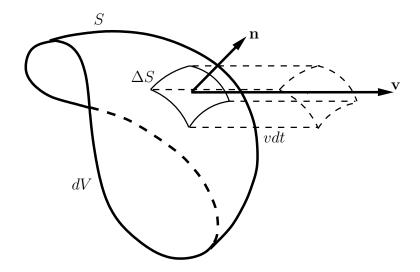
MECCANICA DEI CONTINUI

Appunti redatti da Anna Tangredi revisionati dal Prof. Giovanni Frosali ¹



FIRENZE - 10 GIUGNO 2014

¹DIPARTIMENTO DI MATEMATICA E INFORMATICA U. DINI, UNIVERSITÀ DEGLI STUDI DI FIRENZE, VIA S. MARTA 3, 50139 FIRENZE, **e-mail:** giovanni.frosali@unifi.it

Indice

1	Elas	lasticità lineare			
	1.1	Misur	e di deformazione	1	
		1.1.1	Formula di variazione di lunghezza relativa	2	
		1.1.2	Il tensore della deformazione finita	3	
	1.2	1.2 Misura delle deformazioni infinitesime			
		1.2.1	Direzioni principali e valori principali	5	
	1.3	Mater	iali elastici lineari	6	
		1.3.1	Legame costitutivo per materiali elastici, lineari, omoge-		
			nei ed isotropi	7	
		1.3.2	Legame costitutivo inverso e moduli elastici	9	
	1.4	Equaz	ioni di Navier	11	

Capitolo 1

Elasticità lineare

Con il termine materiale elastico lineare si definisce, da un punto di vista puramente qualitativo, un materiale che, se sottoposto a carichi, subisce una deformazione (proporzionale alla tensione di carico) che scompare una volta rimossi i carichi stessi.

Per poter studiare rigorosamente il comportamento dei corpi con la teoria dell'elasticità lineare è necessario introdurre alcuni strumenti matematici e fisici.

1.1 Misure di deformazione

Sia B_0 la configurazione di riferimento del sistema continuo, in seguito ad una generica deformazione sia B_a la configurazione attuale del sistema continuo. A partire da un punto \mathbf{x} in B_0 si consideri un segmento infinitesimo di lunghezza dl lungo una direzione arbitraria. Questo segmento è determinato dai punti \mathbf{x} e $\mathbf{x} + d\mathbf{x}$.

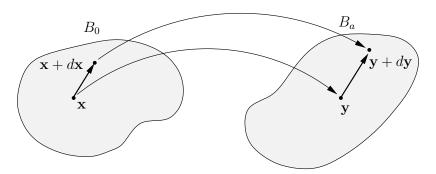


Figura 1.1

All'atto del cambiamento di configurazione da quella di riferimento B_0 a quella attuale B_a , il segmento dl viene trasformato in un segmento di lunghezza

 dl_a individuato dai punti $\mathbf{y} \in \mathbf{y} + d\mathbf{y}$.

1.1.1 Formula di variazione di lunghezza relativa

Per valutare la deformazione del corpo durante il cambiamento di configurazione, si può ad esempio rilevare l'allungamento relativo da dl a dl_a per un qualsiasi segmento infinitesimo. Per poter effettuare un confronto tra dl e dl_a è necessario comparare i due segmenti in un unico ambiente. Se ad esempio si sceglie la configurazione di riferimento B_0 , come ambiente di paragone, è necessario esprimere dl_a in funzione di $d\mathbf{x}$.

Si considerino i segmenti dl e dl_a , dal teorema di Pitagora si ottiene che

$$dl^2 = d\mathbf{x} \cdot d\mathbf{x} \tag{1.1}$$

$$dl_a^2 = d\mathbf{y} \cdot d\mathbf{y} \tag{1.2}$$

dove $d\mathbf{x} = dl \mathbf{n}$, con \mathbf{n} versore del segmento dl, e $d\mathbf{y} = dl_a \mathbf{n}_a$, con n_a versore del segmento dl_a .

