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a Derived Stack?
Gabriele Vezzosi

Derived stacks are the “spaces” studied in de-
rived algebraic geometry, a relatively new theory
in which algebraic geometry meets homotopy
theory—or higher category theory, depending on
one’s taste. Just as a scheme is locally modeled
on commutative rings, derived schemes or stacks
are modeled on some kind of derived commutative
rings, a homotopy version of commutative rings.
In order to define derived stacks more precisely,
it will be useful to reexamine briefly the functorial
point of view in (underived) algebraic geometry.

Let k be a base commutative ring. In algebraic
geometry, a k-scheme may be given at least two
equivalent definitions. The first one is as a special
kind of pair (X,OX), whereX is a topological space
and OX is a sheaf of commutative k-algebras on X
(this is the so-called ringed space approach). The
second one is as a special kind of functor from the
category CommAlgk of commutative k-algebras
to the category of sets (this is the functor of
points approach). For example, the n-dimensional
projective space P

n
k over k may be identified

with the functor sending A ∈ CommAlgk to the
set of surjective maps of A-modules An+1 → A,
modulo the equivalence relation generated by
multiplication by units in A. In the following,
we will concentrate on the functor of points
description.

Prompted by the study of moduli problems (e.g.,
classifying families of elliptic curves or vector
bundles on a given algebraic variety), algebraic
geometers have long been led to enlarge the target
category of the functor of points from sets to
groupoids (i.e., categories whose morphisms are all
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invertible) in order to classify objects together with

their isomorphisms instead of just objects modulo

isomorphisms. These functors are called stacks,

and aficionados of the WHAT IS column already

have met this notion (“What is a stack?” by Dan

Edidin, Notices, April 2003). More recently, higher

stacks came intoplay; theyarise naturallywhenone

is interested in classifying geometric objects (say,

over a given scheme) for which the natural notion

of equivalence is broader than just isomorphisms.

Example: perfect complexes over a given scheme

with equivalences given by quasi-isomorphisms,

i.e., maps inducing isomorphisms on cohomology.

In such cases it is natural to enlarge the target

category for the corresponding moduli functors to

the category of simplicial sets or, equivalently, to

the category of topological spaces. A stack may be

viewed as a higher stack via the nerve construction:

the nerve of a groupoid is the simplicial set

whose n-th level is the set of n composable

morphisms in the groupoid. This simplicial set

has homotopy groups only in degrees ≤ 1, with

π1 roughly corresponding to automorphisms of a

given object. General simplicial sets or topological

spaces are needed in order to accomodate “higher

autoequivalences” of the objects being classified.

Another example of a higher stack is given by

iterating the so-called classifying stack construc-

tion. For a k-group scheme G, there is a stack

BG ≡ K(G,1) classifying principal G-bundles; by

taking the nerve, we may view K(G,1) as a functor

to simplicial sets. If G is abelian, this functor is

equivalent toa functor tosimplicial abeliangroups,

and the classifying stack construction may then

be applied to any simplicial level again to get

BBG ≡ K(G,2). And so on. For any n ≥ 2, K(G, n)

is not a stack but a higher stack (classifying
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“higher” principal G-bundles); it is the algebro-

geometric analog of the Eilenberg-Mac Lane space

in topology, from which we borrowed the notation.

It is useful to draw a diagram summarizing the
still underived situation we have just discussed.
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Here i0 is the functor identifying a set with the

groupoid having that set of objects and only

identities as arrows.

The main point of derived algebraic geome-
try is to enlarge (also) the source category, i.e.,

to replace commutative algebras with a more

flexible notion of commutative rings serving as

new or derived rings. Why? I could list here,
among some of the actual historical motivations,

the Kontsevich hidden smoothness philosophy and

a geometrical definition of universal elliptic co-

homology (aka topological modular forms). For
expository reasons, I will concentrate instead on

two more down-to-earth and classical instances

that naturally lead to building a geometry based

on these derived rings rather than on the usual
commutative rings.

