WHAT I§..

a Dérived Stack?

Derived stacks are the “spaces” studied in de-
rived algebraic geometry, a relatively new theory
in which algebraic geometry meets homotopy
theory—or higher category theory, depending on
one’s taste. Just as a scheme is locally modeled
on commutative rings, derived schemes or stacks
are modeled on some kind of derived commutative
rings, a homotopy version of commutative rings.
In order to define derived stacks more precisely,
it will be useful to reexamine briefly the functorial
point of view in (underived) algebraic geometry.

Let k be a base commutative ring. In algebraic
geometry, a k-scheme may be given at least two
equivalent definitions. The first one is as a special
kind of pair (X, Ox), where X is a topological space
and Oy is a sheaf of commutative k-algebras on X
(this is the so-called ringed space approach). The
second one is as a special kind of functor from the
category CommAlg, of commutative k-algebras
to the category of sets (this is the functor of
points approach). For example, the n-dimensional
projective space P} over k may be identified
with the functor sending A € CommAlg, to the
set of surjective maps of A-modules A" — A,
modulo the equivalence relation generated by
multiplication by units in A. In the following,
we will concentrate on the functor of points
description.

Prompted by the study of moduli problems (e.g.,
classifying families of elliptic curves or vector
bundles on a given algebraic variety), algebraic
geometers have long been led to enlarge the target
category of the functor of points from sets to
groupoids (i.e., categories whose morphisms are all
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invertible) in order to classify objects together with
their isomorphisms instead of just objects modulo
isomorphisms. These functors are called stacks,
and aficionados of the WHAT IS column already
have met this notion (“What is a stack?” by Dan
Edidin, Notices, April 2003). More recently, higher
stacks came into play; they arise naturally when one
is interested in classifying geometric objects (say,
over a given scheme) for which the natural notion
of equivalence is broader than just isomorphisms.
Example: perfect complexes over a given scheme
with equivalences given by quasi-isomorphisms,
i.e., maps inducing isomorphisms on cohomology.
In such cases it is natural to enlarge the target
category for the corresponding moduli functors to
the category of simplicial sets or, equivalently, to
the category of topological spaces. A stack may be
viewed as a higher stack via the nerve construction:
the nerve of a groupoid is the simplicial set
whose n-th level is the set of n composable
morphisms in the groupoid. This simplicial set
has homotopy groups only in degrees < 1, with
11 roughly corresponding to automorphisms of a
given object. General simplicial sets or topological
spaces are needed in order to accomodate “higher
autoequivalences” of the objects being classified.

Another example of a higher stack is given by
iterating the so-called classifying stack construc-
tion. For a k-group scheme G, there is a stack
BG = K(G, 1) classifying principal G-bundles; by
taking the nerve, we may view K (G, 1) as a functor
to simplicial sets. If G is abelian, this functor is
equivalent to a functor to simplicial abelian groups,
and the classifying stack construction may then
be applied to any simplicial level again to get
BBG = K(G, 2). And so on. For any n > 2, K(G, n)
is not a stack but a higher stack (classifying
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“higher” principal G-bundles); it is the algebro-
geometric analog of the Eilenberg-Mac Lane space
in topology, from which we borrowed the notation.
It is useful to draw a diagram summarizing the
still underived situation we have just discussed.

schemes

CommAlg;, Sets
N lio
Grpds

higher stacks

\LNcrvc

SimplSets

Here iy is the functor identifying a set with the
groupoid having that set of objects and only
identities as arrows.

The main point of derived algebraic geome-
try is to enlarge (also) the source category, i.e.,
to replace commutative algebras with a more
flexible notion of commutative rings serving as
new or derived rings. Why? 1 could list here,
among some of the actual historical motivations,
the Kontsevich hidden smoothness philosophy and
a geometrical definition of universal elliptic co-
homology (aka topological modular forms). For
expository reasons, I will concentrate instead on
two more down-to-earth and classical instances
that naturally lead to building a geometry based
on these derived rings rather than on the usual
commutative rings.

