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Abstract

We give a quick introduction to derived algebraic geometry (DAG) sampling basic constructions
and techniques. We discuss affine derived schemes, derived algebraic stacks, and the Artin-Lurie
representability theorem. Through the example of deformations of smooth and proper schemes, we
explain how DAG sheds light on classical deformation theory. In the last two sections, we introduce
differential forms on derived stacks, and then specialize to shifted symplectic forms, giving the main
existence theorems proved in [PTVV].
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1 Introduction

Derived Algebraic Geometry (DAG) starts with the idea of replacing the affine objects of Algebraic
Geometry, i.e. commutative rings, by some kind of “derived commutative rings” whose internal homotopy
theory is non trivial. This can be achieved over Q by considering commutative differential non-positively
graded algebras (cdga’s), while in general one might instead consider simplicial commutative algebras.1

For simplicity, we will stick to the case of cdga’s (i.e. we will assume to work over Q). As in classical
1Note that DAG based on cdga’s over Q or on simplicial commutative Q-algebras are equivalent theories.
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Algebraic Geometry, the first step is to develop the local or affine theory, i.e to define and study finiteness
conditions, flat, smooth, étale properties for morphisms between cdga’s. This is the content of Section
2. Once this is set up, we will define the analog in DAG of being a sheaf or stack with respect to a
derived version of a topology on these derived affine objects (Section 3), and then specify which sheaves
or stacks are of geometric type (these will be called derived algebraic or derived Artin stacks). This
last step will be done by using atlases and a recursion on the “level of algebraicity” in Section 4 where
we will also list the main basic properties of derived algebraic stacks. It’s not always easy to decide
whether a given derived stack is algebraic by using only the definition, and a powerful criterion is given
by J. Lurie’s DAG version of M. Artin’s representability theorem: this is explained in Section 5, where
we also give a simplified but often very useful version of Lurie’s representability.
In Section 6 we explain, through the example of deformations of a given smooth proper scheme, how
DAG fills some conceptual gaps in classical deformation theory, the idea being that once we allow
ourselves to consider also deformations over an affine derived base, then deformation theory becomes
completely transparent.
The second part of this article describes symplectic geometry in DAG. We start by describing differential
forms and closed differential forms on a derived stack (Section 7). These forms have two new features
with respect to the classical case: first of all they have a degree (this new degree of freedom comes from
the fact that in DAG the module of K’́ahler differentials is replaced by a complex, the so-called cotangent
complex), secondly the notion of a closed form in DAG consists of a datum rather than a property. Once
these notions are in place, the definition of a derived version of symplectic structure is easy. The final
Section 8 reviews some the main examples and existence results in the theory of derived symplectic
geometry taken from [PTVV], namely the derived symplectic structure on the mapping derived stack of
maps from a O-compact oriented derived stack to a symplectic derived stack, and the derived symplectic
structure on a lagrangian intersection.

2 Affine derived geometry

2.1 Homotopical algebra of dg-modules and cdga in characteristic 0

Let k be a commutative Q-algebra.

Definition 2.1 We will write

• dgmodď0
k for the model category of non-positively graded dg-modules over k (with differential in-

creasing the degree), with weak equaivalences W= “quasi-isomorphisms” and fibrations
Fib= “surjections in deg ă 0 ”, endowed with the usual symmetric b structure compatible with the
model structure (i.e. a symmetric monoidal model category, [Hov]).

• dgmodď0
k for the symmetric monoidal 8-category obtained by inverting (in the 8-categorical

sense2) quasi-isomorphisms in dgmodď0
k .

• cdgaď0
k :“ CAlgpdgmodď0

k q for the model category of commutative unital monoids in
dgmodď0

k , with W= “quasi-isomorphisms” and Fib= “surjections in deg ă 0 ” (here we need
that k is a Q-algebra). These are non-positively graded commutative differential graded k-algebras
(cdga’s for short).

2See M. Robalo’s paper in this volume.
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• cdgaď0
k pkq :“ CAlgpdgmodď0

k q for the 8-category of non-positively graded commutative differ-
ential graded k-algebras (derived k-algebras) that can also be obtained by inverting (in the 8-
categorical sense) quasi-isomorphisms in cdgaď0

k .

• S will denote the 8-category of spaces.

We will use analogous notations for unbounded dg-modules over k, and unbounded cdga’s over k,
by simply omitting the p´qď0 suffix. Same convention for non necessarily commutative algebras (by
writing Alg instead of CAlg).

There is an 8-adjunction:

dgmodď0
k

Symk //
cdgaď0

k
U
oo

(induced by a Quillen adjunction on the corresponding model categories) where Symk denotes the free
cdga functor, and U the forgetful functor.

Mapping spaces. We have the following explicit models for mapping spaces in cdgaď0
k . Let Ω‚n be

the algebraic de Rham complex of krt0, t1, ¨ ¨ ¨ , tns{p
ř

i ti´ 1q over k. Consider rns ÞÑ Ω‚n as a simplicial
object in cdgak. Thus, if B P cdgaď0

k , then the assignment rns ÞÑ τď0pΩ
‚
n bk Bq defines a simplicial

object in cdgaď0
k .

For any pair pA,Bq in cdgaď0
k , there is an equivalence of of spaces (simplicial sets)

Mapcdgaď0
k
pA,Bq » prns ÞÑ Homcdgaď0

k
pQkA, τď0pΩ

‚
n bk Bqqq

where QkA is a cofibrant replacement of A in the model category cdgaď0
k .

Cautionary exercises. The following exercises are meant to make the reader aware of the boundaries
of the territory where we will be working.

Exercise 2.2 Let charpkq “ p. Show that CAlgpdgmodkq cannot have a model structure with W=“quasi-
isomorphisms” and Fib=“ degreewise surjections”.

Hint: 1) Construct a map f : AÑ B in CAlgpdgmodkq with the following property: Di , α P H ipBq such
that αp is not in the image of H ippfq.
2) Prove that no such f can be factored as Fib ˝ pW X Cofq.

Exercise 2.3 Let charpkq “ 0. Show that the obvious 8-functor CAlgpdgmodkq Ñ Algpdgmodkq,
though conservative, is not fully faithful.

For A P cdgaď0
k we consider dgmodpAq the symmetric monoidal 8-category of (unbounded) dg-

modules over A, and we define

CAlgpdgmodpAqq » A{cdgaď0
k .
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Given any map f : AÑ B P cdgaď0
k , there is an induced 8-adjunction

dgmodpBq
f˚“p´qbAB//

dgmodpAq
f˚

oo

which is an equivalence of 8-categories if f is an equivalence in cdgaď0
k .

2.2 Cotangent complex

Let f : A Ñ B be a map in cdgaď0
k . For any M P dgmodď0pBq, let B ‘M P cdgaď0

k be the trivial
square zero extension of B by M (i.e. B acts on itself and on M in the obvious way, and M ¨M “ 0).
B ‘M is naturally an A-algebra and it has a natural projection map prB : B ‘M Ñ B of A-algebras.

Definition 2.4 The space of derivations from B to M over A is defined as

DerApB,Mq :“ MapA{cdgaď0
k {BpB,B ‘Mq.

Equivalently,

DerApB,Mq “ fib

ˆ

MapA{cdgaď0
k
pB,B ‘Mq

prB,˚ //MapA{cdgaď0
k
pB,Bq ; idB

˙

.

M Ñ DerApB,Mq can be constructed as an 8 functor dgmodď0pBq Ñ S, and we have the following
derived analog of the classical existence results for Kähler differentials.

Proposition 2.5 The 8-functorM ÞÑ DerApB,Mq is corepresentable, i.e. DLB{A P dgmodď0pBq and
a canonical equivalence DerApB,´q » MapdgmodpBqpLB{A,´q.

Proof. Let QAB » B be a cofibrant replacement of B in A{cdgaď0
k . Then LB{A :“ Ω1

QAB{A
bQAB B

does the job. l

Let us list the most useful properties of the cotangent complex construction (for details, see [HAG-II]).

(1) Given a commutative square in cdgaď0
k

A
u1 //

��

A1

��
B u

// B1

there is an induced map

LB{A Ñ u˚LB1{A1 ô LB{A bB B1 Ñ LB1{A1 .

In particular, we get a canonical map LB{A Ñ LH0pBq{H0pAq. If B “ S,A “ R are discrete3, the
canonical map H0pLS{Rq Ñ Ω1

S{R is an isomorphism.

3An object D P cdgaď0
k is discrete if the canonical map D Ñ H0

pDq is a quasi-isomorphism.
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(2) If the commutative diagram in (1) is a pushout square, then the map LB{A bB B1 Ñ LB1{A1 is an
equivalence.

(3) If C Ñ AÑ B are maps in cdgaď0
k , then there is an induced cofiber sequence

LA{C bA B Ñ LB{C Ñ LB{A

in dgmodpBq, where the first map is as in (1) via u1 “ idC , u : AÑ B, and the second map is as
in (1) with u “ idB and u1 “ pC Ñ Aq).

(4) If

A
u1 //

��

A1

��
B u

// B1

is a pushout in cdgaď0
k , then we have a fiber sequence

LA{k bA B1 Ñ LB{k bB B1 ‘ LA1{k bA B1 Ñ LB1{k

in dgmodpB1q.

Exercise 2.6 Compute LA{k for A :“ krx1, ¨ ¨ ¨ , xns{pfq, for f ‰ 0

Hint: Use the associated Koszul resolution.

Exercise 2.7 Compute the cotangent complex of krεs over k, where ε has cohomological degree ´1, and
use this to classify explicitly all derivations krεs Ñ k.

Postnikov towers. We will describe here the Postnikov tower of a cdga and its relation to the cotangent
complex.

