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Introduction

The purpose of these notes is to provide a written background for the seminars taught by the
working group organized by Gabriele Vezzosi in the Spring of 2013. The main goal is to give a wide
introduction to Derived Algebraic Geometry, starting from the very foundations. In the present notes,
we added more details with respect to the expositions, to make easier for the not (yet) specialised
reader to go over them.

The work is organized as follows:

1. Chapter 1 contains a survey of the theory of model categories: the homotopy category,
function complexes, left and right (Bousfield) localizations, standard simplicial localization
and hammock localization. The relative seminar has been taught the 3/15/2013 by Mauro
Porta and Brice Legrignou;

2. Chapter 2 contains a survey of all the known models for (0o, 1)-categories, and the details of
three of those constructions (quasicategories, Segal categories and Segal spaces). The relative
seminar will be taught the 3/22/2013 by Yan Zhao and Valerio Melani;

3. Chapter 3 contains a survey of of the theory of simplicial presheaves and their application to
the theory of (higher) stacks. The relative seminar has been taught the 3/29/2013 by Mauro
Porta and Pietro Vertechi;

4.

Finally, the Appendices contain material which is somehow more foundational: we collected
some basic results from the theory of simplicial sets, enriched category theory... Essentially because
the authors wanted to learn all these theories in a better way.

This is a work in progress






ExPoOSE 1

Model categories

In this chapter we will introduce one of the main tools of this cycle of seminars, namely model cate-
gories. After an informal section concerning motivations coming from others areas of Mathematics,
we will introduce the basic definitions and we will state the main theorems, sketching some proof.
We will try, whenever possible and within our capacities, to explain the intuitions motivating the
definitions, why we should expect a certain theorem to be true and so on; moreover, we selected
four examples where we can test the result we will obtain:

1. simplicial sets sSet: this is the main example in homotopy theory; in a sense, we could say
that simplicial sets stands to homotopy theory as sets stand to the whole mathematics (which
can be seen as constructions on the topos Set, in a very broad sense);

2. topological spaces: this is the “continuous” version of simplicial sets; for many purpose there is
no distinction from the homotopy theory for topological spaces and the one for simplicial sets;

3. chain complexes: this example relates homotopy theory to homological algebra. It gives the
“correct motivation” for a bunch of facts; for example, that a homotopy of topological spaces
gives rise to a chain homotopy between singular complexes;

4. groupoids: this will be needed in future chapters; it also provides an interesting example
where the model structure is uniquely determined by the weak equivalences.

The main topics include the homotopy category, Quillen functors, Reedy categories and (co)simplicial
resolutions, function complexes. The last part is devoted to the theory of localizations: Bousfield
localization (and simplicial localization).

There is finally a complement section containing some selected topics which couldn’t be exposed
during the seminar. Some of them is just a collection of definitions; in those case, a proper reference
is indicated.

Mauro Porta

1.1 Motivations and main ideas

From a historical point of view, the theory of Model Categories was first introduced by D. Quillen
in his foundational work [Qui67] with the purpose of unifying several constructions which are in
common to several areas of Mathematics. To my best knowledge, these areas are

1. Algebraic Topology;
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2. Homological Algebra;

I will spend a few words for each of them, in order to explain the main ideas that led to the work of
Quillen.

Algebraic Topology

The main goal of Algebraic Topology is the study (up-to homeomorphism) of topological spaces, with
the aid of certain algebraic invariants. For our purpose, we can assume as definition of “algebraic
invariant” the following:

Definition 1.1.1. An algebraic invariant for topological spaces is just a functor H: Top — A, where
A is some algebraic category.

In fact, we will be more likely interested in a set of invariants (maybe with some mutual relations
between); a perfect result would be to find such a set of (calculable) invariants describing completely
topological spaces.

For example, we can consider singular (co)homology, or homotopy groups. For example: to
obtain the singular homology, one first consider the cosimplicial object in Top

{1A™}en
and then defines for every X € Ob(Top):
CSM8(X) := ZHomg,,(|A"],X) € Ab

Each Cfli“g is, accordingly to our Definition 1.1.1, an algebraic invariant. The cosimplicial structure
on {|A"|},cy produces interesting properties of the set of functors {C;"¢}; for example, they can be
arranged in a complex {C:"¢,d,},cy. See [CSAM29, Ch. 8.2] (in particular Example 8.2.3) for the
details of this construction; one then can use this complex to define the singular homology groups:

Hy"8(X) = H,(C",d,)

Singular (co)homology groups are quite easy to compute, because we can use several tools (Excision,
Mayer Vietoris). In the case where the space is a CW-complex, we can also use the powerful tool
which is Cellular Homology (see [Hat01, Ch. 2.2] for more details on computation tools).

The homotopy groups construction shares the same philosophy, but it is more involved from a
technical point of view. In this case, the group operation is not simply formal, but it reflects the
structure of the topological space we are considering. This implies of course that homotopy groups
carry more informations than singular homology groups, but they are also more difficult to compute.

Example 1.1.2. Let S be a compact orientable surface of genus g > 2. Then S cannot be a
topological group. The proof relies on the simple fact that if g > 2 then

g
ﬂ:l(S) = <ai: bi | l_[[ai, bl] = 1>
i=1

which is not abelian; on the other side a simple Eckmann-Hilton argument shows that the first
fundamental group of every topological group is abelian.

Homotopy groups can identify almost completely certain kind of “good” spaces, namely CW-
complexes. In fact, a classical result of Algebraic Topology, known as Whitehead’s theorem says
that:
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Theorem 1.1.3. If a map f: X — Y between connected CW-complexes induces isomorphisms
fur (X)) = m,(Y) for all n, then f is a homotopy equivalence.

Proof. See [HatO1, Thm 4.5]. O

Since one usually encounters only CW complexes in applications to other areas of Mathematics,
Theorem 1.1.3 can be considered as a really satisfying result.

Keeping this result in mind, we can pass to the problem of computation of homotopy groups.
In this case, we can exploit the “weakness” of the set of functors {7, },cy; first of all they are
defined only up to homotopy equivalence, hence we can replace every space with an homotopically
equivalent one. But we can do a subtler thing: if amap f : X — Y is such that the induced morphisms
fio: T (X) — 1, (Y) are isomorphisms for every n, then we can replace X with Y and compute the
homotopy groups of Y. This is not a different technique if we work only with CW-complexes
because of Theorem 1.1.3; however, if X is a general topological space, we can try to reduce to the
CW-complex case, where more standard techniques are available. This is in fact always possible:

Theorem 1.1.4. For every topological space X, there exists a CW-complex Z and amap f: X — Y
such that f,: n,(X) — 7,(Y) is an isomorphism for every n.

Proof. See [HatO1, Prop. 4.13]. O
The previous reasoning shows then that it may be worth of to introduce the following definition:

Definition 1.1.5. A weak equivalence in Top is a morphism f: X — Y such that the induced
morphisms f,: 7,(X) — 7, (Y) are isomorphisms for every n.

To formalize the technique sketched before, we would like to have a category where weak
equivalences are invertible. The construction, however, is not completely trivial; to avoid the
need to change universe, we can observe that Theorem 1.1.4 allows us to restrict ourselves to the
full subcategory of CW-complexes; there Theorem 1.1.3 shows that inverting weak equivalences
produces the same result as quotienting by homotopy, except that in this case it is perfectly clear
that we are not enlarging our universe.

This construction motivates the construction of the homotopy category of a model category, as
we will see later.

