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Abstract

This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry
in homotopical and higher categorical contexts. In this first part we investigate a notion of
higher topos.
For this, we useS-categories (i.e. simplicially enriched categories) as models for certain kind

of ∞-categories, and we develop the notions ofS-topologies, S-sitesand stacksover them. We
prove in particular, that for anS-categoryT endowed with anS-topology, there exists a model
category of stacks overT, generalizing the model category structure on simplicial presheaves
over a Grothendieck site of Joyal and Jardine. We also prove some analogs of the relations
between topologies and localizing subcategories of the categories of presheaves, by proving that
there exists a one-to-one correspondence betweenS-topologies on anS-categoryT, and certain
left exact Bousfield localizationsof the model category of pre-stacks onT. Based on the above
results, we study the notion ofmodel toposintroduced by Rezk, and we relate it to our model
categories of stacks overS-sites.
In the second part of the paper, we present a parallel theory whereS-categories,S-topologies

and S-sites are replaced bymodel categories, model topologiesandmodel sites. We prove that
a canonical way to pass from the theory of stacks over model sites to the theory of stacks
over S-sites is provided by the simplicial localization construction of Dwyer and Kan. As an
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example of application, we propose a definition of étale K-theory of ring spectra, extending
the étaleK-theory of commutative rings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This is the first part of a series of papers devoted to the foundations of Algebraic
Geometry in homotopical and higher categorical contexts, the ultimate goal being a
theory ofalgebraic geometry over monoidal∞-categories, a higher categorical gener-
alization ofalgebraic geometry over monoidal categories(as developed, for example, in
[Del2,Del1,Ha]). We refer the reader to the Introduction of the research announcement
[To-Ve 5] and to [To-Ve 4], where motivations and prospective applications (mainly
to the so-calledderived moduli spacesof [Ko,Ci-Ka1,Ci-Ka2]) are provided. These
applications, together with the remaining requiredmonoidalpart of the theory, will be
given in [To-Ve 6].
In the present work we investigate the required theory ofhigher sheaves, or equiv-

alently stacks, as well as its associated notion ofhigher topoi.

1.1. Topologies, sheaves and topoi

As we will proceed by analogy, we will start by recalling some basic constructions
and results from topos theory, in a way that is suited for our generalization. Our
references for this overview are[SGA4-I,Sch,M-M]. Throughout this introduction we
will neglect any kind of set theoretical issues, always assuming that categories aresmall
when required.
Let us start with a categoryC and let us denote byPr(C) the category of presheaves

of sets onC (i.e. Pr(C) := SetC
op
). If C is endowed with a Grothendieck topology

�, one can define the notion of�-local isomorphisms inPr(C) by requiring injectivity
and surjectivity only up to a�-covering. We denote by�� the subcategory ofPr(C)

consisting of local isomorphisms. One possible way to define the categorySh�(C), of
sheaves (of sets) on the Grothendieck site(C, �), is by setting

Sh�(C) := �−1
� Pr(C),

where�−1
� Pr(C) denotes thelocalizationof Pr(C) along�� i.e. the category obtained

from Pr(C) by formally inverting the morphisms in�� (see [Sch, 19.1, 20.3.6(a)]).
The main basic properties of the categorySh�(C) are collected in the following well
known theorem.
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Theorem 1.0.1.Let (C, �) be a Grothendieck site andSh�(C) its category of sheaves
as defined above.
1. The categorySh�(C) has all limits and colimits.
2. The natural localization morphisma : Pr(C) −→ Sh�(C) is left exact(i.e. commutes
with finite limits) and has a fully faithful right adjointj : Sh�(C) −→ Pr(C).

3. The categorySh�(C) is cartesian closed(i.e. has internal Hom-objects).

Of course, the essential image of the functorj : Sh�(C) −→ Pr(C) is the usual
subcategory of sheaves, i.e. of presheaves having descent with respect to�-coverings,
and the localization functora becomes equivalent to the associated sheaf functor. The
definition of Sh�(C) as�−1

� Pr(C) is therefore a way to define the category of sheaves
without even mentioning what a sheaf is precisely.
In particular, Theorem1.0.1 shows that the datum of a topology� on C gives rise

to an adjunction

a : Pr(C) −→ Sh�(C), P r(C) ←− Sh�(C) : j,
with j fully faithful and a left exact. Such an adjoint pair will be called anexact
localization of the categoryPr(C). Another fundamental result in sheaf theory is the
following:

Theorem 1.0.2.The rule sending a Grothendieck topology� on C to the exact local-
ization

a : Pr(C) −→ Sh�(C), P r(C) ←− Sh�(C) : j,
defines a bijective correspondence between the set of topologies on C and the set of
(equivalences classes) of exact localizations of the categoryPr(C). In particular, for
a category T the following two conditions are equivalent:
• There exists a category C and a Grothendieck topology� on C such that T is
equivalent toSh�(C).

• There exists a category C and a left exact localization

a : Pr(C) −→ T , P r(C) ←− T : j.

A category satisfying one the previous conditions is called aGrothendieck topos.

Finally, a famous theorem by Giraud ([SGA4-I, Exp. IV, Theoreme 1.2]) provides
an internal characterization of Grothendieck topoi.

Theorem 1.0.3. (Giraud’s Theorem).A category T is a Grothendieck topos if and only
if it satisfies the following conditions:
1. The category T is has a small set of strong generators.
2. The category T has small colimits.
3. Sums are disjoint in T(i.e. xj × ∐

i xi
xk 
 ∅ for all j �= k).

4. Colimits commute with pull backs.
5. Any equivalence relation is effective.
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The main results of this work are generalizations to a homotopical setting of the
notions of topologies, sites and sheaves satisfying analogs of Theorems1.0.1–1.0.3.
We have chosen to use both the concept ofS-categories(i.e. simplicially enriched
categories) and ofmodel categoriesas our versions of base categories carrying homo-
topical data. For both we have developed homotopical notions oftopologies, sitesand
sheaves, and proved analogs of Theorems1.0.1–1.0.3 which we will now describe in
more details.

1.2. S-topologies, S-sites and stacks

Let T be a baseS-category. We consider the categorySPr(T ), of T op-diagrams in
the categorySSetof simplicial sets. This category can be endowed with an objectwise
model structure for which the equivalences are defined objectwise onT. This model
categorySPr(T ) will be called themodel category of pre-stacks on T, and will be our
higher analog of the category of presheaves of sets. The categorySPr(T ) comes with a
naturalYoneda embeddingLh : T −→ SP r(T ), a up to homotopy analogof the usual
embedding of a category into the category of presheaves on it (see Corollary2.4.3).
We now consider Ho(T ), the category having the same objects asT but for which the

sets of morphisms are the connected components of the simplicial sets of morphisms in
T. Though it might be surprising at first sight, we define anS-topology on the S-category
T to be simply a Grothendieck topology on the category Ho(T ) (see Definition3.1.1).
A pair (T , �), whereT is anS-category and� is anS-topology onT, will be called an
S-site. Of course, whenT is a usual category (i.e. all its simplicial sets of morphisms
are discrete), anS-topology onT is nothing else than a Grothendieck topology onT.
Therefore, a site is in particular anS-site, and our definitions are actual generalizations
of the usual definitions of topologies and sites.
For the category of presheaves of sets on a Grothendieck site, we have already

mentioned that the topology induces a notion of local isomorphisms. In the case where
(T , �) is anS-site we define a notion oflocal equivalencesin SPr(T ) (see Definition
3.3.2). WhenT is a category, and therefore(T , �) is a site in the usual sense, our notion
of local equivalences specializes to the notion introduced by Illusie and later by Jardine
([Ja1]). Our first main theorem is a generalization of the existence of the local model
category structure on the category of simplicial presheaves on a site (see[Ja1,Bl]).

Theorem 1.0.4(Theorem3.4.1, Proposition3.4.10and Corollary 3.6.2). Let (T , �) be
an S-site.
1. There exists a model structure on the category SPr(T ), called the local model

structure,for which the equivalences are the local equivalences. This new model
category, denoted by SPr�(T ), is furthermore the left Bousfield localization of the
model category SPr(T ) of pre-stacks along the local equivalences.

2. The identity functor

Id : SP r(T ) −→ SP r�(T )

commutes with homotopy fibered products.
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3. The homotopy categoryHo(SP r�(T )) is cartesian closed, or equivalently, it has
internal Hom-objects.

The model category SPr�(T ) is called themodel category of stacks on theS-site (T , �).

This theorem is ourhigher analogof Theorem1.0.1. Indeed, the existence of the
local model structure formally implies the existence ofhomotopy limitsand homotopy
colimits in SPr�(T ), which are homotopical generalizations of the notion of limits and
colimits (see[Hi, Section 19]). Moreover,SPr�(T ) being a left Bousfield localization
of SPr(T ), the identity functor Id: SP r�(T ) −→ SP r(T ) is a right Quillen functor
and therefore induces an adjunction on the level of homotopy categories

a := LId : Ho(SP r(T )) −→ Ho(SP r�(T )),

Ho(SP r(T )) ←− Ho(SP r�(T )) : j := RId.

It is a general property of Bousfield localizations that the functorj is fully faithful, and
Theorem1.0.4(2) implies that the functora is homotopically left exact, i.e. commutes
with homotopy fibered products. Finally, part(3) of Theorem1.0.4 is a homotopical
analog of Theorem1.0.1(3).
As in the case of sheaves on a site, it remains to characterize the essential image

of the inclusion functorj : Ho(SP r�(T )) −→ Ho(SP r(T )). One possible homotopy
analog of the sheaf condition is thehyperdescent propertyfor objects inSPr(T ) (see
Definition 3.4.8). It is a corollary of our proof of the existence of the local model
structureSPr�(T ) that the essential image of the inclusion functorj : Ho(SP r�(T )) −
→ Ho(SP r(T )) is exactly the full subcategory of objects satisfying the hyperdescent
condition (see Corollary3.4.7). We call these objectsstacksover the S-site (T , �)
(Definition 3.4.9). The functora : Ho(SP r(T )) −→ Ho(SP r�(T )) can then be identified
with the associated stack functor(Definition 3.4.9).
Finally, we would like to mention that the model categoriesSPr�(T ) are not in

general Quillen equivalent to model categories of simplicial presheaves on some site.
Therefore, Theorem1.0.4 is a new result in the sense that neither its statement nor
its proof can be reduced to previously known notions and results in the theory of
simplicial presheaves.

1.3. Model topoi and S-topoi

Based on the previously described notions ofS-sites and stacks, we develop a related
theory of topoi. For this, note that Theorem1.0.4 implies that anS-topology � on
an S-categoryT gives rise to the model categorySPr�(T ), which is a left Bousfield
localization of the model categorySPr(T ). This Bousfield localization has moreover the
property that the identity functor Id: SP r(T ) −→ SP r�(T ) preserves homotopy fibered
products. We call such a localization aleft exact Bousfield localizationof SPr(T ) (see
Definition 3.8.1). This notion is a homotopical analog of the notion of exact localization
appearing in topos theory as reviewed before Theorem1.0.2. The rule� 
→ SP r�(T ),
defines a map from the set ofS-topologies on a givenS-categoryT to the set of
left exact Bousfield localizations of the model categorySPr(T ). The model category
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SPr�(T ) also possesses a naturaladditional property, calledt-completenesswhich is
a new feature of the homotopical context which does not have any counterpart in
classical sheaf theory (see Definition3.8.2). An objectx in some model categoryM is
calledn-truncatedif for any y ∈ M, the mapping spaceMapM(y, x) is ann-truncated
simplicial set; an object inM is truncatedif it is n-truncated for somen�0. A model
categoryM will then be calledt-completeif truncated objects detect isomorphisms in
Ho(M): a morphismu : a → b in Ho(M) is an isomorphism if and only if, for any
truncated objectx in Ho(M), the mapu∗ : [b, x] −→ [a, x] is bijective.
The notion oft-completeness is very natural and very often satisfied as most of the

equivalences in model categories are defined using isomorphisms on certain homotopy
groups. Thet-completeness assumption simply states that an object with trivial homo-
topy groups is homotopically trivial, which is a very natural and intuitive condition.
The usefulness of this notion oft-completeness is explained by the following theorem,
which is our analog of Theorem1.0.2.

Theorem 1.0.5(Theorem3.8.3 and Corollary 3.8.5). Let T be an S-category. The cor-
respondence� 
→ SP r�(T ) induces a bijection between S-topologies on T and t-complete
left exact Bousfield localizations of SPr(T ). In particular, for a model category M the
following two conditions are equivalent:
• There exists an S-category T and an S-topology on T such that M is Quillen equivalent
to SPr�(T ).

• The model category M is t-complete and there exists an S-category T such that M
is Quillen equivalent to a left exact Bousfield localization of SPr(T ).

A model category satisfying one the previous conditions is called a t-complete model
topos.

It is important to stress that there aret-complete model topoi which arenot Quillen
equivalent to anySPr�(C), for C a usual category (see Remark3.8.7(1)). Therefore,
Theorem1.0.5also shows the unavoidable relevance of considering topologies on gen-
eral S-categories rather than only on usual categories. In other words, there is no way
to reduce the theory developed in this paper to the theory of simplicial presheaves over
Grothendieck sites as done in[Ja1,Jo1].
The above notion ofmodel toposwas suggested to us by Rezk, who defined a

more general notion ofhomotopy topos(a model topos without thet-completeness
assumption), which is a model category Quillen equivalent to an arbitrary left exact
Bousfield localization of someSPr(T ) (see Definition3.8.1). The relevance of Theorem
1.0.5 is that, on one hand it shows that the notion ofS-topology we used is correct
exactly because it classifies all (t-complete) left exact Bousfield localizations, and, on
the other hand it provides an answer to a question raised by Rezk on which notion of
topology could be the source of his homotopy topoi.
It is known that there exist model topoi which are nott-complete (see Remark

3.8.7), and therefore our notion of stacks overS-categories does not modelall of
Rezk’s homotopy topoi. However, we are strongly convinced that Theorem1.0.5has a
more general version, in which thet-completeness assumption is dropped, involving a
corresponding notion ofhyper-topologyon S-categories as well as the associated notion
of hyper-stack(see Remark3.8.7).
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Using the above notion of model topos, we also define the notion ofS-topos. An
S-topos is by definition anS-category which is equivalent, as anS-category, to some
LM, for M a model topos (see Definition3.8.8). Here we have denoted byLM the
Dwyer–Kan simplicial localization ofM with respect to the set of its weak equivalences
(see the next paragraph for further explanations on the Dwyer-Kan localization).

1.4. S-Categories and model categories

Most of theS-categories one encounters in practice come from model categories via
the Dwyer–Kansimplicial localization. The simplicial localization is a refined version
of the Gabriel–Zisman localization of categories. It associates anS-categoryL(C, S) to
any categoryC equipped with a subcategoryS ⊂ C (see (Section 2.2)), such that the
homotopy category Ho(L(C, S)) is naturally equivalent to the Gabriel–Zisman localiza-
tion S−1C, but in generalL(C, S) contains non-trivial higher homotopical informations.
The simplicial localization construction is particularly well behaved when applied to a
model categoryM equipped with its subcategory of weak equivalencesW ⊂ M: in fact,
in this case, theS-categoryLM := L(M,W) encodes the so-calledhomotopy mapping
spacesof the model categoryM (see Section 2.2). We will show furthermore that the
notions ofS-topologies,S-sites and stacks previously described in this introduction, also
have their analogs in the model category context, and that the simplicial localization
construction allows one to pass from the theory over model categories to the theory
over S-categories.
For a model1 categoryM, we consider the categorySPr(M) of simplicial presheaves

on M, together with its objectwise model structure. We define the model category
M∧ to be the left Bousfield localization ofSPr(M) along the set of equivalences in
M (see Definition4.1.4). In particular, unlike that ofSPr(M), the model structure
of M∧ takes into account the fact thatM is not just a bare category but has an
additional (model) structure. The model categoryM∧ is called themodel category of
pre-stacks on M, and it is important to remark that its homotopy category can be
identified with the full subcategory of Ho(SP r(M)) consisting of functorsF : Mop −
→ SSet sending equivalences inM to equivalences of simplicial sets. We construct a
homotopical Yoneda-like functor

h : M −→ M∧,

roughly speaking by sending an objectx to the simplicial presheafy 
→ MapM(y, x),
whereMapM(−,−) denotes the homotopy mapping space in the model categoryM
(see Definition4.2.5). An easy but fundamental result states that the functorh possesses
a right derived functor

Rh : Ho(M) −→ Ho(M∧)

1Actually, in Section 4, all the constructions are given for the weaker notion ofpseudo-model categories
because we will need this increased flexibility in some present and future applications. However, the case
of model categories will be enough for this introduction.
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which is fully faithful (Theorem4.2.3). This is a model category version of the Yoneda
lemma.
We also define the notion of amodel pre-topologyon the model categoryM and

show that this induces in a natural way a Grothendieck topology on the homotopy
category Ho(M). A model category endowed with a model pre-topology will be called
a model site(see Definition4.3.1). For a model site(M, �), we define a notion of
local equivalencesin the category of pre-stacksM∧. The analog of Theorem1.0.1 for
model categories is then the following:

Theorem 1.0.6(Theorem4.6.1). Let (M, �) be a model site.
1. There exists a model structure on the categoryM∧, called the local model structure,
for which the equivalences are the local equivalences. This new model category,
denoted byM∼,�, is furthermore the left Bousfield localization of the model category
of pre-stacksM∧ along the local equivalences.

2. The identity functor

Id : M∧ −→ M∼,�

commutes with homotopy fibered products.
3. The homotopy categoryHo(M∼,�) is cartesian closed.
The model categoryM∼,� is called themodel category of stackson the model site
(M, �).

As for stacks overS-sites, there exists a notion of object satisfying ahyperdescent
conditionwith respect to the topology�, and we prove that Ho(M∼,�) can be identified
with the full subcategory of Ho(M∧) consisting of objects satisfying hyperdescent (see
Definition 4.6.5).
Finally, we compare the two parallel constructions of stacks overS-sites and over

model sites.

Theorem 1.0.7(Theorem4.7.1). Let (M, �) be a model site.
(i) The simplicial localization LM possesses an induced S-topology�, and is naturally
an S-site.

(ii) The two corresponding model categories of stacksM∼,� and SPr�(LM) are nat-
urally Quillen equivalent. In particularM∼,� is a t-complete model topos.

The previous comparison theorem finds its pertinence in the fact that the two ap-
proaches, stacks over model sites and stacks overS-sites, seem to possess their own
advantages and disadvantages, depending of the situation and the goal that one wants
to reach. On a computational level the theory of stacks over model sites seems to
be better suited than that of stacks overS-sites. On the other hand,S-categories and
S-sites are much more intrinsic than model categories and model sites, and this has
already some consequences, e.g. at the level of functoriality properties of the categories
of stacks. We are convinced that having the full picture, including the two approaches
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and the comparison Theorem1.0.7, will be a very friendly setting for the purpose of
several future applications.

1.5. A Giraud theorem for model topoi

Our version of Theorem1.0.3is on the model categories’ side of the theory. The cor-
responding statement forS-categories would drive us too far away from the techniques
used in this work, and will not be investigated here.

Theorem 1.0.8(Theorem4.9.2). A combinatorial model category M is a model topos
if and only if it satisfies the following conditions:
1. Homotopy coproducts are disjoints in M.
2. Homotopy colimits are stable under homotopy pullbacks.
3. All Segal equivalences relations are homotopy effective.

The condition of being a combinatorial model category is a set theoretic condition
on M (very often satisfied in practice), very similar to the condition of having a
small set of generators (see Appendix A.2). Conditions(1) and (2) are straightforward
homotopy theoretic analogs of conditions(3) and (4) of Theorem1.0.3: we essentially
replace pushouts, pullbacks and colimits by homotopy pushouts, homotopy pullbacks
and homotopy colimits (see Definition4.9.1). Finally, condition(3) of Theorem1.0.8,
spelled out in Definition4.9.1(3) and (4), is a homotopical version of condition(5)
of Giraud’s theorem1.0.3, where groupoids of equivalence relations are replaced by
Segal groupoids and effectivity has to be understood homotopically.
The most important consequence of Theorem1.0.8 is the following complete char-

acterization oft-complete model topoi.

Corollary 1.0.9 (Corollary 4.9.7). For a combinatorial model category M, the follow-
ing two conditions are equivalent:
(i) There exists a small S-site(T , �), such that M is Quillen equivalent to SPr�(T ).
(ii) M is t-complete and satisfies the conditions of Theorem1.0.8.

1.6. A topological application: étale K-theory of commutativeS-algebras

As an example of application of our constructions, we give a definition of theétale
K-theory of (commutative) S-algebras, which is to algebraicK-theory of S-algebras
(as defined for example in[EKMM, Section VI]) what étaleK-theory of rings is
to algebraicK-theory of rings. For this, we use the notion of etale morphisms ofS-
algebras introduced in[Min] (and in[To-Ve 5]) in order to define anétalepre-topology
on the model category of commutativeS-algebras (see Definition5.2.10). Associated
to this model pre-topology, we have the model category of étale stacks(AffS)∼,et; the
functor K that maps anS-algebraA to its algebraicK-theory spaceK(A), defines an
objectK ∈ (AffS)∼,ét . If Két ∈ (AffS)∼,ét is an étale fibrant model forK, we define
the space of étaleK-theory of anS-algebraA to be the simplicial setKét (A) (see
Definition 5.3.1). Our general formalism also allows us to compareKét (Hk) with the
usual definition of etaleK-theory of a fieldk (see Corollary5.3.3).
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This definition of étaleK-theory ofS-algebras gives a possible answer to a question
raised by Rognes[Ro]. In the future, it might be used as a starting point to developétale
localization techniquesin K-theory of S-algebras, as Thomason’s style étale descent
theorem, analog of the Quillen-Lichtenbaum’s conjecture, etc. For further applications
of the general theory developed in this paper to algebraic geometry over commutative
ring spectra, we refer the reader to[To-Ve 6,To-Ve 3].

1.7. Organization of the paper

The paper is organized in five sections and one appendix. In Section 2 we review
the main definitions and results concerningS-categories. Most of the materials can be
found in the original papers[D-K1,D-K2,DHK], with the possible exception of the
last two subsections. In Section 3 we define the notion ofS-topologies,S-sites, local
equivalences and stacks overS-sites. This section contains the proofs of Theorems
1.0.4 and 1.0.5. We prove in particular the existence of the local model structure as
well as internalHom’s (or equivalently, stacks of morphisms). We also investigate here
the relations between Rezk’s model topoi andS-topologies. Section 4 is devoted to
the theory of model topologies, model sites and stacks over them. As it follows a
pattern very similar to the one followed in Section 3 (forS-categories), some details
have been omitted. It also contains comparison results between the theory of stacks
over S-sites and the theory of stacks over model sites, as well as the Giraud’s style
theorem for model topoi. In Section 5 we present one application of the theory to
the notion ofétale K-theory ofS-algebras. For this we review briefly the homotopy
theory of S-modules andS-algebras, and we define an étale topology on the model
category of commutativeS-algebra, which is an extension of the étale topology on
affine schemes. Finally, we use our general formalism to define the étaleK-theory
space of a commutativeS-algebra.
Finally, in Appendix A we collected some definitions and conventions concerning

model categories and the use of universes in this context.