Se la mappa che correla le due configurazioni ${\cal B}_0$ e ${\cal B}_a$ è

$$x \to y = y(x) \tag{1.3}$$

allora definiamo il **gradiente di deformazione** \mathbb{F}

$$\mathbb{F} = \nabla \mathbf{y}(x) \tag{1.4}$$

Avremo quindi che

$$d\mathbf{y} = \mathbb{F}d\mathbf{x} \tag{1.5}$$

e sostituendo nell'espressione (1.2) si ottiene

$$dl_a^2 = |dy^2| = d\mathbf{y} \cdot d\mathbf{y} = \mathbb{F} d\mathbf{x} \cdot \mathbb{F} d\mathbf{x} = d\mathbf{x} \mathbb{F}^T \mathbb{F} d\mathbf{x} = d\mathbf{x} \cdot \mathbb{C} d\mathbf{x} = \mathbb{C} \cdot d\mathbf{x} \otimes d\mathbf{x}$$
$$= \mathbb{C} \cdot (dl \, \mathbf{n} \otimes dl \, \mathbf{n}) = \mathbb{C} \cdot (\mathbf{n} \otimes \mathbf{n}) \, dl^2 \,,$$

dove è stato introdotto il tensore destro di Cauchy Greeen $\mathbb{C} = \mathbb{F}^T \mathbb{F}$.

Quindi la variazione relativa delle lunghezza è data da

$$\frac{dl_a^2 - dl^2}{dl^2} = \frac{C \cdot (\mathbf{n} \otimes \mathbf{n}) dl^2 - dl^2}{dl^2} = (\mathbb{C} - \mathbb{I})(\mathbf{n} \otimes \mathbf{n})$$
(1.6)

dove \mathbb{I} è il tensore unità.

 ${f Nota}$ 1.1.1. In particolare il tensore destro di Cauchy Green è un tensore simmetrico del secondo ordine

$$\mathbb{C}^T = (\mathbb{F}^T \mathbb{F})^T = \mathbb{F}^T \mathbb{F} = \mathbb{C}.$$

Si osserva inoltre, grazie al teorema di decomposizione polare, che $\mathbb C$ non tiene conto dei cambiamenti rigidi di assetto

$$\mathbb{C} = \mathbb{F}^T \mathbb{F} = \mathbb{U}^T \mathbb{R}^T \mathbb{R} \mathbb{U} = \mathbb{U}^T \mathbb{U},$$

dove \mathbb{U} rappresenta le deformazioni ($\mathbb{U} = \mathbb{U}^T$), mentre \mathbb{R} è un tensore ortogonale che considera le rototraslazioni rigide.

1.1.2 Il tensore della deformazione finita

Si definisce il tensore della deformazione finita \mathbb{E} il tensore simmetrico

$$\mathbb{E} = \frac{1}{2}(\mathbb{F}^T \mathbb{F} - \mathbb{I}) = \frac{1}{2}(\mathbb{C} - \mathbb{I}).$$

Possiamo quindi riscrivere la formula di lunghezza relativa (1.6) in questo modo

$$\frac{dl_a^2 - dl^2}{dl^2} = 2\mathbb{E}(\mathbf{n} \otimes \mathbf{n}) \tag{1.7}$$

dove \mathbf{n} è il versore della direzione in cui si sviluppa il segmento dl. Possiamo quindi esprimere \mathbb{E} nei termini del vettore spostamento \mathbf{u} , definito come

$$\mathbf{u} = \mathbf{y} - \mathbf{x} = \mathbf{y}(\mathbf{x}) - \mathbf{x}. \tag{1.8}$$

L'espressione del gradiente di u può essere scritta nel seguente modo

$$\nabla \mathbf{u} = \mathbb{F} - \mathbb{I} \tag{1.9}$$

Quindi sostituendo $\mathbb{F} = \nabla u + \mathbb{I}$ si ottiene

$$\mathbb{E} = \frac{1}{2}((\nabla \mathbf{u} + \mathbb{I})^T(\nabla \mathbf{u} + \mathbb{I}) - \mathbb{I}) = \frac{1}{2}(\nabla \mathbf{u} + \nabla \mathbf{u}^T + \nabla \mathbf{u}^T \nabla \mathbf{u})$$
(1.10)