Definition 2.8 Let A P cdgaď0
k . A Postnikov tower for A is the data of a sequence tPnpAquně0 in

A{cdgaď0
k , and of maps

¨ ¨ ¨ // PnpAq
πn // Pn´1pAq

πn´1 // ¨ ¨ ¨ // P1pAq
π1 // P0pAq

in A{cdgaď0
k , satisfying the following properties:

1. PnpAq is n-truncated (i.e. H´ipPnpAqq “ 0 for i ą n);

2. HjpAq Ñ HjpPnpAqq is an iso, for all 0 ď j ď n;

3. For any n-truncated B P cdgaď0
k , the map Mapcdgaď0

k
pPnpAq, Bq Ñ Mapcdgaď0

k
pA,Bq induced by

AÑ PnpAq, is an equivalence of spaces.
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Proposition 2.9 A Postnikov tower is unique in the 8-category Fun8pNop, A{cdgaď0
k q of 8-functors.

Moreover, the canonical map AÑ limně0 PnpAq is an equivalence in cdgaď0
k .

Exercise 2.10 Construct a Postnikov tower such that

P0pAq “ A0{dpA´1qr0s

P1pAq “ p ¨ ¨ ¨ Ñ 0 Ñ A´1{dpA´2q Ñ A0 q

etc.

The following result explains how the cotangent complex controls the Postnikov tower of a cdga.

Proposition 2.11 Let

¨ ¨ ¨ // PnpAq
πn // Pn´1pAq

πn´1 // ¨ ¨ ¨ // P1pAq
π1 // P0pAq

be a Postnikov tower for A. For any n, there exists a map φn : LPnpAq{A Ñ H´n´1pAqrn` 2s such that
the following square is cartesian in A{cdgaď0

k

Pn`1pAq //

πn

��

PnpAq

d0
��

PnpAq
dφn

// PnpAq ‘H
´n´1pAqrn` 2s

,

where dφn is the derivation corresponding to φn via the identification

π0pMapA{cdgaď0
k {PnpAq

pPnpAq, PnpAq ‘H
´n´1pAqrn` 2sqq

» HomHopdgmodpPnpAqqpLPnpAq{A, H
´n´1pAqrn` 2sq,

Corollary 2.12 A map AÑ B in cdgaď0
k is an equivalence iff the following two properties hold

• H0pAq Ñ H0pBq is an isomorphism (of discrete k-algebras)

• LB{A » 0.

The previous corollary is the first of several examples of the following general Principle:

(˛) derived algebraic geometry = algebraic geometry (of the truncation) + deformation theory

Remark 2.13 Note this principle seriously fails for derived geometry over unbounded cdga’s or non-
connective commutative ring spectra.
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Definition 2.14 Let n P N. A non-positively graded dg-moduleM is said to be n-connective if H´iM “

0 for every 0 ď i ă n. A morphism f : M Ñ N is said to be n-connected if fibpfq is n-connective.

The following result gives more precise and useful relations between the degree of connectedness of
a map between cdga’s and the degree of connectivity of its cotangent complex.

Proposition 2.15 Let f : AÑ B be a map in cdgaď0
k , and n P N.

1. If f is n-connected, then LB{A is pn` 1q-connective.

2. If LB{A is pn` 1q-connective and H0pfq is an isomorphism, then f is n-connected.

2.3 Derived commutative algebra: finiteness, flat, smooth, étale.

In order to motivate the basic definitions in derived commutative algebra, we will give here also the
classical definitions in commutative algebra in a form that is appropriate for our generalization.

Definition 2.16 • (classical) A map R Ñ S of discrete commutative k-algebras is finitely pre-
sented if HomR{CAlgpkqpS,´q commutes with filtered colimits.

• (derived) A map A Ñ B in cdgaď0
k is derived finitely presented if MapA{cdgaď0

k
pB,´q com-

mutes with (homotopy) filtered colimits.

Proposition 2.17 A map AÑ B in cdgaď0
k is fp iff

• H0pAq Ñ H0pBq is classically finitely presented, and

• LB{A is a perfect B-dg module (i.e. is a dualizable object in pdgmodpBq,bBq).

See [HAG-II, 2.2.] or [Lu-HA, Theorem 7.4.3.18] for a proof.

Thus the fact that a map between discrete rings is classically finitely presented does not imply that
the map is derived finitely presented. However, “classical finitely presented + lci ” ùñ “derived finitely
presented”.

Definition 2.18 • (classical) A map RÑ S of discrete commutative k-algebras is flat if p´qbRS :
modpRq Ñ modpSq preserves pullbacks (i.e. preserves kernels).

• (derived) A map AÑ B in cdgaď0
k is derived flat if p´qbAB : dgmodď0pAq Ñ dgmodď0pBq

preserves pullbacks.

Hence, a map of discrete commutative k-algebras is classically flat iff it is derived flat.

Remark 2.19 Note that a map AÑ B in cdgaď0
k is derived flat iff for any discrete A-module M , the

derived tensor product M bLA B is discrete (i.e of zero tor-amplitude).

Definition 2.20 • (classical) A map RÑ S of discrete commutative k-algebras is formally étale
if τě´1LS{R » 0.
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• (derived) A map AÑ B in cdgaď0
k is derived formally étale if LB{A » 0.

• (classical) A map RÑ S of discrete commutative k-algebras is formally smooth if HomDpSqpτě´1LS{R,Mq “
0 for any M P dgmodď0pSq s.t. H0pMq “ 0.

• (derived) A map AÑ B in cdgaď0
k is derived formally smooth if HomDď0pBqpLB{A,Mq “ 0

for any S P dgmodď0pBq s.t. H0pMq “ 0.

Exercise 2.21 Show that the above definition of classical formally smooth (respectively, étale) coincides
with the usual one given by the infinitesimal lifting property ([EGA-IV]).

Hint (for the formally smooth case): show that f : RÑ S is formally smooth in the sense of [EGA-IV]
iff τě´1Lf » P r0s with P projective over S.

Remark 2.22 Note that considering τě´1Lf and not all of Lf , in Definition 2.20 is strictly necessary.
In fact there is an example ([Stacks-Project, TAG 06E5]) of a map f : k Ñ S, where k is a field, such
that f is formally étale (hence formally smooth) but H´2pLf q ‰ 0. Note that such an f is necessarily
not finitely presented.

Definition 2.23 • (classical) A map R Ñ S of discrete commutative k-algebras is étale (respec-
tively smooth) if it is finitely presented and formally étale (respectively formally smooth).

• (derived) A map A Ñ B in cdgaď0
k is derived étale (respectively derived smooth) if it is

derived finitely presented and derived formally étale (respectively derived formally smooth).

• (classical) A map R Ñ S of discrete commutative k-algebras is a Zariski open immersion if it
is flat, finitely presented and the product map S bR S Ñ S is an isomorphism.

• (derived) A map A Ñ B in cdgaď0
k is a Zariski derived open immersion if it is flat, finitely

presented, and the product map B bA B Ñ B is an equivalence.

There is a characterization of the above derived properties which is very useful in practice.

Definition 2.24 A map A Ñ B in cdgaď0
k is strong if the canonical map H0pBq bH0pAq H

ipAq Ñ

H ipBq is an isomorphism for all i.

Theorem 2.25 A map AÑ B in cdgaď0
k is derived flat (respectively derived smooth, derived étale, a

Zariski derived open immersion) iff it is strong and H0pAq Ñ H0pBq is flat (respectively smooth, étale,
a Zariski open immersion).

Note that if AÑ B is derived flat and A is discrete, then B is discrete as well.
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Exercise 2.26 Assume Theorem 2.25. Show that f : A Ñ B in cdgaď0
k is derived smooth iff the

following three conditions hold:

• f is derived finitely presented;

• f is derived flat;

• B is a perfect B bA B-dg module.

Convention. In the rest of this article, we will omit the adjective “derived” when writing any of the
above properties for morphisms of derived algebras, i.e. “derived étale” will be replaced by “étale”, etc.

3 Étale topology and derived stacks

Definition 3.1 • A family tAÑ Aiui of maps in cdgaď0
k is an étale covering family if

(i) each AÑ Ai is étale;
(ii) the family tH0pAq Ñ H0pAiqui is a classical étale covering family (of discrete commutative

k-algebras).

This defines a topology on the8-category dAffpkq :“ pcdgaď0
k q

op (i.e., by definition, a Grothendieck
topology on HopdAffpkqq). This topology is called the étale topology on derived rings and de-
noted by (ét).

• The 8-category ShpdAffpkq, (ét)q of sheaves of spaces on this 8-site, is denoted by dStpkq and
called the 8-category of derived stacks over k.

• An 8-functor F : dAffpkqop Ñ S is a derived stack iff for any A P cdgaď0
k and any étale

hypercover AÑ B‚, the induced map F pAq Ñ limF pB‚q is an equivalence of spaces (in this case,
we say that F has étale hyperdescent).

The étale topology on derived rings is subcanonical, i.e. for any A P cdgaď0
k , the 8-functor

SpecA : dAffpkq ÝÑ S : B ÞÝÑ Mapcdgaď0
k
pA,Bq

is a sheaf for (ét) (i.e. it has étale hyperdescent). Any derived stack equivalent to SpecA will be called
a derived affine scheme.

A consequence of Theorem 2.25 is the following result saying that topologically (étale or Zariski) a
derived affine scheme is indistiguishable from its truncation.

Proposition 3.2 H0 induces an equivalence of étale or Zariski sites of A and of H0pAq, for any
A P cdgaď0

k .

This statement is analogous to the equivalence between the small étale or Zariski site of a scheme and
of its reduced subscheme.

Remark 3.3 Čech nerves of étale coverings are special étale hypercovers. One may also consider 8-
functors F : dAffpkqop Ñ S having descent just for these special Cech étale hypercovers: we obtain, in
general, different categories of derived stacks. However, the full subcategories of truncated stacks (i.e.
whose values are truncated homotopy types) are in fact equivalent.
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Next we list a few basic facts concerning the 8-category of derived stacks. We will denote by Stpkq :“
ShpAffpkq, étq the 8-category of (underived, higher) stacks over k, for the classical étale topology (see
also [HAG-II, 2.1]).