1.8. Related works

There has been several recent works on (higher) stacks theory which use a simplicial
and/or a model categorical approach (see[DHI, H-S, Hol, Ja2, S1, To2, To3]). The
present work is strongly based on the same idea that simplicial presheaves are after all
very good models forstacks in∞-groupoids, and provide a powerful and rich theory. It
may also be considered as a natural continuation of the foundational papers[Ja1,Jo1].
A notion of a topology on a 2-category, as well as a notion ofstack over a 2-sitehas

already been considered by R. Street in[Str], D. Bourne in[Bou], and more recently
by Behrend in his work on DG-schemes[Be]. Using truncation functors (Section3.7),
a precise comparison with these approaches will appear in the second part of this work
[To-Ve 6] (the reader is also referred to Remark3.7.9).
We have already mentioned that the notion of model topos used in Section 3.8

essentially goes back to the unpublished manuscript[Re], though it was originally
defined as left exact Bousfield localizations of model category of simplicial presheaves
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on some usual category, which is not enough as we have seen. A different, but similar,
version of our Giraud’s Theorem4.9.2 appeared in[Re] as conjecture. The notion of
S-topos introduced in Section 3.8 seems new, though more or less equivalent to the
notion of model topos. However, we think that both theories ofS-categories and of
model categories reach here their limits, as it seems quite difficult to define a reasonable
notion of geometric morphisms between model topoi or betweenS-topoi. This problem
can be solved by using Segal categories of[H-S,P] in order to introduce a notion of
Segal toposas explained in[To-Ve 1].
A notion relatively closed to the notion of Segal topos can also be found in[S2]

whereSegal pre-topoiare investigated and the question of the existence of a theory of
Segal topoi is addressed.
Also closely related to our approach to model topoi is the notion of∞-toposappeared

in the recent preprint[Lu] by Lurie. The results of[Lu] are exposed in a rather different
context, and are essentially disjoints from ours. Form example, the notion of topology
is not considered in[Lu] and results of type3.8.3, 3.8.5 or 4.9.7 do not appear in it.
Also, the notion of stack used by Lurie is slightly different from ours (however the
differences are quite subtle). An exception is Giraud’s theorem which first appeared in
[Lu] in the context of∞-categories, and only later on in the last version of this work
(February 2004) for model categories. These two works have been done independently,
though we must mention that the first version of the present paper has been publicly
available since July 2002 (an important part of it was announced in[To-Ve 5] which
appeared on the web during October 2001), whereas[Lu] appeared in June 2003.
Let us also mention that Joyal[Jo2] has developed a theory ofquasi-categories, which

is expected to be equivalent to the theory ofS-categories and of Segal categories, and
for which he has defined a notion ofquasi-toposvery similar to the notion of Segal
topos in[To-Ve 1]. The two approaches are expected to be equivalent. Also, the recent
work of Cisinski [Cis] seems to be closely related to a notion ofhypertopologywe
discuss in Remark3.8.7(3).
Our definition of the étale topology forS-algebras was strongly influenced by the

content of[Min,MCM] , and the definition of étaleK-theory in the context ofS-algebras
given in Section 5 was motivated by the note[Ro].
Notations and conventions. We will use the worduniversein the sense of[SGA4-I,

Exp. I, Appendice]. Universes will be denoted byU ∈ V ∈ W . . .. For any universe
U we will assume thatN ∈ U. The category of sets (resp. simplicial sets, resp. …)
belonging to a universeU will be denoted bySetU (resp.SSetU, resp. …). The objects
of SetU (resp. SSetU, resp. …) will be calledU-sets (resp.U-simplicial sets, resp.
…). We will use the expressionU-small set(resp.U-small simplicial set, resp. …) to
meana set isomorphic to a set inU (resp.a simplicial set isomorphic to a simplicial
set inU, resp. …).
Our references for model categories are[Hi , Ho]. By definition, our model categories

will always be closedmodel categories, will have allsmall limits and colimits and
the functorial factorization property. The wordequivalencewill always meanweak
equivalenceand will refer to a model category structure.
The homotopy category of a model categoryM isW−1M (see[Ho, Definition 1.2.1]),

whereW is the subcategory of equivalences inM, and it will be denoted as Ho(M).
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The sets of morphisms in Ho(M) will be denoted by[−,−]M , or simply by [−,−]
when the reference to the model categoryM is clear. We will say that two objects in
a model categoryM are equivalent if they are isomorphic in Ho(M). We say that two
model categories areQuillen equivalentif they can be connected by a finite string of
Quillen adjunctions each one being a Quillen equivalence.
The homotopy fibered product (see[Hi, Section 11]or [DHK, Chapter XIV]) of a

diagram x �� z y�� in a model categoryM will be denoted byx × h
z y.

In the same way, the homotopy pushout of a diagramx z�� �� y will

be denoted byx
∐ h

z y. When the model categoryM is a simplicial model category, its
simplicial sets of morphisms will be denoted byHom(−,−), and their derived functors
by RHom (see[Ho, 1.3.2]).
For the notions ofU-cofibrantly generated,U-combinatorial andU-cellular model

category, we refer to or to Appendix B, where the basic definitions and crucial properties
are recalled in a way that is suitable for our needs.
As usual, the standard simplicial category will be denoted by�. For any simplicial

objectF ∈ C�op

in a categoryC, we will use the notationFn := F([n]). Similarly, for
any co-simplicial objectF ∈ C�, we will use the notationFn := F([n]).
For a Grothendieck site(C, �) in a universeU, we will denote byPr(C) the category

of presheaves ofU-sets onC, Pr(C) := CSet
op
U . The subcategory of sheaves on(C, �)

will be denoted bySh�(C), or simply bySh(C) if the topology� is unambiguous.

2. Review ofS-categories

In this first section we recall some facts concerningS-categories. The main references
on the subject are[D-K1, D-K2, DHK], except for the material covered in the two
final subsections for which it does not seem to exist any reference. The notion of
S-category will be of fundamental importance in all this work, as it will replace the
notion of usual category in our higher sheaf theory. In Section 3, we will define what
an S-topology on anS-category is, and study the associated notion of stack.
We start by reviewing the definition ofS-categoryand the Dwyer–Kansimplicial

localization technique. We recall the existence of model categories ofdiagramsoverS-
categories, as well as their relations with the model categories ofrestricted diagrams.
The new materials are presented in the last two subsections: here, we first prove a
Yoneda-like lemmafor S-categories and then introduce and study the notion ofcomma
S-category.

2.1. The homotopy theory of S-categories

We refer to [Ke] for the basic notions of enriched category theory. We will be
especially interested in the case where the enrichment takes place in the cartesian
closed categorySSetof simplicial sets.
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Definition 2.1.1. An S-category Tis a category enriched inSSet. A morphismof S-
categoriesT → T ′ is a SSet-enriched functor.

More explicitly, anS-category Tconsists of the following data:
• A setOb(T ) (whose elements are called theobjects of T).
• For any pair of objects(x, y) of Ob(T ), a simplicial setHomT (x, y) (called the

simplicial set ofmorphisms from x to y). A 0-simplex inHomT (x, y) will simply be
called amorphismfrom x to y in T. The 1-simplices inHomT (x, y) will be called
homotopies.

• For any triple of objects(x, y, z) in Ob(T ), a morphism of simplicial sets (called
the compositionmorphism)

HomT (x, y) × HomT (y, z) −→ HomT (x, z).

• For any objectx ∈ Ob(T ), a 0-simplex Idx ∈ HomT (x, x)0 (called theidentitymor-
phism atx).

These data are required to satisfy the usual associativity and unit axioms. Amorphism
betweenS-categoriesf : T −→ T ′ consists of the following data:
• A map of setsOb(T ) −→ Ob(T ′).
• For any two objectsx and y in Ob(T ), a morphism of simplicial sets

HomT (x, y) −→ HomT ′(f (x), f (y)),

compatible with the composition and unit in an obvious way.
Morphisms ofS-categories can be composed in the obvious way, thus giving rise to
the category ofS-categories.

Definition 2.1.2. The category ofS-categories belonging to a universeU, will be de-
noted byS −CatU, or simply byS −Cat if the universeU is clear from the context
or irrelevant.

The natural inclusion functorj : Set −→ SSet , sending a set to the corresponding
constant simplicial set, allows us to construct a natural inclusionj : Cat −→ S −Cat ,
and therefore to see any category as anS-category. Precisely, for a categoryC, j (C)

is the S-category with the same objects asT and whose simplicial set of morphism
from x to y is just the constant simplicial set associated to the setHomc(x, y). In the
following we will simply write C for j (C).
Any S-categoryT has anunderlying category of 0-simplicesT0; its set of objects

is the same as that ofT while the set of morphisms fromx to y in T0 is the set
of 0-simplices of the simplicial setHomT (x, y). The constructionT 
→ T0 defines a
functor S − Cat −→ Cat which is easily checked to beright adjoint to the inclusion
j : Cat −→ S − Cat mentioned above. This is completely analogous to (and actually,
induced by) the adjunction between the constant simplicial set functor c: Set −→ SSet

and the 0th level set functor(−)0 : SSet −→ Set .
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Any S-categoryT also has ahomotopy category, denoted by Ho(T ); its set of objects
is the same as that ofT, and the set of morphisms fromx to y in Ho(T ) is given by
�0(HomT (x, y)), the set of connected components of the simplicial set of morphisms
from x to y in T. The constructionT 
→ Ho(T ) defines a functorS − Cat −→ Cat

which is easily checked to beleft adjoint to the inclusionj : Cat −→ S −Cat . Again,
this is completely analogous to (and actually, induced by) the adjunction between the
constant simplicial set functor c: Set −→ SSet and the connected components’ functor
�0 : SSet −→ Set .
Summarizing, we have the following two adjunction pairs (always ordered by writing

the left adjoint on the left):

j : Cat −→ S − Cat, Cat ←− S − Cat : (−)0,

Ob(T0) := Ob(T ), HomT0(x, y) := HomT (x, y)0,

Ho(−) : S − Cat −→ Cat, S − Cat ←− Cat : j,

Ob(Ho(T )) := Ob(T ), HomHo(T )(x, y) := �0(HomT (x, y)).

For anS-categoryT, the two associated categoriesT0 and Ho(T ) are related in the
following way. There exist natural morphisms ofS-categories

T0

i
�� T

p

�� Ho(T ),

which induce a functorq : T0 −→ Ho(T ). Being the underlying category of anS-
category, the categoryT0 has a natural notion ofhomotopybetween morphisms. This
induces an equivalence relation on the set of morphisms ofT0, by declaring two
morphisms equivalent if there is a string of homotopies between them. This equiva-
lence relation is furthermore compatible with composition. The category obtained from
T0 by passing to the quotient with respect to this equivalence relation is precisely
Ho(T ).

Definition 2.1.3. Let f : T −→ T ′ be a morphism ofS-categories.
1. The morphismf is essentially surjectiveif the induced functor Ho(f ) : Ho(T ) −

→ Ho(T ′) is an essentially surjective functor of categories.
2. The essential imageof f is the inverse image by the natural projectionT ′ −→

Ho(T ′) of the essential image of Ho(f ) : Ho(T ) −→ Ho(T ′).
3. The morphismf is fully faithful if for any pair of objectsx and y in T, the

induced morphismfx,y : HomT (x, y) −→ HomT ′(f (x), f (y)) is an equivalence
of simplicial sets.

4. The morphismf is an equivalenceif it is essentially surjective and fully faithful.
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The category obtained fromS − Cat by formally inverting the equivalences will be
denoted by Ho(S − Cat). The set of morphisms in Ho(S − Cat) between two objects
T and T ′ will simply be denoted by[T , T ′].

Remark 2.1.4 (DHK, Section XII-48). contains the sketch of a proof that the category
S − Cat admits a model structure whose equivalences are exactly the ones defined
above. It seems however that this proof is not complete, as the generating trivial
cofibrations of[DHK, 48.5] fail to be equivalences. In his note[May2, Theorem 1.9],
May informed us that he knows an alternative proof, but the reader will notice that
the notion of fibrations used in[May2] is different from the one used in[DHK] and
does not seem to be correct. We think however that the model structure described in
[DHK] exists,2 as we have the feeling that one could simply replace the wrong set
of generating trivial cofibrations by the set of all trivial cofibrations between countable
S-categories. The existence of this model structure would of course simplify some of
our constructions, but it does not seem to be really unavoidable, and because of the
lack of clear references we have decided not to use it at all. This will cause a “lower
degree” of functoriality in some constructions, but will be enough for all our purposes.

Since the natural localization functorSSet −→ Ho(SSet) commutes with finite prod-
ucts, any category enriched inSSetgives rise to a category enriched in Ho(SSet). The
Ho(SSet)-enriched category associated to anS-categoryT will be denoted by Ho(T ),
and has Ho(T ) as underlying category. Furthermore, for any pair of objectsx and y
in Ho(T ), one hasHomHo(T )(x, y) = HomT (x, y) considered as objects in Ho(SSet).
Clearly,T 
→ Ho(T ) defines a functor fromS−Cat to the category Ho(SSet)−Cat of
Ho(SSet)-enriched categories, and a morphism ofS-categories is an equivalence if and
only if the induced Ho(SSet)-enriched functor is an Ho(SSet)-enriched equivalence.
Therefore, this construction induces a well-defined functor

Ho(S − Cat) −→ Ho(Ho(SSet) − Cat),

T 
→ Ho(T ),

where Ho(Ho(SSet) − Cat) is the localization of the category of Ho(SSet)-enriched
categories along Ho(SSet)-enriched equivalences.
The previous construction allows one to define the notions of essentially surjective

and fully faithful morphisms in Ho(S − Cat). Precisely, a morphismf : T −→ T ′ in
Ho(S−Cat) will be called essentially surjective (resp. fully faithful) if the correspond-
ing Ho(SSet)-enriched functor Ho(f ) : Ho(T ) −→ Ho(T ′) is essentially surjective
(resp. fully faithful) in the Ho(SSet)-enriched sense.
Finally, for anS-categoryT and a propertyP of morphisms in Ho(T ), we will often

say thata morphism f in Tsatisfies the propertyP to mean thatthe image of f in
Ho(T ) through the natural projectionT −→ Ho(T ), satisfies the propertyP. Recall
that amorphism f in an S-categoryT is just an element in the zero simplex set of
HomT (x, y) for somex and y in Ob(T ).

2 Recent progresses have been made in this direction by J. Bergner (private communication).
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2.2. Simplicial localization

Starting from a categoryC together with a subcategoryS ⊂ C, Dwyer and Kan have
defined in[D-K1] anS-category L(C, S), which is an enhanced version of the localized
categoryS−1C. It is anS-category with a diagram of morphisms inS −Cat (viewing,
according to our general conventions, any category as anS-category via the embedding
j : Cat → S − Cat)

C F∗C
p

��
L

�� L(C, S) ,

whereF∗C is the so-calledstandard simplicial free resolution of the category C, and
in particular, the projectionp is an equivalence ofS-categories. Therefore, there exists
a well-definedlocalization morphismin Ho(S − Cat)

L : C −→ L(C, S).

The construction(C, S) 
→ L(C, S) is functorial in the pair(C, S) and it also extends
naturally to the case whereS is a sub-S-category of anS-categoryC (see[D-K1, Section
6]). Note also that by construction, ifC belongs to a universeU so doesL(C, S).

Remark 2.2.1. (1) One can also check that the localization morphismL satisfies the
following universal property. For eachS-categoryT, let us denote by[C, T ]S the
subset of[C, T ] = HomHo(S−Cat)(C, T ) consisting of morphisms for which the induced
morphismC −→ Ho(T ) sends morphisms ofS into isomorphisms in Ho(T ) (the reader
will easily check that this property is well-defined). Then the localization morphismL
is such that for anyS-categoryT the induced map

L∗ : [L(C, S), T ] −→ [C, T ]

is injective and its image is[C, T ]S . This property characterizes theS-category L(C, S)

as an object in the comma categoryC/Ho(S − Cat). This universal property will not
be used in the rest of the paper, but we believe it makes the meaning of the simplicial
localization more transparent.
(2) It is important to mention the fact that anyS-categoryT is equivalent to some

L(C, S), for a categoryC with a subcategoryS ⊂ C (this is thedelocalization theorem
of [D-K2]). Furthermore, it is clear by the construction given in[D-K1] that, if T is
U-small, then so areC, S andL(C, S).

Two fundamental properties of the functorL : (C, S) 
→ L(C, S) are the following:
1. The localization morphismL induces a well-defined (up to a unique isomorphism)

functor

Ho(L) : C 
 Ho(F∗C) −→ Ho(L(C, S)),

that identifies Ho(L(C, S)) with the (usual Gabriel–Zisman) localizationS−1C.
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2. Let M be a simplicial model category,W ⊂ M its subcategory of equivalences
and let Int(M) be theS-category of fibrant and cofibrant objects inM together
with their simplicial sets of morphisms. The full (not simplicial) subcategory
Mcf ⊂ M of fibrant and cofibrant objects inM has two natural morphisms in
S − Cat

M Mcf�� �� Int(M),

which induce isomorphisms in Ho(S − Cat)

L(M,W) 
 L(Mcf ,W ∩ Mcf)


 L(Int(M),W ∩ Mcf) 
 Int(M).

In the same way, ifM f (resp.Mc) is the full subcategory of fibrant (resp. cofibrant)
objects inM, the natural morphismsM f −→ M, Mc −→ M induce isomorphisms
in Ho(S − Cat)

L(M f ,W ∩ M f ) 
 L(M,W) L(Mc,W ∩ Mc) 
 L(M,W).

Definition 2.2.2. If M is any model category, we setLM := L(M,W), whereW ⊂ M

is the subcategory of equivalences inM.

The constructionM 
→ LM is functorial, up to equivalences, for Quillen functors
between model categories. To see this, letf : M −→ N be a right Quillen functor. Then,
the restriction to the category of fibrant objectsf : M f −→ N f preserves equivalences,
and therefore induces a morphism ofS-categories

Lf : LM f −→ LN f .

Using the natural isomorphismsLM f 
 LM andLN f 
 LN in Ho(S−Cat), one gets
a well-defined morphismLf : LM −→ LN . This is a morphism in the homotopy
category Ho(S − Cat), and one checks immediately thatM 
→ LM is a functor from
the category of model categories (belonging to a fixed universeU) with right Quillen
functors, to Ho(S − CatU). The dual construction gives rise to a functorM 
→ LM

from the category of model categories which belongs to a universeU and left Quillen
functors to Ho(S − CatU).
The reader will check easily that if

f : M −→ N M ←− N : g
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is a Quillen adjunction which is a Quillen equivalence, then the morphismsLf :
LM −→ LN and Lg : LN −→ LM are isomorphisms inverse to each others in
Ho(S − Cat).

2.3. Model categories of diagrams

In this paragraph we discuss the notion ofpre-stack over an S-categorywhich is a
generalization of the notion of presheaf of sets on a usual category.

2.3.1. Diagrams
Let T be anyS-category in a universeU, andM a simplicial model category which

is U-cofibrantly generated (see[Hi, 13.2] and Appendix A). SinceM is simplicial, we
may view it as anS-category, with the same set of objects asM and whose simplicial
sets of morphisms are provided by the simplicial structure. Therefore, we may consider
the categoryMT , of morphisms ofS-categoriesF : T −→ M. To be more precise, an
objectF : T −→ M in MT consists of the following data:
• A map F : Ob(T ) −→ Ob(M).
• For any pair of objects(x, y) ∈ Ob(T ) × Ob(T ), a morphism of simplicial sets

Fx,y : HomT (x, y) −→ Hom(F(x), F (y))

(or equivalently, morphismsFx,y : HomT (x, y) ⊗ F(x) −→ F(y) in M) satisfying
the obvious associativity and unit axioms.
A morphismfrom F to G in MT consists of morphismsHx : F(x) −→ G(x) in M,

for all x ∈ Ob(T ), such that the following diagram commutes inM:

HomT (x, y) ⊗ F(x)

Fx,y

��

Id⊗Hx

��

F(y)

Hy

��
HomT (x, y) ⊗ G(x)

Gx,y

�� G(y).

One defines a model structure onMT , by defining a morphismH to be a fibration
(resp. an equivalence) if for allx ∈ Ob(T ), the induced morphismHx is a fibration
(resp. an equivalence) inM. It is known that these definitions makeMT into a sim-
plicial model category which is againU-cofibrantly generated (see[Hi, 13.10.17] and
Appendix A). This model structure will be called theprojective model structure on
MT . Equivalences and fibrations inMT will be called objectwise equivalencesand
objectwise fibrations.
Let us suppose now thatM is an internalmodel category (i.e. a symmetric monoidal

model category for the direct product, in the sense of[Ho, Chapter 4]). The category
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MT is then naturally tensored and co-tensored overM. Indeed, the external product
A ⊗ F ∈ MT of A ∈ M andF ∈ MT , is simply defined by the formula(A ⊗ F)(x) :=
A × F(x) for any x ∈ Ob(T ). For anyx andy in Ob(T ), the transition morphisms of
A ⊗ F are defined by

(A ⊗ F)x,y := A × Fx,y : HomT (x, y) × A × F(x)


 A × HomT (x, y) × F(x) −→ A × F(y).

In the same way, the exponentialFA ∈ MT of F by A, is defined by(FA)(x) := F(x)A

for any x in Ob(T ).
With these definitions the model categoryMT becomes aM-model category in the

sense of[Ho, Definition 4.2.18]. WhenM is the model category of simplicial sets, this
implies thatSSetT has a natural structure of simplicial model category where expo-
nential and external products are defined levelwise. In particular, for anyx ∈ Ob(T ),
the evaluation functor

j∗
x : MT −→ M,

F 
→ F(x),

commutes with the geometric realization and total space functors of[Hi, Section 19.5].
As fibrant (resp. cofibrant) objects inMT are also objectwise fibrant (resp. objectwise
cofibrant), this easily implies thatj∗

x commutes, up to an equivalence, with homotopy
limits and homotopy colimits. One may also directly shows thatj∗

x is indeed a left
and right Quillen functor. Finally, ifM is a proper model category, then so isMT .
Let f : T −→ T ′ be a morphism inS − CatU. It gives rise to an adjunction

f! : MT −→ MT ′
MT ←− MT ′ : f ∗,

where f ∗ is defined by the usual formulaf ∗(F )(x) := F(f (x)), for any F ∈ MT ′

and anyx ∈ Ob(T ), andf! is its left adjoint. The functorf ∗ is clearly a right Quillen
functor, and therefore(f!, f ∗) is a Quillen adjunction.
The following theorem is proved in[D-K2] whenM is the category of simplicial

sets; its proof generalizes immediately to our situation. As above,M is a simplicial
U-cofibrantly generated model category.

Theorem 2.3.1. If f : T → T ′ is an equivalence of S-categories, then (f!, f ∗) is a
Quillen equivalence of model categories.

Definition 2.3.2. Let T ∈ S − CatU be anS-category inU, andM a U-cofibrantly
generated simplicial model category. The model categoryPr(T ,M) of pre-stacks on T
with values in Mis defined as

Pr(T ,M) := MT op

.
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We will simply write SPr(T ) for Pr(T , SSetU), and call it the model category of
pre-stacks on T.

Theorem2.3.1 implies that the model categoryPr(T ,M), for a fixed M, is an
invariant, up to Quillen equivalence, of the isomorphism class ofT in Ho(S − CatU).
In the same way, iff : T −→ T ′ is a morphism in Ho(S − CatU), one can represent
f by a string of morphisms inS − CatU

T T1

p1
��

f1
�� T2 T3

p3
��

f3
�� T4 · · · T2n−1

p2n−1
��

f2n−1
�� T ′,

where eachpi is an equivalence ofS-categories. We deduce a diagram of right Quillen
functors

Pr(T ,M)

p∗
1

�� Pr(T1,M) P r(T2,M)

f ∗
1

��
p∗
3

�� Pr(T3,M)

· · ·
p∗
2n−1

�� Pr(T2n−1,M) P r(T ′,M),

f ∗
2n−1

��

such that eachp∗
i is a right adjoint of a Quillen equivalence. By definition, this di-

agram gives aQuillen adjunction betweenPr(T ,M) and Pr(T ′,M), up to Quillen
equivalences, which can also be interpreted as a morphism in the category of model
categories localized along Quillen equivalences. In particular, we obtain a well-defined
morphism in Ho(S − Cat)

Rf ∗ := (p∗
1)

−1◦(f ∗
1 )◦ . . . ◦(p∗

2n−1)−1◦(f ∗
2n−1) : LPr(T ′,M) −→ LPr(T ,M).

Using direct images (i.e. functors(−)!) instead of inverse images, one also gets a
morphism in the other direction

Lf! := (f2n−1)!◦(p2n−1)−1! ◦ . . . ◦(f1)!◦(p1)−1! : LPr(T ,M) −→ LPr(T ′,M)

(again well-defined in Ho(S − Cat)). Passing to the associated Ho(SSet)-enriched
categories, one obtains a Ho(SSet)-enriched adjunction

Lf! : Ho(P r(T ,M)) −→ Ho(P r(T ′,M)) Ho(P r(T ,M)) ←− Ho(P r(T ′,M)) : Rf ∗.