Homological Algebra

One could say in a very fancy way that Homological Algebra is the study of the lack of exactness
of functors between abelian categories. Motivations, to my best knowledge, come from Algebraic
Topology and Algebraic Geometry. In the first case, the relationship is self-evident: we attach to
every topological space the complex of (co)chains, and we reason then in term of this complex. It
becomes therefore useful to be able to manipulate chain complexes with general techniques. On the
other side, in Algebraic Geometry, Homological Algebra shows up in a totally unexpected way.
Recall that a scheme (X, 0x) is said to be regular at a point x if the local ring @y , is regular, i.e.

dim,(ym, /m? = dim.Krull gy

The scheme is said to be regular if it is regular at each point. The hope is this notion of regularity is
a local condition; however, it is not clear at all why we should be able to check the condition only
over closed points. In fact, the proof of this fact relies on a theorem of Serre:

Theorem 1.1.6. If a noetherian local ring has finite global homological dimension, then it is a
regular local ring.
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Proof. See [AK70], in particular Theorem 5.15 and Corollary 5.18. O

Other motivations come from Algebraic Geometry (like the considerations that lead to Verdier
duality), but this is not the right place where to do a full review of them. Instead, we will shortly
describe the main construction of elementary Homological Algebra, since it will be of some relevance
in our next discussion about model categories.

Let F: A — B be an additive functor between abelian categories, and let’s assume that F is left
exact. Following Grothendieck ([Gro57], but cfr. also [CSAM29, Ch. II]) we say that a derived
functor for F is a cohomological &-functor which is universal in an appropriate sense. The classical
existence theorem says that if A has enough injectives, then the derived functor always exists and it
is obtained via the following procedure:

1. start with an object A€ Ob(A);
2. choose an injective resolution A — I°* in Ch(A);
3. define R'F := H'(F(I*)).

One technical difficulty in the proof that this gives back a universal cohomological &-functor is that
our definition might depend on the choice of point 2. In fact,

1.2 Model categories
Now that the motivational part is more or less settled, we can start getting serious with the theory of
model categories. For sake of completeness, we recall some basic definitions from Category Theory

(for more details the reader is referred to [Mac71]):

Definition 1.2.1. Let C be any category. The arrow category of C, denoted Arr(C) is by definition
the comma category (C | C).

Remark 1.2.2. Explicitly, objects of Arr(C) are the arrows of € and morphisms are commutative
squares.

Remark 1.2.3. We will denote the two natural projection functors (€ | €) — € by
dy,d;: Arr(C) = €
Observe that the composition of arrows induces a functor
o: Arr(C) x4, g, Arr(C) — Arr(C)

where Arr(C) x4, 4, Arr(C) is the pullback

Arr(€) x4 g, Arr(€) —— Arr(€)

Arr(Q) ——————¢C

Definition 1.2.4. Let C be any category. An arrow f € Arr(C) is a retract of an arrow g € Arr(C) if
it is a retract of an object in Arr(C).
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Explicitly, f is a retract of g if we are given a commutative diagram as the following:

i,

Definition 1.2.5. Let C be any category and let I,J be subcategories of Arr(C). A functorial
(I,J)-factorization for € is a strict section of the restriction of the composition functor

o: I Xg g J — Arr(C)

Definition 1.2.6. Let C be any category and leti: A— B, p: X — Y be any two arrows in C. We say
that i has the left lifting property (LLP) with respect to p or, equivalently, that f has the right lifting
property (RLP) with respect to i if and only if for each commutative square

the dotted lifting exists.

Definition 1.2.7. Let C be any category. A model structure on C is the given of three full subcate-
gories W, FiB, CoriB of Arr(C) satisfying the following axioms:

MC1. M is (small) complete and (small) cocomplete.
MC2. if f, g,h are arrows satisfying f g = h and two of them are in W, then so is the third;
MC3. W, FiB, CoriB are closed under retracts;

MCA4. every arrow in W N FiB has the RLP with respect to every arrow in Cori and every arrow
in F1B has the RLP with respect to every arrow in W N CoFIB;

MC5. there are functorial (W N Coris, FiB) and (CoriB, W N FiB) factorizations in C.

We will denote by (G, W, FiB, CoriB) a category with a model structure; we will also say that the
arrows in W are the weak equivalences, that those in FiB (resp. in FiB N W) are the fibrations (resp.
trivial fibrations or acyclic fibrations) and that those in Coris (resp. in CoriBNW) are the cofibrations
(resp. trivial cofibrations or acyclic cofibrations) with respect to the given model structure.

Remark 1.2.8. In the original work of Quillen [Qui67] and in work of Dwyer and Spalinski [DS95]
is required only the existence of finite limits and a (not necessarily functorial) factorization. In these
notes we will follow the more modern habit (cfr. [MSM63], [Hir03], [DHK97]).

Example 1.2.9. Let M be a model category. Then M carries a model category structure in a
natural way: weak equivalences in M°P are the same as in M; fibrations in M°P are the cofibrations
of M, and cofibrations of M°P are the fibrations of M. The check that this defines a model structure
is straightforward and it is left to the reader.
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Example 1.2.10. ¢

Remark 1.2.11. The previous example shows that the theory of model categories is self-dual. It
follows that we can apply a duality argument to shorten proofs.

Remark 1.2.12. The axioms for a model category are overdetermined. As next Lemma will show, the
knowledge of weak equivalences and fibrations completely determine the cofibrations.

Lemma 1.2.13. Let M be a model category. Then:
1. fibrations are exactly those arrows with the RLP with respect to all trivial cofibrations;
2. trivial fibrations are exactly those arrows with the RLP with respect to all cofibrations;
3. cofibrations are exactly those arrows with the LLP with respect to all trivial fibrations;
4. trivial cofibrations are exactly those arrows with the LLP with respect to all fibrations.

Sketch of the proof. The proof of 3. and 4. is dual to that of 1. and 2.; we will sketch 1., and 2. will
be analogous. One inclusion is by definition; assume that f has the RLP with respect to all trivial
cofibrations; factorize f as pi where i is a trivial cofibration and p is a fibration. Choose a lifting h
in the diagram

id

and observe now that the diagram

express f as retract of i. This implies that f is a fibration. O
Corollary 1.2.14. Let M be a model category. Then

1. FiB is closed under pullback;

2. CoriB is closed under pushout.

Remark 1.2.15. As general philosophy, in a model category we care the most about weak equiva-
lences. However, fibrations and cofibrations are useful at a technical level, since they allow particular
constructions (see the homotopy category construction, for example). Also, it is absolutely not true
that weak equivalences determine in general the whole model structure: we can endow CGHaus
with at least two different model structures having the same weak equivalences (see the section
about examples for the details). However, there are remarkable exceptions: Cat and Grpd have a
uniquely determined model structure where weak equivalences are equivalences of categories. See
the complements to this chapter for a detailed proof.

Before ending this section, we introduce a few more concepts that will turn useful later on.
Definition 1.2.16. Let M. Then
1. an object X € Ob(M) is said to be cofibrant if the map ) — X is a cofibration;

2. an object X € Ob(M) is said to be fibrant if the map X — x is a fibration;
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3. a cofibrant approximation to an object X € Ob(M) is a pair (X, 1) where X is a cofibrant object
and i: X — X is a weak equivalence;

4. a fibrant approximation to an object X € Ob(M) is a pair (X, j) where X is a fibrant object and
j: X — X is a weak equivalence;

5. a cofibrant approximation to an arrow f : X — Y is the given of cofibrant approximations
(X,ix), (Y,iy) to X and Y and an arrow f : X — Y such that the diagram

N

6. a fibrant approximation to an arrow f:X — Y is the given of two fibrant approximations
(X, jx) and (Y, jy) and an arrow f RX — RY such that the diagram

<—><z

commutes;

~<<—><
~<><T><>

commutes.
Proposition 1.2.17. Let M be a model category. Then:

1. every object X € Ob(M) has a functorial cofibrant approximation (X, iy ) where iy is a trivial
fibration;

2. if (X, iy), X', i) are cofibrant approximations to an object X € Ob(M), and moreover iy is a
fibration, then there is a weak equivalence f : X — X';

3. every morphism in M has a fibrant approximation.