Derived Intersections
In algebraic geometry, the so-called intersection

multiplicities are given by Serre’s formula. Here is
one form of it. LetX be an ambient complex smooth

projective variety, and let Z,T be possibly singular

subvarieties of X whose dimensions sum up to

dim X and which intersect on a 0-dimensional

locus. If p ∈ Z ∩ T is a point, its “weight” in the
intersection, i.e., its intersection multiplicity, is

given by

µp(X;Z,T) =
∑

i≥0

dimC Tor
OX,p
i (OZ,p,OT,p),

where OY,p denotes the local ring of a variety
Y at p ∈ Y and the Tor’s are computed in the

category of OX,p-modules. One can easily prove

that the sum is finite and much less easily that

it is nonnegative. But here we are interested in
another aspect of this formula. In the lucky case

of a flat intersection, i.e., when either OZ,p or OT,p
are flatOX,p-modules, this formula tells us that the

multiplicity is given by the dimension of the tensor
product OZ,p ⊗OX,p OT,p , which, for our purposes,

has two peculiar features: it is a commutative ring,
and it is the local ring of the scheme-theoretic

intersection Z ∩ T at p. In other words, it carries

a nice geometrical interpretation.

What about the general case? By definition,

in order to compute such multiplicities, i.e., the
Tor-groups, one has to resolve OZ,p (or OT,p) via a

complex of projective or flat OX,p-modules, tensor
this resolution with OT,p (or OZ,p), and compute

the cohomology of the resulting complex. This

is very much homological algebra, but where
has the geometry gone? We started with three

varieties and a point on each of them, and we
ended up computing the cohomology of a rather

geometrically obscure complex. Is there a way to
reconcile the general case with the flat intersection

case in a possibly wider geometrical picture? A
possible answer is the following: we can still keep

the two peculiar geometric features of the flat
intersection case mentioned above, provided we

are willing to contemplate a notion of commutative
rings that is more general than the usual one. More

precisely, one can first observe that it is possible
to choose the resolution of, say, OZ,p (as an OX,p-

module) in such a way that it has the structure of
a non-positively commutative differential graded

OX,p-algebra with the differential increasing the
degree (a cdga, for short) or equivalently of a

simplicial commutative OX,p-algebra. This gives
us an extension of the first feature of the flat

intersection case. Then we can force the second
feature by insisting that the tensor product of this

cdga resolution with OT,p does give the “scheme
structure” of Z ∩ T (locally at the point p). Of

course this is not a usual scheme structure, but
rather a new kind of scheme-like structure which

we will call a derived structure, the name coming
from the fact that what we are computing is

the derived tensor product OZ,p ⊗
L

OX,p
OT,p (whose

cohomology groups are the Tor-groups appearing

in Serre’s intersection formula). But we may, and
therefore we do, view OZ,p ⊗

L

OX,p
OT,p as a derived

commutative ring, i.e., a cdga or a simplicial

commutative algebra.

Deformation Theory
Another more or less classical topic in algebraic
geometry that also leads to considering these

kinds of derived rings is the theory of the cotan-
gent complex. This object dates back to Quillen,

Grothendieck, and Illusie (see L. Illusie, Complexe
cotangent et déformations. I, Lecture Notes in Math.

