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Abstract.: A higher-order de Rham complex dR, [14] is associated with a commutative algebra
A and a sequence of positive integers o = (o1,02,...). It is called regular if o is nondecreasing.
We extend the algebraic definitions of the Lie derivative and interior product with respect to a
derivation of A, to higher-order differential forms. These allow us to prove a generalization of the
infinitesimal Stokes formula (also known as the Cartan homotopy formula) for higher regular de
Rham complexes. In particular, this implies the homotopy invariance property of higher regular de
Rham cohomologies for differentiable manifolds.

Mathematics Subject Classifications (1991). 13N05, 13N10, 58A10, 58A20, 58G05, 14F40.

Key words: differential forms, Lie derivative, homotopy formula, differential operators, jets, com-
mutative algebras.

Notations and Conventions

K: a commutative ring with unit;

A: a commutative, associative K-algebra with unit;

M(A) (resp. M(K)): the category of A-modules (resp. of K-modules);

BIM(A): the category of (A, A)-bimodules, whose objects are ordered cou-
ples (P, P*) of A-modules and whose morphisms are the usual morphisms of
bimodules; -

[C, C]: the category of functors C — C, C being any category: its objects
are functors C — C while its morphisms are natural transformations, also called
functorial morphisms, between them;

If 9D is a full subcategory of M(A), a functor T: D — D will be said strictly
representable in ® if it exists an object 7 in D and a functorial isomorphism
T =~ homgy(7,-) in [,D]. .

K T and T; are strictly representable functors D — D with representative
objects 7 and 75, respectively, and ¢: T} — T, is a morphism in [9,D] then
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its dual representative is the morphism v = ©(11)(id,) € homy (72,71). When
we write ‘duality’ we always mean this kind of duality. ;

A sequence T} — T3 — T3 of functors Ti:D—9,i= 1,2, 3, (and functorial
morphisms) with © an Abelian subcategory of A (4), will be said to be exact
in [D, D] if it is exact in D Wwhen applied to any object of D.

Ifo = (¢, .an) € N?% (resp., (01,02,...) € N = invlim,,>oN’}_) and
0<r<n(tesp., r> 0), then we define a(r) ='(¢71,...,o—r) eENY.

We will often write DO instead of ‘differential operator’,

1. Introduction

expected in secondary calculus ([16]). All these perspective applications requires
the knowledge of higher de Rham cohomology, i.e. cohomology of higher analogs
of the de Rham complex. It was conjectured in [14] that for smooth manifolds
they are canonically isomorphic to the standard one. In this Paper, we prove it for
regular higher de Rham complexes. Recall that a higher-order de Rham complex
is associated with a Sequence of positive integers o — (91,03,...) and is called
regular if o is nondecreasing. The standard de Rham complex corresponds to
the sequence (1,1, .. .)- This result is a consequence of the higher analog of the
‘infinitesimal Stokes’ formula’, also known as the ‘Cartan homotopy formula’,
which is, in fact, the main goal of this paper. The importance of such a formula is
that it supplies the calculus of higher analogs of differential forms with necessary
‘homotopy formulas’.

2. Higher-Order de Rham Complexes. Lie Derivative

We refer to [6] for all the basic definitions and notations regarding algebraic
differential calculus. For any k > 0 and any couple (P,Q) of A-modules, we
have the A-bimodule Diff,(f) (P, Q) = (Diff (P, Q); Diff} (P, Q)) of differential
operators of order < k from P to Q.

our Notations and Conventions: an object of BTM (4), though sometimes called
simply an A-bimodule, is an ordered couple (P, Pt) of compatible A-module
structures on'the same underlying Abelian group. In particular, an' A-bimodule
in the standard sense gives rise to two different objects of BIM(A) depending

as
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on the order of the corresponding modules. In many of the follqwing definitions,
this order will be crucial, therefore we have chosen to work with BZM(A).

As in [6] we put
Diff(4,Q) =Diffy Q and Diff} (4, Q) = Diff{ Q;

recall that by definition Diffj” = Diff, = Idpq(a) as functors from M(A) to
itself. ‘ : '

Dr(Q) = {A € Diff, Q | A(1) = 0} is an A-submodule of Diffy, Q (but not
of Diff,:L Q) called module of kth order Q-valued derivations of the algebra A.

.This way we get a functor Dx): M(A) — M(A) associating D) (Q) with Q,

together with the short exact sequence:
0 — Dy %5 Diff, 25 Td g ) — 0 e
in [M(A), M(A)], where iy, is the obvious inclusion and py is defined by:
P(@): DiffsQ — @: A A(1), A e Diff,Q

for any A-module Q. The functorial monomorphism Id M(a) = Diffy — Diff;,
splits (1), so that Diff, = D(x) @ Idpq4). Dy(Q) coincu-les with the A-module
Dery/x(Q) of all (first-order) Q-valued K-linear derivations on A (see [2], for
example).