• There is an 8-adjunction

Stpkq
i //

dStpkq
t0
oo

between derived and underived stacks (for the étale topology), i being the left adjoint. The
truncation functor t0 is determined by the property t0pSpecAq “ SpecH0pAq, and the fact
that it preserves limits (being right adjoint). Note that i is fully faithful.

• The8-category dStpkq is cartesian closed, i.e. there are internal Hom’s, denoted as MAPdStpkqpF,Gq P
dStpkq, and equivalences of spaces

MapdStpkqpF ˆG,Hq » MapdStpkqpF,MAPpG,Hqq.

More generally, we have an equivalence in dStpkq:

MAPdStpkqpF ˆG,Hq » MAPdStpkqpF,MAPdStpkqpG,Hqq.

• The 8-functor i does not preserve pullbacks nor internal Hom’s (in fact, a lucky feature).

Definition 3.4 If F P dStpkq, we define

QCohpF q :“ lim
SpecAÑF

dgmodpAq

(the limit being taken inside the 8-category of k-linear stable, symmetric monoidal 8-categories). This
is called the symmetric monoidal 8-category of quasi-coherent complexes on F .

We can globalize the definition of cotangent complex to stacks, as follows.
Let F P dStpkq, x : S “ SpecA Ñ F , and M P dgmodď0pAq. We have a projection map pr :

A‘M Ñ A.

Definition 3.5 • We say that a derived stack F has a cotangent complex at x, if there is a
p´nq-connective A-module LF,x (for some n) such that the 8-functor

DerF,x : dgmodď0pAq // S

M � // fib

ˆ

F pA‘Mq
F pprq
ÝÑ F pAq;x

˙

is equivalent to the functor MapdgmodpAqpLF,x,´q (restricted to dgmodď0pAq). If this is the case,
LF,x is called a cotangent complex of F at x4.

• We say that F has a (global) cotangent complex if D LF P QCohpF q, such that for any

x : S “ SpecAÑ F ,

x˚LF is a cotangent complex for F at x
4Obviously, any two cotangent complexes of F at x are canonically equivalent.

10



4 Derived algebraic stacks

In this section we will single out, among all derived stacks, the “geometric” ones, called derived algebraic
stacks. The definition will involve a long induction on n ě 0.

We start with the case n “ 0.

Definition 4.1 A map f : F Ñ G in dStpkq is defined to be an epimorphism (respectively, a
monomorphism) if the induced map π0pF q Ñ π0pGq of sheaves of sets on the usual site pHopdAffpkqq, (ét)q
is an epimorphism (respectively, if the diagonal ∆f : F Ñ F ˆG F is an equivalence).

Definition 4.2 (Derived schemes) • A map u : F Ñ S “ SpecA of derived stacks is a Zariski
open immersion if it is a monomorphism and there is a family tpi : SpecAi Ñ F u of morphisms
in dStpkq such that

š

i pi :
š

i SpecAi Ñ SpecF is an epimorphism, and each composite ui :
SpecAi Ñ F Ñ SpecA is a Zariski open immersion of cdga’s (so that we already know what this
means).

• A morphism F Ñ G of derived stacks is a Zariski open immersion if for any S Ñ G with
S affine, the induced map F ˆG S Ñ S is a Zariski open immersion (as defined in the previous
item).

• A derived stack F is a derived scheme if there exists a family tSpecAi Ñ F ui of Zariski open
immersions, such that the induced map

š

i SpecAi Ñ F is an epimorphism. Such a family is
called a Zariski atlas for F .

Note that if F Ñ SpecA is a Zariski open immersion, then F is automatically a derived scheme. Once
derived schemes are defined, we can extend the notion of smooth, flat, étale to maps between them.

Definition 4.3 A morphism of derived schemes f : X Ñ Y is smooth (respectively flat, respectively
étale) if there are Zariski atlases tUi Ñ XuiPI , tVj Ñ Y ujPJ and, for any i P I there is jpiq P J and a
commutative diagram

Ui
fi,jpiq //

��

Vjpiq

��
X

f
// Y

such that fi,jpiq is smooth (resp. flat, resp. étale) between derived rings.

Having defined derived schemes, we may give the general inductive definition of derived algebraic
n-stacks, for n ě 0.

Definition 4.4 (Derived 0-algebraic stacks)

• A derived stack F is 0-algebraic if it is (equivalent to) a derived scheme.

• A morphism of derived stacks F Ñ G is 0-representable if for any S Ñ G where S is 0-algebraic,
the pullback S ˆG F is 0-algebraic.

• a 0-representable morphism of derived stacks F Ñ G is smooth if for any S Ñ G where S is
0-algebraic, the morphism of derived schemes S ˆG F Ñ S is smooth.
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Definition 4.5 (Derived n-algebraic stacks) Let n ą 0, and suppose we have already defined the
notions of derived pn´1q-algebraic stack, of pn´1q-representable morphism (between arbitrary
derived stacks), and of smooth pn´ 1q-representable morphism (between arbitrary derived stacks).
Then

• A derived stack F is n-algebraic if there exists a smooth pn´ 1q-algebraic morphism p : U Ñ F
of derived stacks, where U is 0-algebraic and p is an epimorphism. Such a p is called a smooth
n-atlas for F .

• A morphism of derived stacks F Ñ G is n-representable if for any S Ñ G where S is 0-algebraic,
the pullback S ˆG F is n-algebraic.

• An n-representable morphism of derived stacks F Ñ G is smooth (resp. flat, resp. étale) if
for any S Ñ G where S is 0-algebraic, there exists a smooth n-atlas U Ñ S ˆG F , such that the
composite U Ñ S, between 0-algebraic stacks, is smooth (resp. flat, resp. étale).

• A derived stack is algebraic if it is m-algebraic for some m ě 0.

Remark 4.6 Exactly the same definitions 4.4 and 4.5, with “derived scheme” replaced by (classical)
“scheme” and “affine derived scheme” by (classical) “affine scheme”, give us a notion of underived algebraic
(higher) n-stack, for each n ě 0. This notion was first proposed by C. Simpson and C. Walter.

Exercise 4.7 If F is n-algebraic, then the diagonal map F Ñ F ˆ F is pn´ 1q-representable.

We list below some important and useful properties of derived algebraic stacks.

• The full sub-8-category dStalgpkq Ă dStpkq of algebraic stacks is closed under pullbacks and
finite disjoint unions.

• Representable morphisms are stable under composition and arbitrary pullbacks.

• If F Ñ G is a smooth epimorphism of derived stacks, then F is algebraic iff G is algebraic.

• A non-derived stack X is algebraic iff the derived stack ipX q is algebraic.

• If F is a derived algebraic stack, then its truncation t0pF q is an algebraic (underived) stack.

• If F is a derived algebraic stack and t0pF q is an m-truncated5 (underived) stack, then for any
n-truncated A P cdgaď0

k (i.e. H ipAq “ 0 for i ă ´n), the space F pAq is pn`mq-truncated.

• If F Ñ G is a flat morphism of derived algebraic stacks, then: G underived (i.e. » ipX q) implies
that F is underived.

• A pn´ 1q-representable morphism is n-representable.

• A pn ´ 1q- representable smooth (resp. étale, flat, Zariski open immersion) is n-representable
smooth (resp. étale, flat, Zariski open immersion).

5I.e. it sends any discrete commutative k-algebra to an m-truncated space.
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• If F Ñ G is a map of derived stack, G is n-algebraic and there is a smooth atlas S Ñ G such that
SˆG F is n-algebraic, then F is n-algebraic (i.e. being n-algebraic is smooth-local on the target).

• A map A Ñ B in cdgaď0
k is quasi finitely presented (qfp, for short) if H0pAq Ñ H0pBq is

(classically) finitely presented. Flat qfp covers define a topology (qfpf) on dAffpkq. We can
replace (ét) by (qfpf), and smooth (atlases) by flat (atlases), and we get another full subcategory
dStqfpf, algpkq of derived stacks which are algebraic for this new pair (qfpf, flat). A deep result
of B. Toën [To-flat] says that in fact dStqfpf, algpkq = dStalgpkq. The analogous statement for
underived stacks in groupoids was proven by M. Artin [Ar]).

• Derived algebraic stacks admitting étale atlases are called derived Deligne-Mumford stacks,
and often, by analogy with the classical case, general derived algebraic stacks (i.e. with smooth
atlases) are also called derived Artin stacks.

• An (underived) algebraic n-stack locally of finite presentation over k (with bounded cotangent
complex) has a cotangent complex of amplitude Ď r´1, ns6 On the opposite side, a derived affine
scheme always have a cotangent complex with amplitude Ď p´8, 0s. Therefore, for an arbitrary
derived algebraic stack F , the negative degrees of LF are often referred to as its “derived” degrees,
while the positive ones as its “stacky” degrees.

5 Lurie’s Representability Theorem

Let us introduce some fundamental deformation-theoretic properties of a derived stack.

Definition 5.1 A derived stack F is

• nilcomplete if for any A P cdgaď0
k , the canonical map F pAq Ñ limně0 F pPnpAqq is an equiva-

lence in S (recall that tPnpAquně0 is a Postnikov tower for A).

• infinitesimally cohesive if the F -image of any cartesian square in cdgaď0
k

A1 //

��

A

p

��
B1 q

// A

where H0ppq and H0pqq are surjective with nilpotent kernels, is cartesian in S.

• infinitesimally cartesian if for any A P cdgaď0
k , any M P dgmodď0pAq, s.t. H0pMq “ 0, and

any derivation d from A to M , the F -image of the pullback

A‘d ΩM //

��

A

d
��

A
triv

// A‘M

is a pullback in S.
6By a famous result of L. Avramov, a scheme locally of finite type over k either has a perfect cotangent complex with

amplitude Ď r´1, 0s (and this happens iff the scheme is lci), or has an unbounded cotangent complex.
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• discretely integrable7 if for any classical complete local noetherian k-algebra pR,mq, the canon-
ical map F p pRq Ñ limn F pR{m

nq is an equivalence in S.