Sketch of the proof. 1. is a consequence of the factorization axiom. 2. and 3. follows from the lifting
properties of cofibrations with respect to trivial fibrations. O

Remark 1.2.18. We leave to the reader to state the dual of Proposition 1.2.17.

Remark 1.2.19. Proposition 1.2.17 is the analogue, in our abstract setting of Theorem 1.1.4 (cellular
approximation for topological spaces). We will return on this analogy in the examples.

Lemma 1.2.20. Let M be a model category and let C be a category with a subcategory S C Arr(M)
containing all the identities and satisfying the 2-out-of-3 axiom. If F: M — C is a functor that takes
acyclic cofibrations between cofibrant objects to elements of S, then F takes every weak equivalence
between cofibrant objects to elements of S. Dually, if F takes acyclic fibrations between fibrant
objects to elements of S, then F takes every weak equivalence between fibrant objects to elements
of S.
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Proof. Let f: A— B be a generic weak equivalence between cofibrant objects. Factor the map
(f,13):AUB —B

as
atctp

with p an acyclic fibration. Since A and B are cofibrant, stability of cofibrations for cobase change

(Corollary 1.2.14) implies that the two maps

i i
A—AUB<—B

are cofibrations. By the 2-out-of-3 axiom, both q o i, and g oi; are weak equivalences; the hypothesis
now imply that F(qoi,) and F(qoi,) are elements of S. Since F(poqoi;) = F(1p) is in S, it follows
that F(p) is in S. Therefore F(f) =F(p)oF(qoi,)isinS. O

1.3 The homotopy category

Exposition of the problem

As we will see later on in this cycle of seminars, model categories gives a powerful framework to
deal with higher homotopies. In this sense, their theory is absolutely necessary for the theory of
(00, 1)-categories as exposed, for example, in [HTT]. The homotopy category is a way to extract
(first order) homotopical informations from the model category M. In any case, the passage from
the model category to its homotopy category produces a loss of informations. We will see later on
how to associate other invariants to any model category.

Besides this general philosophy about the relationship between a model category and its ho-
motopy category, we can give a more concrete idea of what we are going to do: roughly speaking,
the main goal is to describe a general procedure to invert weak equivalences in an arbitrary model
category M, without enlarging the Grothendieck universe we fixed at the beginning; the way to do
that, will be to imitate the general procedure described in 1.1.

Let’s get serious now:

Definition 1.3.1. Let U C V be Grothendieck universes and let € be a U-small category. Let
S c Arr(C) be a set of arrows. A V-localization of C with respect to S is a V-small category C[S™!]
together with a functor Fg: € — C[S™1] such that

1. for all s € S, F¢(s) is an isomorphism;

2. for any other V-small category A and any functor G: € — A such that G(s) is an isomorphism
for each s € S, there is a functor G5: C[S™!] — A and a natural isomorphism

Ng:GsoFs~G

3. for any V-small category A, the induced functor
Fy: Funct(C[S™'],.A) — Funct(C, A)
is fully faithful.

Remark 1.3.2. This definition differs a little from those given in [GZ67] and in [CSAM29] because
of the natural isomorphism 7). However, this matches better the philosophy of category theory; a
similar definition can be found in [KS06, Ch. 7.1].



1.3. THE HOMOTOPY CATEGORY 9

Remark 1.3.3. The purpose of point 3. is to ensure the uniqueness of the factorization Gg, as well as
that of the natural isomorphism 7.

Remark 1.3.4. It can be shown that given U, € and S as in the previous definition there is always V
such that a V-localization exists. This is proved for example in [GZ67, p. 1.1].

Remark 1.3.5. Let U C V be Grothendieck universes. If € and S are as in Definition 1.3.1 and
C[S™1] is a V-localization of @ at S, then, for every Grothendieck universe V. C W, [S™!] is also a
W-localization of C at S.

With this terminology, the main goal of this section becomes to provide a proof of the following
theorem:

Theorem 1.3.6. Let U be a Grothendieck universe and let M be a model category. Then there exists

a U-localization of M with respect to the set of weak equivalences W.

Localizing subcategories

To prove Theorem 1.3.6, we will follow the exposition given in [DHK97], using the refined version
that can be found in [Riel2]. First of all, let us introduce a definition:

Definition 1.3.7. Let C be a category and let C,, W C C be subcategories. We say that C, is a left
(resp. right) deformation retract of C with respect to W if there exists a functor R: € — C, and a
natural transformation s: R — Ide (resp. s: Ide — R) such that:

1. R sends W into WN Cy;
2. for every object C € Ob(C), the map s, is in W;
3. for every object C, € Ob(Cy), the map s, is in WN C,.

The pair (R, s) is called a left (resp. right) deformation retraction from € to G, with respect to W. If
W = C, we will say that (R, s) is an absolute deformation retraction of C to C,,.

Lemma 1.3.8. Let C be a category and let C,, W C € be subcategories. Let R: € — €, be an absolute
left deformation retraction. Assume that for every object C € Ob(C) the map s, is in W; if W satisfies
the 2-out-of-3 then R sends W into WN C,. If €, is a full subcategory, then for every C, € Ob(C,),
the map s¢, is in WN €.

Proof. Let f: A— B be an arrow in W; consider the commutative square

R(A) 22— A
lR(f) lf
R(B) 2B

Then f os, and sy are in W; the 2-out-of-3 implies that R(f) is in W. The second statement is trivial,
since s¢, : R(Cy) — C is an arrow between objects of €. O

Proposition 1.3.9. Let C be a category and let C;, W C € be subcategories; write W, := C, N W. Let
(R,s) be a left (or right) deformation retraction of C to G, with respect to W. Let V be a Grothendieck
universe where the localizations @[W~!] exist. Then

1. the induced inclusion C,[W, 11— @[W™!] is an equivalence of categories;
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2. C[W™!] exists if and only if C;[W,'] does.

Proof. Let jo: €y — € be the inclusion functor. The universal property of localization show that
both j, and R define functors R: C[W™1] — €, [ng] and Jy: €o[W;'] — C[W™!]. The natural
transformation s: joR — Ide define a natural transformation

st _70 Oﬁ i Id@[w—l]

By construction, 5; = s¢. Therefore, 5'is a natural isomorphism. Condition 3. in Definition 1.3.7
shows that s restricts to a natural transformation Rj, — Ide . For the same reasons of above, this

natural transformation lifts to a natural isomorphism R o j, — Ideo[wal]. This gives the desired
equivalence of categories. The second statement is an obvious consequence of the first. O

Let now M be a model category. Introduce the following notations:
Notation. Let M be a model category. We will consider the following subcategories:

* M., the full subcategory whose objects are the cofibrant objects of M;

* My, the full subcategory whose objects are the fibrant objects of M;

* My, the full subcategory whose objects are both fibrant and cofibrant objects of M.

Using the factorization axiom MC5 and Lemma 1.3.8 it is immediate to prove the following:
Proposition 1.3.10. For every model category M:

1. M,; and M, are left deformation retracts of M, and M with respect to weak equivalences;

2. M.; and M are right deformation retracts of M, and M.

Proof. We will show that M, is a left deformation retraction of M with respect to weak equivalences.
The other statements are similar. Let’s fix an initial object 0; there exists a functor

F: M — Arr(0M)

sending an object A to the (unique) arrow @) — A; this assignment extends easily to arrows, and it is
functorial. Introduce next the (Coris, FiB N W)-factorization functor

G: Arr(M) — Arr(M) X g, g, Arr(M)
Finally, denote by 7y and 7t; the projection functors
;2 Arr(M) Xg g, Arr(M) — Arr(M)
Consider the functor
Q:=dyom0oGoF: M—M,
For each object A € Ob(M) we have an arrow
pa=m(G(F(A): QA) —A

which is a trivial fibration. It’s clear that the family {p,}aconnr) defines a natural transformation
j.©Q — 1dy, (here j.: M. — M denotes the natural inclusion). This, together with Lemma 1.3.8,
implies that M_ is a left deformation retract of M. O

Combining Propositions 1.3.9 and 1.3.10 it follows that we only need to show the existence of
Ho(M_). This will be accomplished in the following paragraph.