Derived Intersections

In algebraic geometry, the so-called intersection
multiplicities are given by Serre’s formula. Here is
one form of it. Let X be an ambient complex smooth
projective variety, and let Z, T be possibly singular
subvarieties of X whose dimensions sum up to
dim X and which intersect on a 0O-dimensional
locus. If p € Z N T is a point, its “weight” in the
intersection, i.e., its intersection multiplicity, is
given by

y(X; Z,T) = > dime Tory ** (@7, Or.),
i=0

where Oy, denotes the local ring of a variety
Y at p € Y and the Tor’s are computed in the
category of Oy ,-modules. One can easily prove
that the sum is finite and much less easily that
it is nonnegative. But here we are interested in
another aspect of this formula. In the lucky case
of a flat intersection, i.e., when either Oz, or Or,
are flat Ox p-modules, this formula tells us that the
multiplicity is given by the dimension of the tensor
product Oz, ®ox, Orp, which, for our purposes,
has two peculiar features: it is a commutative ring,
and it is the local ring of the scheme-theoretic
intersection Z N T at p. In other words, it carries
a nice geometrical interpretation.
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What about the general case? By definition,
in order to compute such multiplicities, i.e., the
Tor-groups, one has to resolve Oz, (or Or,) via a
complex of projective or flat O ,-modules, tensor
this resolution with Or, (or Oz,), and compute
the cohomology of the resulting complex. This
is very much homological algebra, but where
has the geometry gone? We started with three
varieties and a point on each of them, and we
ended up computing the cohomology of a rather
geometrically obscure complex. Is there a way to
reconcile the general case with the flat intersection
case in a possibly wider geometrical picture? A
possible answer is the following: we can still keep
the two peculiar geometric features of the flat
intersection case mentioned above, provided we
are willing to contemplate a notion of commutative
rings that is more general than the usual one. More
precisely, one can first observe that it is possible
to choose the resolution of, say, Oz, (as an Ox,,-
module) in such a way that it has the structure of
a non-positively commutative differential graded
Ox p-algebra with the differential increasing the
degree (a cdga, for short) or equivalently of a
simplicial commutative Oy ,-algebra. This gives
us an extension of the first feature of the flat
intersection case. Then we can force the second
feature by insisting that the tensor product of this
cdga resolution with Or, does give the “scheme
structure” of Z N T (locally at the point p). Of
course this is not a usual scheme structure, but
rather a new kind of scheme-like structure which
we will call a derived structure, the name coming
from the fact that what we are computing is
the derived tensor product Oz, ®§L9X,p O, (Whose
cohomology groups are the Tor-groups appearing
in Serre’s intersection formula). But we may, and
therefore we do, view Oz, ®2L9X‘n O, as a derived
commutative ring, i.e.,, a cdga or a simplicial
commutative algebra.