Obviously, being infinitesimally cohesive implies being infinitesimally cartesian, and the notion of in-
finitesimal cohesiveness is a derived version of the classical Schlessinger condition [Stacks-Project, Tag
06J1].

We are now able to state the following important result that is the most useful known criterion for
checking algebraicity of a derived stack.

Theorem 5.2 (Lurie’s Representability Theorem) Let k be a noetherian G-ring (e.g. noetherian
and excellent). A derived stack F over k is algebraic iff the following conditions hold:

• F is nilcomplete.

• F is infinitesimally cohesive.

• F is discretely integrable.

• F has a cotangent complex

Remark 5.3 There is also a more general version of Theorem 5.2 where the base k is a derived ring
([Lu-SAG, Theorem 18.4.0.1]).

Corollary 5.4 (“Easy” Representability Theorem) Let k be a noetherian commutative ring. A
derived stack F over k is n-algebraic k iff the following conditions hold:

• The truncation t0pF q is an (underived) algebraic n-stack.

• F is nilcomplete, infinitesimally cartesian and has a cotangent complex.

In this corollary, we have separated the first condition which is a global one but only concerns the
truncation, and the second condition which is purely deformation-theoretic. This is another instance of
Principle p˛q. A proof of Corollary 5.4, independent of Theorem 5.2, can be found in [HAG-II, Appendix
C].

Remark 5.5 Note that the G-ring condition in Theorem 5.2 re-appears when we want to further unzip
the first condition in Corollary 5.4.

Exercise 5.6 Let X{k be a flat and proper underived scheme and Y {k an underived smooth scheme.
Let MAPdStpkqpX,Y q : A ÞÝÑ MapdStpkqpX ˆ SpecA, Y q the internal mapping derived stack.

• Show that t0pMAPdStpkqpX,Y qq is the classical scheme of morphisms from X to Y

• Let MAPdStpkqpX,Y q X ˆMAPdStpkqpX,Y q
poo ev // Y .

Show that T :“ p˚ev
˚pTY {kr0sq is a tangent complex for MAPdStpkqpX,Y q.

• Apply Lurie’s representability theorem (in the easy case, if the reader so wishes) to deduce that
MAPdStpkqpX,Y q is a derived geometric stack (actually, a derived scheme).

7This is the same as integrable (as in [Lu-SAG, Definition 17.3.3.1]) if F is already nilcomplete, infinitesimally cohesive
and admits a cotangent complex.
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6 DAG “explains” classical deformation theory

In this section, we illustrate how derived deformation theory makes classical deformation theory com-
pletely transparent, by working out an explicit example of a very classical deformation problem: the
infinitesimal deformations of a proper smooth scheme over k “ C.

We will first describe what classical deformation theory tells us in this special case, point out some
weak points in this approach, and finally describe how derived algebraic geometry fixes these issues.
The reader will find all of the omitted details in [Po-Ve].

Recall that the objects of study of classical (formal) deformation theory are reduced functors

F : ArtC Ñ Grpd ãÑ S

Here, ArtC denotes the category of Artin rings over C (i.e. artinian local C-algebras with residue
field isomorphic to C, or equivalently, augmented over C), and “reduced” means that F pCq is weakly
contractible. For example, if calgC denotes the usual category of (discrete) commutative C-algebras,
and F : calgC Ñ Grpd is a classical moduli problem, then the choice of any point ξ P F pCq determines
a functor

pFξ :“ F ˆF pCq ˚ : ArtC ÝÑ Grpd , R ÞÝÑ F pAq ˆF pCq ˚

by forming the homotopy pullback: the morphism F pAq Ñ F pCq is the F -image of the augmentation
a : AÑ C, while the map ˚ Ñ F pCq is the chosen point ξ). Equivalently,

pFξpRq “ fibpF paq : F pRq Ñ F pCq ; ξq

where fib denotes the homotopy fiber in Grpd. The functor pFξ is obviously reduced, and is called the
formal completion of F at ξ.

Let us apply this formal completion construction to our chosen, well known moduli functor

F : calgC ÝÑ Grpd ãÑ S

sending a commutative C-algebra R into the groupoid of proper smooth morphisms

Y ÝÑ SpecpRq

and isomorphisms between them. In this case, if we fix a proper smooth C-scheme

ξ : X0 ÝÑ SpecpCq,

this is a C-point of F , and the corresponding homotopy base change pFξ is exactly the usual reduced
functor, classically denoted as DefX0 .

Definition 6.1 The groupoid pFξpCrts{tn`1q is called the groupoid of n-th order infinitesimal deforma-
tions of of F at ξ. The elements of the connected component π0p pFξpCrts{tn`1qq are called n-th order
infinitesimal deformations of F at ξ.

The following properties are classically well known (see e.g. [Har-def]):

1. if ξ1 P pFξpCrεsq is a first order deformation of ξ, then Aut
pFξpCrεsq

pξ1q » H0pX0, TX0q;
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2. π0p pFξpCrεsqq » H1pX0, TX0q;

3. if ξ1 is a first order deformation, then there exists a class obspξ1q P H
2pX0, TX0q such that obspξ1q “

0 if and only if ξ1 extends to a second order deformation. The class obspξ1q is called an obstruction
class for ξ1.

The first two properties are completely satisfactory: they give algebraical interpretations (the rhs’s)
of deformation theoretic objects (the lhs’s). Or conversely, as the reader prefers. This is not quite true
for the third property, and it raises two natural questions :

A What is the deformation-theoretic meaning of the entire H2pX0, TX0q ?

B How can we intrinsically identify the space of all obstructions8 inside H2pX0, TX0q ?

Derived algebraic geometry gives a more general perspective on the subject, and answers both
questions. It allows a natural interpretation of H2pX0, TX0q as the group of derived deformations i.e.
(isomorphism classes of) deformations over a specific derived ring, and it identifies, consequently, the
obstructions space in a natural way. Let’s work these answers out.

Define
F : cdgaď0

C ÝÑ S

sending a cdga A to the maximal 8-groupoid of equivalences inside the 8-category of proper9 and
smooth maps of derived schemes

Y ÝÑ SpecA.

It is clear that F is a derived stack. Moreover, since a derived scheme that is (derived) smooth over an
underived scheme is automatically an underived scheme, we easily conclude that FpRq » F pRq for any
discrete commutative C-algebra R, and more generally, that t0pFq » F .

Exercise 6.2 Show that F is infinitesimally cohesive (Definition 5.1).

Consider the full 8-subcategory dArtC of cdgaď0
C of cdga’s A such that

• H0pAq P ArtC;

• for all i ă 0, H ipAq is a module of finite type over H0pAq;

• H ipAq “ 0 for i ! 0.

The objects of dArtC will simply be called derived Artin rings.

Our choice of a ξ P F pCq » FpCq, identified with a morphism ξ : ˚ Ñ FpCq, allows us to consider
the formal completion of F at ξ, by taking the pullback:

pFξ :“ FˆFpCq ˚ : dArtC ÝÑ S.

Equivalently,
dArtC Q A ÞÝÑ pFξpAq “ fibpFpaq : FpAq Ñ FpCq ; ξq

8It can happen that every obstruction is trivial but H2
pX0, TX0q ‰ 0. An example is given by a smooth projective

surface X0 Ď P3
C of degree ě 6.

9By definition, a morphism of derived schemes or stacks is proper if it is so on the truncations.
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where α is the derived version of the augmentation, i.e. the composite

A // H0pAq
a // C ,

and fib denotes the (homotopy) fiber in S.
The following result answers to Question A above: the entire H2pX0, TX0q can be interpreted as a

space of derived deformations.

Proposition 6.3 There is a canonical isomorphism of C-vector spaces

π0ppFξpC‘ Cr1sqq » H2pX0, TX0q.

Proof. First of all, F has a cotangent complex at ξ in the sense of [HAG-II, Definition 1.4.1.5], and it
can be shown that

TF,ξ » RΓpX0, TX0r1sq

(note that since X0 is smooth TX0 » TX0). Therefore (using e.g. [HAG-II, Proposition 1.4.1.6]), we
obtain

LF,ξ » T_F,ξ » RΓpX0,ΩX0r´1sq.

As a consequence (recall Definition 3.5), we get

π0pDerF,ξpCr1sqq » π0pMapdgmodC
pLF,ξ,Cr1sqq » Ext0pLF,ξ,Cr1sq »

» Ext0pLF,ξr´1s,Cq » H0pTF,ξr1sq » H0pRΓpX0, TX0r2sqq » H2pX0, TX0q.

We conclude that

π0ppFξpC‘ Cr1sqq » π0pfibpFpC‘ Cr1sq Ñ FpCq, ξqq » π0pDerF,ξpCr1sqq » H2pX0, TX0q

l

Remark 6.4 Proposition 6.3 also explains why a classical deformation theoretic interpretation of the
full H2pX0, TX0q is impossible: H2pX0, TX0q is the vector space of deformations (of F at ξ) over the
base C‘ Cr1s which is not a classical Artin ring but a derived one.

Now that we have answered Question A, i.e. we have a derived deformation-theoretic interpretation
of the entire H2pX0, TX0q at hand, we can proceed by answering Question B above.
We begin by an auxiliary result (for a more general version the reader is invited to consult [Po-Ve, Thm.
3.1]).