Nota 1.1.2. I tensore \mathbb{E} rappresenta una misura effettiva di deformazione, dato che in seguito ad un cambiamento rigido di assetto si ottiene $\mathbb{E}=0$. Infatti nel caso di isometrie, per le quali $\mathbb{U}=\mathbb{I}$, risulta $\mathbb{F}=\mathbb{R}$ e conseguentemente $\mathbb{C}=\mathbb{F}^T\mathbb{F}=\mathbb{R}^T\mathbb{R}=\mathbb{I}$ e quindi $\Rightarrow \mathbb{E}=\frac{1}{2}(\mathbb{C}-\mathbb{I})=\frac{1}{2}(\mathbb{I}-\mathbb{I})=0$.

1.2 Misura delle deformazioni infinitesime

Prendiamo in considerazione il tensore della deformazione finita $\mathbb E$

$$\mathbb{E} = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T + \nabla \mathbf{u}^T \nabla \mathbf{u})$$
 (1.11)

Per una deformazione infinitesima abbiamo che

$$|\nabla \mathbf{u}| \ll 1, \tag{1.12}$$

e quindi in regime di deformazioni infinitesime il termine quadratico $\nabla \mathbf{u}^T \nabla \mathbf{u}$ della (1.11) può essere trascurato. Definiamo quindi il **tensore delle piccole deformazioni** ε (o misura delle deformazioni infinitesime) come la parte lineare di E

$$\varepsilon = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T). \tag{1.13}$$

Si osservi che ε coincide con la parte simmetrica del gradiente dello spostamento $\nabla \mathbf{u}$

$$\varepsilon = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) = \operatorname{Sym} \nabla \mathbf{u}. \tag{1.14}$$

La generica componente del tensore ε in un sistema di riferimento locale è quindi data da

$$\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) = \frac{1}{2} (u_{i/j}). \tag{1.15}$$

Si osservi inoltre che in regime di deformazioni infinitesime ed in assenza di spostamenti rigidi finiti, il piazzamento attuale B_a del corpo può essere confuso con quello di riferimento B_0 . Non si farà quindi distinzione tra \mathbf{x} ed \mathbf{y} e potremo scrivere $\mathbf{x} = \varepsilon(\mathbf{x})$.

Riportiamo la matrice simmetrica delle componenti del tensore ε in un sistema di riferimento nell'intorno di un punto generico del corpo

$$\varepsilon_{ij} = \begin{pmatrix}
\varepsilon_{xx} & \varepsilon_{xy} & \varepsilon_{xz} \\
\varepsilon_{yx} & \varepsilon_{yy} & \varepsilon_{yz} \\
\varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial u}{\partial x} & \frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) \\
\frac{1}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right) & \frac{\partial v}{\partial y} & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) \\
\frac{1}{2} \left(\frac{\partial u}{\partial z} + \frac{\partial w}{\partial x}\right) & \frac{1}{2} \left(\frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}\right) & \frac{\partial w}{\partial z}
\end{pmatrix} \tag{1.16}$$

dove u,v e w sono le componenti del vettore \mathbf{u} . Si osserva che

- i termini sulla diagonale principale ε_{ii} rappresentano gli allungamenti o accorciamenti lungo le direzioni coordinate del sistema di riferimento;
- i termini fuori dalla diagonale principale ε_{ij} rappresentano la metà dello scorrimento angolare tra gli assi associati i e j;
- la somma di due termini qualsiasi sulla diagonale principale è indice della variazione relativa di area nel piano pertinente, ad esempio, $(\varepsilon_{xx} + \varepsilon_{yy})$ rappresenta la variazione di area nel piano xy;
- la traccia di ε , cioè tr $\varepsilon = (\varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz})$, rappresenta la variazione di volume.

Infatti, nel caso di deformazioni finite, la variazione relativa di volume è pari a $\det \mathbb{F} - \mathbb{I}$. Tenendo conto che $\mathbb{F} = \nabla \mathbf{u} + \mathbb{I}$, sviluppando in serie il $\det \mathbb{F}$ intorno ad $\mathbf{u} = 0$, si ottiene

$$\det \mathbb{F} = \mathbb{I} + \operatorname{tr} \varepsilon + o(|\nabla \mathbf{u}|^2) \tag{1.17}$$

quindi in regime di deformazioni infinitesime la variazione di volume è pari a tr ε .