The two Ho(SSet)-enriched functors are well-defined up to a unique isomorphism.
WhenM is fixed, the construction above defines a well-defined functor from the cate-
gory Ho(S − Cat) to the homotopy category of Ho(SSet)-enriched adjunctions.
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2.3.2. Restricted diagrams
Let C be aU-small S-category,S ⊂ C a sub-S-category, andM a simplicial model

category which isU-cofibrantly generated. We will assume also thatM is a U-
combinatorial orU-cellular model category so that the left Bousfield localization
techniques of[Hi, Chapter 4] can be applied to homotopically invert anyU-set of
morphisms (see Appendix A).
We consider the model categoryMC , of simplicial functors fromC to M, endowed

with its projective model structure. For any objectx ∈ C, the evaluation functori∗x :
MC −→ M, defined byi∗x (F ) := F(x), has a left adjoint(ix)! : M −→ MC which
is a left Quillen functor. LetI be aU-set of generating cofibrations inM. For any
f : A −→ B in I and any morphismu : x −→ y in S ⊂ C, one consider the natural
morphism inMC

f�u : (iy)!(A)
∐

(ix )!(A)

(ix)!(B) −→ (iy)!(B).

SinceM is a U-combinatorial (orU-cellular) model category, then so isMC (see
[Du2, i] and Appendix A). As the set of allf�u, for f ∈ I and u a morphism inS,
belongs toU, the following definition is well posed.

Definition 2.3.3. The model categoryMC,S is the left Bousfield localization ofMc

along the set of all morphismsf�u, wheref ∈ I and u is a morphism inS.
The model categoryMC,S will be called themodel category of restricted diagrams

from (C, S) to M.

Remark 2.3.4. If M = SSetU, we may takeI to be the usual set of generating
cofibrations

I = {
fn : ��[n] ↪→ �[n] | n�0

}
.

Since as it is easily checked, we have a canonical isomorphism(ix)!(∗ = �[0]) 
 hx

in SSet(C,S)op , for any x ∈ C, where hx denotes the simplicial diagrams defined by
hx(y) := HomT (y, x). Then, for anyu : x → y in S, we have that the set of morphisms
fn�u is exactly the set of augmented horns on the set of morphismshx → hy (see

[Hi, Section 4.3]). This implies thatSSetC,S is simply the left Bousfield localization
of SSetC along the set of morphismshx → hy for any x → y in S.

By the general theory of left Bousfield localization of[Hi] , the fibrant objects in
the model categoryMC,S are the functorsF : C −→ M satisfying the following two
conditions:
1. For anyx ∈ C, F(x) is a fibrant object inM (i.e. F is fibrant in MC for the

projective model structure).
2. For any morphismu : x −→ y in S, the induced morphismFx,y(u) : F(x) −→

F(y) is an equivalence inM.
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Now, let (F∗C,F∗S) be the canonical free resolution of(C, S) in S − CatU (see
[D-K1]). Then, one has a diagram of pairs ofS-categories

(C, S) (F∗C,F∗S)
p

��
l

�� (F∗S)−1(F∗C) = L(C, S),

inducing a diagram of right Quillen functors

MC,S

p∗
�� MF∗C,F∗S ML(C,S)

l∗
�� .

The following result is proved in[D-K2] in the case whereM = SSetU, and its proof
generalizes easily to our situation.

Theorem 2.3.5.The previously defined right Quillen functorsp∗ and l∗ are Quillen
equivalences. In particular, the two model categoriesML(C,S) andMC,S are Quillen
equivalent.

The model categories of restricted diagrams are functorial in the following sense.
Let f : C −→ D be a functor between twoU-small S-categories, and letS ⊂ C and
T ⊂ D be two sub-S-categories such thatf (S) ⊂ T . The functorf induces the usual
adjunction on the categories of diagrams inM

f! : MC,S −→ MD,T , MC,S ←− MD,T : f ∗.

The adjunction(f!, f ∗) is a Quillen adjunction for the objectwise model structures.
Furthermore, using the description of fibrant objects given above, it is clear thatf ∗
sends fibrant objects inMD,T to fibrant objects inMC,S . By the general formalism
of left Bousfield localizations (see[Hi, Section 3]), this implies that(f!, f ∗) is also a
Quillen adjunction for the restricted model structures.

Corollary 2.3.6. Let f : (C, S) −→ (D, T ) be as above. If the induced morphism of
S-categoriesLf : L(C, S) −→ L(D, T ) is an equivalence, then the Quillen adjunction
(f!, f ∗) is a Quillen equivalence betweenMC,S andMD,T .

Proof. This is a consequence of Theorems2.3.1 and 2.3.5. �

2.4. The Yoneda embedding

In this paragraph we define a Yoneda embedding forS-categories. To be precise it
will be only defined as a morphism inS − Cat for fibrant S-categories, i.e. forS-
categories whose simplicial sets of morphisms are all fibrant; for arbitraryS-categories,
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the Yoneda embedding will only be defined as a morphism in the homotopy category
Ho(S − Cat).
We fix T, a U-small S-category. The categorySPr(T ) (see Definition2.3.2) is natu-

rally enriched overSSetand the correspondingS-category will be denoted bySPr(T )s .
Note that Int(SP r(T )) is a full sub-S-category ofSPr(T )s (recall that Int(SP r(T )) is
theS-category of fibrant and cofibrant objects in the simplicial model categorySPr(T )).
Recall the following SSet-enriched version of Yoneda lemma (e.g.,

[G-J, IX Lemma 1.2])

Proposition 2.4.1. Let T be an S-category. For any object x in T, let us denote by
hx the object in SPr(T )s defined byhx(y) := HomT (y, x). Then, for any simplicial
functor F : T → SSet , there is a canonical isomorphism of simplicial sets

F(x) 
 HomSPr(T )s
(hx, F )

which is functorial in the pair(F, x).

Then, for anyT ∈ S − CatU, one defines a morphism ofS-categoriesh : T −→
SP r(T )s , by setting forx ∈ Ob(T )

hx : T op −→ SSetU,

y 
→ HomT (y, x).

Note that Proposition2.4.1defines immediatelyh at the level of morphisms between
simplicial Hom’s and shows thath is fully faithful (in a strong sense) as a morphism
in S−CatV. Now, the morphismh induces a functor between the associated homotopy
categories that we will still denote by

h : Ho(T ) −→ Ho(SP r(T )s).

Now, we want to compare Ho(SP r(T )s) to Ho(SP r(T )); note that the two Ho(−)’s
here have different meanings, as the first one refers to the homotopy category of an
S-category while the second one to the homotopy category of a model category. By
definition, in the set of morphisms betweenF and G in Ho(SP r(T )s), simplicially
homotopic maps inHomSPr(T )(F,G) = HomSPr(T )s

(F,G)0, give rise to the same
element. Then, since simplicially homotopic maps inHomSPr(T )(F,G) have the same
image in Ho(SP r(T )) (see, for example,[Hi, Corollary 10.4.5]), the identity functor
induces a well-defined localization morphism

Ho(SP r(T )s) −→ Ho(SP r(T )).

Composing this with the functorh, one deduces a well-defined functor (denoted with
the same symbol)

h : Ho(T ) −→ Ho(SP r(T )).
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The following is a homotopy version of the enriched Yoneda lemma (i.e. a homotopy
variation of Proposition2.4.1).

Proposition 2.4.2. For any objectF ∈ SP r(T ) and anyx ∈ Ob(T ), there exists an
isomorphism inHo(SSetU)

F (x) 
 RHom(hx, F )

which is functorial in the pair(F, x) ∈ Ho(SP r(T )) × Ho(T ). In particular, the functor
h : Ho(T ) −→ Ho(SP r(T )) is fully faithful.

Proof. Using Proposition2.4.1, since equivalences inSPr(T ) are defined objectwise,
by taking a fibrant replacement ofF, we may suppose thatF is fibrant. Moreover, again
by Proposition2.4.1, the unique morphism∗ → hx has the right lifting property with
respect to all trivial fibrations, hencehx is a cofibrant object inSPr(T ). Therefore, for
any fibrant objectF ∈ SP r(T ), one has natural isomorphisms in Ho(SSetU)

F (x) 
 Hom(hx, F ) 
 RHom(hx, F ). �

The following corollary is a refined version of Proposition2.4.2.

Corollary 2.4.3. Let T be an S-category inU with fibrant simplicial Hom-sets. Then,
the morphismh : T −→ SP r(T )s factors throughInt(SP r(T )) and the induced mor-
phismh : T −→ Int(SP r(T )) in S − Cat is fully faithful.

Proof. The assumption onT implies thathx is fibrant and cofibrant inSPr(T ), for
any x ∈ Ob(T ) and therefore thath factors through Int(SP r(T )) ⊂ SP r(T )s . Finally,
Proposition2.4.2 immediately implies thath is fully faithful. Actually, this is already
true for h : T −→ SP r(T )s , by Proposition2.4.1, and hence this is true for our
factorization since Int(SP r(T )) is a full sub-S-category ofSPr(T )s . �
In caseT is anarbitrary S-category inU (possibly with non-fibrant simplicial Hom

sets), one can consider a fibrant replacementj : T −→ RT , defined by applying the
Kan Ex∞-construction[G-J, III.4] to each simplicial set of morphisms inT, together
with its Yoneda embedding

T

j

�� RT

h

�� Int(SP r(RT )).

When viewed in Ho(S − Catv), this induces a well-defined morphism

T

j

�� RT

h

�� Int(SP r(RT )) 
 LSPr(RT ).



B. Toën, G. Vezzosi /Advances in Mathematics 193 (2005) 257–372 281

Finally, composing with the isomorphismLj! = (j∗)−1 : LSPr(RT ) 
 LSPr(T ) of
Theorem2.3.1, one gets a morphism

Lh : T −→ LSPr(T ).

This is a morphism in Ho(S − CatV), called theS-Yoneda embedding of T; when
no confusion is possible, we will simply call it the Yoneda embedding ofT. Now,
Corollary 2.4.3 immediately implies thatLh is fully faithful, and is indeed isomorphic
to the morphismh defined above whenT has fibrant simplicial Hom-sets.

Definition 2.4.4. Let T be anS-category. An object in Ho(SP r(T )) is called repre-
sentableif it belongs to the essential image (see Definition2.1.3, 2.) of the functor
Lh : T −→ LSPr(T ).

For anyT ∈ Ho(S − CatU), the Yoneda embeddingLh : T −→ LSPr(T ) induces
an isomorphism in Ho(S −CatU) betweenT and the full sub-S-category ofLSPr(T )

consisting of representable objects.
Note that the functor induced on the level of homotopy categories

Lh : Ho(T ) −→ Ho(LSP r(T )) = Ho(SP r(T ))

simply sendsx ∈ Ob(T ) to the simplicial presheafhx ∈ Ho(SP r(T )).

2.5. Comma S-categories

In this subsection we will use the Yoneda embedding defined above, in order to
define, for anS-categoryT and an objectx ∈ T , the commaS-categoryT/x in a
meaningful way.
Let T be anS-category inU, and let us consider its (usual, enriched) Yoneda em-

bedding

h : T −→ SP r(T ) := SSetT
op

U .

For any objectx ∈ Ob(T ), we consider the comma categorySPr(T )/hx , together
with its natural induced model structure (i.e. the one created by the forgetful functor
SPr(T )/hx → SP r(T ), see[Ho, p. 5]). For any objecty ∈ Ob(T ), and any morphism
u : hy −→ hx , let Fu ∈ SP r(T )/hx be a fibrant replacement ofu. Sinceu is already
a cofibrant object inSPr(T )/hx (as we already observed in the proof of Proposition
2.4.2), the objectFu is then actually fibrant and cofibrant.
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Definition 2.5.1. The comma S-categoryT/x is defined to be the full sub-S-category
of L(SP r(T )/hx) consisting of all objectsFu, for all u of the form u : hy → hx ,
y ∈ Ob(T ).

Note that sinceT belongs toU, so does theS-categoryT/x, for any objectx ∈ Ob(T ).

There exists a natural morphism in Ho(S − CatV)

T /x −→ L(SP r(T )/hx) −→ LSPr(T ),

where the morphism on the right is induced by the forgetful functorSPr(T )/hx −→
SP r(T ). One checks immediately that the essential image of this morphism is contained
in the essential image of the Yoneda embeddingLh : T −→ LSPr(T ). Therefore, there
exists a natural factorization in Ho(S − CatV)

T /x

jx ���
��

��
��

�
�� LSPr(T )

T

Lh

�����������

As the inclusion functor Ho(S−CatU) −→ Ho(S−CatV) is fully faithful (see Appendix
A), this gives a well-defined morphism in Ho(S − CatU)

jx : T/x −→ T .

It is important to observe that the functorR(jx)! : Ho(SP r(T /x)) −→ Ho(SP r(T )),
induced byjx is such thatR(jx)!(∗) 
 hx .
Up to a natural equivalence of categories, the homotopy category Ho(T /x) has the

following explicit description. For the sake of simplicity we will assume thatT is a
fibrant S-category (i.e. all the simplicial setsHomT (x, y) of morphisms are fibrant).
The objects of Ho(T /x) are simply pairs(y, u), consisting of an objecty ∈ Ob(T )

and a 0-simplexu ∈ HomT (y, x)0 (i.e. a morphismy → x in the categoryT0).
Let us consider two objects(y, u) and (z, v), and a pair(f, h), consisting of a

0-simplexf ∈ HomT (y, z) and a 1-simplexh ∈ HomT (y, x)
�1

such that

�0(h) = u �1(h) = v◦f.
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We may represent diagramatically this situation as

y
f

��

u

���
��

��
��

��
��

��
��

��
z

v

����
��

��
��

��
��

��
��

h ⇒

x

Two such pairs(f, h) and (g, k) are defined to be equivalent if there exist a 1-simplex

H ∈ HomT (y, z)
�1

and a 2-simplexG ∈ HomT (y, x)
�2

such that

�0(H) = f �1(H) = g �0(G) = h �1(G) = k �2(G) = v◦H.

The set of morphisms in Ho(T /x) from (y, u) to (z, v) is then the set of equivalences
classes of such pairs(f, h). In other words, the set of morphisms from(y, u) to (z, v)

is the set of connected components of the homotopy fiber of−◦v : HomT (y, z) −→
HomT (y, x) at the pointu.
Let (f, h) : (y, u) −→ (z, v) and (g, k) : (z, v) −→ (t, w) be two morphisms in

Ho(T /x). The composition of(f, h) and (g, k) in Ho(T /x) is the class of(g◦f, kḣ),
wherekḣ is the concatenation of the 1-simplicesh andk◦f in HomT (y, x). Pictorially,
one composes the triangles as

y
f

��

u

���
���������������������

z

v

��

g

�� t

		��
��

��
��

��
��

��
��

��
��

��
�

h ⇒ k ⇒

x

As the concatenation of 1-simplices is well-defined, associative and unital up to ho-
motopy, this gives a well-defined, associative and unital composition of morphisms in
Ho(T /x).
Note that there is a natural projection Ho(T /x) −→ Ho(T )/x, which sends an

object (y, u) to the objecty together with the image ofu in �0(HomT (y, x)) =
HomHo(T )(y, x). This functor is not an equivalence but is always full and essentially
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surjective. The composition functor Ho(T /x) −→ Ho(T )/x −→ Ho(T ) is isomorphic
to the functor induced by the natural morphismT/x −→ T .

3. Stacks overS-sites

This section is devoted to the definition of the notions ofS-topologies,S-sites and
stacks over them. We start by definingS-topologieson S-categories, generalizing the
notion of Grothendieck topologies on usual categories and inducing an obvious notion
of S-site. For anS-siteT, we define a notion oflocal equivalencein the model category
of pre-stacksSPr(T ), analogous to the notion of local isomorphism between presheaves
on a given Grothendieck site. The first main result of this section is the existence of a
model structure onSPr(T ), the local model structure, whose equivalences are exactly
the local equivalences. This model structure is called themodel category of stacks.
To motivate this terminology we prove a criterion characterizing fibrant objects in the
model category of stacks as objects satisfying ahyperdescentproperty with respect
to the givenS-topology, which is a homotopy analog of the usual descent or sheaf
condition. We also investigate functoriality properties (i.e. inverse and direct images
functors) of the model categories of stacks, as well as the very useful notion ofstack
of morphisms(i.e. internalHom’s).
The second main result of this section is a correspondence betweenS-topologies on

an S-categoryT and t-complete left Bousfield localizations of the model category of
pre-stacksSPr(T ). Finally, we relate our definition of stacks overS-sites to the notion
of model toposdue to Rezk, and we conclude from our previous results that almost
all model topoi are equivalent to a model category of stacks over anS-site.

3.1. S-topologies and S-sites

We refer to[SGA4-I, Exp. II] or [M-M] for the definition of a Grothendieck topology
and for the associated sheaf theory.

Definition 3.1.1. An S-topologyon anS-categoryT is a Grothendieck topology on the
category Ho(T ). An S-site (T , �) is the datum of anS-categoryT together with an
S-topology � on T.

Remark 3.1.2. 1. It is important to remark that the notion of anS-topology on anS-
categoryT only depends on the isomorphism class ofT ∈ Ho(S−Cat), since equivalent
S-categories have equivalent homotopy categories.
2. From the point of view of higher category theory,S-categories are models for∞-

categories in which alli-arrows areinvertible for all i > 1. Therefore, if one tries to
define the notion of a topology on this kind of higher categories, the stability axiom will
imply that all i-morphisms should be automatically coverings fori > 1. The datum of
the topology should therefore only depends on isomorphism classes of 1-morphisms,
or, in other words, on the homotopy category. This might give a more conceptual
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explanation of Definition3.1.1. See also Remark3.8.7 for more on topologies on
higher categories.

Let T ∈ S − CatU be aU-small S-category andSPr(T ) its model category of pre-
stacks. Given any pre-stackF ∈ SP r(T ), one can consider its associated presheaf of
connected components

T op −→ SetU,

x 
→ �0(F (x)).

The universal property of the homotopy category ofT op implies that there exists a
unique factorization

T op ��

��

SetU

Ho(T )op
�pr
0 (F )



���������

The constructionF 
→ �pr
0 (F ), being obviously functorial inF, induces a well-

defined functorSPr(T ) −→ Set
Ho(T )op

U ; but, since equivalences inSPr(T ) are defined
objectwise, this induces a functor

�pr
0 (−) : Ho(SP r(T )) −→ Set

Ho(T )op

U .

Definition 3.1.3. Let (T , �) be aU-small S-site.
1. For any objectF ∈ SP r(T ), the sheaf associated to the presheaf�pr

0 (F ) is denoted
by ��

0(F ) (or �0(F ) if the topology� is clear from the context). It is a sheaf on
the site(Ho(T ), �), and is called thesheaf of connected components of F.

2. A morphismF −→ G in Ho(SP r(T )) is called a�-covering(or just acovering if
the topology� is clear from the context) if the induced morphism��

0(F ) −→ ��
0(G)

is an epimorphism of sheaves.
3. A morphismF −→ G in SPr(T ) is called a�-covering (or just a covering if

the topology� is unambiguous) if its image by the natural functorSPr(T ) −→
Ho(SP r(T )) is a �-covering as defined in the previous item.

Clearly, for two objectsx and y in T, any morphismx −→ y such that the sieve
generated by its image in Ho(T ) is a covering sieve ofy, induces a coveringhx −→ hy .
More generally, one has the following characterization of coverings ashomotopy

locally surjectivemorphisms. This is the homotopy analog of the notion of epimorphism
of stacks (see for example[La-Mo, Section, 1]), where one requires that any object in
the target is locally isomorphic to the image of an object in the source.
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Proposition 3.1.4.A morphismf : F −→ G in SPr(T ) is a covering if it has the
following homotopy local surjectivityproperty. For any objectx ∈ Ob(T ), and any mor-
phism inHo(SP r(T )), hx −→ G, there exists a covering sieve R of x inHo(T ), such
that for any morphismu → x in R there is a commutative diagram inHo(SP r(T )):

F �� G

hu

��

�� hx.

��

In other words, f is a covering if and only if any object of G over x lifts locally and
up to homotopy to an object of F.

Proof. First of all, let us observe that both the definition of a covering and the
homotopy local surjectivity propertyhold true for the givenf : F → G if and
only if they hold true forRF → RG, whereR(−) is a fibrant replacement func-
tor in SPr(T ). Therefore, we may suppose bothF and G fibrant. Now, by Mac
Lane and Moerdirk[M-M, III.7, Corollary 6], f : F → G is a covering iff the
induced map of presheaves�pr

0 (F ) → �pr
0 (G) is locally surjective. But, by Yoneda

�pr
0 (H)(y) 
 �0(HomSPr(T )(hy,H)), for any H ∈ SP r(T ) and any objecty in T.

Since F and G are fibrant, we then have�pr
0 (F )(y) 
 HomHo(SP r(T ))(hy, F ) and

�pr
0 (G)(y) 
 HomHo(SP r(T ))(hy,G), for any objecty in T. But then, the local sur-

jectivity of �pr
0 (F ) → �pr

0 (G) exactly translates to thehomotopy local surjectivity
property in the proposition and we conclude.�

Remark 3.1.5. If the morphismf of Proposition3.1.4 is an objectwise fibration (i.e.
for any x ∈ T , the morphismF(x) −→ G(x) is a fibration of simplicial sets), then the
homotopy local surjectivity property implies the local surjectivity property. This means
that the diagrams

F �� G

hu

��

�� hx

��

of Proposition3.1.4 can be chosen to be commutative inSPr(T ), and not only in
Ho(SP r(T )).

From this characterization one concludes easily that coverings have the following
stability properties.
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Corollary 3.1.6. 1. A morphism in SPr(T ) which is a composition of coverings is a
covering.
2. Let

F ′
f ′

��

��

G′

��

F
f

�� G

be a homotopy cartesian diagram in SPr(T ). If f is a covering so isf ′.

3. Let F
u

�� G
v

�� H be two morphisms in SPr(T ). If the morphism

v◦u is a covering then so is v.
4. Let

F ′
f ′

��

��

G′

p

��

F
f

�� G

be a homotopy cartesian diagram in SPr(T ). If p and f ′ are coverings then so is f.

Proof. Properties(1) and (3) follow immediately from Proposition3.1.4, and (4)
follows from (3). It remains to prove(2). Let us f and f ′ be as in(2) and let us
consider a diagram

hx

��

F ′

��

f ′
�� G′

��

F

f

�� G



288 B. Toën, G. Vezzosi /Advances in Mathematics 193 (2005) 257–372

As f is a covering, there exists a covering sieveR over x ∈ Ho(T ), such that for any
u → x in R, one has a commutative diagram

hu

��

�� hx

��

F

f

�� G

By the universal property of homotopy fibered products, the morphismshu −→ F and
hu −→ hx −→ G′ are the two projections of a (non unique) morphismhu −→ F ′. This
gives, for allu → x, the required liftings

hu

��

�� hx

��

F ′
f ′

�� G′. �

3.2. Simplicial objects and hypercovers

Let us now considersSP r(T ) := SP r(T )�
op

, the category of simplicial objects in
SPr(T ). Its objects will be denoted as

F∗ : �op −→ SP r(T )

[m] 
→ Fm.

As the categorySPr(T ) has all kind of limits and colimits indexed inU, the category
sSP r(T ) has a natural structure of tensored and co-tensored category overSSetU (see
[G-J, Chapter II, Theorem 2.5]). The external product ofF∗ ∈ sSP r(T ) by A ∈ SSetU,
denoted byA ⊗ F∗, is the simplicial object inSPr(T ) defined by

A ⊗ F∗ : �op −→ SP r(T ),

[n] 
→ ∐
An

Fn.