Lemma 6.5 Let
J // R

f // S

be a square zero extension of (augmented) classical Artin rings over C (i.e. f is surjective, J “ ker f ,
and J2 “ 0). Then, there exists a derived derivation d : RÑ R‘Jr1s and a homotopy cartesian diagram

R
f //

��

S

π˝d
��

C // C‘ Jr1s

where π : S ‘ Jr1s Ñ C‘ Jr1s is the natural map induced by the augmentation S Ñ C.
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Proof. Note that S ‘ Jr1s can be represented by the obvious cdga

0 // J
0 // S // 0

where S sits in degree 0. The trivial derivation d0 is then represented by the commutative diagram

0 // 0 //

0��

S
id��

// 0

0 // J
0 // S // 0

Observe that we may represent S also by the cdga

0 // J
i // R // 0,

where i denotes the inclusion map. Then, we can define a derived derivation d : S Ñ S ‘ Jr1s by the
commutative diagram

0 // J
i //

id��

R
π��

// 0

0 // J
0 // S // 0,

and remark that d is a fibration of cdga’s. Since the model category of cdga’s is proper, the ordinary
pullback of the zero derivation d0 and of d computes the homotopy pullback S ‘d J . But the ordinary
pullback is given by just

0 // 0 // R // 0

(i.e., by just R sitting in degree 0). So, we conclude that the square

R //

��

S

d0
��

S
d // S ‘ Jr1s

is a (homotopy) pullback of cdga’s over C. So, we are left to show that

S

d0
����

// C

��
S ‘ Jr1s // C‘ Jr1s

is a (homotopy) pullback. However, the map S ‘ Jr1s Ñ C ‘ Jr1s is a fibration, hence it is enough to
show that this diagram is a strict pullback, which is a straightforward verification. l

If, in particular, we take the square-zero extension R “ Crts{pt3q Ñ S “ Crts{pt2q, by Lemma 6.5
we obtain a (homotopy) pullback

Crts{pt3q //

��

Crts{pt2q

��
C // C‘ Cr1s
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Exercise 6.6 Construct the rightmost vertical map in the above diagram as in the very first part of
the proof of Lemma 6.5, and prove directly (i.e. without using Lemma 6.5) that the above square is
cartesian.

Observe that both maps CÑ C‘Cr1s and Crts{pt2q Ñ C‘Cr1s are surjective on H0, with nilpotent
kernels. Since F is infinitesimally cohesive (Exercise 6.2), the diagram

FpCrts{t3q » F pCrts{t3q //

��

FpCrts{t2q » F pCrts{t2q

��
FpCq » F pCq // FpC‘ Cr1sq

is cartesian in S. Via the augmentation maps, this whole diagram maps to F pCq, and taking fibers at
ξ gives us a diagram

pFξpCrts{t3q » pFξpCrts{t3q //

��

pFξpCrts{t2q » pFξpCrts{t2q

��

* // pFξpC‘ Cr1sq

which is, obviously, again cartesian in S˚ (the 8-category of pointed spaces or simplicial sets). In other
words, we obtain a fiber sequence of pointed spaces

pFξpCrts{pt3qq ÝÑ pFξpCrts{pt2qq ÝÑ pFξpC‘ Cr1sq,

and therefore a corresponding exact sequence on π0’s

π0ppFξpCrts{pt3qqq // π0ppFξpCrts{pt2qqq
obs // π0ppFξpC‘ Cr1sqq » H2pX0, TX0q p˚q

of pointed sets. As a consequence, we see that

• a first order deformation (i.e. an element in π0ppFξpCrts{pt2qqq “ π0p pFξpCrts{pt2qqq) extends to a
second order deformation (i.e to an element in π0ppFξpCrts{pt3qqq “ π0p pFξpCrts{pt3qqq), if and only
if its image via obs vanishes.

In other words, the set Obs2pF ; ξq of all obstructions to extending a first order deformation to a second
order one is given by the image of the obstruction map

obs : π0p pFξpCrts{pt2qqq ÝÑ π0ppFξpC‘ Cr1sqq » H2pX0, TX0q.

This is a complete answer to Question B.

Remark 6.7 Although strictly speaking this is not necessary, one can furthermore observe that the
middle and the rightmost pointed sets in sequence (˚) are actually C-vector spaces, pointed at 0, and
that the obs is a morphism of vector spaces.

Exercise 6.8 Prove the statements in Remark 6.7.

Exercise 6.9 Extend the previous arguments and results to higher order infinitesimal deformations and
obstructions.
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7 Forms and closed forms

In this section we describe the theory of differential forms on derived algebraic stacks and its implications
for the local geometry of derived stacks in general and for derived moduli stacks in particular.

7.1 The case of affine derived schemes

As explained in sections 2.2 and 3, given A P cdgaď0
k , and a cofibrant (quasi-free) replacement QAÑ A

of A, the affine derived scheme SpecA P dStpkq has a cotangent complex:

LSpecA “ LA “

¨

˚

˚

˝

Ω1
QA bQA A, where

Ω1
QA is the module

of Kähler differen-
tials of QA

˛

‹

‹

‚

Remark 7.1 We will often use implicitly the equivalence of 8-category dgmodpQAq » dgmodpAq,
and consequently identify Ω1

QA with Ω1
QA bQA A “ LA.

This definition globalizes to general (algebraic) derived stacks X as in Definition 3.5. Moreover, X
is locally of finite presentation if and only if LX , which is a priori an object in QCohpXq, is in fact
perfect. In this case the intrinsically defined tangent complex of X can be computed as TX “ L_X “

HomOX pLX ,OXq.

In the affine case the complex of p-forms on SpecA is defined to be ^pQALA “ Ωp
QA. We will write Ωp,i

QA

for the terms of the complex Ωp
QA.

The condition that QA is quasi-free means that if we ignore the differential, then as a graded algebra
QA is a polynomial algebra in a finite number of variables ttiu of various grading degrees. By definition
the module Ω1

QA of Kähler differentials for QA is the graded module over the graded algebra QA which
is freely generated by formal generators dti where the grading degree of dti is set to be equal to the
grading degree of ti. The differential on Ω1

QA is the unique k-linear map d : Ω1,a
QA Ñ Ω1,a`1

QA which makes
Ω1
QA a dg module over QA and such that the de Rham differential dDR : QA Ñ Ω1

QA assigning the
formal derivative to each polynomial is a map of dg modules over QA.

As usual dDR : QAÑ Ω1
QA extends to a de Rham differential on p-forms dDR : Ωp

QA Ñ Ωp`1
QA by the

graded Leibnitz rule. Thus the sum ‘pě0 ^
p
QA LA “ ‘pě0Ωp

QA is a fourth quadrant bicomplex with

vertical differential d : Ωp,i
QA Ñ Ωp,i`1

QA induced by dQA, and

horizontal differential dDR : Ωp,i
QA Ñ Ωp`1,i

QA given by the de Rham differential.

In analogy with the underived setting, the differential forms on an affine derived scheme admit a Hodge
filtration with steps F ppAq :“ ‘qěpΩ

q
QA, each of which is still a fourth quadrant bicomplex. This Hodge

filtration turns out to be the correct vessel for defining closed p-forms and working with the closedness
condition in the derived setting.

20



Motivation: If X is a smooth scheme/k, then the sheaf Ωp,cl
X “ ker

”

Ωp
X

dDR
ÝÑ Ωp`1

X

ı

of closed p-forms
on X is naturally quasi-isomorphic to the stupid truncation of the algebraic de Rham complex, i.e.

Ωp,cl
X –

´

ΩěpX rps, dDR

¯

.

Up to a shift this truncation is precisely the p-the step of the Hodge filtration of the complex of algebraic
forms, and so we can use the hypercohomology of the complex F pΩ‚Xrps “ pΩ

ěp
X rps, dDRq as a model for

closed p forms in general.

Thus we have the following natural

Definition 7.2 If SpecA is an affine derived scheme, the complex of closed p-forms on SpecA
is the complex Ap,clpAq :“ tot

ś

pF ppAqqrps, where tot
ś

pF ppAqq denotes the completed (i.e. product)
totalization of the double complex F ppAq.

Furthermore, in the derived setting all these notions admit natural refinements which account for the
freedom of performing a shift in the internal homological grading of the cotangent complex. This leads
to the notions of shifted forms and shifted closed forms.

Definition 7.3 For an affine derived scheme SpecA define

• the complex of n-shifted p-forms on SpecA: AppA;nq :“
Źp LArns “ Ωp

QArns

• the complex of n-shifted closed p-forms on SpecA: Ap,clpA;nq :“ tot
ś

pF ppAqqrn` ps

• the Hodge tower of SpecA: ¨ ¨ ¨ Ñ Ap,clpAqr´ps Ñ Ap´1,clpAqr1´ ps Ñ ¨ ¨ ¨ Ñ A0,clpAq

Explicitly an n-shifted closed p-form ω on SpecA is an infinite collection

ω “ tωiuiě0 , ωi P Ωp`i,n´i
A , satisfying dDRωi “ ´dωi`1.

Notation. We write |E| for Mapdgmodď0
k
pk, τď0Eq, i.e. the Dold-Kan construction applied to the

ď 0-truncation of a complex E.

Remark 7.4 (i) It is clear from this description that the notion of an n-shifted closed p-form is much
more flexible than the naive notion of an n-shifted strictly closed p-form, i.e. an element ω0 P Ωp,n

A

satisfying dDRω0 “ 0. Given an n-shifted closed p-form ω “ tωiuiě0 we will call the collection
tωiuiě1 the key closing ω.

(ii) By definition we have an underlying p-form map

Ap,clpA;nq Ñ ^pLArns

which induces a map on cohomology

H0pAp,clpAqrnsq Ñ HnpX,^pLAq.
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(iii) The homotopy fiber of the underlying p-form map is the complex of keys for a given n-shifted
p-form and can be very complicated. Thus for a p-form in derived geometry being closed is not a
property but rather a list of coherent data.

(iv) The complex A0,clpAq of closed 0-forms on X “ SpecA is exactly Illusie’s derived de Rham
complex of A [Ill, ch. VIII].

(v) If A P cdgaď0
k is quasi-free, then

Ap,clpA;nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

´

Ωp`1
A rn´ is, d` dDR

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇtotΠpF ppAqqrns
ˇ

ˇ

“ |NCwpAqppqrn` ps| ,

where NCwpAq denotes the weighted negative cyclic complex for A. Hence

π0A
p,clpA;nq “ HCn´p´ pAqppq.

7.2 Functoriality and gluing

To globalize the definitions of forms and closed forms we consider:

• The 8-functor of n-shifted p-forms

App´;nq : cdgaď0
k Ñ S, A ÞÑ |AppA;nq | .