1.2.1 Direzioni principali e valori principali

Esistono delle direzioni lungo le quali è possibile diagonalizzare la matrice delle componenti del tensore delle piccole deformazioni ε . Ricerchiamo quindi un sistema di riferimento in cui la deformazione sia data solo da allungamenti (o accorciamenti), ovvero un sistema di riferimento principale dove il tensore ε abbia la seguente forma

$$\varepsilon = \begin{pmatrix} \varepsilon^{(1)} & 0 & 0 \\ 0 & \varepsilon^{(2)} & 0 \\ 0 & 0 & \varepsilon^{(3)} \end{pmatrix}. \tag{1.18}$$

Il problema consiste nel calcolo degli autovalori (**deformazioni principali**), e degli autovettori (**direzioni principali**).

Dobbiamo trovare tre direzioni distinte $\mathbf{n}^{(1)}$, $\mathbf{n}^{(2)}$ e $\mathbf{n}^{(3)}$ alle quali corrispondano tre scalari, non necessariamente distinti, $\varepsilon^{(1)}$, $\varepsilon^{(2)}$ e $\varepsilon^{(3)}$ tali che per la generica direzione $\mathbf{n}^{(i)}$ si abbia

$$\varepsilon_{ij} n_j^i = \varepsilon^{(i)} \delta_{ij} n_j^i \tag{1.19}$$

dove n_j^i è il j-esimo coseno direttore della direzione $\mathbf{n}^{(i)}$ nel sistema di riferimento cui corrisponde ε_{ij} .

Abbiamo un sistema algebrico di tre equazioni nelle incognite n_i^i

$$(\varepsilon_{ij} - \delta_{ij}\varepsilon)n_j^i = 0 (1.20)$$

con soluzioni non banali se e solo se il determinante della matrice dei coefficienti si annulla

$$\det(\varepsilon_{ij} - \delta_{ij}\varepsilon) = 0. \tag{1.21}$$

La relazione (1.21) permette di trovare i tre autovalori ovvero le tre deformazioni principali ε_1 , ε_2 e ε_3 ((1.18)).

$$\begin{vmatrix} \varepsilon_{xx} - \varepsilon & \varepsilon_{xy} & \varepsilon_{xz} \\ \varepsilon_{yx} & \varepsilon_{yy} - \varepsilon & \varepsilon_{yz} \\ \varepsilon_{zx} & \varepsilon_{zy} & \varepsilon_{zz} - \varepsilon \end{vmatrix} = \varepsilon^3 - E_1 \varepsilon^2 + E_2 \varepsilon - E_3 = 0$$
 (1.22)

 E_1 , E_2 e E_3 sono gli **invarianti principali**, ovvero il loro valore non cambia al variare del sistema di riferimento considerato che

$$E_{1} = tr\varepsilon = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz}$$

$$E_{2} = \varepsilon_{xx}\varepsilon_{yy} - \varepsilon_{xx}\varepsilon_{zz} - \varepsilon_{xz}^{2} + \varepsilon_{yy}\varepsilon_{zz} - \varepsilon_{yz}^{2}$$

$$E_{3} = \det \varepsilon_{ij}$$
(1.23)

L'equazione

$$\varepsilon^3 - E_1 \varepsilon^2 + E_2 \varepsilon - E_3 = 0 \tag{1.24}$$

è detta equazione secolare ed ammette tre soluzioni in virtù della simmetria di ε e delle sue componenti reali. Si possono verificare i seguenti casi:

• $\varepsilon^{(1)} \neq \varepsilon^{(2)} \neq \varepsilon^{(3)}$, cioè le tre direzioni principali $\mathbf{n}^{(1)}$, $\mathbf{n}^{(2)}$ e $\mathbf{n}^{(3)}$ (fra loro ortogonali), sono distinte e la terna principale di deformazione è unica.