Remark 1.3.11. In absence of functorial factorization Proposition 1.3.10 doesn’t need to be true.
However, it can be shown that even in that case the localization of a model category exists. For a
proof which doesn’t make use of the functoriality of factorization, the reader is referred to [DS95,
Section 4].
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Homotopy relations

To construct the localization of M, ; with respect to weak equivalences, we will need some machinery.
Definition 1.3.12. Let M be a model category and let X € Ob()M) be any object.

1. A cylinder object for X is a factorization of the fold map
ViXUX DX xISX

in a cofibration followed by a weak equivalence.

2. A path object for X is a factorization of the diagonal map
A:XSX X xX
in a weak equivalence followed by a fibration.

Remark 1.3.13. A functorial cylinder (path) object always exist, thanks to the factorization axiom.
Moreover, we can require the map X x I — X (resp. X — X') to be a trivial fibration (resp. a trivial
cofibration). However, it is important to remark that a cylinder (path) object is any factorization of
the fold (diagonal) map.

Notation. If M is a model category and X X I is a cylinder object for X, we will denote by in;: X —
X X I the two arrows making the diagram

X

I~

XUX——XXI

Til
in;

X

commutative. Observe that the 2-out-of-3 axiom implies that in, is always a weak equivalence.
Similarly, we denote the dual maps for path objects as pr;.

We can use cylinder and path objects to introduce the notion of homotopy between two maps:
Definition 1.3.14. Let M be a model category and let f, g: A — X be two arrows.

1. A left homotopy from f to g is a pair (A x I,H) where A x I is a cylinder object for A and
H:AXx I — X is a map making the diagram

commutative. We say that f is left homotopic to g if a left homotopy from f to g exists; in

. . 1
this case we write f ~ g;
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2. A right homotopy from f to g is a pair (X', K) where X' is a path object for X and K: A — X!
is a map making the diagram

commutative. We say that g is right homotopic to g if a right homotopy from f to g exists; in
this case we write f £ g.

Lemma 1.3.15. If f : A— B is left homotopic to a weak equivalence, then f is a weak equivalence.

Proof. Choose a cylinder object A x I for A and a homotopy H: A x I — B. Since in,, in, are weak
equivalences, and H o in; is a weak equivalence by hypothesis, it follows from the 2-out-of-3 axiom
that H is a weak equivalence. Therefore, f = K oin,, is a weak equivalence too. O

Lemma 1.3.16. Let M be a model category.

1. If A is a cofibrant object, then X defines an equivalence relation on Homy(A,X) for every
object X € Ob(M);

2. if X is a fibrant object, then ~ defines an equivalence relation on Hom,, (A, X) for every object
A€ 0b(M).

Definition 1.3.17. Let M be a model category. Let A, X € Ob(M); we denote by m!(A,X) the
quotient of Hom,,(A, X) under the equivalence relation generated by left homotopy. Similarly, we
will denote by 7" (A, X) the quotient of Homy (A, X) by the equivalence relation generated by right
homotopy.

Lemma 1.3.18. Let M be a model category.

1. If Ais cofibrant and p: X — Y is an acyclic fibration or a weak equivalence between fibrant
objects, then the map
p..: Homy (A, X) — Hom, (A, Y)

induces a bijection
p.: T(AX) > (A Y)

2. If X is fibrant and i: A — B is an acyclic cofibration of a weak equivalence between cofibrant
objects, then the map
i*: Homy,(B,X) — Homy(4,X)

induces a bijection
i*: 1"(B,X) — n"(A,X)

Lemma 1.3.19. Let M be a model category.
1. If X is fibrant then composition in M induces a map

(A, A) x 7l(A,X) - ©l(A,X)
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2. If Ais cofibrant the composition in M induces a map
" (AX) x T (AX) - n"(4,X")
Lemma 1.3.20. Let M be a model category and let f, g: A— X be maps.
1. If Ais cofibrant and f L g, then f ~ g;
2. if X is fibrant and f ~ g, then f L g.

Notation. If Ais cofibrant and X is fibrant, previous lemma shows that the two relations ~ and ~ on
Hom,,(A, X) coincide. In this case we will denote both by ~ and we will refer to it as the homotopy
equivalence relation.

With these notations we have the following:

Corollary 1.3.21. The homotopy relation on morphisms of M, is an equivalence relation and it is
compatible with composition. Hence the category M,/ ~ exists.

The following proposition is the key result in our proof of Theorem 1.3.6. It is the equivalent, in
our abstract setting, of Whitehead’s Theorem 1.1.3.

Theorem 1.3.22. Let M be a model category and let f : A— X be a map between objects which are
both fibrant and cofibrant. Then f is a weak equivalence if and only if it is a homotopy equivalence.

Sketch of the proof. Suppose that f : A— B is a weak equivalence of objects in M ;. Then Lemma
1.3.18 shows that for any other fibrant and cofibrant object X we have an induced bijection

fo: m(X,A) — n(X,B)

For X = B we find g: B — A such that f g ~ idg; then fgf ~ f and taking X = A we can cancel f
obtaining gf ~ id,. Thus f is a homotopy equivalence.
Conversely, suppose that f is a homotopy equivalence. Factor f as

AL cLB

with g acyclic cofibration. Since C is fibrant and cofibrant, it follows that g is a homotopy equivalence.
Let f': B — A be a homotopy inverse for f and choose a left homotopy

H:BxI—B

from f f’ to 1. Since B is cofibrant the map iny: B — B X I is an acyclic cofibration; therefore we
can choose a lifting H': B x I — C in the following diagram:

5—% ¢

R
o
inoJ lp

BxI—B
H

Set
q:=H'oin;
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Then pq = 15 and H’ is a left homotopy from gf’ to q. If g’ is a homotopy inverse for g we get
p~pgg ~fgie o

qp~(gf)(fg)~1c
Lemma 1.3.15 implies now that gp is a weak equivalence. But the diagram

1c 1c
C——C——C
lp lqp lp
q P
B——C——B
expresses p as retract of gp. O

Corollary 1.3.23. Let M be a model category; the quotient map y: M.y — M/ ~ is the localization
of M., with respect to weak equivalences.

Proof. Let F: M. — C be a functor sending every weak equivalence to an isomorphism. Let
f,g:A— B be homotopic maps. Choose a cylinder object for A

AUASAxTBA

and a (left) homotopy H: Ax I — B from f to g. Since p is a weak equivalence F(p) is an
isomorphism; therefore:

F(p)o F(ing) = F(poiny) = F(p oiny)F(p) o F(in;)
and thus F(iny) = F(in;). It follows that
F(f) = F(Hing) = F(H)F(iny) = F(H)F (in,) = F(H o in;) = F(g)
The universal property of the quotient therefore produces a unique morphism
F: M, ¢/ ~—C

and a unique natural isomorphism t: F oy — F. Universality follows from universal property of the
quotient, with considerations similar to the ones above. O

We are now ready to provide a proof of Theorem 1.3.6:

Proof of Theorem 1.3.6. With Proposition 1.3.10 we were reduced to prove that the localization of
M, with respect to weak equivalences exists. This is done in Corollary 1.3.23. O

Complement: homotopy and liftings

Before developing some examples, we want to discuss some lifting criterion and uniqueness (up-to-
homotopy) property. All the objects will be objects in a given model category M.

