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In this paper a hydrodynamic set of equations is derived from a Schrödinger-like

model for the dynamics of electrons in a two-band semiconductor, via the Madelung
ansatz. A diffusive scaling allows to attain a drift-diffusion formulation.

1. Introduction

Recent advances in semiconductor devices design have compelled the sci-
entific community to provide theoretical models that take fully into ac-
count the quantum dynamics of carriers. For example the Resonant Inter-
band Tunneling Diode (RITD15) is built on the quantum effect of tun-
neling of electrons between conduction and valence bands. Multiband
models11,12 derived from the Schrödinger equation are the starting point
of a recent series of articles3,4,6 that propose a two-band description in
terms of Wigner functions. However, in the perspective of numerical sim-
ulations, quantum hydrodynamic models5,7,10 are preferable, since they
involve directly macroscopic quantities and they admit natural boundary
conditions. The Madelung equations constitute the fluiddynamical equiv-
alent of the Schrödinger equation and they are formally identical to the
Euler equations for a perfect fluid at zero temperature, apart for the Bohm
potential9. Analogously, two-band zero-temperature quantum fluiddynam-
ical models1,2 can be derived by applying the Madelung ansatz either to
the two-band Schrödinger-like model introduced by Kane11, or to the MEF
(Multiband Envelope Function) model13; the latter one, at difference with
the Kane model, seems to be reliable also in presence of heterostructures
and impurities of the semiconductor material. Here, the derivation2 is ex-
tended to the case when the electron ensemble is described by mixed states:
Madelung-like equations for each band are recovered, coupled by “interband
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terms” and containing also temperature terms, as expected by comparison
with the single-band mixed-state case8. A two-band drift-diffusion system
is attained in the zero-relaxation time limit and the equations for each band
differ from the QDD14 only for the coupling interband terms.

2. Nonzero-temperature hydrodynamic model

In order to derive a nonzero-temperature model8, let us describe an electron
ensemble by a mixed quantum state, i.e. by a sequence of pure states con-
stituting an orthonormal basis for the electron ensemble state space, with
occupation probabilities λk ≥ 0, k ∈ N0, such that

∑
k λk = 1. In a “macro-

scopic” description13, a pure state of the system can be individuated by
{ψn}n∈N0 with ψn wave-function of the n-th band and n(x) =

∑
n |ψn|2(x)

and J(x) = Im
∑

n ψn(x)∇ψn(x). Since we restrict to a conduction-valence
band description, we individuate the k-th pure state by two wave-functions
ψk

c , ψ
k
v , that are solutions of the (rescaled version of) MeF13 system

iε
∂ψk

c

∂t
= −ε

2

2
∆ψk

c + (Vc + V )ψk
c − ε2K ψk

v ,

iε
∂ψk

v

∂t
=

ε2

2
∆ψk

v + (Vv + V )ψk
v − ε2K ψk

c ,

(1)

where K = P ·∇V , P is the interband momentum matrix, V is the electro-
static potential, Vc, Vv are the minimum and maximum of the conduction
and the valence band energy, respectively, and ε is the Planck constant.

Then, by using the Madelung ansatz ψk
b =

√
nk

b exp
(
iSk

b /ε
)

with the band-
index b = c, v, the hydrodynamic system corresponding to Eqs. (1) reads

∂nk
c

∂t
+ divJk

c = −2εK Imnk
cv,

∂nk
v

∂t
− divJk

v = 2εK Imnk
cv,

∂Jk
c

∂t
+ div

(
Jk

c ⊗ Jk
c

nk
c

)
− nk

c∇

(
ε2∆

√
nk

c

2
√
nk

c

)
+ nk

c∇V

= ε2∇K Re nk
cv + εK Re

(
nk

cv(uk
v − uk

c )
)
,

∂Jk
v

∂t
− div

(
Jk

v ⊗ Jk
v

nk
v

)
+ nk

v∇

(
ε2∆

√
nk

v

2
√
nk

v

)
+ nk

v∇V

= ε2∇K Re nk
cv − εK Re

(
nk

cv(uk
v − uk

c )
)
,

ε∇σk =
Jk

v

nk
v

− Jk
c

nk
c

,

(2)
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where Jk
b = nk

b∇Sk
b , u

k
b = ε∇

√
nk

b/
√
nk

b + i Jk
b /n

k
b , σ

k = (Sk
v − Sk

c )/ε and

nk
cv =

√
nk

c

√
nk

v exp(iσk). In the mixed-state description8, densities and
currents corresponding to the bands are nb :=