- $\varepsilon^{(1)} = \varepsilon^{(2)} \neq \varepsilon^{(3)}$, ovvero due autovalori sono uguali tra loro ed esistono infinite terne di autovettori.
- $\varepsilon^{(1)} = \varepsilon^{(2)} = \varepsilon^{(3)}$, quindi tutte le terne sono principali.

Quindi nel sistema di riferimento principale, la matrice associata al tensore delle piccole deformazioni ε ha la seguente forma:

$$\begin{pmatrix} \varepsilon^{(1)} & 0 & 0 \\ 0 & \varepsilon^{(2)} & 0 \\ 0 & 0 & \varepsilon^{(3)} \end{pmatrix}, \tag{1.25}$$

ovvero nella terna principale non si misurano scorrimenti, ma solo allungamenti nell'intorno del punto considerato.

1.3 Materiali elastici lineari

Definizione 1.1. Un corpo deformabile si dice elastico se il campo tensionale σ è funzione diretta e biunivoca del campo di deformazione

$$\sigma = \sigma(\varepsilon). \tag{1.26}$$

Di un generico elemento materiale si consideri lo stato $(\mathbf{x}, 0)$ come stato di riferimento e si indichi con φ_0 il valore della densità di energia elastica ad esso pertinente. Sviluppando la funzione densità di energia elastica $\varphi(\mathbf{x}, \varepsilon)$ intorno a $(\mathbf{x}, 0)$ in un qualche sistema di riferimento si ha

$$\varphi(\mathbf{x}, \varepsilon_{ij}) = \varphi_0 + \frac{\partial \varphi}{\partial \varepsilon_{ij}} \Big|_{0} \varepsilon_{ij} + \frac{1}{2} \frac{\partial^2 \varphi}{\partial \varepsilon_{ij} \partial \varepsilon_{hk}} \Big|_{0} \varepsilon_{ij} \varepsilon_{hk} + o(\varepsilon_{ij} \varepsilon_{hk}). \tag{1.27}$$

In base alla relazione tra tensore funzione densità di energia elastica, trascurando i termini $o(\varepsilon_{ij}\varepsilon_{hk})$, derivando rispetto a ε_{ij} si ottiene

$$\sigma_{ij} = \frac{\partial \varphi}{\partial \varepsilon_{ij}} \Big|_{0} + \frac{\partial^{2} \varphi}{\partial \varepsilon_{ij} \partial \varepsilon_{hk}} \Big|_{0} \varepsilon_{hk}$$
(1.28)

Il termine $\frac{\partial \varphi}{\partial \varepsilon}\Big|_{0}$ è un tensore del secondo ordine simmetrico, indicato con σ_{ij}^{0} ;

mentre il termine costante $\frac{\partial^2 \varphi}{\partial \varepsilon_{ij} \partial \varepsilon_{hk}} \Big|_{0}$ è un tensore del quarto ordine che sarà indicato con C_{ijhk} (o in forma compatta \mathbb{C}).

Quindi riscriviamo la relazione (1.28) in questo modo

$$\sigma_{ij} = \sigma_{ij}^0 + C_{ijhk}\varepsilon_{hk} \tag{1.29}$$

che rappresenta il **legame elastico lineare**. Trascurando le autotensioni σ_{ij}^0 che un corpo può presentare allo stato naturale, il legame elastico lineare si riduce a

$$\sigma_{ij} = C_{ijhk} \varepsilon_{hk} \tag{1.30}$$

Nel caso di legame elastico lineare l'energia è esprimibile nella forma quadratica

$$\varphi(\varepsilon_{ij}) = \frac{1}{2} C_{ijhk} \varepsilon_{hk} \varepsilon_{ij} = \frac{1}{2} (\mathbb{C}\varepsilon) \cdot \varepsilon$$
 (1.31)

dalla quale, derivando rispetto a ε_{ij} , troviamo nuovamente il legame elastico lineare.

Proprietà e caratteristiche di \mathbb{C}

- C è definito positivo, dato che l'energia elastica è una quantità positiva.
- Per qualsiasi tensore $\mathbb A$ del secondo ordine, simmetrico e non nullo si ha che $(\mathbb C\mathbb A)\cdot\mathbb A\geq 0$
- C è uniformemente ellittico, ovvero per qualsiasi coppia di vettori v, w si ha che $C_{ijhk}v_iw_jv_hw_k > 0$

Il tensore C ha 3^4 componenti, ma non tutte sono dipendenti in virtù delle proprietà di simmetria di cui gode.