Proposition 1.3.24. Leti: A— B be a cofibration, p: X — Y a fibration. Then for each commutative
square

A——X

A hy
B——Y

g

and each pair of liftings h,, h,, we have:
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1. if p is a trivial fibration, h; is left homotopic to h;
2. if i is a trivial cofibration, h; is right homotopic to h,.

Proof. We will prove the first statement. Choose a cylinder object for B:

BUBLBxILB

and consider the diagram

BuB —

] ﬁl

BxI——B —
The lifting exists by hypothesis, since j is a cofibration and p is a trivial fibration. Clearly,
Hoiny=h,, Hoin; =h,
O

Corollary 1.3.25. Let X,Y be given objects; let (X, i) and (17,Nj)13e cofibrant approximations such
that the j is a fibration. Then any map f : X — Y has a lifting f : X — Y and this lifting is unique up
to right homotopy.

Proof. We obtain f choosing a lifting in the following diagram:

Uniqueness up to right homotopy is then a consequence of Proposition 1.3.24. O

Corollary 1.3.26. Let X be a given object. If (W, i) and (W', j) are two cofibrant approximations
such that j is a fibration, there is a weak equivalence f : W — W'’ such that j o f = i; moreover f is
unique up to right homotopy.

Proof. Apply Corollary 1.3.25 to the identity idy : X — X. O

Remark 1.3.27. The situation described in previous results is somehow standard: really often, in
homotopy theory, we cannot ask for uniqueness, but only for uniqueness up-to-homotopy. The idea
is that, from a homotopical point of view, it doesn’t really matter, so we have a “virtual uniqueness”.
An important example is the following: if we are working up-to-homotopy, it doesn’t really matter to
know the composition of f and g; we just need to know a composition up-to-homotopy; obviously,
the requirement is that every two admissible compositions are reciprocally homotopic “at any order”.
The correct formulation of these ideas is by no means trivial; it is somehow intuitive to try to reduce
to a “contractibility property”, but it took several decades to reach a satisfactory formulation.

To the best of my knowledge, after the work of Quillen it has been standard to interpret this
conctractibility in term of the classifying space of a category. For example, if we are given maps as in
Proposition 1.3.24, then the category whose objects are the diagonal fillings and whose morphisms
are the right-homotopies will have conctractible classifying space. This shows that the theory we
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are developing is working well, since it produces the results that we intuitively expect. However,
this theory has a great disadvantage: it requires a lot of constructions and a lot of comparison
results. This defect has been overcome in the theory of (0o, 1)-categories via quasicategories; the
exposition given by Lurie in [HTT] is perfectly organic and doesn’t need any “external” construction:
for example, we have the notion of contractibility of a quasicategory, and if S is a quasicategory, we
can consider the subcategory spanned by the diagonal fillings; the previous result can be restated
by saying that this quasicategory is contractible, without need to invoke the classifying space
construction. This is, in my opinion, one of the principal strengths of quasicategories.

1.4 Examples

In this section we collect some of the easiest examples of model categories. Each example will be
organized in the following way:

1. description of the model structure with a sketch of the verification of the axioms;
2. explicit computation of cylinder objects and path objects (at least in some good case);

3. explicit computation of the Hom in the homotopy category Ho(M).

Simplicial sets

The theory of simplicial sets are at the core of homotopy theory. They are the first purely algebraic
(combinatorial) model for the homotopy category of topological spaces we discovered. Appendix
A contains a brief summary of this theory; more specific references are given there. Here we will
simply describe the usual model structure given to sSet.

Theorem 1.4.1. The following classes of maps in sSet define a model structure:

* weak equivalences are exactly those morphisms inducing isomorphisms between all the
homotopy group (of the geometric realization);

* fibrations are Kan fibrations;
* cofibrations are injections on objects.

Remark 1.4.2. It’s possible to give a purely combinatorial description of the model structure on sSet.
To describe weak equivalences avoiding geometric realization, one has to use the notion of minimal
Kan complex and minimal fibration. For an exposition of these notions, the reader is referred to
[May69] or to [GJ99, p. 1.10].

From this moment on, when we refer to a model structure on sSet we will tacitly mean that
of Theorem 1.4.1. The proof of this Theorem is hard and we will simply outline the main ideas
involved there. For the details, the reader is referred to the first chapter of [GJ99] or to the third
chapter

Sketch of the proof Coming soon... O

At this point we can do some computation. Let’s start with the computation of a cylinder object.

Proposition 1.4.3. If K € sSet is a simplicial set, K x A! is a cylinder object for K.
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Proof. For e € {0,1} define the maps in,: K — K x Al by
K
idy
vl
in,
K——Kx Al

RN

Al
where f,: K — A° &, AL, This gives an injective map
it KUK —>KxA!
Then
poioiy=poiny=idg
poioi; =poin; =idg

which shows that p o i is a factorization of the fold map V: K LUK — K. Since i is injective, it is also
a cofibration. Since geometric realization commutes with products, we obtain that

Ipl: K| x |AY] = K|
which is a homotopy equivalence (JA!| is contractible), hence p is a weak equivalence. O

We will see later that this proposition holds in full generality: the key point is that {A"}, o is a
cosimplicial object in sSet, and sSet is enriched over itself.

Proposition 1.4.4. Let K be a simplicial set. Then hom(A!,K) is a path object for K.

Simplicial sets have another model structure, called the Joyal model structure. We won’t use it in
this chapter, but we will use it dealing with quasicategories (and the equivalence with simplicial
categories).

Definition 1.4.5. Let S € sSet; we define a simplicial category €[S] as ...
Theorem 1.4.6. sSet has a model structure where:
e cofibrations is a monomorphism;

e amap f:S — S’ is a weak equivalence if and only if the induced functor ¢[S] — €[S’] is an
equivalence of simplicial categories;

« fibrations are maps with the RLP with respect to trivial cofibrations.

Topological spaces
Among the most important examples of model category there is Top.

Definition 1.4.7. A map of topological spaces p: X — Y is said to be a Serre fibration if, for each
CW-complex A, the map p has the RLP with respect to the inclusion A x 0 — A x [0, 1].

Theorem 1.4.8. Top has a model structure where
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* weak equivalences are weak homotopy equivalences;
* fibrations are Serre fibrations;
* cofibrations are the maps with LLP with respect to acyclic fibrations.

Since I := [0, 1] is contractible, it follows that A x [0, 1] retracts onto A x O; in particular, every
map X — x is a Serre fibration, that is:

Corollary 1.4.9. With the model structure of Theorem 1.4.8, in Top every object is fibrant.
On the other side one can prove:
Lemma 1.4.10. Every cellular inclusion A — B is a cofibration.

At this point, we can do a computation. Assume that A is a CW-complex and let X be an arbitrary
topological space. Since A is cofibrant by previous proposition, and X is fibrant because every object
is fibrant, it follows that

HomHo(Top)(A> X)~ HomTop(A,X)/ ~

Proposition 1.4.11. If Ais a CW-complex, A x [0, 1] is a cylinder object for A.

Proof. Consider the inclusions
AUA—AX[0,1]

at level 0 and 1. This is a cofibration because it is a cellular inclusion. Then we can introduce the
projection:
p:Ax[0,1]—-A

This is a homotopy equivalence, hence also a weak equivalence. Moreover, it is a fibration: given a
diagram

Bx0—2 5 Ax[0,1]

lg lp
Bx[0,1] ——A

simply define a lifting H: B x [0,1] - A x [0,1] by
H(b,t) = (h(b, t),q(f (b,0)))
where q: Ax [0,1] — [0, 1] is the second projection. O
Using this result we can also identify the homotopy relation for maps starting from a CW-complex:

Proposition 1.4.12. If Ais a CW-complex and f, g: A — X are continuous map, then f is homotopic
to g if and only if they are homotopic in the topological sense.