The exponential (or co-tensor) ofF∗ by A, is denoted byFA
∗ and is determined by the

usual adjunction isomorphism

Hom(A ⊗ F∗,G∗) 
 Hom(F∗,GA
∗ ).
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Notation. We will denote byFA∗ ∈ SP r(T ) the 0th level of the simplicial object

F
A
∗ ∈ sSP r(T ).
Explicitly, the objectFA∗ is the end of the functor

�op × � −→ SP r(T ),

([n], [m]) 
→ ∏
Am

Fn.

One checks immediately that for anyF∗ ∈ sSP r(T ), one has a natural isomorphism
F�n

∗ 
 Fn.
We endow the categorysSP r(T ) with its Reedy model structure (see[Ho, Theorem

5.2.5]). The equivalences insSP r(T ) are the morphismsF∗ −→ G∗ such that, for any
n, the induced morphismFn −→ Gn is an equivalence inSPr(T ). The fibrations are
the morphismsF∗ −→ G∗ such that, for any[n] ∈ �, the induced morphism

F�n

∗ 
 Fn −→ F ��n

∗ ×
G��n

∗ G�n

∗

is a fibration inSPr(T ).
Given any simplicial setA ∈ SSetU, the functor

sSP r(T ) −→ SP r(T ),

F∗ 
→ FA∗

is a right Quillen functor for the Reedy model structure onsSP r(T ) [Ho, Proposition
5.4.1]. Its right derived functor will be denoted by

Ho(sSP r(T )) −→ Ho(SP r(T )),

F∗ 
→ FRA∗ .

For any object F ∈ SP r(T ), one can consider the constant simplicial object
c(F )∗ ∈ sSP r(T ) defined by c(F )n := F for all n. One the other hand, one can
consider

(RF)�
∗ : �op −→ SP r(T ),

[n] 
→ (RF)�
n

,

whereRF is a fibrant model forF in SPr(T ), and (RF)�
n

is the exponential object
defined using the simplicial structure onSPr(T ). The object(RF)�

∗
is a fibrant replace-

ment of c∗(F ) in sSP r(T ). Furthermore, for any objectG ∈ SP r(T ) andA ∈ SSetU,
there exists a natural isomorphism inSPr(T )

(G�∗
)A 
 GA.
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This induces a natural isomorphism in Ho(SP r(T ))

(c(F )∗)RA 
 ((RF)�
∗
)A 
 (RF)A.

However, we remark thatc(F )A∗ is not isomorphic toFA as an object inSPr(T ).
Notation. For anyF ∈ SP r(T ) andA ∈ SSetU, we will simply denote byFRA ∈

Ho(SP r(T )) the objectc(F )RA∗ 
 (RF)A.
We let ��n be the full subcategory of� consisting of objects[p] with p�n, and

denote bysnSP r(T ) the category of functors�op
�n −→ SP r(T ). The natural inclusion

in : ��n → � induces a restriction functor

i∗n : sSP r(T ) −→ snSP r(T )

which has a right adjoint(in)∗ : snSP r(T ) −→ sSP r(T ), as well as a left adjoint
(in)! : snSP r(T ) −→ sSP r(T ). The two adjunction morphisms induce isomorphisms
i∗n(in)∗ 
 Id and i∗n(in)! 
 Id: therefore both functors(in)∗ and (in)! are fully faithful.

Definition 3.2.1. Let F∗ ∈ sSP r(T ) and n�0.
1. One defines thenth skeleton and n-coskeletonof F∗ as

Skn(F∗) := (in)!i∗n(F∗) Coskn(F∗) := (in)∗i∗n(F∗).

2. The simplicial objectF∗ is calledn-boundedif the adjunction morphismF∗ −→
Coskn(F∗) is an isomorphism.

It is important to note thatF∗, Coskn(F∗) and Skn(F∗) all coincide in degrees�n

i∗n(F∗) 
 i∗n(CosknF∗) 
 i∗n(SknF∗).

The adjunctions(i∗n, (in)∗) and ((in)!, i∗n) induce a natural adjunction isomorphism

Hom(Skn(F∗),G∗) 
 Hom(F∗, Coskn(G∗)),

for any F∗ andG∗ in sSP r(T ) and anyn�0. As a special case, for anyA ∈ SSetU,
one has an isomorphism inSPr(T )

F SknA∗ 
 (Coskn F∗)A.

As Skn�
n+1 = ��n+1, one gets natural isomorphisms

F ��n+1
∗ 
 Coskn(F∗)n+1. (1)
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Lemma 3.2.1.The functorCoskn : sSP r(T ) −→ sSP r(T ) is a right Quillen functor
for the Reedy model structure onsSP r(T ).

Proof. By adjunction, for any integerp with p�n, one has

(Coskn(F∗))��p 
 F ��p

∗ (Coskn(F∗))�
p 
 F�p

∗ ,

while, for p > n + 1, one has

(Coskn(F∗))��p 
 (Coskn(F∗))�
p

.

Finally, for p = n + 1 one has

(Coskn(F∗))��n+1 
 F ��n+1
∗ (Coskn(F∗))�

n+1 
 F ��n+1
∗ .

Using these formulas and the definition of Reedy fibrations insSP r(T ) one checks
immediately that the functorCoskn preserves fibrations and trivial fibrations. As it is
a right adjoint (its left adjoint beingSkn), this implies thatCoskn is a right Quillen
functor. �
The previous lemma allows us to consider the right derived version of the coskeleton

functor

RCoskn : Ho(sSP r(T )) −→ Ho(sSP r(T )).

It comes with a natural morphism IdHo(sSP r(T )) −→ RCoskn(F ), induced by the
adjunction morphism IdsSP r(T ) −→ (in)∗i∗n . There exist obviousrelative notions of the
functorsSkn andCoskn whose formulations are left to the reader. Let us only mention
that the relative derived coskeleton of a morphismF∗ −→ G∗ in sSP r(T ) may be
defined by the following homotopy cartesian square inSPr(T ):

RCoskn(F∗/G∗) ��

��

G∗

��

RCoskn(F∗) �� RCoskn(G∗).

The functorRCosk0(−/c(G)∗), relative to a constant diagramc(G)∗, whereG ∈
SP r(T ), has the following interpretation in terms ofderived nerves. For any morphism
F∗ −→ c∗(G) in sSP r(T ), with c∗(G) the constant simplicial diagram with valueG,
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we consider the induced morphismf : F0 −→ G in Ho(SP r(T )). Let us represent this
morphism by a fibration inSPr(T ), and let us consider its usual nerveN(f ):

N(f ) : �op −→ SP r(T ),

[n] 
→ F0 × GF0 × G . . . × GF0︸ ︷︷ ︸
n times

.

The nerveN(f ) is naturally augmented over G, and therefore is an object of
sSP r(T )/c∗(G). Then, there is a natural isomorphism in Ho(sSP r(T )/c∗(G))

RCosk0(F∗/c∗(G)) 
 N(f ).

Definition 3.2.3. Let (T , �) be aU-small S-site.
1. A morphism insSP r(T )

F∗ −→ G∗

is called a�-hypercover(or just ahypercoverif the topology � is unambiguous)
if for any n, the induced morphism

FR�n

∗ 
 Fn −→ FR��n

∗ × h

GR��n
∗

GR�n

∗

is a covering in Ho(SP r(T )) (see Definition3.1.3(2)).
2. A morphism in Ho(sSP r(T ))

F∗ −→ G∗

is called a�-hypercover(or just ahypercoverif the topology � is unambiguous)
if one of its representatives insSP r(T ) is a �-hypercover.

Using isomorphisms (1), Definition 3.2.3may also be stated as follows. A morphism
f : F∗ −→ G∗ is a �-hypercoverif and only if for any n�0 the induced morphism

Fn −→ RCoskn−1(F∗/G∗)n

is a covering in Ho(SP r(T )).
Note also that in Definition3.2.3(2), if one of the representatives off is a hypercover,

then so is any representative. Being a hypercover is therefore a property of morphisms
in Ho(sSP r(T )).
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3.3. Local equivalences

Throughout this subsection, we fix aU-small S-site (T , �).
Let x be an object inT. The topology on Ho(T ) induces a natural topology on the

comma category Ho(T )/x. We define a Grothendieck topology on Ho(T /x) by pulling
back the topology of Ho(T )/x through the natural projection Ho(T /x) −→ Ho(T )/x.
By this, we mean that a sieveSover an objecty ∈ Ho(T /x), is defined to be a covering
sieve if and only if (the sieve generated by) its image in Ho(T ) is a �-covering sieve
of the objecty ∈ Ho(T )/x. The reader will check easily that this indeed defines a
topology on Ho(T /x), and therefore anS-topology onT/x. This topology will still be
denoted by�.

Definition 3.3.1. The S-site (T /x, �) will be called thecomma S-siteof (T , �) over x.

Let F ∈ SP r(T ), x ∈ Ob(T ) and s ∈ �0(F (x)) be represented by a morphisms :
hx −→ F in Ho(SP r(T )) (see2.4.2). By pulling-back this morphism along the natural
morphismjx : T/x −→ T , one gets a morphism in Ho(SP r(T /x))

s : j∗
x (hx) −→ j∗

x (F ).

By definition of the comma categoryT/x, it is immediate thatj∗
x (hx) has a natural

global point∗ −→ j∗
x (hx) in Ho(SP r(T /x)). Note that the morphism∗ −→ j∗

x (hx) is
also induced by adjunction from the identity ofhx 
 R(jx)!(∗). Therefore we obtain
a global point ofj∗

x (F )

s : ∗ −→ j∗
x (hx) −→ j∗

x (F ).

Definition 3.3.2. Let F ∈ SP r(T ) and x ∈ Ob(T ).
1. For any integern > 0, the sheaf�n(F, s) is defined as

�n(F, s) := �0(j∗
x (F )R�n ×

j∗
x (F )R��n ∗).

It is a sheaf on the site(Ho(T /x), �) called thenth homotopy sheafof F pointed
at s.

2. A morphismf : F −→ G in SPr(T ) is called a�∗-equivalenceor, equivalently, a
local equivalence, if the following two conditions are satisfied:
(a) The induced morphism�0(F ) −→ �0(G) is an isomorphism of sheaves on

Ho(T ).
(b) For any objectx ∈ Ob(T ), any sections ∈ �0(F (x)) and any integern > 0,

the induced morphism�n(F, s) −→ �n(G, f (s)) is an isomorphism of sheaves
on Ho(T /x).

3. A morphism in Ho(SP r(T )) is a �∗-equivalence if one of its representatives in
SPr(T ) is a �∗-equivalence.
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Obviously, an equivalence in the model categorySPr(T ) is always a�∗-equivalence
for any topology � on T. Indeed, an equivalence inSPr(T ) induces isomorphisms
between the homotopy presheaves which are the homotopy sheaves for the trivial
topology.
Note also that in Definition3.3.2(3), if a representative off is a �∗-equivalence then

so is any of its representatives. Therefore, being a�∗-equivalence is actually a property
of morphisms in Ho(SP r(T )).
The following characterization of�∗-equivalences is interesting as it does not involve

any base point.

Lemma 3.3.3.A morphismf : F −→ G in SPr(T ) is a �∗-equivalence if and only if
for any n�0 the induced morphism

FR�n −→ FR��n × h

GR��nG
R�n

is a covering.
In other words, f : F −→ G is a �∗-equivalence if and only if it is a�-hypercover

when considered as a morphism of constant simplicial objects in SPr(T ).

Proof. Without loss of generality, we can assume thatf is a fibration between fibrant
objects in the model categorySPr(T ). This means that for anyx ∈ Ob(T ), the induced
morphismf : F(x) −→ G(x) is a fibration between fibrant simplicial sets. In particular,
the morphism

FR�n −→ FR��n × h

GR��nG
R�n

in Ho(SP r(T )) is represented by the morphism inSPr(T )

F�n −→ F ��n ×
G��nG�n

.

This morphism is furthermore an objectwise fibration, and therefore the local lifting
property of �-coverings (see Proposition3.1.4) holds not only in Ho(SP r(T )) but in
SPr(T ) (see Remark3.1.5). Hence, f is a hypercover if and only if it satisfies the
following local lifting property.
For anyx ∈ Ho(T ), and any morphism inSPr(T )

hx −→ F ��n ×
G��nG�n

,
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there exists a covering sieveR of x and, for anyu → x in R, a commutative diagram
in SPr(T )

F�n �� F ��n ×
G��nG�n

hu

��

�� hx.

��

By adjunction, this is equivalent to the following condition. For any objectx ∈ Ob(T )

and any commutative diagram inSSetU

F(x) �� G(x)

��n

��

�� �n

��

there exists a covering sieveR of x in Ho(T ) such that for any morphismu → x in
T, whose image belongs toR, there is a commutative diagram inSSetU

F(u) �� G(u)

F (x) ��

��

G(x)

��

��n

��

�� �n

�������������������

��

By definition of the homotopy sheaves, this last condition is easily seen to be equivalent
to being a�∗-equivalence (the details are left to the reader, who might also wish to
consult [Ja1, Theorem 1.12]). �

Corollary 3.3.4. Let f : F −→ G be a morphism in SPr(T ) and G′ −→ G be a
covering. Then, if the induced morphism

f ′ : F × h
GG′ −→ G′

is a �∗-equivalence, then so is f.
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Proof. Apply Lemma3.3.3 and Proposition3.1.6(2). �

Corollary 3.3.5. Let f : F −→ G be a �∗-equivalence in SPr(T ) and G′ −→ G be
an objectwise fibration. Then, the induced morphism

f ′ : F × GG′ −→ G′

is a �∗-equivalence.

Proof. This follows fromCorollary3.3.4sinceSPr(T ) is a propermodel category.�
Let x be an object inT and f : F → G be a morphism in Ho(SP r(T )). For any

morphism s : hx −→ G in Ho(SP r(T )), let us defineFs ∈ Ho(SP r(T /x)) by the
following homotopy cartesian square inSPr(T /x);

j∗
x (F )

j∗
x (f )

�� j∗
x (G)

Fs

��

�� •

��

where the morphism∗ −→ j∗
x (G) is adjoint to the morphisms : R(jx)!(∗) 
 hx −→ G.

Corollary 3.3.6. Let f : F −→ G be a morphism in SPr(T ). With the same notations
as above, the morphism f is a�∗-equivalence if and only for anys : hx −→ G in
Ho(SP r(T )), the induced morphismFs −→ ∗ is a �∗-equivalence inHo(SP r(T /x)).

Proof. By Lemma3.3.3 it is enough to show that the morphismf is a covering if and
only if all the Fs −→ ∗ are coverings in Ho(SP r(T /x)). Theonly if part follows from
Proposition3.1.6(2), so it is enough to show that if all theFs −→ ∗ are coverings then
f is a covering.
Given s : hx −→ G in Ho(SP r(T )), let us prove that it lifts locally toF. By

adjunction,s corresponds to a morphism∗ −→ j∗
x (G). As the corresponding morphism

Fs −→ ∗ is a covering, there exists a covering sieveR of ∗ in Ho(T /x) and, for each
u → ∗ in R, a commutative diagram in Ho(SP r(T /x))

j∗
x (F ) �� j∗

x (G)

hu
��

��

∗

��
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By adjunction, this commutative diagram induces a commutative diagram in Ho(SP r(T ))

F �� G

R(jx)!(hu)
��

��

hx

��

But R(jx)!(hu) 
 hjx(u)
, and by definition of the induced topology on Ho(T /x), the

morphisms in(jx)(R) form a covering sieve ofx. Therefore, the commutative diagram
above shows that the morphisms lifts locally to F. �
We end this paragraph by describing the behaviour of�∗-equivalences under homo-

topy push-outs.

Proposition 3.3.7. Let f : F −→ G be a �∗-equivalence in SPr(T ) and F −→ F ′ be
an objectwise cofibration(i.e. a monomorphism). Then, the induced morphism

f ′ : F ′ −→ F ′ ∐
F

G

is a �∗-equivalence.

Proof. It is essentially the same proof as that of[Ja1, Proposition 2.2]. �

3.4. The local model structure

Throughout this subsection, we fix aU-small S-site (T , �).
The main purpose of this paragraph is to prove the following theorem which is a

generalization of the existence of the local projective model structure on the category
of simplicial presheaves on a Grothendieck site (see for example[Bl,H-S, Section 5]).
The proof we present here is based on some arguments found in[S1,H-S,DHI], (as
well as on some hints from V. Hinich) and uses the Bousfield localization techniques
of [Hi] , but does not assume the results of[Bl ,Ja1].

Theorem 3.4.1.Let (T , �) be an S-site. There exists a closed model structure on
SPr(T ), called the local projective model structure, for which the equivalences are
the �∗-equivalences and the cofibrations are the cofibrations for the projective model
structure on SPr(T ). Furthermore, the local projective model structure isU-cofibrantly
generated and proper. The category SPr(T ) together with its local projective model
structure will be denoted by SPr�(T ).

Proof. We are going to apply the existence theorem for left Bousfield localizations
[Hi, Theorem 4.1.1]to the objectwise model structureSPr(T ) along a certainU-small
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setH of morphisms. The main point will be to check that equivalences in this localized
model structure are exactly�∗-equivalences.

3.4.1. Definition of the set H
As theS-categoryT is U-small, the set

E(T ) :=
∐
n∈N

∐
(x,y)∈Ob(T )2

HomT (x, y)n,

of all simplices in all simplicial set of morphisms ofT is alsoU-small. We denote by
� a U-small cardinal bigger than the cardinal ofE(T ) and thanℵ0. Finally, we let�
be aU-small cardinal with� > 2�.
The size of a simplicial presheafF ∈ SP r(T ) is by definition the cardinality of the

set

∐
n∈N

∐
x∈Ob(T )

Fn(x).

We will denote it by Card(F ).
For an objectx ∈ Ob(T ) we consider a fibrant replacementhx ↪→ R(hx) as well

as the simplicial object it definesR(hx)
�∗ ∈ sSP r(T ). Note that ashx is a cofibrant

object, so isR(hx). We define a subsetH�(x) of objects insSP r(T )/R(hx)
�∗

in the
following way. We consider the following two conditions.
1. The morphismF∗ −→ R(hx)

�∗ ∈ Ho(sSP r(T )) is a hypercover.
2. For alln�0, one has Card(Fn) < �. Furthermore, for eachn�0, Fn is isomorphic

in Ho(SP r(T )) to a coproduct of representable objects

Fn 

∐
u∈In

hu.

We defineH�(x) to be a set of representatives insSP r(T )/R(hx)
�∗
, for the isomor-

phism classes of objectsF∗ ∈ sSP r(T )/R(hx)
�∗

which satisfy conditions(1) and (2)
above. Note that condition(2) insures thatH�(x) is aU-small set for anyx ∈ Ob(T ).
Now, for any x ∈ Ob(T ), any F∗ ∈ H�(x) we consider its geometric realization

|F∗| in SPr(T ), together with its natural adjunction morphism|F∗| −→ R(hx) (see
[Hi, 19.5.1]). Note that |F∗| is naturally equivalent to the homotopy colimit of the
diagram [n] 
→ Fn. Indeed, for anyy ∈ Ob(T ), |F∗|(y) is naturally isomorphic to
diagonal of the bi-simplicial setF∗(y) (see[Hi, 16.10.6]). We define the setH to be
the union of all theH�(x)’s when x varies inOb(T ). In other words,H consists of
all morphisms

|F∗| −→ R(hx),
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for all x ∈ Ob(T ) and all F∗ ∈ H�(x). Clearly, the setH is U-small, so one can
apply TheoremA.2.2 or A.2.4 to the objectwise model categorySPr(T ) and the set of
morphismsH. We let LHSP r(T ) be the left Bousfield localization ofSPr(T ) along the
set of morphismsH. We are going to show that equivalences in LHSP r(T ) are exactly
�∗-equivalences. This will clearly implies the existence of the local model structure of
3.4.1.

3.4.2. The morphisms in H are�∗-equivalences
The main point in the proof is the following lemma.

Lemma 3.4.2. For any objectx ∈ Ob(T ) and any hypercoverF∗ −→ R(hx)
�∗
, the

natural morphism inHo(SP r(T ))

hocolim
[n]∈�n

(Fn) −→ R(hx) 
 hx

is a �∗-equivalence.

Proof. By applying the base change functorj∗
x : Ho(SP r(T )) −→ Ho(SP r(T /x))

one gets a natural morphismj∗
x (hocolim[n]∈�n(Fn)) −→ j∗

x (hx). By definition of the
homotopy sheaves one sees that it is enough to show that the homotopy fiber of this
morphism at the natural point∗ −→ j∗

x hx is �∗-contractible (see Corollary3.3.6). In
other words, one can always assume thatx is a final object inT, or in other words that
hx 
 ∗ (this reduction is not necessary but simplifies notations). We can also assume
that F∗ is fibrant as an object insSP r(T ), so Coskn(F∗) 
 RCoskn(F∗). We will
simply denote by|G∗| the homotopy colimit of a simplicial diagramG∗ in SPr(T ).
Step1: Let us first assume thatF∗ is a 0-bounded hypercover. Recall that this means

that for anyn > 0 one hasFn 
 FR��n

∗ , or in other words thatF∗ is the nerve of the
coveringF0 −→ ∗. Therefore, we can suppose thatF0 is fibrant in SPr(T ), and that
Fn = Fn

0 (the face and degeneracy morphisms being induced by the various projections
and diagonals). AsF0 −→ ∗ is a covering, one can find a covering sieveR of ∗ such
that for any objectu → ∗ in S, there exists a commutative diagram

F0 �� *

hu

�� 

								

Furthermore, as�∗-equivalences are local for the topology� (see Corollary3.3.4), it
is enough to prove that for any suchu, the nerve of the morphism

F0 × hu −→ hu
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is a �∗-equivalence. We can therefore assume that the morphismF0 −→ ∗ admits a
section. But then, for any objectx ∈ Ob(T ), |F∗|(x) ∈ Ho(SSetU) is the geometric
realization of the nerve of a morphism of simplicial sets which has a section, and
therefore is contractible. This proves Lemma3.4.2 for 0-bounded hypercovers.
Step 2: Let us now assume thatF∗ is (n + 1)-bounded for some integern > 0 (see

Definition 3.2.1), and let us consider the morphism

F∗ −→ Coskn F∗.