If k,1 > 0, we have a natural functorial morphism:
Cr 10 Diff,:' oDiff;" — Diﬂ,tH,

[eka(P)](A)(a) = [A(a)] (1),
A € Diffy (Diff}'(P)), ae€ A, _
(P being an A-module) which is called the ‘gluing’ morphism (sefa [6]).

Let P and P* be the left and right A-modules corresponding to an A-
bimodule P() = (P, P+) (P and P* coincide as K. -modules, hence as sets).
Denote by Diffy(P(™) (resp. D (PH)) the A-module which coincides with
Diffx(P*+) (resp. D) (P)) as K-module and inherits its A-module structure
from P (and not from P*). More precisely, an operator A € Diff} (PM)) (tesp.,
Df, (P(M)) multiplied by a € A acts on A as

(aA)(a')v =aAfd), deAd’

(whete (a,p) — ap is the multiplication in P) while the same map A: A — P+
interpreted as an element of Diff;,(P+) (resp., D) (P)) is multiplied by a € A

(aA)(a-')-%'a*'A(a'), ded
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(where (a,p) — atp is the multiplication in Pt),
For an A-submodule § ¢ P, we define the submodules

Diffi(S ¢ P*) = {A e Diffy(PW) | A(4) c 5} w oy DIER(P),

Di)(S € P*) = {A € Dy (PM) | A(4) c 8} 25 Dl (PH)).

DEFINITION 1. Let 0 = (01,03,...,0,) € N. The functor D,: M(4) —
M(A) is defined inductively by ' L

DaéD(o".)a n=1, i :

Ds:-Pr— Dzal) (D(,,z_’_._':,,") (P)c Diff:;,___,a" (Pl n>1t,

where to simplify notation we write (as in [6]) Difff , for DLﬁ';z o---oDiff} .
Define -
I: Dy — Dl y(Difilt) )
to be the natural inclusion and

Mo D;(ﬂ—-l) (Diﬂ‘l(;v*l-)) S D("'h---v"’n—z»"ﬂ—l““"ﬂ) ;

to be the composition

° 5 Io(n- )(Diffg‘:)) ° .
Dy (DiFSE)) 0, otn—2) (DIffSH) )

On—1,0n
Cap_ 100
l D(all"'laﬂ_z)aﬂ—l_*—a“),
where c;,,_, . is the ‘gluing’ morphism.
Then, for each o € N? we have an exact sequence in [M(A4), M(A)]:

I ° . = e o
00— D”(ﬂ) S5 Da'(n—l) (Dlﬁgt) ) — D(o-.,.‘.,a',,_z,a',._1+a,.)- 3)

DEFINITION 2. A full subcategory D C M(A) is differentially closed if

() D is Abelian; L

(if) D is closed under differential functors (Diff, (P, -), D,, D,y (DiffS) etc,
for any o € N%, any n € N, and any object P of D) and all these functors,
when restricted to D, are strictly representable in D;

(i) A € Ob(D) and D is closed under tensor product over A.

Remark 2. Condition (ii) is needed to have an ambient ‘closed’ with respect
to functorial differential calculus; furthermore, as it will be clear in the following,
since among the differential functors there are also compositions of ‘elementary’
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ones (for example,,Dzk)_ o Diff}t = Dfy (Diff})), we would like that representa-
tive objects of these nonelementary functors, if existing, could be expressed in
terms of representative objects. of the ‘elementary’ ones (for example, D@y and
Diff;). Condition (iii) makes it possible. This definition of differentially closed
subcategory is the same as that in [6], except for the fact that we add (ii).

If D is differentially closed then we denote by J3(P), P being an object
of D (resp., by AZ) the strict representative object of Diff,(P, o (tesp., of
Dy n)10)- TB(P) is called the n-jet module of P in ® ([6]). Elements of AZ are
called (higher) ®-differential Jorms of type o over the algebra A ([9, 14]). We
also put formally A2 = A. ; :

The functorial exact sequence (3) in [, D), implies that 72" (AZ™ ) (which
is the strict representative object of D'(n_l)(Diffj'n)p,, by condition (iii) above

o

“and Proposition 8 of [6]) fits into the exact sequence of representative objects

v : v
Agl-"-yan—z:an—l"'dﬂ) _E"jgn (A;("—l)) ir_) A~ 0.
From it one gets the following inductive description of AZ:

TR

Y (Ag' #+19n—2,0n-1 +Fn)) .