239, Springer-Verlag, 1971) and is too technical to
be carefully defined here. Let me just say that in

the affine case X = SpecA, for A a commutative
k-algebra, it is defined as the classical module of

Kähler differentials, but only after having replaced
A itself by a resolution that is a simplicial com-

mutative k-algebra that is free at each simplicial
level (in characteristic 0, one might as well resolve

using cdga’s). Recall that a simplicial commutative
algebra is a simplicial set that is at each level a com-

mutative algebra and whose structural maps (face
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and degeneracies) are required to be morphisms

of algebras. Even with such a sketchy definition, it
will not perhaps be too surprising that most topics
in the deformation theory of schemes, and more
generally of moduli stacks, are handled through

this cotangent complex. Although this was con-
firmed and deepened several times in the course
of the explosive development of moduli theory,
this relationship with deformation theory was al-

ready clear to Quillen, Illusie, and Grothendieck.
It was Grothendieck himself, back in 1968, who
asked whether it was possible to give some geo-
metrical interpretation of the cotangent complex,

say of a scheme X (see p. 4 of Catégories cofi-
brées additives et complexe cotangent relatif, LNM
79, Springer-Verlag, 1968). Derived algebraic ge-
ometry offers a possible answer to this question:

if one is willing to build algebraic geometry using
derived rings, then in this new world the cotangent
complex LX of a scheme X is the actual cotangent
space of X. As a consequence, in derived algebraic
geometry the full cotangent complex (and not

only some truncation thereof) has a deformation-
theoretic interpretation: this might be considered
as the main reason derived algebraic geometry is
interesting for studying moduli problems.

The upshot of the previous discussion is that we
are interested in enlarging the previous diagram
to the following one:
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Here DerivedCommAlgk is either the category
of simplicial commutative k-algebras or, when

the base ring k has characteristic 0, the category
of cdga’s over k. We will freely pass from one
description to the other whenever this is possible
and will contribute to conciseness. The functor
j0 then sends a commutative algebra R to the

corresponding constant simplicial commutative
algebra (having R in each simplicial level and with
identities as face and degeneracies) or to the cdga
having R in degree 0, and 0 elsewhere.

An equivalence f : A → B between simplicial
commutative algebras is a map inducing isomor-
phisms πi(A;a) ≃ πi(A; f (a)) between homotopy
groups, for any base point a ∈ A0 (A0 being the

0-th level of the simplicial set A) and any i ≥ 0.
The corresponding notion for cdga’s is given by
quasi-isomorphisms, i.e., maps inducing isomor-
phisms on every cohomology group. Derived rings

together with this notion of equivalences give
rise to a homotopy theory (technically speaking,

a Quillen model category structure); the same is
true, with weak homotopy equivalences as equiv-
alences, for the target category SimplSets. It is a
basic rule of derived algebraic geometry that all
constructions should be, in an appropriate sense,
invariant under all these equivalences. This is ex-
actly the point where derived algebraic geometry
becomes a blend of algebraic geometry and homo-
topy theory, borrowing techniques and intuitions
from both areas.

We are now ready to fulfill the aim of this col-
umn and give a definition. A derived stack over k is
a functor DerivedCommAlgk → SimplSets send-
ing equivalences to weak homotopy equivalences
and satisfying a descent or gluing condition with
respect to some chosen “topology” on derived
rings.

The descent condition mentioned here is just a
derived (or homotopy) version of the usual sheaf
condition with respect to an appropriate (i.e.,
invariant under equivalences) notion of topology
on derived rings. Here is one example of such a
topology, the so-called strong étale topology. We
will assume we are working in characteristic 0 and
are taking cdga’s as our model for derived rings.
A covering family for such a topology is a family
{A → Bi} such that {H0(A) → H0(Bi)} is an étale
covering family (in the sense of usual algebraic
geometry) and the canonical maps H i(A) ⊗H0(A)

H0(B) → H i(B) are isomorphisms for any i ≥ 0.
A derived version of the Yoneda lemma gives us,
for any derived ring A, a derived stack denoted
as RSpecA and called the derived spectrum of A.
Any stack may be faithfully viewed as a derived
stack, and conversely any derived stack F has a
truncation t0(F) that is a stack, e.g., t0(RSpecA) ≃
Spec(H0(A)). Passing to the truncation should be
thought of as passing to the classical or underived
part. And, intuitively speaking, F behaves much
like a formal thickening of its truncation or as a
scheme with respect to its reduced subscheme.