∑
k λkn

k
b , Jb :=

∑
k λkJ

k
b ,

ub := ε∇√nb/
√
nb+iJb/nb = εuos,b+iuel,b, while the “interband” quantities

are σ :=
∑

k λkσ
k and ncv :=

√
nc
√
nv exp(iσ). Observe that we assume

Vb to be constant, as in the derivation13 of Eqs. (1). Multiplying Eqs. (2)
by λk and summing over k, we find the equations for the hydrodynamic
quantities nb, Jb, and σ

∂nc

∂t
+ divJc = −2εK ImRcv,

∂nv

∂t
− divJv = 2εK ImRcv,

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇V

= ε2∇K ReRcv + ε2K Re Qcv,

∂Jv

∂t
− div

(
Jv ⊗ Jv

nv
+ nvθv

)
+ nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇V

= ε2∇K ReRcv − ε2K Re Qcv,

ε∇σ =
∑

k

λk

(
Jk

v

nk
v

− Jk
c

nk
c

)
,

(3)

with Rcv =
∑

k λkn
k
cv , Qcv =

∑
k λkn

k
cv

(
uk

v − uk
c

)
. In analogy with the

one-band case8, we introduce the temperatures θb = θos,b + θel,b, b = c, v,

with the osmotic parts θos,b defined by

θos,b =
∑

k

λk
nk

b

nb
(uk

os,b − uos,b)⊗ (uk
os,b − uos,b)

and the current temperatures θel,b defined correspondingly. If we call

α :=
∑

k

λk
nk

cv

ncv
, βv :=

∑
k

λk
nk

cv

ncv
(uk

v − uv), βc :=
∑

k

λk
nk

cv

ncv
(uk

c − uc),

the coupling terms contain Rcv = αncv , Qcv = ncv

[
α(uv − uc) + βv − βc

]
.

In order to find a relation between α, βv and βc and the hydrodynamic
quantities, we take the gradient of α and use the definition of ncv, uc, uv

and the identity

ε∇ncv

ncv
− uv − uc = i

(
ε∇σ − Jv

nv
+
Jc

nc

)
.
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Accordingly
ε∇σ − Jv

nv
+
Jc

nc
=

i

α

(
ε∇α− βv − βc

)
. (4)

The last equation of system (3) can be rephrased as

ε∇σ =
Jv

nv
− Jc

nc
+
∑

k

λk

(
Jk

v

nk
v

− Jv

nv

)
−
∑

k

λk

(
Jk

c

nk
c

− Jc

nc

)
(5)

and, by comparison of (4) with (5), we get∑
k

λk

(
Jk

v

nk
v

− Jv

nv

)
−
∑

k

λk

(
Jk

c

nk
c

− Jc

nc

)
=

i

α

(
ε∇α− βv − βc

)
,

then Re
{(
ε∇α− βv − βc

)
/α
}

= 0. Accordingly, Eqs. (3) can be written as

∂nc

∂t
+ divJc = −2εK Im (αncv),

∂nv

∂t
− divJv = 2εK Im (αncv),

∂Jc

∂t
+ div

(
Jc ⊗ Jc

nc
+ ncθc

)
− nc∇

(
ε2∆

√
nc

2
√
nc

)
+ nc∇V

= ε2∇K Re (αncv) + ε2K Re (ncv

[
α(uv − uc) + βv − βc

]
),

∂Jv

∂t
− div

(
Jv ⊗ Jv

nv
+ nvθv

)
+ nv∇

(
ε2∆

√
nv

2
√
nv

)
+ nv∇V

= ε2∇K Re (αncv)− ε2K Re (ncv

[
α(uv − uc) + βv − βc

]
),

ε∇σ − Jv

nv
+
Jc

nc
= − Im

{
1
α

(
ε∇α− βv − βc

)}
.