A =

)

D = M(A) is differentially closed (m.x
If © is differentially closed and P is one of its objects, we denote by -
Ji (P) € Diff(P, 75(P)) the DO corresponding to the identity id 7k (p) under
the canonical isomorphism
homy (75(P), J5(P)) = Diff (P, J&(P)).
Recall ([6]) that J% = 7%(A) is a unitary commutative and associative K-
algebra with multiplication
(a7 (8)) - (o' (V) = aa’jP (BV), a,d’,b,b € A.
Multiplication (a, 6) — j2(a) -0 supplies it with the ‘right’ A-module structure.

- The A-module so obtained is denoted by .7,{’,“,+. This way the ordered couple

(T2, J¥ ;) becomes an A-bimodule.

EXAMPLE 1. () If D = M(A) and o = (1,...,1) (n times), then AZ, coincides
with 1051 K> the nth module of Kihler-de Rham forms of A/ K ([3] and [8]);
(i) If K = R (the field of real numbers) and A = C*(M;R) (the algebra
of real valued smooth functions on a smooth manifold M), then a C® (M;R)-
module P is called geometric if each element of P is uniquely defined by its

* As a nule, when D = M(A), we omit reference to D in writing representative objects.
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values on the points of M, i.e. if MNeenr tzP = (0), p being the maximal ideal
of functions vanishing at z. Denote by D = M(A)geom the full subcategory of
M(A) consisting of all geometric A-modules. Then 9 is differentially closed and
if ¢ =(1,...,1), then A3 is the C°°(M;R)-module on nth order differential
forms on M. Note, however, that if o- € N7 is arbitrary, we may have A3 #(0)
even if n > dim M;

(iii) If A is Noetherian, then ® — M(A)p, the subcategory of Noetherian
A-modules is differentially closed ([1y. Aty :

A differentially closed category D C M(A) is called smooth if Ag) isa -

projective A-module of finite type. If A is the affine algebra of a regular affine
algebraic variety over a characteristic zero field, then ® = M(A) is smooth (see
[5] or [8]). If A is the algebra of Example 1(ii), then ® = M (A)geom is smooth.

Denote the set of all N -valued sequences ¢ = (01,09, . o,,.. .) by N9
and put o(n) = (0y,03,...,0,) fora o € N and any n > 0. The A-
homomorphism L1y’ T AT = AZ™ Gual to the functorial mor-
phism (2) :

) Ib;(n-l-l): Da'(n+l) = D;(n)(Dlﬂ(+)

Ont1 )
allows us to introduce the higher-order exterior (de Rham) differential

: - :
1) = Lngt) © 2y (AZ™): AZ™ _, polet))

This way a de Rham-like complex of differential operators dR,;(®D) can be asso-
ciated with any o € N%°: 3 : i

) a® : :
dB,(D): 0— A AN .., pg) St poern)y )
The ‘higher’ differential d”(n +) is a differential operator of order < Opy1 and

g
dR, (D) is called the higher de Rham complex of type o in D. j

Howil L .), then complex (5) coincides with the canonical ‘alge-
braic’ de Rham complex in the situation of Example 1(i) and. with the standard
‘differential-geometric’ de Rham complex in that of Example 1(ii). We empha-
size that the complexes dR,, (D), D being the category of geometric C*°(M; R)-
modules, are natural in the category of smooth manifolds.

In [11] (see also [12] or [9]) it is proved that if D is smooth then all the
complexes dR,, (D) are quasi-isomorphic, i.e. have the same cohomology. This
is the case for example of a regular affine algebraic variety over a field of
characteristic zero with D = M(A), A being the corresponding affine algebra,
or of a differentiable manifold M of finite dimension with D = M(A)geom,
A=C®(M;R). i

The following two. equivalent descriptions of differential operators between
representative objects will be useful later. ;

INFINITESIMAL STOKES’ FORMULA 317

We work in a fixed differentially closed subcategory D of M(A). All repre-
sentative objects will be understood in D. Let F} and F, be representative objects
of differential functors Fi and 7, respectively. Suppose that Fi has an associ-
ated functor 77 (having as domain the subcategory of BIM(A) whose objects
are couples of objects in D) such that ey (Diff,(f)) is strictly representable by
J*(Fy): this is the case, for example, of j = D,(,) or Diff;. Let

A Fy — B ‘ ' (6)

be a DO of order < k. Then, there exists a unique A-homomoxphism ([6]: jet-
associated to A)

g — B ©)

which represents A by duality: A = fa o ji(Fy). Since J*(F}) is the represen-
tative object of .7-'1‘(Diff,(c+)), fa defines a unique morphism in [®,9]:

14 7 —s 7y (D), ) 8)

called generator (functorial) morphism of A.