For any integerp, and any simplicial setK ∈ SSetU, there is a co-cartesian square of
simplicial sets

SkpK �� Skp+1K

∐
K��p+1

��p+1
��

��

∐
Kp+1

�p+1

��

This induces a cartesian square inSPr(T )

F
Skp+1K∗ ��

��

F
SkpK∗

��∏
Kp+1 Fp+1 �� ∏

K��p+1 F ��p+1
∗

As F∗ is fibrant for the Reedy structure and a hypercover, each bottom horizontal
morphism is a fibration which is again a covering. This shows by induction and by

Proposition3.1.6(1), that F
Skp+iK∗ −→ F

SkpK∗ is a covering and a fibration for any
i > 0. But, since we have

(Coskn F∗)K 
 FSknK∗ ,

we easily conclude that for anyK ∈ SSetU such thatK = SkpK for somep, the
natural morphism

FK∗ −→ (Coskn F∗)K
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is again a fibration and a covering. In particular, takingK = �p, one finds that the
natural morphism

Fp −→ (CosknF∗)p

is a fibration and a covering.
Let U∗,∗ be the bi-simplicial object such thatUp,∗ is the nerve of the morphism

Fp −→ (Coskn F∗)p. It fits into a commutative diagram of bi-simplicial objects

F∗ ��

��

CosknF∗

U∗,∗,














whereF∗ and Coskn F∗ are considered as constant in the second spot. Furthermore,
for any p, Up,∗ −→ (Coskn F∗)p is a 0-truncated hypercover. Therefore, byStep 1,
we deduce that

|diag(U∗,∗)| 
 hocolim
p

hocolim
q

(Up,q) −→ |Coskn F∗|

is a �∗-equivalence.
Now, let U∗ := diag(U∗,∗) be the diagonal ofU∗,∗. It fits into a commutative

diagram

F∗
�

��

f

��

CosknF∗

U∗.
�

�����������

We are going to construct a morphismU∗ −→ F∗ that will be a retract off compatible
with the two projections� and� (i.e. construct a retraction of� on �).
The above diagram consists clearly of isomorphisms in degreesp�n, showing that

� is a retract of� is degreesp�n. As F∗ is (n+1)-bounded, to extend this retraction
to the whole�, it is enough to define a morphismUn+1 −→ Fn+1 which is equalized
by all the face morphismsFn+1 −→ Fn. But, by definition

Un+1 = F�n+1
∗ ×

F ��n+1
∗

F�n+1
∗ × . . . ×

F ��n+1
∗

F�n+1
∗︸ ︷︷ ︸

(n+1) times

,
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and so any of the natural projectionsUn+1 −→ Fn+1 to one of these factors will
produce the required extension.
In conclusion, the morphismF∗ −→ Coskn F∗ is a retract ofU∗ −→ Coskn F∗,

which itself induces a�∗-equivalence on the homotopy colimits. As�∗-equivalences
are stable by retracts, this shows that the induced morphism|F∗| −→ |Coskn F∗| is also
a �∗-equivalence. Therefore, by induction onn and Step 1, this implies that|F∗| −→ ∗
is a �∗-equivalence.
Step3: Finally, for a general hypercoverF∗, the ith homotopy presheaf of|F∗| only

depends on thenth coskeleton ofF∗ for i < n (as the(n − 1)-skeleton of|F∗| and
|CosknF∗| coincide). In particular, theith homotopy sheaf of|F∗| only depends on
RCoskn(F∗) for i < n. Therefore one can always suppose thatF∗ = CosknF∗ for
some integern and apply Step 2.
Lemma3.4.2 is proved. �
Now, letf : F −→ G be anyH-local equivalence (i.e. an equivalence in LHSP r(T )),

and let us prove that it is a�∗-equivalence. By definition ofH-local equivalences, the
induced morphism on theH-local models

LHf : LHF −→ LHG

is an objectwise equivalence, and in particular a�∗-equivalence. By considering the
commutative diagram

F

f

��

��

G

��

LHF
LHf

�� LHG,

one sees that it is enough to show that the localization morphismsF −→ LHF and
G −→ LHG are �∗-equivalences. But the functor LH can be defined via the small
object argument applied to the set of augmented horns onH, �(H) (see[Hi, Section
4.3]). In the present situation, the morphisms in�(H) are either trivial cofibrations in
SPr(T ) or projective cofibrations which are isomorphic in Ho(SP r(T )) to

�n ⊗ |F∗|
h∐

��n⊗|F∗|
��n ⊗ R(hx) −→ �n ⊗ R(hx).

By Proposition 3.3.7 and Lemma3.4.2, these morphisms are�∗-equivalences, and
therefore all morphisms in�(H) are projective cofibrations and�∗-equivalences. As
�∗-equivalences are also stable by filtered colimits, another application of Proposition
3.3.7shows that relative cell complexes on�(H) are again�∗-equivalences. This shows
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that the localization morphismsF −→ LHF are always�∗-equivalences, and finish the
proof thatH-local equivalences are�∗-equivalences.

3.4.3. �∗-Equivalences are H-local equivalences
To conclude the proof of Theorem3.4.1, we are left to show that�∗-equivalences

areH-local equivalences.
Recall that we denoted by� a U-small cardinal bigger thanℵ0 and than the cardi-

nality of the setE(T ) of all simplices in all simplicial set of morphisms inT. Recall
also that� is a U-small cardinal with� > 2�.

Lemma 3.4.3. Let f : F −→ G be a morphism in SPr(T ) which is a�∗-equivalence
and an objectwise fibration between fibrant objects. Then, for any objectx ∈ Ob(T )

and any morphismR(hx) −→ G, there exists anF∗ ∈ H�(x) and a commutative
diagram in SPr(T )

F �� G

|F∗| ��

��

R(hx).

��

Proof. By adjunction, it is equivalent to find a commutative diagram insSP r(T )

F�∗ ��
G�∗

F∗ ��

��

R(hx)
�∗

��

with F∗ ∈ H�(x). We will defineF∗ inductively. Let us suppose we have constructed

F(n)∗ ∈ sSP r(T )/R(hx)
�∗
, with a commutative diagram

F�∗ ��
G�∗

F(n)∗
pn

��

��

R(hx)
�∗

,

��

such thatSknF (n)∗ = F(n)∗, andpn is a Reedy fibration and a hypercover in degrees
i�n. By the latter condition we mean that

F(n)i −→ F(n)��i ×
R(hx)

��i R(hx)
�i



304 B. Toën, G. Vezzosi /Advances in Mathematics 193 (2005) 257–372

is an objectwise fibration and a covering for anyi�n (we do not requirepn to be
a Reedy fibration). We also assume that Card(F (n)m) < � for any m. We need the
following (technical) factorization result with control on the cardinality.

Lemma 3.4.4. Let f : F −→ G be a morphism in SPr(T ) such thatCard(F ) and
Card(G) are both strictly smaller than�. Then, there exists a factorization in SPr(T )

F
i

�� RF

p

�� G ,

with i a trivial cofibration, p a fibration, and Card(RF) < �.

Proof. We use the standard small object argument in order to produce such a factor-
ization (see[Ho, Section 2.1.2]). The trivial cofibrations inSPr(T ) are generated by
the set of morphisms

�n,k ⊗ hx −→ �n ⊗ hx,

for all x ∈ Ob(T ) and alln ∈ N, 0�k�n. This set is clearly of cardinality smaller than
ℵ0.�, and therefore is strictly smaller than�. Furthermore, for any of these generating
trivial cofibrations, the set of all commutative diagrams

F �� G

�n,k ⊗ hx
��

��

�n ⊗ hx

��

is in bijective correspondence with the set of all commutative diagrams

F(x) �� G(x)

�n,k ��

��

�n

��

By the assumptions made onF andG, this set is therefore of cardinality strictly smaller
than�. Furthermore, by the choice of�, it is clear that Card(A ⊗ hx)�� < � for any
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finite simplicial setA. Therefore, the push-out

F �� F1

∐
I

�n,k ⊗ hx ��

��

∐
I

�n ⊗ hx

��

where I consists of all objectsx ∈ Ob(T ) and commutative diagrams

F �� G

�n,k ⊗ hx
��

��

�n ⊗ hx

��

is such that

Card(F1)�Card(F ) + Card

(∐
I

�n ⊗ hx

)
< � + Card(I ).�.

But Card(I ) < �.�, and therefore one has Card(F1) < �. As the factorization

F �� RF �� G is obtained after a numerable number of such push-outs

constructions (see[Ho, Theorem 2.1.14])

F �� F1 �� . . . �� Fn
�� . . . �� RF = colimiFi,

we conclude that Card(RF) < �. The proof of Lemma3.4.4 is achieved. �
Let us come back to the proof of Lemma3.4.3. We consider the following diagram:

F�n+1 �� F ��n+1 ×
G��n+1G�n+1

F(n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1

��
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By Lemma3.4.4, we can suppose that Card(R(hx)) < �. Therefore, by induction on
n

Card(F (n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1
) < �.

This implies that there exists aU-small setJ of objects inT, with Card(J ) < �, and
a covering

∐
z∈J

hz −→ F(n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1
.

Now, by considering the induced diagram

F�n+1 �� F ��n+1 ×
G��n+1G�n+1

∐
z∈J

hz

��

and using the fact that the top horizontal morphism is a covering, one sees that there
exists, for allz ∈ J , a covering sieveSz of z ∈ Ho(T ), and a commutative diagram

F�n+1 �� F ��n+1 ×
G��n+1G�n+1

∐
z∈J,(u→z)∈Sz

hu

��

��
∐
z∈J

hz

��

Clearly, one has

Card


 ∐

z∈J,(u→z)∈Sz
hu


 �Card(J ).2�.� < �.
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We now consider the commutative diagram

F�n+1 �� F ��n+1 ×
G��n+1G�n+1

∐
z∈J,(u→z)∈Sz

hu ��

��

F(n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1

��

Lemma3.4.4 implies the existence of an objectH(n+1) ∈ SP r(T ), with Card(H(n+
1)) < �, and a factorization

∐
z∈J,(u→z)∈Sz

hu �� H(n + 1) �� F(n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1

into an objectwise trivial cofibration followed by a fibration inSPr(T ). Since the
morphism

F�n+1 −→ F ��n+1 ×
G��n+1G�n+1

is an objectwise fibration, there exists a commutative diagram inSPr(T )

F�n+1 �� F ��n+1 ×
G��n+1G�n+1

∐
z∈J,(u→z)∈Sz

hu ��

��

H(n + 1)

��������������

�� F(n)��n+1
∗ ×

R(hx)
��n+1R(hx)

�n+1
.

��

We defineF(n + 1)p := F(n)p for any p < n + 1, and F(n + 1)n+1 to be the
coproduct ofH(n+1) together withLn+1F , the (n+1)th latching space ofF(n). The
face morphismsF(n + 1)n+1 −→ F(n)n are defined as the identity onLn+1F(n) and
via the (n + 1) natural projections (corresponding to the face inclusions�n ⊂ ��n+1)

F(n)��n+1 −→ F(n)�
n = F(n)n
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on the factorH(n + 1). Then, by adjunction, one has a natural commutative diagram
in sn+1SP r(T )

F�∗ ��
G�∗

F(n + 1)∗
pn+1

��

��

R(hx)
�∗

,

��

which extends via the functor(in+1)! to the required diagram insSP r(T ). It is clear
by construction, thatpn+1 is a Reedy fibration and a hypercover in degreesi�n + 1
and that itsnth skeleton ispn. Therefore, by definingF∗ to be the limit of theF(n)’s,
the natural morphismF∗ −→ R(hx)

�∗
is a hypercover. It is also clear by construction

that F∗ satisfies condition(2) defining the setH�(x). �
We are now ready to finish the proof that�∗-equivalences areH-local equivalences.

Let f : F −→ G be a�∗-equivalence; we can clearly assumef to be an objectwise fi-
bration between fibrant objects. Furthermore, asH-local equivalences are already known
to be�∗-equivalences, we can also suppose thatf is aH-local fibration betweenH-local
objects. We are going to prove thatf is in fact an objectwise equivalence.
Let

F

f

�� G

��n ⊗ hx
��

��

�n ⊗ hx

��

be a commutative diagram inSPr(T ). We need to show that there exist a lifting
�n ⊗ hx −→ F . By adjunction, this is equivalent to showing that the natural morphism

hx −→ F ��n ×
G��nG�n

lifts to a morphismhx −→ F�n

.
As F andG are objectwise fibrant, the previous morphism factors through

hx −→ R(hx) −→ F ��n ×
G��nG�n

An application of Lemma3.4.3 to the morphism

F�n −→ F ��n ×
G��nG�n
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which satisfies the required hypothesis, shows that there exists anF∗ ∈ H�(x) and a
commutative diagram

F�n �� F ��n ×
G��nG�n

|F∗| ��

��

R(hx)

��

By adjunction, this commutative diagram yields a commutative diagram

F

f

�� G

�n ⊗ |F∗| ∐
��n⊗|F∗|

��n ⊗ R(hx) ��

��

�n ⊗ R(hx).

��

The horizontal bottom morphism is anH-local equivalence by definition, and therefore
a lifting �n ⊗ R(hx) −→ F exists in the homotopy category Ho(LHSP r(T )). But, as
f is aH-local fibration,F andG areH-local objects andR(hx) is cofibrant, this lifting
can be represented inSPr(T ) by a commutative diagram

F

f

�� G

�n ⊗ R(hx)

������������

��

Composing withhx −→ R(hx), we obtain the required lifting. This implies that�∗-
equivalences areH-local equivalences, and completes the proof of the existence of the
local model structure.
By construction,SPr�(T ) is the left Bousfield localization ofSPr(T ) along the set of

morphismsH: this implies that it is aU-cellular andU-combinatorial model category.
In particular, it isU-cofibrantly generated. Finally, properness ofSPr�(T ) follows from
Corollary 3.3.5 and Proposition3.3.7.
This concludes the proof of Theorem3.4.1. �

Let us keep the notations introduced in the proof of Theorem3.4.1. We choose a
U-small cardinal� as in the proof and consider, for any objectx ∈ Ob(T ), the subset
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of hypercoversH�(x).

Corollary 3.4.5. The model category SPr�(T ) is the left Bousfield localization of
SPr(T ) with respect to the set of morphisms

{|F∗| −→ hx | x ∈ Ob(T ), F∗ ∈ H�(x)}.

Proof. This is exactly the way we proved Theorem3.4.1. �

Remark 3.4.6. It is worthwhile emphasizing that the proof of Theorem3.4.1 shows
actually a bit more than what’s in its statement. In fact, the argument proves both
Theorem3.4.1and Corollary3.4.5, in that it givestwo descriptionsof the same model
categorySPr�(T ): one as the left Bousfield localization ofSPr(T ) with respect to
local equivalencesand the other as the left Bousfield localization of the sameSPr(T )

but this time with respect tohypercovers(more precisely, with respect to the set of
morphisms defined in the statement of Corollary3.4.5).

In the special case where(T , �) is a usual Grothendieck site (i.e. whenT is a
category), the following corollary was announced in[Du1] and proved in[DHI] .

Corollary 3.4.7. An objectF ∈ SP r�(T ) is fibrant if and only if it is objectwise fibrant
and for any objectx ∈ Ob(T ) and anyH∗ ∈ H�(x), the natural morphism

F(x) 
 RHom(hx, F ) −→ RHom(|H∗|, F )

is an isomorphism inHo(SSet).

Proof. This follows from Theorem3.4.1 and from the explicit description of fibrant
objects in a left Bousfield localization (see[Hi, Theorem 4.1.1]). �
The previous corollary is more often described in the following way. For any

H∗ ∈ H�(x) and anyn�0, Hn is equivalent to a coproduct of representables

Hn 

∐
i∈In

hui

Therefore, for anyH∗ ∈ H�(x) and any fibrant objectF in SPr(T ), the simplicial
set RHom(|H∗|, F ) is naturally equivalent to the homotopy limit of the cosimplicial
diagram inSSet

[n] 
→
∏
i∈In

F (ui)

Then, Corollary3.4.7 states that an objectF ∈ SP r(T ) is fibrant if and only if, for
any x ∈ Ob(T ), F(x) is fibrant, and the natural morphism
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F(x) −→ holim
[n]∈�


∏

i∈In
F (ui)




is an equivalence of simplicial sets, for anyH∗ ∈ H�(x).

Definition 3.4.8. 1. A hypercoverH∗ −→ hx is said to besemi-representableif for
any n�0, Hn is isomorphic in Ho(SP r(T )) to a coproduct of representable objects

Hn 

∐
u∈In

hu.

2. An objectF ∈ SP r(T ) is said tohave hyperdescentif, for any objectx ∈ Ob(T )

and any semi-representable hypercoverH∗ −→ hx , the induced morphism

F(x) 
 RHom(hx, F ) −→ RHom(|H∗|, F )

is an isomorphism in Ho(SSetU).

An immediate consequence of the proof of Theorem3.4.1 is that an objectF ∈
SP r(T ) has hyperdescent with respect to all hypercoverH∗ ∈ H�(x) if and only if it
has hyperdescent with respect to all semi-representable hypercovers.
From now on we will adopt the following terminology and notations.

Definition 3.4.9. Let (T , �) be anS-site in U.
1. A stackon the site(T , �) is a pre-stackF ∈ SP r(T ) which satisfies the hyperde-

scent condition of Definition3.4.8.
2. The model categorySPr�(T ) is also called themodel category of stackson theS-

site (T , �). The category Ho(SP r(T )) (resp. Ho(SP r�(T ))) is called thehomotopy
category of pre-stacks, and (resp. thehomotopy category of stacks). Objects of
Ho(SP r(T )) (resp. Ho(SP r�(T ))) will simply be calledpre-stackson T (resp.,
stackson (T , �)). The functora : Ho(SP r(T )) −→ Ho(SP r�(T )) will be called
the associated stack functor.

3. The topology� is said to besub-canonicalif for any x ∈ Ob(T ), the pre-stack
hx ∈ Ho(SP r(T )) is a stack (in other words, if the Yoneda embeddingLh :
Ho(T ) −→ Ho(SP r(T )) factors through the subcategory of stacks).

4. For pre-stacksF andG on T, we will denote byRHom(F,G) ∈ Ho(SSetU) (resp.
by R�Hom(F,G) ∈ Ho(SSetU)) the derivedHom-simplicial set computed in the
simplicial model categorySPr(T ) (resp.SPr�(T )).

Let us explain why, given Definition3.4.9(1), we also call the objects in Ho(SP r�(T ))

stacks (Definition3.4.9(2)). As SPr�(T ) is a left Bousfield localization ofSPr(T ), the
identity functorSPr(T ) −→ SP r�(T ) is left Quillen, and its right adjoint (which is
still the identity functor) induces a fully faithful functor
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j : Ho(SP r�(T )) −→ Ho(SP r(T ))

Furthermore, the essential image of this inclusion functor is exactly the full subcate-
gory consisting of objects having the hyperdescent property; in other words, the es-
sential image ofj is the full subcategory of Ho(SP r(T )) consisting of stacks. We
will often identify Ho(SP r�(T )) with its essential image viaj (which is equivalent to
Ho(SP r�(T ))). The left adjoint

a : Ho(SP r(T )) −→ Ho(SP r�(T ))

to the inclusionj, is a left inverse toj. Note thatF ∈ Ho(SP r(T )) is a stack iff the
canonical adjunction mapF → ja(F ) (which we will write asF → a(F ) taking into
account our identification) is an isomorphism in Ho(SP r(T )).
As explained in the Introduction, this situation is the analog for stacks over

S-sites of the usual picture for sheaves over Grothendieck sites. In particular, this
gives asheaf-likedescription of objects of Ho(SP r�(T )), via the hyperdescent prop-
erty. However, this description is not as useful as one might at first think, though it
allows to prove easily that some adjunctions are Quillen adjunctions (see for example,
[DHI, 7.1], [To2,To3, Proposition 2.2.2, Proposition 2.9]) or to check that anS-topology
is sub-canonical.
We will finish this paragraph with the following proposition.

Proposition 3.4.10.1. Let F and G be two pre-stacks on T. If G is a stack, then the
natural morphism

RHom(F,G) −→ R�Hom(F,G)

is an isomorphism inHo(SSet).
2. The functorId : SP r(T ) −→ SP r�(T ) preserves homotopy fibered products.

Proof. Condition (1) follows formally from Corollary3.4.5. To prove(2) it is enough
to show that�∗-equivalences are stable under pull-backs along objectwise fibrations,
and this follows from Corollary3.3.5. �

Remark 3.4.11. If M is any left properU-combinatorial orU-cellular (see Appendix
A) simplicial model category, one can also define the local projective model structure on
Pr(T ,M) := MT op

as the left Bousfield localization of the objectwise model structure,
obtained byinverting hypercovers. This allows one to consider the model category of
stacks on theS-site (T , �) with values in M. Moreover, in many cases (e.g., symmetric
spectra[HSS], simplicial abelian groups, simplicial groups, etc.) the local equivalences
also have a description in terms of some appropriately defined�∗-equivalences. We will
not pursue this here as it is a purely formal exercise to adapt the proof of Theorem
3.4.1 to these situations.
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In many cases these model categories of stacks with values inM may also be
described by performing the constructions definingM directly in the model category
SPr�(T ). More precisely, one can consider e.g. the categories of symmetric spectra,
abelian group objects, group objects etc., inSPr(T ), and use some general results to
provide these categories with model structures. For reasonable model categoriesM both
approaches give Quillen equivalent model categories (e.g. for group objects inSPr�(T ),
and stacks of simplicial groupson (T , �)). The reader might wish to consult[Bek] in
which a very general approach to these considerations is proposed.

3.5. Functoriality

Let (T , �) and (T ′, �′) be two U-small S-sites andf : T −→ T ′ a morphism of
S-categories. As we saw in Section2.3.1before Theorem2.3.1, the morphismf induces
a Quillen adjunction on the model categories of pre-stacks

f! : SP r(T ) −→ SP r(T ′) SP r(T ) ←− SP r(T ′) : f ∗.

Definition 3.5.1.We say that the morphismf is continuous(with respect to the topolo-
gies � and �′) if the functor f ∗ : SP r(T ′) −→ SP r(T ) preserves the subcategories of
stacks.

As the model categories of stacksSPr�(T ) andSPr�′(T ) are left Bousfield localiza-
tions of SPr(T ) andSPr(T ′), respectively, the general machinery of[Hi] implies that
f is continuous if and only if the adjunction(f!, f ∗) induces a Quillen adjunction

f! : SP r�(T ) −→ SP r�(T
′) SP r�(T ) ←− SP r�′(T ′) : f ∗

between the model category of stacks.
Recall from the proof of Theorem3.4.1 that we have defined the sets of distin-

guished hypercoversH�(x), for any objectx ∈ T . These distinguished hypercovers
detect continuous functors, as shown in the following proposition.

Proposition 3.5.2.The morphism f is continuous if and only if, for any x ∈ Ob(T )

and anyH∗ ∈ H�(x), the induced morphism

Lf!(|H∗|) −→ Lf!(hx) 
 hf (x)

is an isomorphism inHo(SP r�′(T ′)).

Proof. This follows immediately by adjunction, from Corollary3.4.7. �
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3.6. Injective model structure and stacks of morphisms

The goal of this paragraph is to present an injective version of the local model
structure onSPr(T ) for which cofibrations are monomorphisms, and to use it in order
to constructstacks of morphisms. Equivalently, we will show that the injective model
category of stacks over anS-site possesses derived internal Hom’s, and as a consequence
the homotopy category of stacks Ho(SP r�(T )) is cartesian closed(in the usual sense of
[ML, Chapter IV, Section 10]). These stacks of morphisms will be important especially
for applications to Derived Algebraic Geometry (see[To-Ve 4, 6]), since many of the
moduli stacksare defined as stacks of morphisms to a certainclassifying stack(for
example, the stack of vector bundles on a scheme).
Before going into details, let us observe that in general, as explained in[H-S, Section

11], the projective model structure onSPr�(T ) is not aninternal model category, i.e. is
not a closed symmetric monoidal model category for the direct product[Ho, Definition
4.2.6], and therefore the internalHom’s of the categorySPr�(T ) are not compatible
with the model structure. This prevents one from defining derived internalHom’s in
the usual way (i.e. by applying the internalHom’s of SPr(T ) to fibrant models for
the targets and cofibrant models for the sources). One way to solve this problem is to
work with another model category which is internal and Quillen equivalent toSPr(T ).
The canonical choice is to use aninjective model structure on SPr(T ), analogous to
the one described in[Ja1].

Proposition 3.6.1. Let (T , �) be an S-site inU. Then there exists a simplicial closed
model structure on the category SPr(T ), called the local injective model structure,
and denoted bySPrinj,�(T ) where the cofibrations are the monomorphisms and the
equivalences are the local equivalences. Moreover, the local injective model structure
on SPr(T ) is proper and internal. 3

Proof. The proof is essentially the same as the proof of our Theorem3.4.1. The
starting point is the objectwise injective model structureSPrinj(T ), for which equiv-
alences and cofibrations are defined objectwise. The existence of this model structure
can be proved by the same cardinality argument as in the case whereT is a usual
category (see[Ja1]). The model categorySPrinj(T ) is clearly proper,U-cellular and
U-combinatorial, so one can apply the localization techniques of[Hi] . We define the
model categorySPrinj,�(T ) as the left Bousfield localization ofSPrinj(T ) along the set
of hypercoversH defined in the proof of Theorem3.4.1. Note that the identity functor
SPrinj,�(T ) −→ SP r�(T ) is the right adjoint of a Quillen equivalence. From this and
Theorem3.4.1we deduce that equivalences inSPrinj,�(T ) are exactly the local equiva-
lences of Definition3.3.2. This proves the existence of the model categorySPrinj,�(T ).
The fact that it is proper follows easily from the fact the model categorySSetis proper
and from the description of equivalences inSPrinj,�(T ) as�∗-equivalences. It only re-

3 Recall once again that a model category is said to beinternal if it is a monoidal model category
(in the sense of[Ho, Definition 4.2.6]) for the monoidal structure given by the direct product.
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mains to show thatSPrinj,�(T ) is internal. But, as cofibrations are the monomorphisms
this follows easily from the fact that finite products preserves local equivalences.�
As the equivalences inSPrinj,�(T ) and SPr�(T ) are the same, the corresponding

homotopy categories coincide

Ho(SP rinj,�(T )) = Ho(SP r�(T )).