• The 8-functor n-shifted closed p-forms

Ap,clp´;nq : cdgaď0
k Ñ S, A ÞÑ

ˇ

ˇ

ˇ
Ap,clpAqrns

ˇ

ˇ

ˇ
.

One can check [PTVV] that the functors App´;nq and Ap,clp´;nq are derived stacks for the étale
topology and that the assignment of an underlying p-form

Ap,clp´;nq Ñ App´;nq

is a map of derived stacks. With this in mind one can now give the following general

Definition 7.5 Let X P dStpkq be a derived algebraic stack locally of finite presentation. Then we
define:

• AppXq :“ MapdStpkqpX,App´qq to be the space of p-forms on X;

• Ap,clpXq :“ MapdStpkqpX,Ap,clp´qq to be the space of closed p-forms on X;

• the corresponding n-shifted versions : AppX;nq :“ MapdStpkqpX,App´;nqq

Ap,clpX;nq :“ MapdStpkqpX,Ap,clp´;nqq
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• an n-shifted (respectively closed) p-form on X is an element in π0AppX;nq (respectively in π0Ap,clpX;nq)

Remark 7.6 The definition has some straighforward consequences:

1) If X is a smooth underived scheme, then there are no negatively shifted forms.

2) When X “ SpecA is an affine derived scheme, then there are no positively shifted forms.

For a general derived stack X shifted differential forms might exist for any n P Z.

As in the affine case the underlying p-form map of simplicial sets

Ap,clpX;nq Ñ AppX;nq

will not typically be a monomorphism. Its homotopy fiber at a given p-form ω0 is the space of keys of
ω0. However, if X is a smooth and proper scheme then this map is indeed a monomorphism, i.e. its
homotopy fibers are either empty or contractible [PTVV]. Thus we have no new phenomena in this
case.

In the general case the following theorem provides a concrete and expected algebraic model for global
forms.

Theorem 7.7 (Proposition 1.14 in [PTVV]) For a derived algebraic stack X the n-shifted p-forms
satisfy smooth descent, i.e.

AppX;nq » MapQCohpXqpOX , p^pLXqrnsq.

In particular an n-shifted p-form on X is an element in HnpX,^pLXq

Guided by the classical case we can also define algebraic de Rham cohomology for derived stacks.

Definition 7.8 Given a derived algebraic stack X the n-th algebraic de Rham cohomology of X is
defined to be Hn

DRpXq “ π0A0,clpX;nq.

Remark 7.9 • This notion agrees with Illusie’s definition in the case of affine schemes.

• if X is a algebraic derived stack locally of finite presentation, then [To-EMS, Proposition 5.2]
H‚DRpXq – H‚DRpt0Xq “ algebraic de Rham cohomology of the underived higher stack t0X
defined by the standard Hartshorne’s completion formalism [Har-dR].

.
The previous remark combined with the canonical resolution of singularities in characteristic zero and
smooth and proper descent for algebraic de Rham cohomology have the follwoing important consequence

Corollary 7.10 (Corollary 5.3 in [To-EMS]) Let X be a algebraic derived stack which is locally of
finite presentation. Suppose ω is an n-shifted closed p-form on X with n ă 0. Then ω is exact, i.e.
rωs “ 0 P Hn`p

DR pXq.
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7.3 Examples

In this section we describe several natural examples where forms and closed forms can be computed
exactly.

(1) If X “ SpecA is an usual (underived) smooth affine scheme, then

Ap,clpX;nq “ pτďnp Ωp
A

dDR // Ωp`1
A

dDR // ¨ ¨ ¨

0 1

qqrns,

and hence

π0Ap,clpX;nq “

$

’

&

’

%

0, n ă 0

Ωp,cl
A , n “ 0

Hn`p
DR pXq, n ą 0

(2) If X is a smooth and proper scheme, then πiAp,clpX;nq “ F pHn`p´i
DR pXq.

(3) If X is a (underived, higher) algebraic stack, and X‚ Ñ X is a smooth affine simplicial groupoid10

presenting X, then π0AppX;nq “ HnpΩppX‚q, δq with δ “ Čech differential.
In particular if G is a complex reductive group, then

π0AppBG;nq “

#

0, n ‰ p

pSympg_qG , n “ p.

(4) Similarly

Ap,clpBG;nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

`

Symp`ig_
˘G
rn` p´ 2is

ˇ

ˇ

ˇ

ˇ

ˇ

,

and so

π0Ap,clpBG;nq “

#

0, if n is odd
pSympg_qG , if n is even.

(5) Derived schemes naturally arise as derived intersections of ordinary schemes. A dg scheme
([CioFo-Ka]) (over k) is a scheme X equipped with a sheaf A‚X of non-positively graded quasi-coherent
k-dg algebras such that A0

X “ OX . There is an obvious notion of morphism between dg schemes, and
the equivalences are defined as those morphisms inducing quasi-isomorphisms between the correspond-
ing sheaves of cdga’s. If we localize the 8-category of dg schemes with respect to such equivalences, we
get an 8-category dgSchk admitting a functor Θ to the 8-category of derived schemes: for an affine dg
scheme pX “ SpecR,AXq, AX is given by a k-cdga AX , and the functor sends pX,AXq to SpecAX .

10E.g. the nerve of a smooth affine atlas.
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For more general, non affine dg schemes pX,AXq, the functor is defined using an affine Zariski covering
of X (see [To-Ve-hagdag] for more details). The functor Θ is conservative but neither full, nor faith-
ful, nor essentially surjective. The reason for not being essentially surjective is that, for a dg scheme
pX,AXq, ΘpX,AXq is always an globally embeddable derived scheme, i.e. there exists an underived
scheme X and a closed immersion of derived schemes ΘpX,AXq Ñ X. Not all derived schemes have
this property. However, for the purpose of this example, we will stick to dg schemes, and tacitly identify
them as derived schemes by using (though not writing) the functor Θ.
In a typical setup one considers a smooth variety M over k and two smooth subvarieties L1, L2 Ă M .
The derived intersection X of L1 and L2 is defined as a dg scheme, i.e. a space equipped with a
sheaf of non-positively graded dg algebras:

X :“ L1

h
ą

M

L2 “

˜

L1 X L2, OL1

L
â

OM
OL2

¸

.

The tangent complex of X is a a perfect complex concentrated in degrees 0 and 1 and is explicitly given
by

TX,x “ r TL1,x ‘ TL2,x
// TM,x s,

0 1

In particular we have

• H0pTX,xq “ TL1XL2,x, and

• H1pTX,xq “ failure of transversality of the intersection L1 X L2.

An important special case of a derived intersection is the derived zero locus of a section of a vector
bundle. Let L be a smooth variety over k, E Ñ L an algebraic vector bundle on L, and s P H0pL,Eq
and a section in E. The derived zero locus X of s is defined as the derived intersection of s with the
zero section of E inside M “ totpEq:

X :“ Rzeropsq “ L
h

ą

s,M,o

L “
´

Z, i´1
L pSym

‚pE_r1sq, s5q
¯

,

where:

• Z “ t0X “ zeropsq is the scheme theoretic zero locus of s,

• iL : Z Ñ L is the natural inclusion, and

• s5 is the contraction with s.

In particular TX “ r i˚LTL ‘ i
˚
LTL

i˚Ldo`i
˚
Lds // i˚MTM s,

0 1

where

• M “ totpEq, and

• iM , o, and s are the natural maps L
o
!!

Z

iL ??

iL
��

iM //M.

L
s

==
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Exercise 7.11 Let ∇ : E Ñ E b Ω1
L be an algebraic connection on E. Show that there is a natural

quasi-isomorphism

TX “

«

i˚LTL
p∇sq5 //i˚LE

ff

“

«

TL
p∇sq5 //E

ff

|Z

.

The algebraic connection ∇ : E Ñ E b Ω1
L may exists only locally on L and is not unique. Check that

p∇sq|Z is well defined globally and independent of the choice of ∇.

Suppose again X “ Rzeropsq for s P H0pL,Eq on a smooth L, then

Ω1
X “ E_

|Z

p∇sq5 // Ω1
L|Z ,

´1 0

Assume we have chosen11 an algebraic connection ∇ : E Ñ EbΩ1
L which is also flat, i.e. ∇2 “ 0. Using

such a ∇ we can explicate Ω1
X as a module over the Koszul dga of s:

pSym‚pE_r1sq, s5q “
„

¨ ¨ ¨
s5
Ñ ^2E_

s5
Ñ E_

s5
Ñ OL



.

In other words using ∇ we can resolve Ω1
X by a double complex of vector bundles on L so that this

double complex is on-the-nose a module over pSym‚pE_r1sq, s5q:

¨ ¨ ¨ // ^2E_ b Ω1
L

s5 // E_ b Ω1
L

s5 // Ω1
L

// Ω1
L|Z 0

¨ ¨ ¨ // ^2E_ b E_
s5 //

OO

E_ b E_
s5 //

r∇,s5s

OO

E_ //

r∇,s5s

OO

E_
|Z

p∇sq5
OO

´1

||

Ω1
X

In the same way we can describe Ω2
X as a module over the Koszul dga:

¨ ¨ ¨ // ^2E_ b Ω2
L

// E_ b Ω2
L

// Ω2
L

// Ω2
L|Z 0

¨ ¨ ¨ // ^2E_ b E_ b Ω1
L

//

OO

E_ b E_ b Ω1
L

//

OO

E_ b Ω1
L

//

OO

pE_ b Ω1
Lq|Z

OO

´1

¨ ¨ ¨ // ^2E_ b S2E_ //

OO

E_ b S2E_ //

OO

S2E_ //

OO

S2E_
|Z

OO

´2

||

Ω2
X

11Such a connection always exists Zariski locally on L.
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´1 shifted 2 forms

In particular the ´1 shifted 2-forms on the derived critical locus X will be given by pairs of sections
α P E_ b Ω2

L, and φ P E
_ b Ω1

L.
Note also that in terms of these resolutions, the de Rham differential dDR : Ω1

X Ñ Ω2
X is the map

that term-by-term is given by the sum dDR “ ∇` κ. Here κ is the Koszul contraction

κ : ^aE_ b SbE_ Ñ ^a´1E_ b Sb`1E_,

i.e. the contraction with idE P E b E_ followed by the multiplication E_ b SbE_ Ñ Sb`1E_.