Formulas (7) and (8) give two different descriptions of a DO between rep-
resentative objects. Formula (8) allows one to identify it with a functorial mor-
phism which, as a rule, may be established in a straightforward way and can be
used, then, to define the corresponding natural DO (6). The following examples
show this procedure at work in two canonical cases (we assume for simplicity
D = M(A)): j

() Higher de Rham differential ds(n)-
Ifr= Dynys F1 = D;(n-1), k = op, and for (8) the natural inclusion

Dg(n) — Dc.r(n-l) (Difft(ri_) )

~is taken, then dy(p): A7=1) _, AT s the corresponding DO (6).

(i) ‘Absolute’ jet—operator Fheiirs
In this almost tautological case,

F1=homa(A,) =Diff and F, = Diffy, = hom,(4, )( Diff{H) );

if the identity map
Id: Diffy — homy (4, -)(Diff{Y ) = Dif,

is taken for (8), then (6) becomes j;: A — JF. s

The modules A;(") are generated over A by elements do(n) (a,d(,(,,_ nlaz...
dy1y(an)...)), a1, a,, ... y@n € A (reference to D will be omitted, unless nec-
essary).
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EXAMPLE2. If A = i [:1:1,...,1:,,], K being a commutative ring, and q >
0, then A'(&)( 4) = I/I"! is a free A‘module on the set of monomials (n =
{1,...,n}CN): , ;

{[‘i(xil )] [‘i(“"Jl) 5 J(zjz)]) ceey [(i(.’l:,-,) ik ci(zrq)] 15, Tq €m,

.7'1<.7'2,---:7'1<"‘2<"‘S"'q}, !

where 4

J:A—>I:a1—>1®a—a®l :
and [¢] denotes the class modulo J9*! of ap element € of I. Moreover, by putting

-

€q) = [J(zil)]’ it ’ETlx---:Tq = [d(zfl) iy J(.'z:,.q)] )
we have for any f € A:

d)(f) =Y Vi(flei, +--- + b s ©
where the elements Yidl) v V,,,___,,.q( f) € A are defined by the following
identity:

f(zl +t11---)zn+ tn.) —f(zlt"")zﬂ)

i Z Vil (f)tll + 3 + Zv‘rl,...,fq(f)tﬂ e t"‘q

(for example, if n = 1, we have

Vi, 1@ = (f)w"i, ad v
Ot | ) 1 ) ]
i times i limes
is a derivation of order <i). A@ is also free over the set

{d(q)(:c,-l),d(q) (525, 1 d(g) (2, +- Ty, ) | 41,.. ., Tq €En,

NST- 0TI ST K1)
and there is a more complicated formula analogous to (9).
If 0,7 € NP with 0 > 7 (e o0y > 7, Vi > 1), then the sequence of

monomorphisms D;() — Dy (s in [D,9] is defined easily due to the fact that
obviously a DO of order < k is also a DO of order < K, VK > k. This induces

by duality a sequence of D-epimorphisms AZ™ _, AX™, on representatives. All
these epimorphisms commutes with higher de Rham differentials and, therefore,
define a morphism of complexes

dR, (D) — dR.(D) . (10

if ¢ > 7). We may then consider the (D-epimorphic) inverse system
{dR,(:D)},,EN_? and give the following: :
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~ DEFINITION 3. The infinitely prolonged (or, simply, infinite) de Rham complex

of the K-algebra A in D, is defined as
dR(D; A) =inv lim dR, (D),
a€Nf’,_°4

dReo(D; 4): 0 —s A %D A(0) Heose) j (ool _, (1)
A(wr")m)n
— Ny — e ¢
where
AS Ol Ziny fim ATy, > 0.

a(n)eN i

Now we generalize the Lie derivative to higher de Rham complexes.

In the sequel, D will always denote a differentially closed subcategory of
M(A). ‘

Here on we will adopt the convention to write V(an)(@n-1)--- (a;) in place of
the correct but cumbersome (- - - ((V(an))(@n-1))---)(a1) for V € Dift} .. (P}
@1,02,...,a, € A and P an object of D.

DEFINITION 4. Let X ¢ D1)(4) = D(4), o € N} and n > 0. The Lie
derivative with respect to X .

Lx: A2 —h AZ

is defined to be the DO which corresponds to the functorial morphism (recall
formula (8))

"% D, —, D (Diffl¥)
in [0, 0] givenby
™ (P)(V)](an)(@n-1)-- - (a1)(ao)
- ao_i:V(an) - ((@1)) (@) + X(a0) - V(an) (mr) - (),

where V € D, (P) and P is an object of D.