In the section “Deformation theory” I hinted that
derived algebraic geometry might be a natural
framework for deformation theory in algebraic
geometry. Let me try to push this point further.
The idea is that derived rings allow for more
general deformation directions, but not so general
that the usual geometrical intuition is completely
lost.

Let char(k) = 0 and i ∈ N and k[i] be the k-dg-
module having just k in degree −i. We can then
consider the trivial square zero extension k-cdga

k[εi] := k⊕ k[i].

Note that k[εi] is concentrated in nonpositive
degrees (with a degree-increasing differential) and
that its only nontrivial cohomology groups are
concentrated in degrees 0 an −i, where they
both equal k. k[εi] is called the derived ring of
i-th order dual numbers over k, and its derived
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spectrum Di := RSpeck[εi] is called the derived
i-th order infinitesimal disk over k. Note that for
odd i, k[εi] is the free cdga on the k-dg module
k[i], i.e., on one generator in degree −i.

A useful intuitive way of thinking about k[εi]
is as the universal derived affine scheme carrying
generalized nilpotents of order i. Here is one typical
result explaining how derived stacks allow for a

natural and geometrical reinterpretation of usual
deformation theory.

Proposition. Let X be a scheme over k and let LX
be its cotangent complex. If x ∈ X(k) is a k-rational
point in X, then for each i ∈ N, there is a canonical
group isomorphism

Extik(LX,x, k) ≃ RHom∗(Di , (X, x)),

where RHom∗ denotes the set of morphisms in
the homotopy category of Speck-pointed derived

stacks.

In other words, for any i ∈ N, the functor from
Speck-pointed schemes to abelian groups

Sch∗,k -→ Ab : (X, x) 7 -→ Extik(LX,x, k),

while not co-representable in Sch∗,k, is indeed co-
represented by Di in the larger category of pointed
derived stacks. Therefore, the full cotangent com-
plex has a moduli-theoretic interpretation in the
world of derived algebraic geometry.

A derived extension of a stack F is a derived
stack F together with an identification of F with
the truncation t0(F) of F . Given a stack F , there
is always a trivial derived extension (just viewing
F itself as a derived stack), but in most cases
there are other derived extensions. For example,
the stack Vectn(X) classifying rank n vector bun-
dles over a smooth and proper scheme X has
another natural and nontrivial derived extension
RVectn(X), obtained as the derived stack of maps
from X to the classifying stack BGLn. One can
prove that RVectn(X) classifies a fairly natural
derived version of rank n vector bundles on X.
The choice of a derived extension of a given
stack F endows F itself with important additional
geometric structure. One interesting example of
this further structure, still in the thread of de-
formation theory, arises when one starts with a
Deligne-Mumford stack F (e.g., the stack of sta-
ble maps to a fixed smooth complex projective
variety) and considers a derived Deligne-Mumford
extension F of it. If this derived extension is
quasi-smooth (i.e., its cotangent complex is of per-
fect amplitude [−1,0]), then the closed immersion
j : F ֓ F induces a map of cotangent complexes
j∗LF → LF that is a [−1,0]-perfect obstruction
theory in the sense of Behrend-Fantechi (Invent.
Math. 128 (1997)). Moreover, it is true in all known
cases, and expected to be true in general, that any
such obstruction theory can be obtained as above
from some derived extension. So, as already seen

in the case of the cotangent complex of a scheme,
obstruction theories are also classical ways of
(partially) encoding derived geometric structures.

A Quick Guide to the Literature
The approach to derived algebraic geometry
sketched above is contained essentially in
[HAG-II], of which [Toën-2005] is a very readable
overview. Due to some overlap in the topics,
[V-2010] might be a useful complement to the
present text. Another approach to derived geom-
etry is in Jacob Lurie’s book [H-Algebra], where
the emphasis is on higher categorical aspects
from the very beginning and whose spectrum of
applications is broader.
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