Finally, we can anticipate that the adjoint pair composed by geometric realization and singular
complex induce an equivalence between Ho(Top) and Ho(sSet). This will give an example of Quillen
equivalence. We will return on this point in the next section.

Before passing on, we should at least remark that Top can be endowed with another model
structure, where cofibrations are the inclusions A < X such that A is a closed subspace of X and
the pair (X,A) has the homotopy lifting property. These are called Hurewicz cofibrations. The weak
equivalences are unchanged. This gives an example of a model category whose structure is not
completely determined by weak equivalences.
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Chain complexes over Mody

This is a purely algebraic example of model category, and establishes a strong relation with homo-
logical algebra. The intuition coming from this example will be useful as analogy in the construction
of the total derived functor.

We will restrict ourselves to consider complexes bounded below.

Definition 1.4.13. A morphism of complexes f,: M, — N, is said to be a quasi-isomorphism if, for
each n e N, H;(f,): H;(M,) — H;(N,) is an isomorphism.

Remark 1.4.14. Recall from [CSAM29, Ch. I] that every chain-equivalence is also a quasi-isomorphism.
The converse is false: for example, a complex is split-exact if and only if its identity is chain-homotopic
to the null map; however, there are exact complexes which are not split exact; for each such complex,
the map to the zero complex is a quasi isomorphism, but it is not a chain-equivalence.

For each R-module A and each n € N, n > 1 define the complex ((D,(A)),,d,) by

0 ifi#n—1,n 0 ifi#n-1
(Dn(A)); = e , =1y e
A ifi=n—-1,n id, ifi=n—-1

Clearly this gives rise to a functor D,,: Mod; — Ch(R). Let now II, : Ch(R) — Mody be the functor
projecting everything to the n-th position. The following lemma is straightforward:

Lemma 1.4.15. For each n € N, n > 1 we have the following adjunction relations:
D,4A1,4D,;
In particular D,, takes projective objects into projective objects.

Sketch of the proof. The first statement is clear by inspection. The second statement follows easily
from the adjunction D, 411, and the fact that II,, is an exact functor. O

Theorem 1.4.16. Let R be a ring. The category of (bounded below) chain complexes Ch(R) has a
model structure where

* a weak equivalence is a quasi-isomorphism;

* a cofibration is a map f,: M, — N, such that f, is a monomorphism with projective cokernel
for every degree k;

e a fibration is a map f,: M, — N, which is an epimorphism in every strictly positive degree.

Proof. Sketch of the proof Axioms MC1 — MC3 are straightforward. Let’s prove the RLP of cofibrations
with respect to acyclic fibrations. Consider a diagram

b

8o
« 7

RS

. (1.1)

P.

P
%

h,
« ——

o
o

where i, is a cofibration and p an acyclic fibration. Since Hy(p,) is an isomorphism, it follows that
Do: Xy — Y, is onto, and so p,: X, — Y, is onto. Now the idea is to split B, = A; @ P;, where P, is
a projective module (possible because i, is a cofibration) and use the projection B, — A, to build
inductively a lifting B, — X,.
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Assume now that in the diagram (1.1) i, is an acyclic cofibration and p, a fibration. Let P, be
the cokernel of i,; then the long exact sequence in homology shows that P, is acyclic; by assumption
each P, is a projective R-module. It can be shown with an induction argument that

P, ~ P D (2, 4(P))
k>1

and that each Z,(P) is a projective R-module. It follows from Lemma 1.4.15 that P, is a projective
object in Ch(R). The short exact sequence

0—>A,i—'>B,—>P,—>O

is split. This allows to build the desired lifting.
Axiom MCS5 follows by a standard small object argument. O

Example 1.4.17. For each R-module A, let (P,, f,) be a cofibrant replacement for J,(A). The
map f,: P, — K(A,0) is a quasi-isomorphism; in particular P, is exact in strictly positive degrees.
Moreover, it is cofibrant, hence each object is projective. It follows that P, is a projective resolution of
A.

Remark 1.4.18. The tensor product of chain complexes is defined as A, ®cp(ry Bo := Tot®(A, ®; B.),
where A, ®; B, is the natural double complex associated to A, and B,. This tensor product endows
Ch(R) with a monoidal structure. See the appendixes for the details.

Example 1.4.19. Consider the complex:

Al: . 50-RLR?

R* ¢

_ (~ide
d= ( idR)

h.: Ap — K(R,0)

where

Consider the map

defined by
ho = (idg idy)
and
h,=0 ifn>0
We claim that h, is a chain-equivalence. In fact, consider the map

ge: K(R,0) — A

id
8o = ( OR)

and g, = 0 for n > 0. Then setting f, := g, © h, we obtain the following map:

defined in degree O to be

—id
id
- ——>R—FR?

| )

+——0——R?

)
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Using as basis for R? the vectors

(). w=0)

define s: R? — R by the conditions
s(ug) =1, s(u)=0

Then a routine check shows that s is the required chain homotopy between f, and id,:. Since
h, o g, = idk(g o), We completely proved our statement.

Lemma 1.4.20. Let A, be a cofibrant object in Ch(R). Then A, ®cpr) A}a is a cylinder object for A,.

More generally, let A, be any object in Ch(R) and let (A., f.) be a cofibrant approximation of A,;
then A, ® A}, is a cylinder object for A,.

Proof. Explicitly
(Ao ®Ch(R) A}z)n = Anfl GBAn EBAn

and the differential is given by

-d 0 0
id d 0
—id 0 d

Let’s consider the map g,: A, ®cn(r) A}Q — A, defined by
g, =(id 0 id)

Introduce also f,: B, ® B, — A, ®cpn(r) Aj setting

id 0
f,=10 0
0 id

Inspection shows that f, and g, are chain maps. Moreover, they factorize the fold map
V:B,®B, — B,

The map g, is clearly surjective in every degree; in particular it is a fibration. Moreover, it is a
quasi-isomorphism: using the map h, defined in Example 1.4.19 we obtain a map

id ®cn(r) Mo : Be ®chr) Ag — B. ®cnr) K(R,0) ~ B,
which is still a chain equivalence. Finally, f, is a cofibration because A, is assumed to be cofibrant. [

Remark 1.4.21. Observe that A, X A}Q is, in the notations of [CSAM29, Ch. 1.5], the mapping
cylinder of idy .

Corollary 1.4.22. Let A, be a cofibrant object in Ch(R); let f,, g,: A, — B, be two chain-maps.
Then a left homotopy from f, to g, is precisely a chain-homotopy.

Remark 1.4.23. We can now interpret Corollaries 1.3.25 and 1.3.26 in term of the usual results of
homological algebra: any map between objects can be lifted to a map between projective resolutions,
and the lifting is unique up-to-homotopy.
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Proposition 1.4.24. Homyqch(ry)(K(A, n),K(B,m)) = Exty "(A, B).

Proof. If n =0 and m > 0, choose a cofibrant replacement for K(A, 0); as we saw, this is a projective
resolution P, — A. Then P, is cofibrant, hence left homotopy on

Homgygy(P.,K(B,m)) ={a: P,, > B|aod =0}
coincides with chain homotopy. This is exactly the homology of
Homg (P41, B) — Homg(P,,, B) — Homg(P,,_1, B)

i.e. ExtI(A, B). O

Groupoids

The category of groupoids will play a central role in these seminars, so we will explain in detail how
to derive a model structure on Grpd starting from that on sSet. For technical details, we will refer
to the Appendix.

Theorem 1.4.25. Grpd has a model structure where
* weak equivalences are equivalences of categories;

* fibrations are the functors with the RLP with respect to the map Agrpd — Aérpd ;
* cofibrations are functors which are injections on objects.