Infatti dalla definizione di C, per il teorema di Schwartz, si ha che

$$C_{ijhk} = \frac{\partial^2 \varphi}{\partial \varepsilon_{ij} \partial \varepsilon_{hk}} |_{0} = \frac{\partial^2 \varphi}{\partial \varepsilon_{hk} \partial \varepsilon_{ij}} |_{0} = C_{hkij}$$
 (1.32)

Proprietà di simmetria di C:

- simmetria maggiore destra: $C_{ijhk} = C_{hkij}$
- simmetria minore destra: $C_{ijhk} = C_{ijkh}$, dato che $\varepsilon_{hk} = \varepsilon_{kh}$
- simmetria minore sinistra: $C_{ijhk} = C_{jihk}$, dato che $\sigma_{ij} = \sigma_{ji}$

Le componenti indipendenti di C si riducono quindi a 21.

1.3.1 Legame costitutivo per materiali elastici, lineari, omogenei ed isotropi

In generale C dipende da \mathbf{x} (C=C(x)), ma per corpi omogenei C è indipendente dalla posizione. Se consideriamo materiali omogenei ed isotropi, per i quali le proprietà meccaniche sono uguali in tutte le direzioni, abbiamo che l'enrgia elastica dipende solo dalle invarianti del tensore di deformazione, ovvero

$$\varphi = \varphi(E_1, E_2, E_3) \tag{1.33}$$

Volendo ricavare un legame costitutivo lineare, allora la funzione densità di energia elastica dovrà avere forma quadratica, ovvero non dovrà dipendere dall'invariante cubica E_3 , quindi

$$\varphi = \varphi(E_1, E_2) \tag{1.34}$$

ed in particolare

$$\varphi = \frac{c_1}{2}E_1^2 + c_2E_2 \tag{1.35}$$

dove c_1 e c_2 sono costanti caratteristiche del materiale.

La generica componente del tensore degli sforzi sarà quindi data da

$$\sigma_{ij} = c_1 E_1 \frac{\partial E_1}{\partial \varepsilon_{ij}} + c_2 \frac{\partial E_2}{\partial \varepsilon_{ij}} \tag{1.36}$$

Ricordando l'espressione di E_1 e di E_2

$$\begin{split} E_1 &= tr\varepsilon = \varepsilon_{xx} + \varepsilon_{yy} + \varepsilon_{zz} \\ E_2 &= \varepsilon_{xx}\varepsilon_{yy} - \varepsilon_{xy}^2 + \varepsilon_{xx}\varepsilon_{zz} - \varepsilon_{xz}^2 + \varepsilon_{yy}\varepsilon_{zz} + \varepsilon_{yz}^2 \\ \text{possiamo risalire all'espressione delle derivate} \end{split}$$

$$\frac{\partial E_1}{\partial \varepsilon_{ij}} = \delta_{ij} \tag{1.37}$$

$$\frac{\partial E_2}{\partial \varepsilon_{ij}} = tr \varepsilon \delta_{ij} - \varepsilon_{ij} \tag{1.38}$$

Riscriviamo quindi la relazione (1.36)

$$\sigma_{ij} = c_1 tr \varepsilon \delta_{ij} + c_2 tr \varepsilon \delta_{ij} - c_2 \varepsilon_{ij} = (c_1 + c_2) tr \varepsilon \delta_{ij} - c_2 \varepsilon_{ij} = \lambda tr \varepsilon \delta_{ij} + 2\mu \varepsilon_{ij} \quad (1.39)$$

Comunemente infatti si adotta la notazione

$$(c_1 + c_2) = \lambda \tag{1.40}$$

$$-2c_2 = 2\mu (1.41)$$

dove λ e μ sono dette costanti di Lamè e sono parametri costitutivi determinabili sperimentalmente $(\lambda, \mu > 0)$.