Since the homotopy category of an internal model category is known to be cartesian
closed, Proposition3.6.1 implies the following corollary.

Corollary 3.6.2. For any S-site T inU, the homotopy category of stacksHo(SP r�(T ))

is cartesian closed.

Proof. Apply [Ho, Theorem 4.3.2] to the symmetric monoidal model category
SPrinj,�(T ), with the monoidal structure given by the direct product.�

Definition 3.6.3. 1. The internalHom’s of the category Ho(SP r�(T )) will be denoted
by

R� Hom(−,−) : Ho(SP r�(T )) × Ho(SP r�(T )) −→ Ho(SP r�(T )).

2. Let (T , �) be anS-site in U, andF, G be stacks in Ho(SP r�(T )). The stack of
morphismsfrom F to G is defined to be the stack

R�Hom(F,G) ∈ Ho(SP r�(T )).

Explicitly, we have for any pair of stacksF andG

R� Hom(F,G) 
 Hom(F,RinjG),

whereRinj is the fibrant replacement functor in the objectwise injective model category
SPrinj(T ), andHom is the internalHom functor of the categorySPr(T ). In fact, if G
is a stack, then bothRinjG andHom(F,RinjG) are stacks.
Actually, Proposition3.6.1gives more than the cartesian closedness of Ho(SP r�(T )).

Indeed, one can consider the full sub-categorySPrinj,�(T )f of fibrant objects in
SPrinj,�(T ). As any object is cofibrant inSPrinj,�(T ), for any two objectsF andG in
SPrinj,�(T )f the internal HomHom(F,G) is also a fibrant object and therefore lives
in SPrinj,�(T )f . This shows in particular thatSPrinj,�(T )f becomes cartesian closed for
the direct product, and therefore one can associate to it a naturalSPrinj,�(T )f -enriched
categorySP rinj,�(T )f . Precisely, the set of object ofSP rinj,�(T )f is the set of fibrant
objects inSPrinj,�(T ), and for two such objectsF andG the object of morphisms is
Hom(F,G).
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The SPrinj,�(T )f -enriched categorySP rinj,�(T )f yields in fact aup-to-equivalence

SPrinj,�(T )f -enrichment of the S-categoryLSPr�(T ). Indeed, as SPr�(T ) and
SPrinj,�(T ) has the same simplicial localizations (because they are the same categories
with the same notion of equivalence), one has a natural equivalence ofS-categories

LSPr�(T ) = LSPrinj,�(T ) 
 Int (SP rinj,�(T )).

Recall that theS-categoryInt (SP rinj,�(T )) consists of fibrant objects inSPrinj,�(T ) and
their simplicial Hom-sets. In other words theSSet-enriched categoryInt (SP rinj,�(T ))

is obtained from theSPrinj,�(T )f -enriched categorySP rinj,�(T )f by applying the global
section functor� : SP rinj,�(T ) −→ SSet . In conclusion, one has a triple

(LSP r�(T ), SP rinj,�(T )f , �),

where � is an isomorphism in Ho(S − Cat) betweenLSPr�(T ) and the underlying
S-category ofSP rinj,�(T )f . This triple is what we refer to as anup-to-equivalence

SPrinj,�(T )f -enrichment ofLSPr�(T ). For example, theSPrinj,�(T )f -enriched functor

Hom : (SP rinj,�(T )f )op × SP rinj,�(T )f −→ SP rinj,�(T )f

gives rise to a well-defined morphism in Ho(S − cat)

R�Hom : LSPr�(T )op × LSPr�(T ) −→ LSPr�(T ),

lifting the internal Hom-structure on the homotopy category Ho(SP r�(T )).

Remark 3.6.4. This last structure is at first sight more subtle than the cartesian closed-
ness of the homotopy categoryHo(SP r�(T )), asSP rinj,�(T )f encodes strictly associa-
tive and unital compositions between stacks of morphisms, which are only described by
Ho(SP r�(T )) as up-to-homotopy associative and unital compositions. This looks like
comparing the notions of simplicial monoids (i.e. monoids inSSet) and up-to-homotopy
simplicial monoids (i.e. monoids in Ho(SSet)), and the former is well known to be
the right notion. However, we would like to mention that we think that theS-category
aloneLSPr�(T ) ∈ Ho(S − Cat), together with the fact that Ho(SP r�(T )) is cartesian
closed, completely determines its up-to-equivalenceSPrinj,�(T )f -enrichment. In other
words, the structure

(LSP r�(T ), SP rinj,�(T )f , �)

only depends, up to an adequate notion of equivalence, on theS-categoryLSPr�(T ).
Unfortunately, investigating this question would drive us way too far from our purpose,
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as we think the right context to treat it is the general theory ofsymmetric monoidal
S-categories, as briefly exposed in[To4, Section 5.1].

3.7. Truncated stacks and truncation functors

We start by recalling some very general definition of truncated objects in model
categories.

Definition 3.7.1. 1. Let n�0. An objectx ∈ Ho(M) is called n-truncated if for any
y ∈ Ho(M), the mapping spaceMapM(y, x) ∈ Ho(SSet) is n-truncated.
2. An object x ∈ Ho(M) is called truncated if it is n-truncated for some integer

n�0.

Clearly, a simplicial setX is n-truncated in the sense above if and only it isn-truncated
in the classical sense (i.e. if for any base pointx ∈ X, �i (X, x) = 0 for all i > n).
We now fix anS-site (T , �) in U, and we consider the corresponding model category

of stacksSPr�(T ).

Definition 3.7.2. Let n�0 be an integer. A morphismf : F −→ G in SPr�(T )

is a ��n-equivalence(or a local n-equivalence) if the following two conditions are
satisfied:
1. The induced morphism�0(F ) −→ �0(G) is an isomorphism of sheaves on Ho(T ).
2. For any objectx ∈ Ob(T ), any sections ∈ �0(F (x)) and any integeri such

that n� i > 0, the induced morphism�i (F, s) −→ �i (G, f (s)) is an isomorphism of
sheaves on Ho(T /x).

Theorem 3.7.3.There exists a closed model structure on SPr(T ), called the n-truncated
local projective model structure, for which the equivalences are the��n-equivalences
and the cofibrations are the cofibrations for the projective model structure on SPr(T ).
Furthermore the n-local projective model structure isU-cofibrantly generated and
proper.
The category SPr(T ) together with its n-truncated local projective model structure

will be denoted by SPr�n
� (T ).

Proof. The proof is essentially a corollary of Theorem3.4.1. Let J (resp., I) be a
U-small set of generating trivial cofibrations (resp., generating cofibrations) for the
model categorySPr�(T ). Let J ′ be the set of morphisms��i ⊗ hx −→ �i ⊗ hx , for
all i > n and all x ∈ Ob(T ). We defineJ (n) = J ∪ J ′. Finally, let W(n) be the set
of ��n-equivalences. It is easy (and left to the reader) to prove that[Ho, Theorem
2.1.19] can be applied to the setsW(n), I and J (n). �

Corollary 3.7.4. The model category SPr�n
� (T ) is the left Bousfield localization of

SPr�(T ) with respect to the morphisms��i ⊗ hx −→ �i ⊗ hx , for all i > n and all
x ∈ Ob(T ).
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Proof. This follows immediately from the explicit description of the setJ (n) of
generating cofibrations given in the proof of Theorem3.7.3 above. �
Note that Corollaries3.4.5 and 3.7.4 also imply thatSPr�n

� (T ) is a left Bousfield
localization ofSPr(T ).
For the next corollary, an objectF ∈ SP r(T ) is called objectwise n-truncatedif

for any x ∈ Ob(T ), the simplicial setF(x) is n-truncated (i.e. for any base point
s ∈ F(x)0, one has�i (F (x), s) = 0 for i > n).

Corollary 3.7.5. An objectF ∈ SP r
�n
� (T ) is fibrant if and only if it is objectwise

fibrant, satisfies the hyperdescent condition(see Definition3.4.8) and is objectwise
n-truncated.

Proof. This again follows formally from the explicit description of the setJ (n) of
generating cofibrations given in the proof of Theorem3.7.3. �
From the previous corollaries we deduce that the identity functor Id: SP r�(T ) −→

SP r
�n
� (T ) is a left Quillen functor, which then induces an adjunction on the homotopy

categories

t�n := LId : Ho(SP r�(T )) −→ Ho(SP r
�n
� (T ))

Ho(SP r�(T )) ←− Ho(SP r
�n
� (T )) : jn := RId.

Note however that the functor

t�n : LId : Ho(SP r�(T )) −→ Ho(SP r �n
� (T ))

does not preserves homotopy fibered products in general. Finally,jn is fully faithful
and a characterization of its essential image is given in the following lemma.

Lemma 3.7.6. Let F ∈ SP r�(T ) and n�0. The following conditions are equivalent.
1. F is an n-truncated object in the model category SPr�(T ) (in the sense of
Definition 3.7.1).

2. For any x ∈ Ob(T ) and any base points ∈ F(x), one has�i (F, s) = 0 for any
i > n.

3. The adjunction morphismF −→ jnt�n(F ) is an isomorphism inHo(SP r�(T )).

Proof. The three conditions are invariant under isomorphisms in Ho(SP r�(T )); we
can therefore always assume thatF is fibrant inSPr�(T ).
To prove that(1) ⇒ (2), it is enough to observe thatR�Hom(hx, F ) 
 F(x). Con-

versely, let us suppose that(2) holds and letj : F −→ RF be a fibrant replacement in
SPr�n

� (T ). The hypothesis onF and Corollary3.7.5 imply that j is a �∗-equivalence,
thus showing that we can assumeF to be fibrant inSPr�n

� (T ), and by Corollary3.7.5
again, thatF can be also assumed to be objectwisen-truncated. In particular, the natural

morphismF�i −→ F ��i

is an objectwise trivial fibration for anyi > n. Therefore,
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one has for anyi > n,

R�Hom(G,F)R��i 
 RHom�(G, F ��i

) 
 RHom�(G, F�i

) 
 R�Hom(G,F)R�i

.

This implies thatR�Hom(G,F) is n-truncated for anyG ∈ SP r�(T ). This proves the
equivalence between(1) and (2).
For anyF ∈ Ho(SP r�(T )), the adjunction morphismF −→ jnt�n(F ) is represented

in SPr(T ) by a fibrant resolutionj : F −→ RF in the model categorySPr�n
� (T ). If F

satisfies condition(2), we have already seen thatj is a �∗-equivalence, and therefore
that (3) is satisfied. Conversely, by Corollary3.7.5, RF always satisfies condition(2)
and then(3) ⇒ (2). �
In the rest of the paper we will systematically use Lemma3.7.6 and the functor

jn to identify the homotopy category Ho(SP r
�n
� (T )) with the full subcategory of

Ho(SP r�(T )) consisting ofn-truncated objects. We will therefore never specify the
functor jn. With this convention, the functort�n becomes an endofunctor

t�n : Ho(SP r�(T )) −→ Ho(SP r�(T )),

called thenth truncation functor. There is an adjunction morphism Id−→ t�n, and
for any F ∈ Ho(SP r�(T )), the morphismF −→ t�n(F ) is universal among mor-
phisms fromF to an n-truncated object. More precisely, for anyn-truncated object
G ∈ Ho(SP r�(T )), the natural morphism

R�Hom(t�n(F ),G) −→ R�Hom(F,G)

is an isomorphism in Ho(SSet).

Definition 3.7.7. The nth truncation functoris the functor previously defined

t�n : Ho(SP r�(T )) −→ Ho(SP r�(T )).

The essential image oft�n is called the subcategory ofn-truncated stacks.

Note that the essential image oft�n is by construction equivalent to the category
Ho(SP r

�n
� (T )).

The following proposition gives a complete characterization of the category of 0-
truncated stacks and of the 0th truncation functort�0.

Proposition 3.7.8.The functor�pr
0 : SP r(T ) −→ Pr(Ho(T )) induces an equivalence

of categories

Ho(SP r �0
� (T )) 
 Sh�(Ho(T ))
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whereSh�(Ho(T )) denotes the category of sheaves of sets on the usual Grothendieck
site (Ho(T ), �).

Proof. Let us first suppose that the topology� is trivial. In this case, we define a
quasi-inverse functor as follows. By considering sets as constant simplicial sets, we
obtain an embeddingPr(Ho(T )) ⊂ SP r(Ho(T )) that we compose with the pullback
p∗ : SP r(Ho(T )) −→ SP r(T ) along the natural projectionp : T −→ Ho(T ). It is
quite clear thatF 
→ �pr

0 (F ) and F 
→ p∗(F ) induce two functors, inverse of each
others

�pr
0 : Ho(SP r �0(T )) 
 Pr(Ho(T )) : p∗.

In the general case, we use Corollary3.4.5. We need to show that a presheafF ∈ Pr

(Ho(T )) is a sheaf for the topology� if and only if the corresponding objectp∗(F )

has the hyperdescent property. This last step is left to the reader as an exercise.�

Remark 3.7.9. 1. The previous proposition implies, in particular, that the homotopy
category of stacks Ho(SP r�(T )) always contains the category of sheaves on the site
(Ho(T ), �) as the full subcategory of 0-truncated objects. Again, we will not mention
explicitly the functorp∗ : Sh�(Ho(T )) −→ Ho(SP r�(T )) and identify Sh�(Ho(T ))

with the full subcategory of Ho(SP r�(T )) consisting of 0-truncated objects.
2. Proposition3.7.8is actually just the 0th stage of a series of similar results involving

higher truncations. In fact Proposition3.7.8can be generalized to a Quillen equivalence
betweenSPr�n

� (T ) and a certain model category of presheaves ofn-groupoids on the
(n + 1)-categoryt�n(T ) obtained fromT by applying then-th fundamental groupoid
functor to its simplicial sets of morphisms (see[H-S, Section 2, p. 28]). We will not
investigate these results further in this paper.

3.8. Model topoi

Let M be anyU-cellular [Hi, Section 14.1]or U-combinatorial[Sm,Du2, Definition
2.1] left proper model category (see also Appendix A). Let us recall from Theorem
A.2.2 andA.2.4 that for anyU-set of morphismsS in M, the left Bousfield localization
LSM exists. It is a model category, whose underlying category is stillM, whose cofibra-
tions are those ofM and whose equivalences are the so-calledS-local equivalences[Hi,
Section 3.4]. A left Bousfield localization ofM is any model category of the form LSM,
for a U-small setS of morphisms inM.
The following definition is a slight modification of the a notion communicated to

us by Rezk[Re]. It is a model categorical analog of the notion of topos defined as a
reflexive subcategory of the category of presheaves with an exact localization functor
(see for example[Sch, Chapter 20]).

Definition 3.8.1. 1. If T is anS-category, aleft exact Bousfield localizationof SPr(T )

is a left Bousfield localization LSSP r(T ) of SPr(T ), such that the identity functor
Id : SP r(T ) −→ LSSP r(T ) preserves homotopy fiber products.
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2. A U-model toposis a model category inV which is Quillen equivalent to a left
exact Bousfield localization ofSPr(T ) for someT ∈ S − CatU.

For 2, recall our convention throughout the paper, according to which two model
categories are Quillen equivalent if they can be connected by a finitechain of Quillen
equivalences, regardless of their direction. We will also need the following general
definitions related to the notion of truncated objects in a model category (see Remark
3.8.7 for some comments on it).

Definition 3.8.2. Let M be any model category.
We say thatM is t-completeif truncated objects detect isomorphisms in Ho(M) i.e.

if a morphismu : a → b in Ho(M) is an isomorphism if and only if, for any truncated
object x in Ho(M), the mapu∗ : [b, x] −→ [a, x] is bijective.
A U-model topos ist-completeif its underlying model category ist-complete.

The next theorem shows that given anS-categoryT, t-complete left exact Bousfield
localizations ofSPr(T ) correspond exactly to simplicial topologies onT. It should
be considered as a homotopy analog of the correspondence for usual Grothendieck
topologies as described e.g. in[Sch, Theorem 20.3.7].

Theorem 3.8.3.Let T be aU-small S-category. There exists a bijective correspondence
between S-topologies on T and left exact Bousfield localizations of SPr(T ) which are
t-complete.

Proof.
Let T(T ) be the set ofS-topologies onT, which by definition is also the set

of Grothendieck topologies on Ho(T ). Let B(T ) be the set of left exact Bousfield
localizations ofSPr(T ), andBt (T ) ⊂ B(T ) the subset of those which aret-complete.
We are first going to define maps� : T(T ) → Bt (T ) and	 : Bt (T ) → T(T ),

The map� : T(T ) → Bt (T ).

Let � ∈ T(T ) be anS-topology onT. According to Corollary3.4.5 and Proposition
3.4.10(2), SPr�(T ) is a left exact Bousfield localization ofSPr(T ). We are going
to show thatSPr�(T ) is also t-complete. We know by Lemma3.7.6, that an object
F ∈ Ho(SP r�(T )) is n-truncated if and only ifF 
 t�n(F ). Therefore, if a morphism
f : F −→ G satisfies condition(3) of Definition 3.8.2, one has

[t�n(F ),H ] 
 [F,H ] 
 [G,H ] 
 [t�n(G),H ]

for any n-truncated objectH ∈ Ho(SP r�(T )). This implies that for anyn, the in-
duced morphismt�n(F ) −→ t�n(G) is an isomorphism in Ho(SP r

�n
� (T )), and hence

in Ho(SP r�(T )). In other words,f is an ��n-equivalence for anyn, and hence a
�∗-equivalence. This shows that the model categorySPr�(T ) is a t-complete model
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category and allows us to define the map� : T(T ) −→ Bt (T ) by the formula
�(�) = SP r�(T ).

The map	 : Bt (T ) → T(T ).

Let LSSP r(T ) ∈ Bt (T ), and let us consider the derived Quillen adjunction given by
the identity functor Id: SP r(T ) −→ LSSP r(T )

a := LId : Ho(SP r(T )) −→ Ho(LSSP r(T ))

Ho(SP r(T )) ←− Ho(LSSP r(T )) : RId =: i.

The reader should note that the above functora is not equal a priori to the associated
stack functor of Definition3.4.9(5), as noS-topology onT has been given yet. We
know that j is fully faithful and identifies Ho(LSSP r(T )) with the full subcategory
of Ho(SP r(T )) consisting ofS-local objects (see[Hi, Definition 3.2.41(a); Theorem
4.1.1(2)]).
We consider the full subcategory Ho�0(LSSP r(T )) (resp. Ho�0(SP r(T ))) of Ho

(LSSP r(T )) (resp. of Ho(SP r(T ))) consisting of 0-truncated objects. Note that in
general, an objectx in a model category is 0-truncated if and only if for anyn�1,
the natural morphismxR�n −→ xR��n

is an equivalence. As botha and i preserve
homotopy fiber products, they also preserve 0-truncated objects. Therefore we have an
induced adjunction

a0 : Ho�0(SP r(T )) −→ Ho�0(LSSP r(T )),

Ho�0(SP r(T )) ←− Ho�0(LSSP r(T )) : i0.

Now, the functor�pr
0 : Ho(SP r(T )) −→ SetHo(T )op induces an equivalence of categories

Ho�0(SP r(T )) 
 SetHo(T )op =: Pr(Ho(T )),

and so the adjunction(a0, i0) is in fact equivalent to an adjunction

a0 : Pr(Ho(T )) −→ Ho�0(LSSP r(T )), P r(Ho(T )) ←− Ho�0(LSSP r(T )) : i0,

where, of course, the functori0 is still fully faithful and the functora0 is exact. By
[Sch, Theorem 20.3.7], there exists then a unique Grothendieck topology� on Ho(T )

such that the essential image ofi0 is exactly the full subcategory of sheaves on Ho(T )

for the topology�. The functora0 is then equivalent to the associated sheaf functor.
Thus, we define	 : Bt (T ) −→ T(T ) by the formula	(LSSP r(T )) := � ∈ T(T ).

Proof of �◦	 = Id.
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Let LSSP r(T ) ∈ Bt (T ) be a left exact Bousfield localization ofSPr(T ) and � =
	(LSSP r(T )) the corresponding topology onT. We need to prove that the set of
S-local equivalences equal the set of�∗-equivalences. Recall that we have denoted by

a := LId : Ho(SP r(T )) −→ Ho(LSSP r(T ))

Ho(SP r(T )) ←− Ho(LSSP r(T )) : RId =: i,

the adjunction induced by the identity functor Id: LSSP r(T ) −→ SP r(T ).
Let us first prove thatS-local equivalences are�∗-equivalences. Equivalently, we need

to prove that for any morphismf : F −→ G which is an equivalence in LSSP r(T ), f
is an hypercover inSPr�(T ). For this we may assume thatF andG are both objectwise
fibrant objects. As the identity functor Id: SP r(T ) −→ SP r�(T ) preserves homotopy
fiber products, the induced morphism

F�n −→ F ��n ×
G��nG�n

is still an S-local equivalence. Using this fact and Lemma3.3.3, one sees that it is
enough to show thatf is a covering in aSPr�(T ).
Recall that the topology� is defined in such a way that the associated sheaf to

a presheaf of setsE on Ho(T ) is i0a0(E) (where the adjunction(a0, i0) is the one
considered above in the definition of the map	). It is therefore enough to prove that
the induced morphisma0(�

pr
0 (F )) −→ a0(�

pr
0 (G)) is an isomorphism.4

Lemma 3.8.4. For any F ∈ Ho(SP r(T )), one has

a0(�
pr
0 (F )) 
 a0�

pr
0 (ia(F )).

Proof. This immediately follows from the adjunctions(a, i) and (a0, i0), and the fact
that �pr

0 is isomorphic to the 0-th truncation functort�0 on Ho(SP r(T )). �
As f is anS-local equivalence, the morphismia(F ) −→ ia(G) is an isomorphism in

Ho(SP r(T )), and therefore the same is true for

a0(�
pr
0 (F )) 
 a0�

pr
0 (ia(F )) −→ a0�

pr
0 (ia(G)) 
 a0(�

pr
0 (G)).

We have thus shown that theS-local equivalences are�∗-equivalences. Conversely,
to show that�∗-equivalences areS-local equivalences it is enough to show that for any
x ∈ Ob(T ) and any hypercoverF∗ −→ hx in SPr�(T ), the natural morphism

ia(|F∗|) −→ ia(hx)

4 Recall that�pr
0 (F ) is a presheaf of sets on Ho(T ), that is considered via the projectionp : T −→

Ho(T ) as a presheaf of discrete simplicial sets onT, and therefore as an object inSPr(T ).
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is an isomorphism in Ho(SP r(T )) (see Corollary3.4.5). As a preserves homotopy
fibered products, one has(ia(G))RK 
 ia(GRK), for any G ∈ Ho(SP r(T )) and any
finite simplicial setK (here(−)RK is computed in the model categorySPr(T )). There-
fore, for anyn, one has, byt-completeness,

t�n(ia(|F∗|)) 
 t�n(ia(|RCosknF∗|)).