Proposition 1.4.26. Let G be a groupoid. A cylinder object for G is G x Aérp a
Proof. We obviously have maps for k € {0, 1}

ink:9—>9x{k}C9xA1Grpd

inducing amap i: UG — G x A, which is clearly injective on objects and hence a cofibration. The
canonical projection map
gxal—g

is obviously a fibration and an equivalence of categories. Therefore we have a cylinder object. [

Corollary 1.4.27. Let F{,F,: G — H be functors between groupoids. They are left homotopic if and
only if there is a natural transformation (hence a natural isomorphism) between them.

Proof. This is an easy consequence of Proposition 1.4.26 (using a standard reformulation of natural
transformation). O

Categories

The category of all small categories Cat has a model structure which doesn’t differ much from that
of groupoids. However, we state it as a theorem for future references:

Theorem 1.4.28. Cat has a model structure where:
* weak equivalences are equivalences of categories;
* cofibrations are functors injective on objects;

3 . . . O 1
* fibrations are functors with the RLP with respect to the map Arpd = Dgrpa-
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1.5 Quillen adjunctions and total derived functors

The goal of this section is to introduce a notion of morphism between model categories. It is a subtle
question to decide how much of the model structure must be preserved by a functor; the naif idea is
probably to consider functors F: M — N sending fibrations, cofibrations and weak equivalences of
M in their correspondents of N. However, it turns out that this notion is too much restrictive, and
there aren’t many examples of such functors.

What is really done is to consider adjunction pairs F: M 2 N: G, where F is required to preserve
cofibrations and G is required to preserve fibrations. It is easy to give several different formulations
of this property; the result is what it’s called a Quillen adjunction. First of all, we will describe these
different reformulations; next, we will give the notion of Quillen equivalence. In the subsequent
paragraph, dedicated to the notion of derived functor, we explain how a Quillen adjunction induces
an adjunction between the homotopy categories and we prove that this is an equivalence if the
starting adjunction was a Quillen equivalence.

We chose this order for the exposition because it seems us more logic: it is known that Quillen
equivalences preserve many other constructions a part from the homotopy category; for example,
they preserve also mapping spaces.

Quillen adjunctions and equivalences

Definition 1.5.1. Let M, N be model categories. An adjoint pair
F:M2N:G
is said to be a Quillen adjunction if:
1. F preserves cofibrations;
2. G preserves fibrations.

Lemma 1.5.2. Let (F, G, ¢): A — B be an adjunction of categories. Let f: A; — A, be an arrow in
A and g: B; — B, be an arrow in B; then f has the LLP with respect to G(g) if and only if g has
the RLP with respect to F(f).

Proof. Recall that in our notations ¢ is the natural isomorphism

¢ap: Homgy(F(A),B) — Homy (A, G(B))

Consider the two commutative diagrams

A, —=G(B)) F(A)) —— B,
.;( \(

fl h lc(g) F(f)l " lg

Ay —— G(B,) F(A;) —5— B,

Assume that f has the RLP with respect to G(g). Starting with the diagram on the right, set a = ¢(y),
B = (8); the diagram on the left commutes thanks to adjunction properties. Therefore there is a
diagonal lifting h: A, — G(B,); write ¢ for ¢ ~'. Then

Y(h): F(Ay) = B,
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and

a=y(p(a)) =y(hof)=1y(h)oF(f)
B=v%(e(B)=1(G(g)oh) =goy(h)

The other statement is dual. O

Example 1.5.3. The adjoint pair 7t : sSet = Grpd: N of Theorem ?? is a Quillen pair. In fact ...
(this is essentially the content of [Hol07, Lemma 3.3])

Corollary 1.5.4. Let F: M 2 N: G be an adjunction between model categories. The following
statements are equivalent:

1. (F,G) is a Quillen pair;

2. F preserves cofibrations and acyclic cofibrations;

3. G preserves fibrations and acyclic fibrations;

4. F preserves acyclic cofibrations and G preserves acyclic fibrations.

Corollary 1.5.5. Let F: M 2 N: G be a Quillen pair. Then F takes weak equivalences between
cofibrant objects in weak equivalences. Dually, G takes weak equivalences between fibrant objects in
weak equivalences.

Proof. This follows from Lemma 1.2.20 and Corollary 1.5.4. O

Definition 1.5.6. Let (F, G, ¢): M — N be a Quillen pair. We say that it is a Quillen equivalence if
for every cofibrant object A € Ob(M) and each fibrant object X € Ob(N) amap f: A— G(X) is a
weak equivalence if and only if ¢(f): F(A) — X is a weak equivalence.

Derived functor

Definition 1.5.7. Let M be a model category and let F: M — C be any functor. We call the right
Kan extension of F along y: M — Ho(M) the left derived functor of F. We will denote it by (LF, t).
Dually, we call the left Kan extension of F along v: M — Ho(M) the right derived functor of F; we
will denote it by (RF,s).

Remark 1.5.8. If F: M — C sends weak equivalences to isomorphisms, then the left derived functor
exists because of the universal property of the localization. However, this is not necessary.

Theorem 1.5.9. Let M be a model category and let F: M — € be any functor. If F sends acyclic
cofibrations between cofibrant objects to isomorphisms, then the left derived functor of F exists.

Sketch of the proof. (The details can be found in [Riel2, Theorem 2.2.8]) Introduce a deformation
retraction (Q,s) of M onto M, as in the proof of Proposition 1.3.10. Then we can fix a representative
for the localization considering

Y i=7.°0Q: M — M, — Ho(M,)

where y,.: M, — Ho(M,) is the localization functor for M..
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Consider F o j.: M, — C; by hypothesis F o j. sends trivial cofibrations to isomorphisms; Ken
Brown’s Lemma 1.2.20 implies that F o j. sends every weak equivalence to an isomorphism. Universal
property of Ho(M,) produces then a factorization of F o j, as F o y,:

M, —“— Ho(M,)

lo
M——F—C
together with a universal natural isomorphism ¢: F oy, — F o j.. Using the natural transformation
s: j. oQ — Id,; we obtain a natural transformation

(Fs)-eq: ﬁy—>F
We claim that (F, (Fs) - £q) is a left derived functor of F. Let G: Ho(M,) — C be any functor and let
a: Gy —F

be a natural transformation. Consider a; : Gyj. — Fj. and denote s, the restriction of s to M.
Since y sends weak equivalences to isomorphisms, it follows that Gys,.: Gyj, — Gy, is a natural
isomorphism. Therefore we have a chain of isomorphisms:

Nat(Gyj,, Fj.) ~Nat(Gy,, Fj.) ~ Nat(G, F)
which produces a unique natural isomorphism f8: G — F such that

e-B, =a; - (Gys))™"
We have to check
Fs-eq-f,=a

Unravelling the definitions we get

(Fs)-&q- (ﬁyc)Q =(Fs)q-(e-Brc)q
= (FS)Q “AiqQ” (Gysc)él
= ((Fs)- a)g- (Gys)g'
Our thesis is thus equivalent to
a-(Gys ) =((Fs)-a)q
which holds by the very definition of natural transformation. Uniqueness of f is similarly proved. [

Example 1.5.10. Let R,S be (commutative) rings; let F: Modz — Modg be an additive functor.
This induces an additive functor
F: Ch(R) — Ch(S)

obviously preserving chain homotopies. Since in the (projective) model structure on Ch(R) every
object is fibrant, it follows that every quasi-isomorphism between cofibrant objects (i.e. complexes
of projective modules) is a homotopy equivalence; in particular it is preserved by F. This gives rise
to a total left derived functor

LF: X(R) — X(S)

If F is not right exact, the composition H, o LF o deg, doesn’t need to be isomorphic to F. However,
note that the functors {H; o LF o deg,};cy do form a homological §-functor.