This is a DO of order < 1. Note that for n = 0 we have just Ly = X.
Let us note that Ly can be expressed in terms of generators as

Lx (a0dy(n) (a1d () (az - - *dg,(an) - - )
i X(ao)da(n) (alda(nél) (aZ ik drn (an) e )) * (12)

e Z U-Oda(n) (al e dg('n_i.H) (X(ai)da(n—i) (a.'i+l - dgy (an) - )))

i=1

The given definition is equivalent to the following inductive ones:
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— on functors:
@"*: Dgy —s Dy, (DiE(H)
[#"% (P)](V)(a1)(a0)
= a0(V 0 X)(a1) + X(ao) - V(ay),
o P, D;(Diffg”),
[0"%(P)(V)] (an)(@n_1)--- (a1)(ao)
= ao[[¢"*(P)V(an)] (an_) - - (a)(1) +
+(V e X)(an)(an-1) -+ (a1)] +

+ X(a0) - V(an)(an-1) - - (a1);
which implies on generators

Lx: A7 — A°: aod,,.(n) (w) — X(ao)da(n) (w) + aod,,(n) (Lx(w)), !

aEA we AU("_I).

— On representatives:

Lx=X: A—s A.
Supposing Ly: AZ"M _, AZ" o be already defined Vr < mn, it is possible

to extend the operator Ly on T (Ag("_l) ) by making use of the canonical
isomorphism ([6] Prop. 8, or [7]): -

JZn (A;("_‘)) o ;)r_,;_ ®in A;(n-—-l)
and putting
Lx: 733 @ AZ" — 721 @, AZ)
Ix€®w) =Ly @w+E@Lx(w), ¢eJfy, we S,

Then it is easy to verify that I, x oy =nY oLy so that Yy (Ag’ (=2).0n—1+on) )
is L x-stable. Remembering formula @)

oupasint
AS = A;(") o VA (A;(n ))
7r(\T/(A:(‘_;J'(ﬂ—z).t"n-|+¢T--n))

one can therefore define Ly: AZ “ A% by passing to the uotient.
D D 0y p g q

Remark 3. If A = C*(M; R) (M being a smooth manifold), D = M(A)geom,
ando = (1,1,...,1) the Lie derivative operator introduced above coincides with
the classical Lie derivative of differential forms on M. }

3. The Generalized Infinitesimal Stokes’ Formula

In this section, we fix a differentially closed subcategory D of M(A) and all
representative objects will be taken in D. So we will omit the reference to it
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in the notation. We call o € NP regular if On < Onyt, Vi > 0 as well
as the complex dR, corresponding to ¢. In this section we, first, define for
regular dR,,’s the insertion operator (or ‘interior product’) associated to a ‘vector
field’ X € D(;)(A) and then generalize infinitesimal Stokes’ formula (or Cartan
homotopy formula) to regular dR-complexes. In what follows we still adopt the
convention to write V(a,)(a,_;)- - (a1) instead of the correct but cumbersome
(---((V(a.n))(a,,_l))---)(a;) for Ve DlfL . . (P).o1.oa,.. & € A
P an object of 9. ’ :
Associate to such a V the operators V., 0 < r < n, defined by:

Vr(an) - (a1)(00) = V(an) -+ (ar@r_1)--- (a0), 0<r<n

Vo(an) -+ (@1)(a0) = a0 V(an) - (a1), ap,...,an € A
We have

[66 (Vr (an)--- (arq1 ))] (ar)--- (”'0)
= Vr(an) -+ (@r41)(bar)(ar—1) - - - (aq),
~Ve(an) ++ (@r41)(ar) (bay_1) - -- (ao)
=V(an)--- (@rt1)(barar—y)--- (a0) -
e V(an) e (a'r+l)(a'rba'r—l) 7 (‘10) =4,
soV,isa homomorphism with respect to a,; moreover, Vk > 0, we have

(850,50 (V (@n) - - - (@n—s41))] (an—s) - - (a0)
= [8ty,...tx (V(@n) - -+ (Gn—j41))] (any) - - - (@rar_1)--- (ao),
fj<n—r—1;

[9%0,...50 (Vr(@n) - (an—s41))] (@ns) - - (a0)
o [660.-~-,bk (V(an) i (ar+l))] (ar"'f—l) -+ (ao)
ifj=n—r+4+1and

[6(70'---1'": (vr(a'ﬂ-) 25 (G’N—.H-]))] (aﬂ—j)_ i (ao) (13)
= [Oby,.... (V(an) - - - (aray_;) - *(an—j+1))](@n—5) - - (ao)
if j > n—r+2. Therefore Vv, € 'Diff:s,), WO, (P), where u) .| =0 and

W b2 8 ) = o).