Deformation Theory

Another more or less classical topic in algebraic
geometry that also leads to considering these
kinds of derived rings is the theory of the cotan-
gent complex. This object dates back to Quillen,
Grothendieck, and Illusie (see L. Illusie, Complexe
cotangent et déformations. I, Lecture Notes in Math.
239, Springer-Verlag, 1971) and is too technical to
be carefully defined here. Let me just say that in
the affine case X = Spec A, for A a commutative
k-algebra, it is defined as the classical module of
Kahler differentials, but only after having replaced
A itself by a resolution that is a simplicial com-
mutative k-algebra that is free at each simplicial
level (in characteristic 0, one might as well resolve
using cdga’s). Recall that a simplicial commutative
algebrais a simplicial set thatis at eachlevel a com-
mutative algebra and whose structural maps (face
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and degeneracies) are required to be morphisms
of algebras. Even with such a sketchy definition, it
will not perhaps be too surprising that most topics
in the deformation theory of schemes, and more
generally of moduli stacks, are handled through
this cotangent complex. Although this was con-
firmed and deepened several times in the course
of the explosive development of moduli theory,
this relationship with deformation theory was al-
ready clear to Quillen, Illusie, and Grothendieck.
It was Grothendieck himself, back in 1968, who
asked whether it was possible to give some geo-
metrical interpretation of the cotangent complex,
say of a scheme X (see p. 4 of Catégories cofi-
brées additives et complexe cotangent relatif, LNM
79, Springer-Verlag, 1968). Derived algebraic ge-
ometry offers a possible answer to this question:
if one is willing to build algebraic geometry using
derived rings, then in this new world the cotangent
complex Lx of a scheme X is the actual cotangent
space of X. As a consequence, in derived algebraic
geometry the full cotangent complex (and not
only some truncation thereof) has a deformation-
theoretic interpretation: this might be considered
as the main reason derived algebraic geometry is
interesting for studying moduli problems.

The upshot of the previous discussionis that we
are interested in enlarging the previous diagram
to the following one:

schemes

CommAlg; Sets
\ l io
Jo Grpds

higher stacks

lNerve

DerivedCommAlg; SimplSets

_—
derived stacks

Here DerivedCommAlg;, is either the category
of simplicial commutative k-algebras or, when
the base ring k has characteristic 0, the category
of cdga’s over k. We will freely pass from one
description to the other whenever this is possible
and will contribute to conciseness. The functor
Jjo then sends a commutative algebra R to the
corresponding constant simplicial commutative
algebra (having R in each simplicial level and with
identities as face and degeneracies) or to the cdga
having R in degree 0, and O elsewhere.

An equivalence f : A — B between simplicial
commutative algebras is a map inducing isomor-
phisms 11;(A; a) ~ m;(A;f(a)) between homotopy
groups, for any base point a € Ay (Ap being the
0-th level of the simplicial set A) and any i > O.
The corresponding notion for cdga’s is given by
quasi-isomorphismes, i.e., maps inducing isomor-
phisms on every cohomology group. Derived rings
together with this notion of equivalences give
rise to a homotopy theory (technically speaking,
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a Quillen model category structure); the same is
true, with weak homotopy equivalences as equiv-
alences, for the target category SimplSets. It is a
basic rule of derived algebraic geometry that all
constructions should be, in an appropriate sense,
invariant under all these equivalences. This is ex-
actly the point where derived algebraic geometry
becomes a blend of algebraic geometry and homo-
topy theory, borrowing techniques and intuitions
from both areas.

We are now ready to fulfill the aim of this col-
umn and give a definition. A derived stack over k is
a functor DerivedCommAlg; — SimplSets send-
ing equivalences to weak homotopy equivalences
and satisfying a descent or gluing condition with
respect to some chosen “topology” on derived
rings.

The descent condition mentioned here is just a
derived (or homotopy) version of the usual sheaf
condition with respect to an appropriate (i.e.,
invariant under equivalences) notion of topology
on derived rings. Here is one example of such a
topology, the so-called strong étale topology. We
will assume we are working in characteristic 0 and
are taking cdga’s as our model for derived rings.
A covering family for such a topology is a family
{A — B;} such that {H°(A) — H°(B;)} is an étale
covering family (in the sense of usual algebraic
geometry) and the canonical maps H'(A) ®poa)
H°(B) — H!(B) are isomorphisms for any i > 0.
A derived version of the Yoneda lemma gives us,
for any derived ring A, a derived stack denoted
as RSpec A and called the derived spectrum of A.
Any stack may be faithfully viewed as a derived
stack, and conversely any derived stack F has a
truncation ty (/F) thatis a stack, e.g., to (RSpec A) ~
Spec(H?(A)). Passing to the truncation should be
thought of as passing to the classical or underived
part. And, intuitively speaking, F behaves much
like a formal thickening of its truncation or as a
scheme with respect to its reduced subscheme.