1Observe that s, defines a natural transformation Q o j, — Idyy, -
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Theorem 1.5.11. Let F: M &2 N: G be a Quillen pair. Then both the left derived functor LF and
the right derived functor RG exist and they form an adjoint pair

LF: Ho(M) 2 Ho(N): RG
which is an adjoint equivalence if (F, G) is a Quillen equivalence.

Sketch of the proof. The existence of LF and RG is implied by Theorem 1.5.9, its dual, and Corollary
1.5.4. Unit and counit pass to the localization; if (F, G) is a Quillen equivalence, unit and counit are
weak equivalences, and they induces isomorphisms in the homotopy categories, giving rise to an
adjoint equivalence. O

Example 1.5.12. Consider the geometric realization functor |- |: sSet — CGHaus; we know that
| - | is left adjoint to the singular complex functor Sing: CGHaus — sSet. Moreover, | - | preserves
cofibrations (an inclusion of simplicial sets is sent to a cellular inclusion of CW-complexes) and
trivial cofibrations (by definition, a map of simplicial sets is a weak equivalence if and only if its
geometric realization is a weak equivalence in CGHaus). It follows that (| - |, Sing) is a Quillen
pair. Moreover, a map f : S — Sing(X) is a weak equivalence if and only if |f|: |S| — | Sing(X)]| is
a weak equivalence; however, a classical result states that the counit | Sing(X)| — X is always a
weak equivalence;? it follows that f is a weak equivalence if and only if the adjoint map |S| — X
is a weak equivalence. Therefore (] - |, Sing) is a Quillen equivalence, and induce an equivalence
between Ho(sSet) and Ho(CGHaus).

Homotopy pushout

To conclude this section, I would like to deal with a specific example of great relevance to homotopy
theory: homotopy pushout and homotopy pullback (later on we will deal with more general kind of
homotopy limits and colimits). Introduce the “pushout category”

C={e+——e——r 0}
If M is a model category, we can consider M®; in standard category theory we have a functor
colim: M® — M

sending a C-diagram to its colimit. However, this functor doesn’t behave well with respect to the
model structure on M; for example, it doesn’t send weak equivalences to weak equivalences:

Example 1.5.13. Let M = CGHaus with the standard model structure (fibrations are Serre fibra-
tions). Consider the following diagram:

D Snfl D"
* snl *

All the vertical arrows are weak equivalences; however, the induced map on pushouts is S* — x,
which not a weak equivalence.

2See for example [May69, Theorem 16.6].
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This example is pathological in many ways; for the moment, we can observe that it suggests
the subtlety in the relationship between colimits and model structure. To understand better their
interaction, we should understand the “homotopical content” of diagrams of shape C; due to the
particular choice of C, this is not hard:

Lemma 1.5.14. Define an arrow in M° to be:
* a weak equivalence if it is an objectwise weak equivalence;
* a fibration if it is an objectwise fibration;
* a cofibration if it is an objectwise cofibration.

Then there is a model structure on M® whose weak equivalences, fibrations and cofibrations are the
ones specified above.

Proof. The proof is straightforward. The reader is referred to [DS95, Section 10] for the details. [

Obviously, this suggests to employ Theorem 1.5.9: even though colim doesn’t preserve weak
equivalences, its derived functor may exists as well. In fact, colim is left adjoint to the diagonal
functor

A M- M

Since it’s clear that A preserves fibrations and trivial fibrations, Theorem 1.5.11 implies that the left
derived functor of colim exists.

In practice, it is obviously important to be able to compute Lcolim for given pushout diagrams;
thus, we want to recall its construction: Theorem 1.5.11 works via a deformation Q: M — M_, and
Lcolim is obtained applying the universal property of localization to the functor colim oQ. It follows
that, in order to do computations, we are essentially interested in colim oQ. Recall that we produced
explicitly a deformation Q in Proposition 1.3.10; however Q is by no means unique. We can try to
exploit this lack of uniqueness to counteract the bad behaviour of colim showed in Example 1.5.13:
namely, we can try to choose Q in such a way that colim oQ respects weak equivalences.

Concretely, we can construct Q in the following way: starting with a diagram

Al <J—AO —1>A2

we take a cofibrant approximation wy: Aj — A, and then we factorize iow and jow into cofibrations
followed by trivial fibrations. We obtain

/

1

j ’
A Ay ——r 4

L,

A —— A, ——A,

and i’, j are cofibrations. Reasoning as in Proposition 1.3.10, we can make functorial this procedure,
obtaining a deformation retraction. It can be shown that hocolim is homotopy invariant. We will
return to this point later, in greater generality.

Remark 1.5.15. There are even more subtleties. In fact, one may naively expect that at the level of
Ho(M) the derived functor Lcolim coincides with the colimit functor. This cannot be true: consider
again the situation of Example 1.5.13. It should be more or less clear that in Ho(CGHaus) the
pushout of

D Snfl D
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is *. Obviously, this is not what we really want; better, this makes clear that passing to the homotopy
category produces a loss of informations. I will try to explain where this loss happens. Instead of
working with simple homotopy, let’s try to work with “coherent homotopy”. If * were, also in this
context, the pushout of our diagram, we could consider the natural maps

Sl ——D?

| |

Drl }:’:.

o

The coherence problem is the following: first of all, we are assigned a homotopy

The map * — S™ must come with other two homotopies

S —— Dp?

:

and these three homotopies hy, h,, h; must be compatible in the sense that h; o hs is, up-to-homotopy,
equal to h,. It is important to remark that we are considering homotopies

S'xDxI—-Y

relatives to
Y =S x{opHuX x {1}

(at each fixed time, we must have a homotopy between the two maps of S! into S2). However,
such hy,hy, h; (and the required higher homotopy) cannot exist: h;l o h, o hy defines an element in
715(S?) = Z, and inspection shows that this element is a generator; if h; o h; was homotopic relative
to Y to h,, we would have that, up-to-homotopy, h;l o h; o h4 is trivial, which is not the case.

This rough explanation should make clear that in the homotopy category things don’t go as ex-
pected because we are “inverting too much”, producing a loss of (higher homotopical) informations.

Remark 1.5.16. We gave a brief presentation of homotopy pushout in the general context of model
categories. The theory developed firstly in the topological context, and then in the simplicial one. In
those case, we know several formulas for homotopy limits and colimits. Let’s describe the explicit
construction of the homotopy pushout in CGHaus: if we are given a diagram of spaces

75 x- L.y
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the ordinary colimit is built gluing Z and Y along the images f(X) and g(X). In this process the
homotopy type of X can be lost, and this gives rise to the unpleasant situation of Example 1.5.13. It’s
quite natural, however, to “keep track” of the homotopy type of X using the following trick: replace
X with a cylinder object X x I, then glue Z to X x I along g(X) and X x {1}; similarly, glue Y to
X x I along f(X) and X x {0}. This gives intuitively the correct result. If we apply this construction

to
* Snfl *

we obtain
("1 xD)/(ST I x {0} UST x {1}) >~ S

which is the “correct” result.

1.6 Homotopy limits and colimits

Last section contains a brief summary about the construction of the homotopy pushout. If we want
to deal with diagrams of more general shapes, we have to take in account an additional difficulty:
the category M® doesn’t need to come equipped with a natural model structure. There are several
ways to overcome this problem: for example, one can restricts to nice enough diagrams; or one can
consider only sufficiently well-behaved model categories. In this exposition, we will consider only
Reedy diagrams. However, before the technical details, we would like to explain a more general
approach to this problem, that doesn’t require additional hypothesis.

Recall that Proposition 1.3.9 played a major role in our construction of Ho(M) for a model
category M. Moreover, the existence of a deformation retraction of M onto M, has proven extremely
useful also in Theorem 1.5.9. Actually, th