" The following definition supplies us with a useful tool to express the co-

" insertion morphism X

TV B D e L0t

Diff} ,, . .(P), we define (V,X)1 € Diff“Ll oD (P) as:

L)

(V, X)ra(an) - - (a1)(a0) = ([V(an)- 1o X)(@) - (ag),
ag,...,an € A.
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Remark 4. The positive integers V,-(T") »i=1,...,n+1, can be described in
terms of o(n) but we have no need of that in the sequel. '

Now we pass to construct inductively the co-insertion motphism X,

Let P be an object of D, g € NZ,n>0 Ae Dy(n)(P), p € P and
By, O € A The induction starts from the definition of ;X (P): P— D) (P),
k > 1, as the composition of 5(P): P = D(P) and the natural imbedding
D(P) — D) (P). The former of these morphisms is then given by A

[i* (P)(#)] (a0) = X (ao) - p. © (14)

Assuming now that % (P) is defined for all regular 7 € N, we define for a
o € N% the map : ;

by posing

(% (P)(A)] (an) -+ (a1)(ao)
= [ (P)(A(@n))(an-1) -~ (ar)(a0) +

- [i(—l)r(ArOX)} (an)---(al)(ao), n>1. (15)

r=0

The following key assertion Justifies the inductive procedure.
PROPOSITION 1. (i) P s iX (P) is a well defined morphism in [D,D]:

iX: Da(n) — D(m,,
where

-:fn l”’ﬂ"‘l) )

Hn+1 = On, Hn = Inax{aﬂ: Un_!}, seey M2 = max{UZ) 0'1}, H1 = o1

(ifn = 1, to avoid misunderstandings, we state explicitly that i D) — D(k.x));
(ii) the inductive definition (15) can be resolved by :

n I
X (P)(A) = ) Y (-1)"(A, X)ny. ! (16)

=0 r=0

Proof. (ii) follows from the iteration of (15) taking into account Definition 5.

We prove (i) by induction on n, the length of o. It is obvious for n = 0. So
we suppose (i) to be true for 0 < k < n and pass to prove it for n. Below iX
stands for iX (P). '

We begin by showing that Va,, € 4, [i* (A)](a,) € Di,,....ums1) (P)- By (15):

()] (0n) = ¥ (Aon)) + 3 (1) Ar (X(an).

r=0
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Since A(a,) € Dg,,....0n) (P),

i (A(an)) € Dioy . ppn) (P), an.
by the inductive hypothesis. Moreover V, € Diff*., o  (P) implies A, 0
_ L AT
Xe lef:'sr)_l_l, Wi, (P), where
/1’1(:21-+l =0 and (‘ugr), e :#1(:21"“1(21'+2’ e, 1<mr-|)-] o U(n)'

Hence, max,{p.,(r)} = pi, Vi =0,...,n, so that the sum reo(=1)"(Ay 0 X))
belongs to Diff } +1,2,...tn 4y (P)- Since A € Dy (P), we have for aj =1
j=1,...,n—1: ‘

[ >(-17 (Ao X)] (an) -+~ (a3 = 1) - (ao)

r=0

= (-1YA(X(an))(an-1) - (a5)(aj—1) -+ - (a0) +
+(—1Y*'A(X(an)) (@n-1) - - (a;)(aj1) - - (a0)

=0,

due to the fact that each term that appears in the sum with r # j,5 + 1 is zero.
Similarly, we see that

[En:(—l)’(Ar ° X)J (an) -+ (a1)(1) =0,

r=0

so that

n
[ 2-1r(A, °X)J (an) € Dy, . iy ) (P)- as) -
r=0 } /
Now it remains to note that D(;,z,m,“_,#““) G D(m.#a.~--,#n+n) due to oy <
max{al,az} =y, ; : 1

To complete the proof it suffices to show that
(A) i* () € Diff,, (Difff, = (P));
®) [(*(A)](1) =o.

Assertion (B) follows from the fact that X (1) = A(1) = 0. Hence, it remains
to prove that 8y, .., [*(A)] =0, Vby, ... 1boy € A. A direct computation shows
that for any b € A and any V € Diff} .. (P) the following equality holds

b (iX(V)) = ix(5bV) + ni(—l)r [6)((5) V]r +>

r=0

+(=1)*[Vn 0 (8X) ~ [5sV]a 0 X]. (19)
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Now we are able to prove by induction on s > 0 that

Bpo,...bs (i ()

n—1 s
=% (Bao,... 5, A) +'Z(—1)r'z [Beo,...x00),..0,A), +
: =0 ;

r=0

D Ao (G,..5,X) — [6,.5,A], 0 X]. (20)
So, assuming that (20) takes place for £, let us calculate Oy,... b1 (%X (A)). By

doing that we shall make use of the elementary formula 6a(SoT) = (6aS) o

T + S 06,T as well as the relation
-6,1(55@),- 5 (6a,b@)r: V& e Diﬂ‘;l;,“.,-r,. (P)’

for any (ry,...,7,) ENZ and r <n—1:
550,---,bk+1 ("X(A))

n—1 k-
= oy ¥ (B0 A)] + 3 (1) 2 [Bon, X0, bbegs AL, +
¢ =0 r=0 .