The case when X “ Rzeropsq is the derived zero locus of an algebraic one form s P Ω1
L plays a special

role in Donaldson-Thomas theory [Be]. The explicit Koszul model of forms on such an X leads to the
following important description of the ´1 shifted 2-forms due to Behrend:

Remark 7.12 (K. Behrend) If E “ Ω1
L and so s is a 1-form on L, then a p´1q-shifted 2-form on

X “ Rzeropsq corresponds to a pair of elements

α P pΩ1
Lq
_ b Ω2

L and φ P pΩ1
Lq
_ b Ω1

L such that r∇, s5spφq “ s5pαq.

Take φ “ id P pΩ1
Lq
_ b Ω1

L. Suppose the local ∇ is chosen so that ∇pidq “ 0 (i.e. ∇ is a torsion free
connection). Then r∇, s5spidq “ ds. In other words the pair pα, idq gives a p´1q-shifted 2-form on X if
and only if ds “ s5pαq “ ´s ^ α. Equivalently pα, idq gives a ´1-shifted 2-form on X when ds|Z “ 0,
i.e. if and only if s is an almost closed 1-form on L.

Exercise 7.13 Suppose s is almost closed one form on L and let pα, idq be an associated p´1q-shifted
2-form. Describe the complex of keys for pα, idq.

8 Shifted symplectic geometry

To illustrate the power of the general theory we will review a geometric concept that is inherently
derived in nature - the notion of a shifted symplectic structure. Here we only sketch the highlights of
the theory. Full details can be found in [PTVV].

Recall that for an ordinary smooth scheme X over k a symplectic structure on X is a non-
degenerate closed algebraic 2-form. In other words a symplectic strucure is an element ω P H0pX,Ω2,cl

X q

such that its adjoint ω5 : TX Ñ Ω1
X is a sheaf isomorphism. This straightforward definition does not

work when X{k is a derived stack for at least two reasons

• The tangent complex TX of X need not have amplitude which is symmetric around zero. When
the amplitude of TX is not symmetric, the tangent and cotangent complex of X will not have the
same amplitude so they can not be quasi-isomorphic.

• A form being closed is not just a condition but rather an extra structure implemented by the key
closing the form.
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Taking these comments into account we arrive at the following natural

Definition 8.1 Let X be a derived algebraic stack/k locally of finite presentation (so that LX is perfect).

• A n-shifted 2-form ω : OX Ñ LX ^ LXrns - i.e. ω P π0pA2pX;nqq - is nondegenerate if its
adjoint ω5 : TX Ñ LXrns is an isomorphism in QCohpXq.

• The space of n-shifted symplectic forms SymplpX;nq on X{k is the subspace of A2,clpX;nq
of closed 2-forms whose underlying 2-forms are nondegenerate i.e. we have a homotopy cartesian
diagram of spaces

SymplpX,nq //

��

A2,clpX,nq

��
A2pX,nqnd // A2pX,nq

Remark 8.2 • The nondegeneracy condition in the definition of shifted symplectic structure should
be viewed as a duality between the stacky (positive degree) and the derived (negative degree) parts
of LX (see the end of §4).

• Suppose the perfect complex LX has amplitude r´m,ns for m,n ě 0. Then at best X can admit
an pm´ nq-shifted symplectic structure.

• If G “ GLn, then BG has a canonical 2-shifted symplectic form (see Example (4) section 7.3) :

k Ñ pLBG ^ LBGqr2s » pg_r´1s ^ g_r´1sqr2s “ Sym2g_

given by the dual of the trace map pA,Bq ÞÑ trpABq.

• Similarly, for a reductive G{k choosing a non-degenerate G-invariant symmetric bilinear form on
g gives rise (see Example (4) section 7.3) to a 2-shifted symplectic form on BG.

• For a smooth variety the n-shifted cotangent bundle T_Xrns :“ SpecXpSympTXr´nsqq has a
canonical n-shifted symplectic form. The same holds for the shifted cotangent bundle of a general
derived algebraic stack locally of finite presentation over k [Ca-Cot].

Beyond these elementary examples shifted symplectic structures frequently arise on derived moduli
stacks. A common method for producing such structures comes from a algebraic version of the AKSZ
formalism in quantum field theory [AKSZ]. Before we can explain this we need to recall some basic
facts about O-orientations and push-forwards in derived geometry.

Definition 8.3 Let X be a derived stack{k and let A P cdgaď0
k . Let XA denote the derived A-stack

X ˆ SpecA. We will say that X is O-compact over k if for every A P cdgaď0
k we have that OXA

is a compact object in QCohpXAq and for any perfect complex E P QCohpXAq, the cochain module
CpXA, Eq “ RHompO, Eq is a perfect A-dg module.
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Suppose X is derived stack over k. For every A P cdgaď0
k , the cup product Y on CpXA,Oq turns

this cochain complex into a commutative dga over A.
Given any morphism η : CpX,Oq Ñ kr´ds of k-cdga, we get a morphism

CpXA,Oq
ηA // Ar´ds

CpX,Oq bk A
ηbidA

// kr´ds bk A

of A-cdga and an induced morphism

(1) CpXA,Oq bA CpXA,Oq Y //CpXA,Oq
ηA //Ar´ds .

IfX is alsoO-compact over k, then writing CpXA,Oq_ “ RHompCpXA,Oq, Aq for the dual of CpXA,Oq
over A then (1) can be rewritten as the ajoint map:

CpXA,Oq
´Yη //CpXA,Oq_r´ds .

More generally, for any perfect complexE P QCohpXAq we can compose the natural pairing CpXA, EqbA
CpXA, E

_q Ñ CpXA,Oq with ηA to obtain a morphism

CpXA, Eq
´YηA //CpXA, E

_q_r´ds .

With this notation we now have the following

Definition 8.4 Let X be an O-compact derived stack/k and let d be an integer. An O-orientation
of X of degree d is a morphism of cdga rXs : CpX,Oq Ñ kr´ds such that for any A P dalg and any
perfect complex on XA, the natural map

´Y rXsA : CpXA, Eq Ñ CpXA, E
_q_r´ds.

is a quasi-isomorphism of A-dg modules.

Example 8.5 (a) Let X be a smooth proper Deligne-Mumford stack of dimension d over k, and let u
be a Calabi-Yau structure on X. In other words u is an isomorphism between the structure sheaf
of X and the canonical line bundle ωX “ Ωd

X .

SinceX is smooth and proper it is O-compact when viewed as a derived stack/k. The isomorphism
u composed with the trace map gives an isomorphism

HdpX,Oq u //HdpX,ωXq
tr //k .

This in turn gives a natural map of complexes

rXs : CpX,Oq Ñ kr´ds

which by Serre duality is an O-orientation on X of degree d.
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(b) Let M be an oriented connected and compact topological manifold of dimM “ d. Let X “

SpMq be the simplicial set of singular simplices in M viewed as a constant derived stack/k.
The category QCohpXq is naturally identified with the 8-category of complexes of k-modules
on M with locally constant cohomology sheaves. The perfect complexes on X correspond to
complexes of k-modules on M that are locally quasi-isomorphic to finite complexes of constant
sheaves of projective k-modules of finite type. I particular X is O-compact. Furthermore, the
fundamental class rM s P HdpM,kq onM given by the orientation defines a morphism of complexes
rXs : CpM,kq “ CpX,Oq Ñ kr´ds. Finally Poincaré duality on M implies that rXs is an O-
orientation on X of degree d.

Exercise 8.6 Let D “ Spec krts{pt2q be the spectrum of the dual numbers. Show that D admits a
natural O-orientation of degree 0.

The main utility ofO-orientations is that they give natural integration maps on negative cyclic complexes
and thus induce natural push-forward maps on shifted closed forms. Specifically let X be a derived O-
compact stack/k with an O-orientation rXs : CpX,Oq Ñ kr´ds of degree d. Suppose that X is a
algebraic stack locally of finite presentation and let S be another algebraic derived stack locally of
finite presentation. Then the O-orientation on X induces a natural integration map of mixed graded
complexes

ż

rXs
: NCwpX ˆ Sq Ñ NCwpSqr´ds

between the weighted negative cyclic complex on X ˆ S and the weighted negative cyclic complex on
X.

We will not spell out the definition of
ş

rXs but direct the reader to [PTVV, Section 2.1] which contains
a detailed construction of this map. Here we only point out

ş

rXs induces a natural map between spaces
of shifted closed forms. Indeed, recall (see Remark 7.4 (v)) that an n-shifted closed p-form α is nothing
but a map α : krn´ psppq Ñ NCw of mixed graded complexes. Thus, given α P Ap,clpX ˆ S;nq we can
compose the map α : krn´ psppq Ñ NCwpX ˆSq with

ş

rXs to obtan a map of mixed graded complexes

krn´ psppq
α //

ş

rXs α

22NCwpX ˆ Sq

ş

rXs //NCwpSqr´ds .

The assignment α ÞÑ
ş

rXs α can therefore be viewed as a map of spaces of shifted closed p-forms:

ż

rXs
: Ap,clpX ˆ S;nq Ñ Ap,clpS;n´ dq

After these preliminaries we are now ready to state the algebraic version of the AKSZ formalism:

Theorem 8.7 (Theorem 5.2 in [PTVV]) Let F be a derived algebraic stack equipped with an n-
shifted symplectic form ω P SymppF, nq. Let X be an O-compact derived stack equipped with an O-
orientation rXs : CpX,OXq Ñ kr´ds of degree d. Assume that the derived mapping stack MAPpX,F q
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is itself a derived algebraic stack locally of finite presentation over k. Then, MAPpX,F q carries a
canonical pn´ dq-shifted symplectic structure.