Il legame elastico lineare omogeneo ed isotropo si scrive quindi nel seguente modo

$$\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda(tr\varepsilon)\delta_{ij} \tag{1.42}$$

$$C_{ijhk} = \mu(\delta_{ih}\delta_{jk} + \delta_{ik}\delta_{jh}) + \lambda\delta_{ij}\delta_{hk}$$
(1.43)

$$\varphi(\varepsilon) = \frac{1}{2}\lambda(tr\varepsilon)^2 + \mu|\varepsilon|^2 \tag{1.44}$$

 $\operatorname{con} |\varepsilon|^2 = \varepsilon_{ij}\varepsilon_{ij}.$

Derivando rispetto a ε_{ij} trovo $\sigma(\varepsilon)$

$$\sigma_{ij} = 2\mu\varepsilon_{ij} + \lambda(tr\varepsilon)\delta_{ij} \tag{1.45}$$

1.3.2 Legame costitutivo inverso e moduli elastici

Vogliamo trovare a partire dal legame elastico lineare (1.42), la sua espressione inversa e definire i moduli elastici caratteristici del materiale.

$$\sigma = 2\mu\varepsilon + \lambda(tr\varepsilon)I\tag{1.46}$$

Facciamo la traccia di entrambi i membri

$$tr\sigma = 2\mu tr\varepsilon + \lambda (tr\varepsilon)trI = (2\mu + 3\lambda)tr\varepsilon$$
 (1.47)

Vogliamo esplicitare ε

$$tr\varepsilon = \frac{1}{(2\mu + 3\lambda)}tr\sigma \tag{1.48}$$

Sostituiamo la $tr\varepsilon$ nella relazione (1.46)

$$\sigma = 2\mu\varepsilon + \frac{\lambda}{(2\mu + 3\lambda)}tr\sigma I \tag{1.49}$$

ed attraverso semplici passaggi algebrici otteniamo

$$\varepsilon = \frac{1}{(2\mu)}(\sigma - \frac{\lambda}{(2\mu + 3\lambda)}tr\sigma I) = \frac{1}{2\mu}(\sigma - \frac{\nu}{\nu + 1}(tr\sigma)I) \tag{1.50}$$

$$\varepsilon = \frac{1}{2\mu} (\sigma - \frac{\nu}{\nu + 1} (tr\sigma)I) \tag{1.51}$$

che rappresenta il legame elastico lineare omogeneo ed isotropo inverso.

Definiamo il coefficiente di Poisson ν

$$\nu = \frac{\lambda}{2\nu + \lambda} \tag{1.52}$$

Si osservi che, essendo le costanti di Lamè $\lambda, \nu > 0$, il coefficiente di Poisson dovrà risultare $\nu < \frac{1}{2}$.

Inoltre dalla relazione (1.47), osservando che trI = 3, si ottiene

$$\frac{1}{3}tr\sigma = (\frac{2\nu + 3\lambda}{3})tr\varepsilon \tag{1.53}$$

dove il termine

$$K = \frac{2\nu + 3\lambda}{3} \tag{1.54}$$

rappresenta il coefficiente di dilatazione volumetrica o modulo elastico di compressione.

Chiaramente dovrà risultare K>0 altrimenti in seguito a compressione il corpo si espanderebbe.

Consideriamo un cilindro sottoposto a tensione uniforme σ_{11} sulle basi Figura

dove la matrice associata al tensore degli sforzi σ nel caso in questione risulta

$$\sigma = \begin{pmatrix} \sigma_{11} & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{1.55}$$

Considerando la relazione (1.50) e sostituendo abbiamo

$$\varepsilon_{ij} = \frac{1}{2\mu} (\sigma_{ij} - frac\lambda 2\mu + 3\lambda\sigma_{hh}\delta_{ij}) \Rightarrow \varepsilon_{11} = \frac{\lambda + \mu}{\mu(3\lambda + 2\mu)}\sigma_{11}$$
 (1.56)