In the section “Deformation theory” I hinted that
derived algebraic geometry might be a natural
framework for deformation theory in algebraic
geometry. Let me try to push this point further.
The idea is that derived rings allow for more
general deformation directions, but not so general
that the usual geometrical intuition is completely
lost.

Let char(k) = 0 and i € N and k[i] be the k-dg-
module having just k in degree —i. We can then
consider the trivial square zero extension k-cdga

kl&il =k ® Kk[i].

Note that k[&;] is concentrated in nonpositive
degrees (with a degree-increasing differential) and
that its only nontrivial cohomology groups are
concentrated in degrees 0 an —i, where they
both equal k. k[¢;] is called the derived ring of
i-th order dual numbers over k, and its derived
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spectrum D; := RSpeckl[¢;] is called the derived
i-th order infinitesimal disk over k. Note that for
odd i, k[&;] is the free cdga on the k-dg module
k[i], i.e., on one generator in degree —i.

A useful intuitive way of thinking about k[¢;]
is as the universal derived affine scheme carrying
generalized nilpotents of order i. Here is one typical
result explaining how derived stacks allow for a
natural and geometrical reinterpretation of usual
deformation theory.

Proposition. Let X be a scheme over k and let Ly
be its cotangent complex. If x € X (k) is a k-rational
point in X, then for each i € N, there is a canonical
group isomorphism

Extj (Lxx, k) = RHom, (D;, (X, X)),

where RHom, denotes the set of morphisms in
the homotopy category of Speck-pointed derived
stacks.

In other words, for any i € N, the functor from
Spec k-pointed schemes to abelian groups

Sch,; — Ab : (X,x) — Ext}(Lxx, k),

while not co-representable in Sch, x, is indeed co-
represented by D; in the larger category of pointed
derived stacks. Therefore, the full cotangent com-
plex has a moduli-theoretic interpretation in the
world of derived algebraic geometry.

A derived extension of a stack F is a derived
stack F together with an identification of F with
the truncation to(‘F) of F. Given a stack F, there
is always a trivial derived extension (just viewing
F itself as a derived stack), but in most cases
there are other derived extensions. For example,
the stack Vect,(X) classifying rank n vector bun-
dles over a smooth and proper scheme X has
another natural and nontrivial derived extension
RVect, (X), obtained as the derived stack of maps
from X to the classifying stack BGL,. One can
prove that RVect,(X) classifies a fairly natural
derived version of rank n vector bundles on X.
The choice of a derived extension of a given
stack F endows F itself with important additional
geometric structure. One interesting example of
this further structure, still in the thread of de-
formation theory, arises when one starts with a
Deligne-Mumford stack F (e.g., the stack of sta-
ble maps to a fixed smooth complex projective
variety) and considers a derived Deligne-Mumford
extension F of it. If this derived extension is
quasi-smooth (i.e., its cotangent complex is of per-
fect amplitude [—1, 0]), then the closed immersion
j: F < F induces a map of cotangent complexes
J*Ly — Lp that is a [-1,0]-perfect obstruction
theory in the sense of Behrend-Fantechi (Invent.
Math. 128 (1997)). Moreover, it is true in all known
cases, and expected to be true in general, that any
such obstruction theory can be obtained as above
from some derived extension. So, as already seen
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in the case of the cotangent complex of a scheme,
obstruction theories are also classical ways of
(partially) encoding derived geometric structures.

A Quick Guide to the Literature

The approach to derived algebraic geometry
sketched above is contained essentially in
[HAG-II], of which [Toén-2005] is a very readable
overview. Due to some overlap in the topics,
[V-2010] might be a useful complement to the
present text. Another approach to derived geom-
etry is in Jacob Lurie’s book [H-Algebra], where
the emphasis is on higher categorical aspects
from the very beginning and whose spectrum of
applications is broader.
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