+(=1)"[(00e41 (An)) 0 (83,5, X) + A, (8o, ...b 4 X) —
i 6bk+[(6bo,...,bkA)n oX — (650,...,bkA)n o 6bk+|X]'

660,---,bk+| (ZX(A))
n-1

= X (Gp,...00 s A) + Z(—l)’[560.....bk.X(bk+x)A]r +

5 pel)
1) [(O,..54),, © (84, X) — [to,...be11 Al © X] +
k 2 B

n—1
+ Z(_l)r Z [6bdy~--.X(bt);~--.bk,b)e+lA]r *

=0 i=0

] (—l)ﬂ[(abk+l (Aﬂ)) 9 (61’0,‘--.ka) + A,? 9 (550.---,bk+1X) "
n 6bk+] (6bo,~--.bkA)" X (‘Sbm---,bkA)ﬂ i 6bk+lX]

n—1 {
= Gy A) + Y (1) [Ban,..be X 041,

r=0

_(_l)n[(ébo.~--,bk+|A)ﬂ g X] o

n—1 k
+ Z(—l)r Z [‘sbg,...,X(b(),...,bk,bk+|A]-,- +

r=0 i=0
+(—1)n[(6bk+l (An)) o (65,,,...,6,;){ )+ A, 0 B X —
s kaﬁ ('61,0,"_',,,,: A),-, o X]
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This proves (20), remembering that Vi is a homomorphism in the first varj.
able, YV € Diff,, (Diff+ ) ¥Y(mn,... 1Tn) € NZ.

T2yeeyTh
Formula (20) for s = 01 proves, obviously, (A).

From formula (16) it follows that X (P)isan A-homomorphism. Its naturality
with respect to P is evident. u]

COROLLARY 2. Ifo € NY° is regular, we may define the X -co-insertion (func-
torial) morphism:

R R e2)
understood as the composition:
Da(n) ATk D(G‘l,dz,...,a",a'n) brs s Dﬂ’(ﬂ-l-])'

Formula (16) together with Definition 5 implies the following explicit descrip-
tion of the co-insertion morphism:

[i%(A)](@n) - (@1)(a0)
= X(a0) - Afan) -+ (a1) + >_a0A(ay)--- (X(ar) -+ (ar) +
1=1

+ 31 Aan) a040) (K 1) ) fool & @)
=1

n -1
+ 2 (-1)'A(ay) - -- (@141) (X (@) (ar-1) -~ (as05_1)(az_s) - - (ao).

1=2i=1

Now we are ready to extend the definition of the standard insertion operation
to regular higher-order differential forms:

DEFINITION 6. If o € N is regular and X € D(l)(A), we define the X-
insertion homomorphism (or interior product by X):

ix: A7) pot) s ' 23)

to be the dual-representative of iX: iy — @)

Formula (22) leads now to the following explicit description of iy in terms
of generators: :

i (dy(n+1) (G0dy () (@185n1) (a2 -+ dyy) (am) - - )
= X(ao) - dy(n (@1ds(n_1y (a2 -- “dyry(an)---)) +
n

+ a0t (01 yu-111) (X(@0) - dyy o)) 4
=1
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n
+ Y (—1)dy(n) (a0dynyy (a1 Bon-142) (@-2do(n_111) X
=1

X (@11 X (ar) -~ dygry(an) -++) -++))) +

n -1 : e
+ 20D (1) dyny (a0(- - dunoisa) (@i-adyu_isny X
=2 i=1 i 3
X (@iai-1 -+ dyn_131) (X (a1) - -~ dyy (@n) - --)))))- (24)

To prove this formula it suffices to observe that the functorial isomorphism
Dyn) = homy (A°®™),.) is realized by means of the correspondence A — f2
with ’ :

72 (a0dy(m) (@185n1) (a2 - dygry(an) - ))) = aA(an) - - (a1).

If A = C®°(M;R), M being a smooth manifold, ® = M (A)geom. and
o=(1,1,...,1,...), then ix coincides with the standard differential geometric
interior product with respect to the vector field X. In fact, formula (24) in this
situation coincides with the corresponding one for the standard ix.