This shows that one can assume thatF∗ = RCoskn(F∗/hx), for somen (i.e. that
F∗ −→ hx is relatively n-bounded). Furthermore, the same argument as in the proof
of Theorem3.4.1, but relative tohx , shows that, by induction, one can assumen = 0.
In other words, one can assume thatF∗ is the derived nerve of a coveringF0 −→ hx

(which will be assumed to be an objectwise fibration).
By the left exactness property ofa and i, the object ia(|F∗|) is isomorphic in

Ho(SP r(T )) to the geometric realization of the derived nerve ofia(F0) −→ ia(hx).
This implies that for anyy ∈ Ob(T ), the morphismia(|F∗|)(y) −→ ia(hx)(y) is
isomorphic in Ho(SSet) to the geometric realization of the nerve of a fibration between
simplicial sets. It is well known that such a morphism is isomorphic in Ho(SSet) to an
inclusion of connected components. Therefore it is enough to show that the morphism

�pr
0 (ia(|F∗|)) −→ �pr

0 (ia(hx))

induces an isomorphism on the associated sheaves. By Lemma3.8.4, this is equivalent
to showing that the morphism

i0a0�
pr
0 (ia(|F∗|)) −→ i0a0�

pr
0 (ia(hx))

is an isomorphism of presheaves of sets on Ho(T ). This morphism is also isomorphic
to

i0a0(�
pr
0 (|F∗|)) −→ i0a0�

pr
0 (hx)

whose left-hand side is the sheaf associated to the co-equalizer of the two projections

pr1, pr2 : �pr
0 (F0) × �pr

0 (hx)
�pr
0 (F0) −→ �pr

0 (hx),

whereas the right-hand side is the sheaf associated to�pr
0 (hx). To conclude the proof,

it is enough to notice that�pr
0 (F0) −→ �pr

0 (hx) induces an epimorphism of sheaves
(becauseF∗ is a hypercover) and that epimorphisms of sheaves are always effective
(see[SGA4-I, Exp. II, Theoreme 4.8]).

Proof of 	◦� = Id.
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Let � be a topology onT. By definition of the maps	 and�, to prove that	◦� =
Id, it is equivalent to show that the functor�pr

0 : Ho(SP r�(T )) −→ Pr(Ho(T )), when
restricted to the full subcategory of 0-truncated objects in Ho(SP r�(T )), induces an
equivalence to the category of sheaves on the site(Ho(T ), �). But this follows from
Proposition3.7.8. �

Corollary 3.8.5. Let M be a model category inU. The following conditions are equiv-
alent:
1. The model category M is a t-completeU-model topos.
2. The model category M is t-complete and there exists aU-small category C and
a subcategoryS ⊂ C, such that M is Quillen equivalent to a left exact Bousfield
localization ofMC,S (see Definition2.3.3).

3. There exists aU-small S-site(T , �) such that M is Quillen equivalent to SPr�(T ).

Proof. The equivalence of(2) and (3) follows immediately from Theorem2.3.5 and
the delocalization theorem[D-K2, Theorem 2.5], while (1) and (3) are equivalent by
Theorem3.8.3. �
The previous results imply in particular the following interesting rigidity property

for S-groupoids.

Corollary 3.8.6. Let T be aU-small S-category such thatHo(T ) is a groupoid (i.e.
every morphism in T is invertible up to homotopy). Then, there is no non-trivial t-
complete left exact Bousfield localization of SPr(T ).

Proof. In fact, there is no non-trivial topology on a groupoid, and therefore there is
no non-trivialS-topology onT. �

Remark 3.8.7. 1. There existt-completeU-model topoi which are not Quillen equiv-
alent to someSPr�(T ), for T a U-small category. Indeed, whenT is a category, the
model categorySPr�(T ) is such that any object is a homotopy colimits of 0-truncated
objects (this is because representable objects are 0-truncated). It is not difficult to see
that this last property is not satisfied whenT is a generalS-category. For example,
let T = BK(Z,1) be theS-category with a unique object and the simplicial monoid
K(Z,1) as simplicial set of endomorphisms. Then,SPr(T ) is the model category of
simplicial sets together with an action ofK(Z,1), and 0-truncated objects inSPr(T )

are all equivalent to discrete simplicial set with a trivial action ofK(Z,1). Therefore
any homotopy colimit of such will be a simplicial set with a trivial action byK(Z,1).
However, the action ofK(Z,1) on itself by left translations isnot equivalent to a
trivial one.
2. As observed by Lurie, there are examples of left exact Bousfield localization of

SPr(T ) which arenot of the formSPr�(T ). To see this, let(T , �) be a Grothendieck site
and consider the left Bousfield localization LcovSP r(T ) of SPr(T ) along only those
hypercovers which are nerves of coverings (obviously, not all hypercovers are of this
kind). Now, an example due to Simpson shows that there are Grothendieck sites(T , �)
such that LcovSP r(T ) is not the same asSPr�(T ) (see for example[DHI, Example
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(A.10)]). However, LcovSP r(T ) is a left exact Bousfield localization ofSPr(T ), and
the topology it induces onT via the procedure used in the proof of Theorem3.8.3,
coincides with�. Of course, the point here is that LcovSP r(T ) is not a t-complete
model category. This shows that one cannot omit the hypothesis oft-completeness in
Theorem3.8.3.
3. Though the hypothesis oft-completeness in Theorem3.8.3 is quite natural, and

allows for a clean explanation in terms ofS-topologies, it could be interesting to look
for a similar comparison result without such an assumption. One way to proceed would
be to introduce a notion ofhyper-topologyon a category (or more generally on anS-
category), a notion which was suggested to us by some independent remarks of Hinich,
Joyal and Simpson. A hyper-topology on a category would be essentially the same thing
as a topology with the difference that one specifies directly the hypercovers and not only
the coverings; the conditions it should satisfy are analogous to the conditions imposed
on the family of coverings in the usual definition of a Grothendieck (pre)topology. The
main point here is that for a given Grothendieck site(T , �), the two hyper-topologies
defined usingall �-hypercovers on one side or onlybounded�-coveringson the other
side, will not be equivalent in general. It seems reasonable to us that our Theorem3.8.3
can be generalized to a correspondence between hyper-topologies onT and arbitrary
left exact Bousfield localizations ofSPr(T ). This notion of hypertopology seems to be
closely related to Cisinki’s results in[Cis].
4. Theorem3.8.3 suggests also a way to think ofhigher topologieson n-categories

(and of higher topoi) for n�1 as appropriateleft exact localizations. In this case,
the explicit notion of higher topology (that one has to reconstruct e.g. assuming the
Theorem still holds for higher categories), will obviously depend on more then the
associated homotopy category. For example, for the case of 2-categories, as opposed to
the case when alli-morphisms are invertible fori > 1 (see Remark3.1.2), a topology
should give rise to some kind of topologies on the various categories of 1-morphisms
and these topologies should satisfy some compatibility condition with respect to the
composition.

We finish this paragraph with the following definition.

Definition 3.8.8. An U−S-toposis anS-category which is isomorphic in Ho(S−Cat)

to someLSPr�(T ), for (T , �) a U-small S-site.

4. Stacks over pseudo-model categories

In this section we define the notion of amodel pre-topologyon a model category and
the notion ofstackson suchmodel sites. A model pre-topology is a homotopy variation
of the usual notion of a Grothendieck pre-topology and it reduces to the latter when
the model structure is trivial (i.e. when equivalences are isomorphisms and any map
is a fibration and a cofibration). We develop the theory in the slightly more general
context ofpseudo-model categories, i.e of full subcategories of model categories that
are closed under equivalences and homotopy pull-backs (see Definition4.1.1). We have
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chosen to work in this more general context because in some applications we will need
to use subcategories of model categories defined byhomotopy invariant conditionsbut
not necessarily closed under small limits and/or colimits (e.g., certain subcategories of
objects of finite presentation). The reader is however strongly encouraged to cancel
everywhere the wordpseudo-in the following and to restore it only when interested in
some application that requires such a degree of generality (as for example, the problem
of defining étaleK-theory on the pseudo-model category of connective commutative
S-algebras, see Proposition5.1.2). On the other hand, the theory itself presents no
additional difficulty, except possibly for the linguistic one.

4.1. Model categories of pre-stacks on a pseudo-model category

In this subsection we will define the (model)category of pre-stacks on apseudo-
model category which is essentially a category with weak equivalences that admits a
nice embedding into a model category.

Definition 4.1.1. A U-small pseudo-model categoryis a triple (C, S, 
) whereC is a
U-small category,S ⊂ C is a subcategory ofC and 
 : C → M is a functor to a model
U-categoryM satisfying the following four conditions:
1. The functor
 is fully faithful.
2. One has
(S) = W ∩ 
(C), whereW is the set of weak equivalences in the model

categoryM.
3. The categoryC is closed under equivalences inM, i.e. if x → y is an equivalence

in M and x (resp.y) is in the image of
, then so isy (resp.x).
4. The categoryC is closed under homotopy pullbacks inM.

The localizationS−1C will be called thehomotopy categoryof (C, S) and often denoted
by Ho(C, S) or simply Ho(C) when the choice ofS is unambiguous.

Condition (4) of the previous definition can be precised as follows. Denoting by
Ho(
) : S−1C → Ho(M) the functor induced by
 (due to(2).), which is fully faithful
due to(1) and(3), the image of Ho(
), that coincides with its essential image, is closed
under homotopy pullbacks.
Note also that because of condition(3) of Definition 4.1.1, the functor 
 is an

isomorphism fromC to its essential image inM. Hence we will most of the time
identify C with its image 
(C) in the model categoryM; therefore an objectx ∈ C

will be called fibrant (respectively,cofibrant) in C if 
(x) is fibrant (resp. cofibrant) in
M. Moreover, we will sometimes call the maps inS simply equivalences.
Conditions(3) and (4) imply in particular that for any diagram

x
p

�� y

z

��
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of fibrant objects inC, such thatp is a fibration, the fibered productx × zy ex-
ists. Indeed, this fibered product exists in the ambient model categoryM, and being
equivalent to the homotopy fibered product, it also belongs toC by conditions (3)
and (4).

Remark 4.1.2. 1. Being a pseudo-model category is not a self-dual property, in the
sense that ifM is a pseudo-model category, thenMop is not pseudo-model in general.
Objects satisfying Definition4.1.1 should be called more correctlyright pseudo-model
categoriesand the dual definition (i.e. closure by homotopy push-outs) should deserve
the name ofleft pseudo-model category. However, to simplify the terminology, we fix
once for all Definition4.1.1 as it is stated.
2. Note that ifM is a model category with weak equivalencesW, the triple(M,W, IdM)

is a pseudo-model category. Moreover, a pseudo-model category isessentiallya model
category. In fact, conditions(1)–(3) imply that C satisfies conditions(1), (2) and (4)
of the definition of amodel structurein the sense of[Ho, Definition 1.1.3]. However,C
is not exactly a model category in general, since it is not required to be complete and
co-complete (see[Ho, Definition 1.1.4]), and the lifting property(3) of [Ho, Definition
1.1.3] is not necessarily satisfied.
3. If C is a complete and co-complete category andS consists of all isomorphisms

in C, then (C, S, Idc) is a trivial pseudo-model category, where we consider onC
the trivial model structure with equivalences consisting of all isomorphisms and any
map being a fibration (and a cofibration). IfC is not necessarily complete and co-
complete but has finite limits, then we may view it as atrivial pseudo-model category
by replacing it with its essential image inPr(C) or SPr(C), endowed with the trivial
model structures, and takingS to be all the isomorphisms.

Example 4.1.3.1. Let k be a commutative ring andM := Ch(k)op the opposite model
category of unbounded chain complexes ofk-modules (see[Ho, Definition 2.3.3]). The
full subcategoryC ↪→ M of homologically positiveobjects (i.e. objectsP• such that
Hi(P•) = 0 for i < 0) is a pseudo-model category.
2. Let k be a commutative ring (respectively, a field of characteristic zero) and let

M := (E∞ − Algk)
op (respectively,M = CDGAop

k ) be the opposite model category of
E∞-algebras over the category of unbounded cochain complexes ofk-modules (resp.,
the opposite model category of commutative and unital differential gradedk-algebras
in non-positive degrees) which belong toU (see for example[Hin] for a description
of these model structures). We say that an objectA of M is finitely presentedif for
any filtered direct diagramC : J → Mop, with J ∈ U, the natural map

hocolim
j∈J MapMop(A,Cj ) −→ MapMop

(
A,hocolim

j∈J Cj

)

is an equivalence of simplicial sets. Here MapMop(−,−) denotes the mapping spaces
(or function complexes) in the model categoryMop (see[Ho, Section 5.4]). The reader
will check that the full subcategoryC ↪→ M of finitely presented objects is a pseudo-
model category.
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3. Let A be a commutativeS-algebra as defined in[EKMM, Chapter 2, Section
3]. Let M be the opposite category of the comma model category of commutative
S-algebras underA: an object inM is then a map of commutativeS-algebrasA → B.
Then, the full subcategoryC ↪→ M consisting of finitely presentedA-algebras (see the
previous example or Definition5.2.1) is a pseudo-model category. The full subcategory
C ↪→ M consisting ofétale mapsA → B (see Definition5.2.3) is also a pseudo-model
category. This pseudo-model category will be called thesmall étale siteover A.
4. Let X be a scheme andC(X,O) be the category of unbounded cochain complexes

of O-modules. There exists a model structure onC(X,O) where the equivalences are the
local quasi-isomorphisms. Then, the full subcategory ofC(X,O) consisting ofperfect
complexesis a pseudo-model category.

Recall from Section2.3.2 that for any categoryC in U and any subcategoryS ⊂ C,
we have defined (Definition2.3.3) the model categorySSetC,S

U of restricted diagrams
on (C, S) of simplicial sets. Below, we will consider restricted diagrams on(Cop, Sop),
where (C, S, 
) is a pseudo-model category.

Definition 4.1.4. 1. Let (C, S) be a category with a distinguished subset of morphisms.
The model categorySSetC

op,Sop

U , of restricted diagrams of simplicial sets on(Cop, Sop)

will be denoted by(C, S)∧ and called themodel category of pre-stacks on(C, S) (note
that if (C, S, 
) is a pseudo-model category,(C, S)∧ does not depend on
).
2. Let (C, S, 
) be a pseudo-model category and letCc (resp.Cf , resp.Ccf ) be the

full subcategory ofC consisting of cofibrant (resp. fibrant, resp cofibrant and fibrant)
objects, andSc := Cc ∩ S (resp.Sf := Cf ∩ S, resp.Scf := Ccf ∩ S). We will denote
by ((C, S)c)∧ (resp. ((C, S)f )∧, resp. ((C, S)cf)∧) the model category of restricted
diagrams ofU-simplicial sets on(Cc, Sc)op (resp. on(Cf , Sf )op, resp. on(Ccf , Scf)op).

Objects of (C, S)∧ are simply functorsF : Cop −→ SSetU and, as observed in
Section2.3.2, F is fibrant in(C, S)∧ if and only if it is objectwise fibrant and preserves
equivalences.
The category(C, S)∧ is naturally tensored and co-tensored overSSetU, with exter-

nal products and exponential objects defined objectwise. This makes(C, S)∧ into a
simplicial closed model category. This model category is furthermore left proper,U-
cellular andU-combinatorial (see[Du2,Hi, Chapter 14]and Appendix A). The derived
simplicial Hom’s of the model category(C, S)∧ will be denoted by

Rw Hom(−,−) : Ho((C, S)∧)op × Ho((C, S)∧) −→ Ho((C, S)∧).

The derived simplicialHom’s of the model categories((C, S)c)∧, ((C, S)f )∧ and
((C, S)cf)∧, will be denoted similarly by

Rw,cHom(−,−), Rw,f Hom(−,−), Rw,cf Hom(−,−).
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For an objectx ∈ C, the evaluation functorj∗
x : (C, S)∧ −→ SSetU is a right Quillen

functor. Its left adjoint is denoted by(jx)! : SSetU −→ (C, S)∧. We note that there is
a canonical isomorphismhx 
 (jx)!(∗) in (C, S)∧, wherehx : Cop −→ SSetU sends
an objecty ∈ C to the constant simplicial setHom(y, x). More generally, for any
A ∈ SSetU, one has(jx)!(A) 
 A ⊗ hx .
As (C, S)∧ is a left Bousfield localization ofSPr(C), the identity functor Id :

SP r(C) −→ (C, S)∧ is left Quillen. In particular, homotopy colimits of diagrams
in (C, S)∧ can be computed in the objectwise model categorySPr(C). On the con-
trary, homotopy limits in(C, S)∧ are not computed in the objectwise model structure;
moreover, the identity functor Id: (C, S)∧ −→ SP r(C) does not preserve homotopy
fibered products in general.
As explained in Section2.3.2 (before Corollary2.3.6), if (C, S) and (C′, S′) are

categories with distinguished subsets of morphisms (e.g., pseudo-model categories) and
f : C → C′ is a functor sendingS into S′, then we have a direct and inverse image
Quillen adjunction

f! : (C, S)∧ −→ (C, S′)∧, (C, S)∧ ←− (C′, S′)∧ : f ∗.

In particular, if (C, S, 
) is a pseudo-model category, we may consider the inclusions

(Cc, Sc) ⊂ (C, S), (Cf , Sf ) ⊂ (C, S), (Ccf , Scf) ⊂ (C, S).

As a consequence of Theorem2.3.5 (or by a direct check), we get

Proposition 4.1.5. Let (C, S, 
) be a pseudo-model category. The natural inclusions

ic : (C, S)c ↪→ (C, S), if : (C, S)f ↪→ (C, S), icf : (C, S)cf ↪→ (C, S),

induce right Quillen equivalences

i∗c : (C, S)∧ 
 ((C, S)c)∧, i∗f : (C, S)∧ 
 ((C, S)f )∧, i∗cf : (C, S)∧ 
 ((C, S)cf)∧.

These equivalences are furthermore compatible with derived simplicial Hom, in the
sense that there exist natural isomorphisms

Rw,cHom(R(ic)
∗(−),R(ic)

∗(−)) 
 Rw Hom(−,−),

Rw,f Hom(R(if )
∗(−),R(if )

∗(−)) 
 RwHom(−,−),

Rw,cf Hom(R(icf)
∗(−),R(icf)

∗(−)) 
 RwHom(−,−).
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4.2. The Yoneda embedding of a pseudo-model category

Let us fix a pseudo-model category(C, S, 
 : C → M). Throughout this subsection
we will also fix acofibrant resolution functor(� : M −→ M�, i) in the model category
M (see[Hi, 17.1.3, (1)]). This means that for any objectx ∈ M, �(x) is a co-simplicial
object inM, which is cofibrant for the Reedy model structure onM�, together with a
natural equivalencei(x) : �(x) −→ c∗(x), c∗(x) being the constant co-simplicial object
in M at x. Let us remark that when the model categoryM is simplicial, one can use
the standard cofibrant resolution functor�(x) := �∗ ⊗ Q(x), whereQ is a cofibrant
replacement functor inM.
We define the functorh : C −→ SP r(C), by sending eachx ∈ C to the simplicial

presheaf

hx : Mop −→ SSetU,

y 
→ HomM(�(y), x),

where, to be more explicit, the presheaf ofn-simplices ofhx is given by the formula

(hx)n(−) := HomM(�(−)n, x).

Note that for anyy ∈ M, �(y)n → y is an equivalence inM, thereforey ∈ C implies
that �(y) ∈ C� (sinceC is a pseudo-model category).
We warn the reader that the two functorsh and h from C to (C, S)∧ are different

and should not be confused. For anyx ∈ C, hx is a presheaf of discrete simplicial
sets (i.e. a presheaf of sets) whereashx is an actual simplicial presheaf. The natural
equivalencei(−) : �(−) −→ c∗(−) induces a morphism in(C, S)∧

hx = Hom(c∗(−), x) −→ Hom(�(−), x) = hx,

which is functorial inx ∈ M.
If, for a moment we denote byhC : C −→ (C, S)∧ and byhM : M −→ (M,W)∧ the

functor defined for the pseudo-model categories(C, S, 
) and (M,W, Id), respectively,
we have a commutative diagram

C




��

hC

�� (C, S)∧

M

hM

�� M∧


∗
��

where 
∗ is the restriction, right Quillen functor.
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Lemma 4.2.1.Both functorsh : C −→ SP r(C) and hC : C −→ (C, S)∧ preserves
fibrant objects and equivalences between them.

Proof. The statement forh : M −→ SP r(M) follows from the standard properties of
mapping spaces, see[Ho, Section 5.4]or [Hi, Proposition 18.1.3, Theorem 18.8.7]. The
statement forh : M −→ M∧ follows from the previous one and from[Hi, Theorem
18.8.7(2)]. Finally, the statements forh : C −→ SP r(C) and hC : C −→ (C, S)∧
follow from the previous ones forM and from the commutativity of diagram (red),
since 
∗ is right Quillen. �
Lemma4.2.1 enables us to define a right derived functor ofh as

Rh : S−1C −→ Ho((C, S)∧),
x 
→ (h◦R◦
)(x).

whereR denotes a fibrant replacement functor inM and we implicitly used the fact
that R
(x) is still in C for x ∈ C. Also note that, by definition of(C, S)∧, the functor
h : C −→ (C, S)∧ preserves equivalences, hence induces a functor Ho(h) : S−1C −→
Ho((C, S)∧).
The reader should notice that if(�′, i′) is another cofibrant resolution functor inM,

then the two derived functorRh and Rh′ obtained using, respectively,� and �′, are
naturally isomorphic. Therefore, our construction does not depend on the choice of�
once one moves to the homotopy category.

Lemma 4.2.2.The functorsHo(h) andRh from S−1C to Ho((C, S)∧) are canonically
isomorphic. More precisely, if R be a fibrant replacement functor in M, then the natural
equivalencei(−) : �(−) −→ c∗(−) induces, for any x ∈ C, an equivalence in(C, S)∧
(hence a fibrant replacement, by Lemma4.2.1)

hx = Hom(−, x) −→ Hom(�(−), R(x)) = hR(x).

Proof.
First we show that ifx is a fibrant and cofibrant object inC, then the natural

morphismhx −→ hx is an equivalence in((C, S)c)∧. To see this, letx −→ x∗ be a
simplicial resolution ofx in M, hence inC (see[Hi, 17.1.2]). We consider the following
two simplicial presheaves:

hx∗ : (Cc)op −→ SSetU,

y 
→ Hom(y, x∗),

hx∗ : (Cc)op −→ SSetU,

y 
→ diag(Hom(�(y), x∗)).
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The augmentation�(−) −→ c(−) and co-augmentationx −→ x∗ induce a commutative
diagram in((C, S)cf)∧

hx

a
��

b

��

hx

d

��

hx∗
c

�� hx∗

By the properties of mapping spaces (see[Ho, Section 5.4]), both morphismsc and
d are equivalences inSPr(Cc). Furthermore, the morphismhx −→ hx∗ is isomorphic
in Ho(SP r(Cc)) to the induced morphismhx −→ hocolim[n]∈�hxn . As each morphism
hx −→ hxn is an equivalence in((C, S)c)∧, this implies thatd is an equivalence
in ((C, S)c)∧. We deduce from this that also the natural morphismhx −→ hx is an
equivalence in((C, S)c)∧. Let us show how this implies that for anyx ∈ C, the natural
morphismhx −→ hRx is an equivalence in(C, S)∧.
Since for any equivalencez → z′ in C, the induced maphz → hz′ is an equivalence

in (C, S)∧ (see Remark2.3.4), it is enough to show that, for anyx ∈ C, the canonical
maphRx −→ hRx is an equivalence. By the Yoneda lemma for Ho((C, S)∧), it is enough
to show that the induced mapHomHo((C,S)∧)(hRx, F ) → HomHo((C,S)∧)(hRx, F ) is a
bijection for anyF ∈ Ho((C, S)∧). Now,

HomHo((C,S)∧)(G, F ) 
 �0(Rw Hom(G,F))

for any G and F in (C, S)∧, hence it is enough to show that we have an induced
equivalence of simplicial sets

Rw Hom(hRx, F )) 
 Rw Hom(hx, F ).

By the properties of mapping spaces (see[Ho, Section 5.4]), if Q denotes a cofibrant
replacement functor inM, the maphRx −→ hQRx is an equivalence in(C, S)∧; there-
fore, if we denote by(−)c th restriction toCc, we have an equivalence of simplicial
sets

Rw Hom((hRx, F )) 
 Rw,cHom((hQRx)c, Fc).

SinceQR(x) is fibrant and cofibrant, we have already proved that

Rw,cHom((hQRx)c, Fc) −→ Rw,cHom((hx)c, Fc)

is an equivalence of simplicial sets and we conclude sinceRw,cHom((hx)c, Fc)) 

Rw Hom(hx, F ) by Proposition4.1.5. �
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The main result of this subsection is the following theorem.

Theorem 4.2.3. If (C, S, 
 : C → M) is a pseudo-model category, the functorRh :
S−1C −→ Ho((C, S)∧) is fully faithful.