(6)

The terms on the right hand side of the equations determine the coupling.
The system is not closed: the quantities α, βc and βv are not expressed in
terms of the hydrodynamic quantites, but they are linked by

Re
{(
ε∇α− βv − βc

)
/α
}

= 0. (7)

In addition, we must assign constitutive relations for the tensors θc and
θv. A simple class of closure conditions can be obtained by assuming α =
α(nc, nv, σ) and taking

βc = 2nc
∂ᾱ

∂nc
uos,c −

∂ᾱ

∂σ
uel,c, βv = 2nv

∂α

∂nv
uos,v +

∂α

∂σ
uel,v. (8)

Then ε∇α − βv − βc = 0, thus Eq. (7) is fulfilled and moreover ε∇σ −
Jv/nv +Jc/nc = 0. For the temperatures we assume nbθb = pb(nb)I, where
I is the identity tensor and the functions pc, pv are pressures. In particular,
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we can take pb = θ0nb, as for an ideal gas in isothermal conditions, and
α = 1, βc = βv = 0 (which follows, e.g., from nk

cv ' ncv). Accordingly, we
obtain the simplest two-band isothermal QHD model

∂nc

∂t
+ divJc = −2εK Imncv,

∂nv

∂t
− divJv = 2εK Imncv ,

∂Jc

∂t
+ div

Jc ⊗ Jc

nc
+ θ0∇nc − nc∇

(
ε2∆

√
nc

2
√
nc

− V

)
= ε2∇K Re ncv + ε2K Re (ncv (uv − uc)),

∂Jv

∂t
− div

Jv ⊗ Jv

nv
+ θ0∇nv + nv∇

(
ε2∆

√
nv

2
√
nv

+ V

)
= ε2∇K Re ncv − ε2K Re (ncv (uv − uc)),

ε∇σ − Jv

nv
+
Jc

nc
= 0 .

(9)

Here, the only peculiarity of the mixed-state case is the presence of the
temperature terms.

3. The drift-diffusion model

Now we perform the zero-relaxation time limit of the hydrodynamic models
recovered. First, we start from Eqs. (9), we add relaxation terms for the
currents and we introduce the diffusive scaling

t→ t

τ
, Jc → τJc, Jv → τJv, (10)

that leads to the ansatz σ → σ0 + τσ , where σ0 is a constant phase to be
determined. In the limit τ → 0 the system reads

∂nc

∂t
+ divJc = −2εK

√
nc
√
nvσ,

∂nv

∂t
− divJv = 2εK

√
nc
√
nvσ,

Jc = − θ0∇nc + nc

{
∇
[
ε2∆

√
nc

2
√
nc

− V + ε2
√
nv√
nc
K

]}
,

Jv = θ0∇nv − nv

{
∇
[
ε2∆

√
nv

2
√
nv

+ V − ε2
√
nc√
nv
K

]}
,

ε∇σ − Jv

nv
+
Jc

nc
= 0,

(11)
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where σ0 = 0, due to the limit of the first equation. Alternatively, we start
from the isothermal version of the Eqs. (6), closed with α = α(nc, nv),
βc := 2nc

∂α
∂nc

uos,c, βv := 2nv
∂α
∂nv

uos,v, we add relaxation terms for the
currents and we consider the diffusive scaling in Eq. (10), with σ0 = 0. In
the limit τ → 0, we get Im α = 0 and the isothermal QDD system reads

∂nc

∂t
+ divJc = −2εK

√
nc
√
nvασ,

∂nv

∂t
− divJv = 2εK

√
nc
√
nvασ,

Jc = −θ0∇nc + nc

{
∇
[
ε2∆

√
nc

2
√
nc

− V

]
+ ε2α∇

[√
nv√
nc
K

]}
+

+ ε2(βv − βc)
√
nv
√
ncK,

Jv = θ0∇nv − nv

{
∇
[
ε2∆

√
nv

2
√
nv

+ V

]
− ε2α∇

[√
nc√
nv
K

]}
+

− ε2(βv − βc)
√
nc
√
nvK,

ε∇σ − Jv

nv
+
Jc

nc
= 0.
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