields. Let f : Ω → F be a con-
tinuous map from an open subset of E into F . We recall the following definitions.
The map f is said to be α-Lipschitz if α(f(A)) ≤ µα(A) for some µ ≥ 0 and any
A ⊆ Ω. If the α-Lipschitz constant µ is less than 1, then f is called α-contractive.
The map f is said to be α-condensing if α(f(A)) < α(A) for any A ⊆ Ω such that
0 < α(A) < +∞. If for any p ∈ Ω there exists a neighborhood Vp of p such that f |Vp

is α-contractive (resp. α-condensing), the map f is said to be locally α-contractive
(resp. locally α-condensing).

In [12] and [13], Nussbaum developed a degree theory for triples of the form
(I − k, U, 0), where k is locally α-condensing. In particular, let U be an open
subset of Ω and k : Ω → E a locally α-condensing map. Assume that the set
S = {x ∈ U : (I − k)(x) = 0} is compact. Then, the triple (I − k, U, 0) is
admissible for the Nussbaum degree (N -admissible, for short). We will denote by
degN (I − k, U, 0) the Nussbaum degree of an N -admissible triple.

We want to show that, in a sense to be specified, our degree and the Nussbaum
degree coincide on the class of N -admissible triples of the form (I − k, U, 0), where
k is locally α-contractive.

Let (I−k, U, 0) be a N -admissible triple and assume that the map k is locally α-
contractive. Clearly, provided that I is oriented, the triple (I, U, k) is α-admissible.
We claim that, if we assign the natural orientation to I, it follows

deg(I, U, k) = degN (I − k, U, 0).
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Indeed, let V = {V1, . . . , VN} be an α-covering of S relative to the triple (I, U, k),
and consider the (possibly empty) compact convex set C∞ = CV∞.

Denote Ṽ =
⋃N

i=1 Ṽi. As S is contained in Ṽ , by the excision property of the
Nussbaum degree we have

degN (I − k, U, 0) = degN (I − k, Ṽ , 0).

Consider the following sequence {C̃n} of convex closed subsets of E:

C̃1 = co
(
k(Ṽ )

)
,

and, inductively,

C̃n = co
(
k(Ṽ ∩ C̃n−1)

)
, n ≥ 2.

Then the set
C̃∞ =

⋂
n≥1

C̃n

turns out to be closed, convex, and containing S. Moreover, the fact that k is
locally α-contractive implies that C̃∞ is compact. We observe that the following
properties of C̃∞ hold:

(1) C̃∞ contains C∞;

(2) {x ∈ Vi : x ∈ k(Ṽi ∩ C̃∞)} ⊆ C̃∞ for any i = 1, . . . , N .

The inclusion C∞ ⊆ C̃∞ follows immediately from the fact that Cn ⊆ C̃n for any
n ≥ 1, where {Cn} is the sequence of sets which defines C∞, as in Section 5. On
the other hand, property (2) follows from the trivial inclusion

{x ∈ Vi : x ∈ k(Ṽi ∩ C̃n)} ⊆ k(Ṽ ∩ C̃n),

which holds for any n ≥ 1 and i ∈ {1, . . . , N}.

To prove the assertion, we distinguish two different cases.
i) C̃∞ = ∅. In this case, C∞ = ∅ by (1), and S = ∅. Consequently, by the

existence property of the Nussbaum degree and by Definition 5.5, we have

degN (I − k, U, 0) = 0 and deg(I, U, k) = 0.

ii) C̃∞ 6= ∅. In this case, as properties (1) and (2) of C̃∞ hold, (V, C̃∞) is an
α-pair relative to the triple (I, U, k). Consider a retraction r : E → C̃∞. Denote
V =

⋃N
i=1 Vi, and let W be a (possibly empty) open subset of V containing S such

that, for any i, x ∈ W ∩ Vi implies r(x) ∈ Ṽi. By definition we have

deg(I, U, k) = degqF (I − kr, W, 0).

On the other hand (see [12] and [13]), we have

degN (I − k, Ṽ , 0) = degLS(I − kr, r−1(Ṽ ) ∩ Ṽ , 0).

Finally, let W ′ = W ∩r−1(Ṽ )∩Ṽ . As S is contained in W ′, by the excision property
of the Leray–Schauder degree we have

degLS(I − kr, r−1(Ṽ ) ∩ Ṽ , 0) = degLS(I − kr, W ′, 0),

and by the excision property of the degree for quasi-Fredholm maps we have

degqF (I − kr, W, 0) = degqF (I − kr, W ′, 0).
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The claim now follows from the fact that the degree for quasi-Fredholm maps is an
extension of the Leray–Schauder degree (see [3]).
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