If 0,7 € NY° are regular and o > 7 (ie. 0; > Ti, Vi > 1), then Vn > 1 the
following diagram in [D,®] in which vertical arrows are natural inclusions is,
obviously, commutative:

Dy (n) . Dy (n+1)

b

D-r(n) 7 D‘r(n+l)

By duality we get the commutative diagram of representative objects in D:

Aa(n—H) -l—x_> Aa(n)

L

AT(n+1) l_x'-> AT(R)
with D-epimorphic vertical arrows.

Now we can extend ‘the infinitesimal Stokes’ formula to higher de Rham
complexes: : ]

THEOREM 3 (Generalized Ihﬁnitesimal Stokes’ Formula). If dR, is regular,
then operators

Ae(n—1) d‘g,j" A() d’%*" Ao(nt)
ix ix
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satisfy the formula :
Lx =ix o dy(n1) + do(n) 0 ix. (25)

Proof. Formula (24) allows us to compute the value of the right-hand side -
operator of (25) on a generator agd, (a1do(n—1)(az - - - dy(1)(an) - - -)) of A°®) .
(we omit this straightforward but cumbersome computation) and to see that the
result coincides with (12).

It is possible to prove (25) without resort to higher-differential forms directly.
It suffices to show that

olx = plotntn) o §X 4 X o pa(m) (26)
by interpreting the ingredients in the following way:
@"%: Dy — D}y (DI ) D}, (Diff$?) ),

On+1

(Pda(n-i-l) Q ‘IX: DO’(TL) "_’_Du(n+l) ey D;(n)(Diff(‘l‘) )’

On+tl

iX o(Diff})
—

'iX o Sadv(ﬂ): Do_(n) e D;(n—l) (left(,;l:))
— D}, (Diff§H)

Tnti1 )’

D3, (Diff$H))

where the last inclusion is assured by regularity of o and the morphism
i**{Dile} ): D; (a1 (Difff, ) — D, (Diff},)

is understood to be the morphism
iX(Diff;rt. ): Du(n-—-l) (Diff‘(;:) ) __' DU’(") (Difft(;:) )

in the left A-module structure. Formula (26) can be proved by a direct compu-
tation of its right-hand side by making use of (22). This computation, however,
is essentially the same as that for (25). : o

As a direct consequence of formula (25) we get the following corollary:

COROLLARY 4. For any regular ¢ € N%, Lx ody = dy0Lx: A°®=1) _, A°,
Proof. Imbed o in a regular & € NZ° and use formula (25) together with

d5(n+1) © do(n) = dg(nt1) ©do = dy 0 dy(z—1) =0. o
COROLLARY 5. If A= C°°(M;R), M being a differentiable manifold, and ©
is the category of geometric A-modules, then for o and T regular the canonical
epimorphisms (10) induce isomorphisms in cohomology. Therefore, all higher
regular de Rham cohomologies coincide with the ordinary one.
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Proof. We prove this corollary by checking that the Eilenberg-Steenrod axioms

for cohomological theories in the category of differentiable manifolds are satis-
fied by higher de Rham cohomologies. ;
Functoriality with Tespect to smooth maps between manifolds follows from
a(n)

the fact that any K -algebras morphism F: 4 — B induces morphisms A AJK =

AZ0Y Yo € N, Vo > 0, which commnte wih differentials, and that if F°
is the pull-back of a smooth map then the induced ‘change-of-rings’ functor

F': M(B) - M(A) preserves the subcategories of geometric modules (see [7] 1

Ch. I, §4).
If

M= {point}, Da(n) (P) = (O), Vo € Nf, vn > 0,
for any (geometric) A-module P: therefore the Dimension Axiom is verified.
Let N < M be a submanifold. The relative to N higher-differential forms are
defined as those which vanishes on V. Since higher differentials commute with
pullbacks, the relative-differential forms constitute'a subcomplex of the ‘absolute’
one. Its cohomology is called relative cohomology (with respect to V) so that the
relative cohomology groups satisfy the Relative Cohomology Axiom (also called
Exactness Axiom).

Given the preceding definitions, the proof of the Excision Axiom is the same :

as in the case of ordinary de Rham cohomology.
Finally, verification of the Homotopy Axiom follows from the infinitesimal

Stokes’ formula (25) as in the case of ordinary de Rham cohomology: see, for.

example, [4], p. 178. o

In [12] and in a forthcoming article [11], it has been proved in a purely
algebraic way the following more general result: if D is a smooth differentially
closed subcategory of M(A), then all the higher order de Rham complexes are
quasi-isomorphic and in particular they are all quasi-isomorphic to the ordinary
de Rham complex.

It is also worth mentioning that (25) is of great interest when dealing. with
the analog of the C-spectral sequence ([15]) built from the very beginning with
higher or infinite de Rham complexes instead of the standard one (see [15], 12.2,
p. 126).
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