The shifted symplectic form on MAPpX,F q is explicitly constructed from the symplectic form ω
and the O-orientation rXs. Indeed, consider the natural evaluation map

X ˆMAPpX,F q
ev //F

px, fq � //fpxq.

Since ω P SymppF, nq Ñ A2,clpX;nq can be viewed as an n-shifted 2-form on F we can pull it back to
X ˆMAPpX,F q and integrate it against rXs to obtain a closed pn´ dq-shifted 2-form

ż

rXs
ev˚ ω P A2,clpMAPpX,F q;n´ dq.

It can be cheked directly [PTVV, Theorem 5.2] that the underlying shifted 2-form is non-degenerate,
which shows that

ş

rXs ω is symplectic.

Example 8.8 (1) Let X{C be a smooth and proper Calabi-Yau variety of dimension d and let G be
complex reductive group. Then the derived moduli stack BunXpGq “ MAPpX,BGq of algebraic
G-bundles on X is p2´ dq-shifted symplectic.

(2) Let M be an oriented connected compact topological manifold of dimension d, and let G be a
complex reductive group. If X “ SpMq is the simplicial set of singular simplices in M viewed as
a constant derived stack, then the derived moduli of flat G-bundles on M , can be computed as
the derived moduli BunXpGq “ MAPpX,BGq of algebraic G-bundles on X. Since X admits an
O-orientation of degree d, it again follows that BunXpGq is p2´ dq-shifted symplectic.

Exercise 8.9 (a) Suppose pM,ωq is an algebraic symplectic manifold over C, and let D “ SpecCrts{pt2q
be the spectrum of the dual numbers. Then by the above theorem MAPpD,Mq is a symplectic manifold.
But MAPpD,Mq is the total space of the tangent bundle TM of M . Check that the symplectic structure
on TM is the pullback of the tautological symplectic structure on T_M via the isomorphism ω5 : TM Ñ T_M .

(b) Suppose pF, ωq is an n-shifted symplectic derived scheme over C, and let D “ SpecCrts{pt2q be the
spectrum of the dual numbers. The theorem gives an n-shifted symplectic structure on the total space
TF “ MAPpD, F q of the tangent stack of F . How does this symplectic structure depend on the key of
ω?

Another source of examples of shifted symplectic structures is the derived intersection of Lagrangians.
Before we can formulate the relevant construction we will need to discuss the notions of isotropic and
Lagrangian structures on shifted symplectic geometry.

Definition 8.10 Let pY, ωq be a n-shifted symplectic derived stack/k and let f : X Ñ Y be a map from
a algebraic derived stack X locally of finite presentation/k.
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• An isotropic structure on f : X Ñ Y is a path γ in the space A2,clpX;nq connecting f˚ω to 0

• A Lagrangian structure on f : X Ñ Y is an isotropic structure γ which is non-degenerate in
the sense that the induced map γ5 : Tf Ñ LXrn´ 1s is an equivalence.

Here Tf denotes the relative tangent complex of the map f : X Ñ Y , and the map γ5 is constructed as
follows. By definition γ gives a homotopy between the map f˚pω5q : f˚TY Ñ f˚LY rns and the zero map
of complexes. Pre-composing and post-composing f˚pω5q with the differential and the codifferential of
f respectively we get a map of complexes

TX
df_˝f˚pω5q˝df //

df

��

LXrns

f˚TY
f˚pω5q

// f˚LY rns

df_

OO

and hence pre-composing and post composing γ the differential and the codifferential of f we will get a
homotopy between

df_ ˝ f˚pω5q ˝ df : TX Ñ LXrns

and the zero map of complexes.
If we write ι : Tf Ñ TX for the natural map from the relative tangent complex of f to the tangent

complex of X, then we will get a homotopy between the map

df_ ˝ f˚pω5q ˝ df ˝ ι : Tf Ñ LXrns

and the zero map of complexes. On the other hand by definition we have an exact triangle of complexes

Tf
ι //TX

df //f˚TX //Tf r1s

so we have an intrinsic homotopy between df ˝ ι : Tf Ñ f˚TY and the zero map of complexes. In other
words we get two homotopies between df_ ˝ f˚pω5q ˝ df ˝ ι and zero: one coming from the isotropic
structure γ and the other coming from the definition of the relative tangent complex.

Composing these two homotopies we get a self-homotopy of the zero map of complexes 0 : Tf Ñ
LXrns, i.e. an element γ5 in

π1pMapQCohpXqpTf ,LXrnsq; 0q “ π0pMapQCohpXqpTf ,LXrn´ 1sq; 0q

“ HomQCohpXqpTf ,LXrn´ 1sq.

Remark 8.11 • Any smooth Lagrangian L ãÑ pY, ωq where pY, ωq is a smooth (0)-symplectic
scheme has a natural Lagrangian structure in the derived sense. Moreover in this case the space
of Lagrangian structures is contractible, so that this natural Lagrangian structure is essentially
unique.

• For any n the point Spec k has a natural pn ` 1q-shifted symplectic form ωn`1, namely the zero
form. As first observed by D. Calaque, it is straightforward to check that the Lagrangian structures
on the canonical map X Ñ pSpec k, ωn`1q are the same thing as n-shifted symplectic structures
on X.
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The relevance of Lagrangian structures for constructing new shifted symplectic structures is captured
by the following

Theorem 8.12 (Theorem 2.9 in [PTVV]) Let pF, ωq be n-shifted symplectic derived stack, and let
Li Ñ F , i “ 1, 2 be maps of derived stacks equipped with a Lagrangian structures. Then the derived
intersection L1 ˆ

h
F L2 of L1 and L2 is canonically a pn´ 1q-shifted symplectic derived stack.

Example 8.13 (1) An important special case of this construction is the p´1q-shifted symplectic struc-
ture on the derived critical locus of a function. Suppose L{C is a smooth variety and let w : L Ñ C
be a regular function. By definition the derived critical locus Rctitpwq of w is the derived zero scheme
Rzeropdwq of the one form dw P H0pL,Ω1

Lq. Consider T
_
L with its standard (0-shifted) symplectic struc-

ture. Since dw is closed, the map dw : L Ñ T_L is Lagrangian. But the zero section o : L Ñ T_L is
Lagrangian as well, and so

Rcritpwq “ L
h

ą

dw,T_L ,o

L

is equipped with a natural p´1q-shifted symplectic structure. In terms of the local description of
Remark 7.12 the underlying p´1q-shifted 2-form is given by the pairpdw, idq.
Variant: By the same construction the derived critical locus of a shifted function w : L Ñ A1rns (i.e.
an element w P HnpL,Oq is equipped with a natural pn´ 1q-shifted symplectic structure.

Note that if w is locally constant, then dw “ 0 and so Rcritpwq “ T_L r´1s is the p´1q-shifted
cotangent stack with its canonical symplectic structure. By the same token if w P HnpL,Oq is in the
image of HnpL,Cq, then Rcritpwq “ T_L rn´ 1s is the pn´ 1q-shifted cotangent stack with its canonical
symplectic structure. In particular if L is smooth and projective over C the Hodge theorem implies
that HnpL,Cq Ñ HnpL,Oq is surjective for all n and therefore the derived critical locus of any shifted
function on L is a shifted cotangent bundle.

(2) Let pX,ωq be an algebraic symplectic manifold over C equipped with a Hamiltonian action of a
complex reductive group G. Let g “ LiepGq and let µ : X Ñ g_ be a G-equivariant moment map.
Consider the stack quotient rg_{Gs where G acts by the coadjoint action. Since T_BG “ rgr´1s{Gs it
follows that rg_{Gs “ T_BGr1s is a 1-shifted symplectic stack. The equivariant map µ induces a map of
stacks

µ : rX{Gs Ñ rg_{Gs

and the moment map condition translates into the statement that the symplectic form ω induces a
Lagrangian structure on this map.

Additionally, for any coadjoint orbit O Ă g_ the Kostant-Kirillov symplectic form on O induces a
Lagrangian structure on the map of stacks

rO{Gs Ñ rg_{Gs.

In particular the homotopy fiber product

rX{Gs
h

ą

rg_{Gs

rO{Gs
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will have a natural 0-shifted symplectic structure.
Note that this fiber product is simply the stack quotient rRµ´1pOq{Gs, where Rµ´1pOq “ X ˆhg_ O

is the derived preimage of the coadjoint orbit O under the moment map µ. Thus the 0-shifted symplectic
structure on rRµ´1pOq{Gs can be viewed as an extension of the Marsden-Weinstein symplectic reduction:
at the expense of adding a stacky and a derived structure on the reduction we obtain a symplectic
structure that makes sense at all points along the preimage of the moment map. More details on the
statements in this example can be found in [Ca-TQFT, Saf]

We conclude this section with a brief discussion of the local structure of shifted symplectic derived stacks.
Recall that In classical symplectic geometry the local structure of a symplectic manifold is described by
the Darboux-Weinstein theorem: a symplectic structure is locally (in the C8 or analytic setting)
or formally (in the algebraic setting) isomorphic to the standard symplectic structure on a cotangent
bundle.

By analogy one might expect that in the derived stacky context shifted symplectic structures will be
modelled locally by the standard symplectic structures on shifted cotangent bundles. This expectation
is too naive.

Exercise 8.14 Exhibit a derived critical locus (defined in Example 8.13 (1)) whose derived structure is
not locally formal.

However, as we already noted in Example 8.13, the shifted cotangent bundles are symplectically
derived critical loci of shifted constant functions. It turns out that the derived critical loci of arbitrary
shifted functions have enough flexibility to provide local models. This leads to a remarkable shifted
version of the Darboux theorem:

Theorem 8.15 ([BBJ]) Let X be a derived scheme, and let ω be an n-shifted symplectic structure
on X, with n ă 0. Then Zariski locally pX,ωq is isomorphic to

`

Rcritpwq, ωRcritpwq

˘

for some shifted
function w : M Ñ A1rn` 1s on a derived scheme M .

Remark 8.16 A more general result holds for locally finitely presented derived algebraic stacks (see
[BBBJ]).
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