Definiamo quindi il modulo di elasticità di Young E

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} \tag{1.57}$$

Per il caso affrontato del cilindro sottoposto a tensione σ_{11} sulle basi, otteniamo le seguenti deformazioni

$$\varepsilon_{11} = \frac{\sigma_{11}}{E} \tag{1.58}$$

mentre la dilatazioni $\varepsilon_{22}, \varepsilon_{33}$ risultano negative, ovvero si ha una contrazione lungo gli assi 2 e 3

$$\varepsilon_{22} = \varepsilon_{33} = -\frac{\lambda}{2\mu(3\lambda + 2\mu)}\sigma_{11} \tag{1.59}$$

Inoltre il modulo di Poisson ((1.52)) è dato da

$$\nu = -\frac{\varepsilon_{22}}{\varepsilon_{11}} = \frac{\lambda}{2(\lambda + \mu)} \tag{1.60}$$

ed esprime il rapporto tra dilatazione trasversale e longitudinale.

Con la prova di trazione è quindi possibile ricavare i moduli E e ν , mentre sottoponendo un prisma ad azioni tangenziali

Figura

$$\sigma_{ij} = \begin{pmatrix} 0 & \sigma_{12} & 0 \\ \sigma_{21} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \tag{1.61}$$

possiamo trovare il modulo di elasticità tangenziale γ

$$\varepsilon_{ij} = \frac{1}{2\mu} (\sigma_{ij} - \frac{\lambda}{2\mu + 3\mu} \sigma_{hh} \delta_{ij}) \tag{1.62}$$

$$\gamma_{12} = \varepsilon_{12} + \varepsilon_{21} = \frac{\sigma_{12}}{\mu} \tag{1.63}$$

Infine considerando il caso di una compressione uniforme, ovvero

$$\sigma_{ij} = -p\delta_{ij} \tag{1.64}$$

si avranno le seguenti deformazioni

$$\varepsilon_{xx} = \varepsilon_{yy} = \varepsilon_{zz} = -\frac{p}{3\lambda + 2\mu} \tag{1.65}$$

Infine calcolando la traccia di ε si ottiene

$$tr\varepsilon = -\frac{p}{\lambda + \frac{2}{3}\mu} = -\frac{1}{K}p\tag{1.66}$$

dove K è il coefficiente di dilatazione volumetroa o modulo di compressione ((1.54)).

1.4 Equazioni di Navier

Le equazioni di Navier rappresentano le equazioni di equilibrio per corpi omogenei, elastici, lineari ed isotropi e si ottengono sostituendo nell'equazione di equilibrio delle forze (1.67), l'espressione della derivata del legame costitutivo elastico lineare.

Equazione di equilibrio delle forze

$$b_i + \sigma_{ij/j} = 0 \tag{1.67}$$

Deriviamo la relazione (1.42) che rappresenta il legame costitutivo elastico lineare

$$\sigma_{ij/j} = (\lambda tr \varepsilon \delta_{ij} + 2\mu \varepsilon_{ij})_{/j} = \lambda u_{h/hj} \delta_{ij} + 0 + 2\mu \frac{1}{2} (u_{i/j} + u_{j/i})_{/j} = \lambda u_{h/hi} + \mu u_{i/jj} + \mu u_{j/ij}$$
(1.68)

dove $tr\varepsilon = \varepsilon_{hh} = u_{h/h} = div(u)$ e u rappresenta lo spostamento. Inoltre per il teorema di Schwartz possiamo scrivere

$$\lambda u_{h/hi} + \mu u_{i/jj} + \mu u_{j/ji} = (\lambda + \mu) u_{j/ji} + \mu u_{i/jj} = (\lambda + \mu) \nabla divu + \mu \Delta u$$
 (1.69)

$$div\sigma = \mu \Delta u + (\lambda + \mu) \nabla divu \tag{1.70}$$

dove
$$\nabla divu = \frac{\partial^2 u_j}{\partial x_i \partial x_j}$$
 e $\Delta u = \frac{\partial u_i}{\partial x_j \partial x_j} = u_{i/jj}$.

Dato che in condizioni di equilibrio $div\sigma = -b$, sostituendo la relazione (1.70), otteniamo

$$\mu \Delta u + (\lambda + \mu) \nabla divu + b = 0 \tag{1.71}$$

che rappresenta l'equazione di Navier.

In componenti

$$\mu u_{i/jj} + (\mu + \lambda)u_{j/ji} + b_i = 0$$