Proof. We will identify C as a full subcategory ofM andS−1C as a full subcategory
of Ho(M) using 
. For anyx andy in S−1C, lettingR be a fibrant replacement functor
in M, one has

HomS−1C(x, y) 
 �0(HomM(�(x), R(y))

since Ho(
) is fully faithful andHom(�(−), R(−)) is a homotopy mapping complex in
M (see[Ho, 5.4]). As (C, S, 
) is a pseudo-model category, we haveHomM(�(x)), R(y))

= Homc(�(x), R(y)). But, by definition of h and the enriched Yoneda lemma in
(C, S)∧, we have isomorphisms of simplicial sets

Homc(�(x), R(y)) 
 hR(y)(x) 
 Hom(C,S)∧(hx, hR(y)).

Now, hx is cofibrant in(C, S)∧ and, by Lemma4.2.1, hR(y) is fibrant in (C, S)∧, so
that

�0(Hom(C,S)∧(hx, hR(y))) 
 HomHo((C,S)∧)(hx, hR(y))

since (C, S)∧ is a simplicial model category. Finally, by Lemma4.2.2we have

HomHo((C,S)∧)(hx, hR(y)) 
 HomHo((C,S)∧)(Rhx,Rhy)

showing thatRh is fully faithful. �

Corollary 4.2.4. For any x ∈ C and anyF ∈ SP r(C), there is an isomorphism in
Ho(SSet)

Rw Hom(C,S)∧(hx, F ) 
 F(x).

Definition 4.2.5. For any pseudo-model category(C, S, 
) which is U-small, the fully
faithful embedding

Rh : Ho(C, S) −→ Ho((C, S)∧)

is called theYoneda embeddingof (C, S, 
).

Remark 4.2.6. 1. According to Definition4.2.5, the Yoneda embedding of a pseudo-
model category a priori depends on the embedding
 : C ↪→ M. However, it will be
shown in4.7.3 that it only depends on the pair(C, S).
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2. The Yoneda embedding for (pseudo-)model categories is one of the key ingredients
used in[To-Ve 2] to prove that, for a large class of Waldhausen categories, theK-theory
only depends on the Dwyer–Kan simplicial localization (though it is known to depend
on strictly more than the usual localization).

4.3. Model pre-topologies and pseudo-model sites

Definition 4.3.1. A model pre-topology� on aU-small pseudo-model category(C, S, 
),
is the datum for any objectx ∈ C, of a setCov�(x) of subsets of objects in Ho(C, S)/x,
called �-covering familiesof x, satisfying the following three conditions.
1. (Stability) For all x ∈ C and any isomorphismy → x in Ho(C, S), the one-element

set {y → x} is in Cov�(x).
2. (Composition) If {ui → x}i∈I ∈ Cov�(x), and for anyi ∈ I , {vij → ui}j∈Ji ∈ Cov−

�(ui), the family {vij → x}i∈I,j∈Ji is in Cov�(x).
3. (Homotopy base change) Assume the two previous conditions hold. For any{ui →

x}i∈I ∈ Cov�(x), and any morphism in Ho(C, S), y → x, the family {ui × h
xy →

y}i∈I is in Cov�(y).
A U-small pseudo-model category(C, S, 
) together with a model pre-topology� will
be called aU-small pseudo-model site.

Remark 4.3.2. 1. Note that in the third condition (Homotopy base-change) we used

the homotopy fibered product of diagramsx �� z y�� in Ho(M). By this

we mean the homotopy fibered product of a lift (up to equivalence) of this diagram to
M. This is a well-defined object in Ho(M) but only up to anon-canonicalisomorphism
in Ho(M) (in particular it is not functorially defined). However, condition(3) of the
previous definition still makes sense because we assumed the two previous conditions
(1) and (2) hold.
2. When the pseudo-model structure on(C, S) is trivial as in Remark4.1.2 2, a

model pre-topology on(C, S) is the same thing as a Grothendieck pre-topology on the
categoryC as defined in[SGA4-I, Exp. II]. Indeed, in this case we have a canonical
identification Ho(C, S) = C under which homotopy fibered products correspond to
fibered products.

Let (C, S, 
; �) be aU-small pseudo-model site and Ho(C, S) = S−1C the homotopy
category of(C, S). A sieveR in Ho(C, S) over an objectx ∈ Ho(C, S) will be called
a �-covering sieveif it contains a�-covering family.

Lemma 4.3.3. For any U-small pseudo-model site(C, S, 
; �), the �-covering sieves
form a Grothendieck topology onHo(C, S).

Proof. The stability and composition axioms of Definition4.3.1 clearly imply condi-
tions (i′) and (iii ′) of [M-M, Chapter III, Section 2, Definition 2]. It is also clear that
if u : y → x is any morphism in Ho(C, S), and if R is a sieve onx which contains
a �-covering family {ui → x}i∈I , then the pull-back sieveu∗(R) contains the family
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{ui × h
xy → y}i∈I . Therefore, the homotopy base change axiom of Definition4.3.1

implies condition (ii’) of [M-M, Chapter III, Section 2, Definition 2]. �
The previous lemma shows that any (U-small) pseudo-model site(C, S, 
 �) gives

rise to a (U-small) S-site (L(C, S), �), where L(C, S) is the Dwyer–Kan localization
of C with respect toS and� is the Grothendieck topology on Ho(L(C, S)) = Ho(C, S)

defined by�-covering sieves. We will say that theS-topology� on L(C, S) is generated
by the pre-topology� on (C, S).
Conversely, a topology on Ho(C, S) induces a model pre-topology on the pseudo-

model category(C, S, 
) in the following way. A subset of objects{ui → x}i∈I in
Ho(C, S)/x is defined to be a�-covering family if the sieve it generates is a covering
sieve (for the given topology on Ho(C, S)).

Lemma 4.3.4. Let (C, S, 
) be a U-small pseudo-model category and let� be a
Grothendieck topology onHo(C, S). Then, the �-covering families inHo(C, S) de-
fined above form a model pre-topology on(C, S, 
), called the inducedmodel pre-
topology.

Proof. Conditions (1) and (2) of Definition 4.3.1 are clearly satisfied and it only
remains to check condition(3). For this, let us recall that the homotopy fibered products
have the following semi-universal property in Ho(C, S). For any commutative diagram
in Ho(C, S)

x ��

��

y

��
z �� t,

there exists a morphismx → z × h
t y compatible with the two projections toz andy. Us-

ing this property one sees that for any subset of objects{ui → x}i∈I in Ho(C, S)/x, and
any morphismu : y → x, the sieve overy generated by the family{ui × h

xy → y}i∈I
coincides with the pull-back byu of the sieve generated by{ui → x}i∈I . Therefore,
the base change axiom(ii ′) of [M-M, Chapter III, Section 2, Definition 2]implies the
homotopy base change property(3) of Definition 4.3.1. �
Lemmas4.3.3and4.3.4show that model pre-topologies on a pseudo-model category

(C, S) are essentially the same as Grothendieck topologies on Ho(C, S), and therefore
the same thing asS-topologies on theS-category L(C, S). As in the usual case (i.e.
for the trivial model structure on(C, S)) the two above constructions are not exactly
mutually inverse but we have the following

Proposition 4.3.5. Let (C, S, 
) be a pseudo-model category. The rule assigning to a
model pre-topology� on (C, S, 
) the S-topology onL(C, S) generated by� and the
rule assigning to an S-topology onL(C, S) the induced model pre-topology on(C, S, 
),
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induce a bijection{
Saturated model

pre-topologies on(C, S, 
)

}
↔

{
S -topologies
on L(C, S)

}

where we call a model pretopology� saturated if any family of morphisms inHo(C, S)/x

that contains a�-covering family for x is again a�-covering family for x.

Proof. Straightforward from Lemma4.3.3 and 4.3.4. �

Example 4.3.6.1. Topological spaces.Let us take asC = M the model category of
U-topological spaces,Top, with S = W consisting of the usual weak equivalences.
We define a model pre-topology� in the following way. A family of morphism in
Ho(T op), {Xi → X}i∈I , I ∈ U, is defined to be inCov�(X) if the induced map∐

i∈I�0(Xi) −→ �0(X) is surjective. The reader will check easily that this defines a
topology onTop in the sense of Definition4.3.1.
2. Strong model pre-topologies forE∞-algebras over k. Let k be a commutative ring

(respectively, a field of characteristic zero) and letC = M := (E∞ − Algk)
op (resp.

C = M := (CDGA≤0; k)op) be the opposite model category ofE∞-algebras over the
category of (unbounded) complexes ofk-modules (resp., the opposite model category of
commutative and unital differential gradedk-algebras in negative degrees) which belong
to U; see for example[Bo-Gu, n] for a description of these model structures. Let� be
one of the usual topologies defined onk-schemes (e.g. Zariski, Nisnevich, étale, ffpf
or ffqc). Let us define thestrong topology�str on M in the sense of Definition4.3.1,
as follows. A family of morphisms in Ho(Mop), {B → Ai}i∈I , I ∈ U, is defined to be
in Cov�str(B) if it satisfies the two following conditions.
• The induced family of morphisms of affinek-schemes{SpecH 0(Ai)→SpecH 0(B)}i∈I

is a �-covering.
• For any i ∈ I , one hasH ∗(Ai) 
 H ∗(B) ⊗ H0(B)H

0(Ai).

In the case of negatively graded commutative differential graded algebras over a field
of characteristic zero, the strong étale topology(ét)str has been considered in[Be].
We will use these kind of model pre-topologies in[To-Ve 6] to give another approach
to the theory of DG-schemes of[ck1, Ci-Ka2] (or, more generally, to the theory of
E∞-schemes, when the base ring is not a field of characteristic zero) by viewing them
as geometric stacks over the category of complexes of k-modules.
3. Semi-strong model pre-topologies forE∞-algebras over k. With the same notations

as in the previous example, we define thesemi-strong topology�sstr onM by stipulating
that a family of morphisms in Ho(Mop), {B → Ai}i∈I , I ∈ U, is in Cov�sstr(B) if the
induced family of morphisms of affinek-schemes

{SpecH ∗(Ai) → SpecH ∗(B)}i∈I

is a �-covering.
4. TheT or�0 model pre-topology forE∞-algebras over k. Let k be a commutative

ring andC = M := (E∞ − Algk)
op be the opposite model category ofE∞-algebras
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over the category of (unbounded) complexes ofk-modules which belong toU. For any
E∞-algebraA, we denote by ModA the model category ofA-modules (see[Hin] or
[Sp]). We define thepositive Tor-dimensionpre-topology,T or�0, on M, as follows.
A family of morphisms in Ho(Mop), {fi : B → Ai}i∈I , I ∈ U, is defined to be in
CovT or�0(B) if it satisfies the two following conditions:
• For any i ∈ I , the derived base-change functorLf ∗

i = − ⊗ L
BAi : Ho(ModB) −→

Ho(ModAi
) preserves the subcategories ofpositive modules(i.e. of modulesP such

thatHi(P ) = 0 for any i�0).
• The family of derived base-change functors

{Lf ∗
i : Ho(ModB) −→ Ho(ModAi

)}i∈I

is conservative (i.e. a morphism in Ho(ModB) is an isomorphism if and only if, for
any i ∈ I , its image in Ho(ModAi

) is an isomorphism).
This positiveTor-dimension pre-topology is particularly relevant in interpretinghigher
tannakian duality([To1]) as a part of algebraic geometry over the category of un-
bounded complexes ofk-modules. We will come back on this in[To-Ve 6].

We fix a model pre-topology� on a pseudo-model category(C, S, 
) and consider
the pseudo-model site(C, S, 
; �). The induced Grothendieck topology on Ho(C, S)

described in the previous paragraphs will still be denoted by�.
Let F ∈ (C, S)∧ be a pre-stack on the pseudo-model site(C, S, 
; �), and letF →

RF be a fibrant replacement ofF in (C, S)∧. We may consider the presheaf of con-
nected components ofRF, defined as

�pr
0 (RF) : Cop −→ Set,

x 
→ �0(RF(x)).

Since any other fibrant model ofF in (C, S)∧ is actually objectwise equivalent to
RF, the presheaf�pr

0 (RF) is well-defined up to a unique isomorphism. This defines a
functor

�eq
0 : (C, S)∧ −→ Pr(C),

F 
→ �pr
0 (RF).

As RF is fibrant, it sends equivalences inC to equivalences of simplicial sets, hence the
presheaf�eq

0 (F ) always sends equivalences inC to isomorphisms, so it factors through
Ho(C, S)op. Again, this defines a functor

�eq
0 : (C, S)∧ −→ Pr(Ho(C, S)),

F 
→ �eq
0 (F ).

Finally, if F −→ G is an equivalence in(C, S)∧, the induced morphismRF −→ RG

is an objectwise equivalence, and therefore the induced morphism�eq
0 (F ) −→ �eq

0 (G)
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is an isomorphism of presheaves of sets. In other words, the functor�eq
0 factors through

the homotopy category Ho((C, S)∧) as

�eq
0 : Ho((C, S)∧) −→ Pr(Ho(C, S)).

Definition 4.3.7. Let (C, S, 
; �) be a pseudo-model site inU.
1. For any objectF ∈ (C, S)∧, the sheaf associated to the presheaf�eq

0 (F ) is denoted
by ��

0(F ) (or �0(F ) if the topology� is clear from the context). It is a usual sheaf on
the site(Ho(C, S), �), and is called thesheaf of connected componentsof F;
2. A morphismf : F −→ G in Ho((C, S)∧) is called a�-covering(or just acovering

if the topology � is clear from the context) if the induced morphism of presheaves
�eq
0 (F ) −→ �eq

0 (G) induces an epimorphism of sheaves on Ho(C, S) for the topology
�;
3. A morphismF −→ G in (C, S)∧ is called a�-covering (or just acovering if the

topology � is clear) if the induced morphism in Ho((C, S)∧) is a �-coveringaccording
to the previous definition.

Coverings in the model category(C, S)∧ behave exactly as coverings in the model
category of pre-stacks over anS-site (see Section3.1). It is easy to check (Proposition
3.1.4) that a morphismF −→ G between fibrant objects in(C, S)∧ is a �-covering iff
for any objectx ∈ C and any morphismhx −→ G in (C, S)∧, there exists a covering
family {ui → x}i∈I in C (meaning that its image in Ho(C, S) is a �-covering family),
and for eachi ∈ I , a commutative diagram in Ho((C, S)∧)

F �� G

hui
��

��

hx

��

Moreover, we have the following analog of Proposition3.1.6.

Proposition 4.3.8. Let (C, S, 
; �) be a pseudo-model site.
1. A morphism in SPr(T ) which is a composition of coverings is a covering.
2. Let

F ′
f ′

��

��

G′

��

F
f

�� G

be a homotopy cartesian diagram in(C, S)∧. If f is a covering then so isf ′.
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3. Let F
u

�� G
v

�� H be two morphisms in(C, S)∧. If the morphism
v◦u is a covering then so is v.

4. Let

F ′
f ′

��

��

G′

p

��

F
f

�� G

be a homotopy cartesian diagram in(C, S)∧. If p and f ′ are coverings then so
is f.

Proof. Easy exercise left to the reader.�

4.4. Simplicial objects and hypercovers

In this subsection we fix a pseudo-model site(C, S, 
; �) in U and keep the nota-
tions of Section3.2, with SPr(T ) replaced by(C, S)∧; more precisely we takeT =
L(Cop, Sop) (with the inducedS-topology, see Proposition4.3.5) and use Theorem
2.3.5 with M = SSet to have definitions and results of Section3.2 available for
(C, S)∧ = SSet

Cop,Sop

U .
We introduce a nice class of hypercovers that will be used in the proof of the

existence of the local model structure; this class will replace our distinguished set of
hypercoversH used in the proof of Theorem3.4.1.

Definition 4.4.1. 1. An object F ∈ (C, S)∧ is called pseudo-representableif it is a
U-small disjoint union of representable presheaves

F 

∐
u∈I

hu.

2. A morphism between pseudo-representable objects

f :
∐
u∈I

hu −→
∐
v∈J

hv

is called apseudo-fibrationif for all u ∈ I , the corresponding projection

f ∈
∏
u∈I

∐
v∈J

Hom(hu, hv) −→
∐
v∈J

Hom(hu, hv) 

∐
v∈J

Homc(u, v)

is represented by a fibration inC.
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Let

f :
∐
u∈I

hu −→
∐
v∈J

hv

be a morphism between pseudo-representable objects, and for anyv ∈ J let Iv be
the sub-set ofI of componentshu which are sent tohv. The morphism is called a
pseudo-coveringif for any v ∈ J , the family of morphisms

{hu → hv}u∈Iv

corresponds to a covering family in the pseudo-model site(C, S).
4. Let x be a fibrant object inC. A pseudo-representable hypercoverof x is an object

F∗ −→ hx in s(C, S)∧/hx such that for any integern�0 the induced morphism

Fn −→ F ��n

∗ ×
h��n
x

h�n

x

is a pseudo-fibration and a pseudo-covering between pseudo-representable objects.

The first thing to check is that pseudo-representable hypercovers are hypercovers.

Lemma 4.4.2.A pseudo-representable hypercoverF∗ −→ hx is a �-hypercover(see
Definition 3.2.3).

Proof. It is enough to check that the natural morphism

F ��n

∗ ×
h��n
x

h�n

x −→ FR��n

∗ × h

hR��n
x

hR�n

x

is an isomorphism in Ho((C, S)∧). But this follows from the fact thath preserves finite
limits (when they exists) and the fact that(C, S) is a pseudo-model category.�

4.5. Local equivalences

This subsection is completely analogous (actually a bit easier, because the notion of
comma site is completely harmless here) to Section3.3.
Let (C, S, 
; �) be aU-small pseudo-model site, andx be a fibrant object inC. The

comma category(C/x, S, 
) is then endowed with its natural structure of a pseudo-
model category. The underlying category isC/x, the category of objects overx. The
equivalencesS in C/x are simply the morphisms whose images inC are equivalences.
Finally, the embedding
 : C −→ M induces an embedding
 : C/x −→ M/
(x). The
comma categoryM/
(x) is endowed with its natural model category structure (see[Ho,
Section 1]). It is easy to check that(C/x, S, 
) is a pseudo-model category in the sense
of Definition 4.1.1.



342 B. Toën, G. Vezzosi /Advances in Mathematics 193 (2005) 257–372

We define a model pre-topology, still denoted by�, on the comma pseudo-model cat-
egory (C/x, S, 
) by declaring that a family{ui → y}i∈I of objects in Ho((C/x, S))/y

is a �-covering family if its image family under the natural functor Ho((C/x, S))/y −→
Ho((C, S))/y is a �-covering family fory. As the objectx is fibrant in (C, S) the for-
getful functor(C/x, S) −→ (C, S) preserves homotopy fibered products, and therefore
one checks immediately that this defines a model pre-topology� on (C/x, S, 
).

Definition 4.5.1. The pseudo-model site(C/x, S, 
; �) will be called thecomma pseudo-
model siteof (C, S, 
; �) over the (fibrant) objectx.

Remark 4.5.2. Note that in the case where(C, S, 
) is a right proper pseudo-model
category, the hypothesis thatx is fibrant is unnecessary.

For any objectx ∈ C, the evaluation functor

j∗
x : (C, S)∧ −→ SSetU,

F 
→ F(x)

has a left adjoint(jx)!. The adjunction

(jx)! : SSetU −→ (C, S)∧ SSetU ←− (C, S)∧ : j∗
x

is clearly a Quillen adjunction.
Let F ∈ (C, S)∧, x a fibrant object in(C, S) and s ∈ �eq

0 (F (x)) be represented by
a morphisms : hx −→ F in Ho((C, S)∧). By pulling-back this morphism through the
functor

Rj∗
x : Ho((C, S)∧) −→ Ho((C/x, S)∧)

one gets a morphism in Ho((C/x, S)∧)

s : Rj∗
x (hx) −→ Rj∗

x (F ).

By definition of the comma pseudo-model category(C/x, S), it is immediate that
Rj∗

x (hx) has a natural global point∗ −→ Rj∗
x (hx) in Ho((C/x, S)∧). Observe that the

morphism∗ −→ Rj∗
x (hx) can also be seen as induced by adjunction from the identity

of hx 
 L(jx)!(∗). We therefore obtain a global point

s : ∗ −→ Rj∗
x (hx) −→ Rj∗

x (F ).

Definition 4.5.3. 1. For an integern > 0, the sheaf�n(F, s) is defined to be

�n(F, s) := �0(Rj∗
x (F )R�n × Rj∗

x (F )R��n ∗).
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It is a usual sheaf on the site(Ho(C/x, S), �) called thenth homotopy sheafof F
pointed at s.
A morphismf : F −→ G in (C, S)∧ is called a�∗-equivalence(or equivalently a

local equivalence) if the following two conditions are satisfied:
1. The induced morphism�0(F ) −→ �0(G) is an isomorphism of sheaves on Ho(C, S);
2. For any fibrant objectx ∈ (C, S), any sections ∈ �eq

0 (F (x)) and any integern > 0,
the induced morphism�n(F, s) −→ �n(G, f (s)) is an isomorphism of sheaves on
Ho(C/x, S).

As observed in Section3.3, an equivalence in the model category(C, S)∧ is always
a �∗-equivalence, for any model pre-topology� on (C, S).
The �∗-equivalences in(C, S)∧ behave the same way as the�∗-equivalences in

SPr(T ) (see Section3.3). We will therefore state the following basic facts without
repeating their proofs.

Lemma 4.5.4.A morphismf : F −→ G in (C, S)∧ is a �∗-equivalence if and only if
for any n�0, the induced morphism

FR�n −→ FR��n × h

GR��nG
R�n

is a covering. In other words, f is a �∗-equivalence if and only if it is a�-hypercover
when considered as a morphism between constant simplicial objects in(C, S)∧.

Corollary 4.5.5. Let f : F −→ G be a morphism in(C, S)∧ and G′ −→ G be a
covering. Then, if the induced morphism

f ′ : F × h
GG′ −→ G′

is a �∗-equivalence, so is f.

Let f : F −→ G be a morphism in(C, S)∧. For any fibrant objectx ∈ (C, S) and
any morphisms : hx −→ G in Ho((C, S)∧), let us defineFs ∈ Ho(((C, S)/x)∧) via
the following homotopy cartesian square:

Rj∗
x (F )

Rj∗
x (f )

�� Rj∗
x (G)

Fs

��

�� ∗

��

where the morphism∗ −→ Rj∗
x (G) is adjoint to the morphisms : L(jx)!(∗)


 hx −→ G.
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Corollary 4.5.6. Let f : F −→ G be a morphism in(C, S)∧. With the same notations
as above, the morphism f is a�∗-equivalence if and only if for anys : hx −→ G in
Ho((C, S)∧), the induced morphismFs −→ ∗ is a �∗-equivalence inHo(((C, S)/x)∧).

Proposition 4.5.7. Let f : F −→ G be a�∗-equivalence in(C, S)∧ and F −→ F ′ be
an objectwise cofibration(i.e. a monomorphism). Then, the induced morphism

f ′ : F ′ −→ F ′ ∐
f

G′

is a �∗-equivalence.

Proof. As F −→ F ′ is an objectwise monomorphism,F ′∐
fG

′ is a homotopy co-
product inSPr(C), and therefore in(C, S)∧. One can therefore replaceF, G andF ′ by
their fibrant models in(C, S)∧ and suppose therefore that they preserve equivalences.
The proof is then the same as in[Ja1, Proposition 2.2]. �

4.6. The local model structure

The following result is completely similar to Theorem3.4.1, also as far as the proof is
concerned. Therefore we will omit to repeat the complete proof below, only mentioning
how to replace the setH used in the proof of Theorem3.4.1.

Theorem 4.6.1.Let (C, S, 
; �) be a pseudo-model site. There exists a closed model
structure on SPr(C), called the local projective model structure,for which the equiv-
alences are the�∗-equivalences and the cofibrations are the cofibrations for the pro-
jective model structure on(C, S)∧. Furthermore, the local projective model structure
is U-combinatorial and left proper.
The category SPr(C) together with its local projective model structure will be denoted

by (C, S)∼,�.

Proof. It is essentially the same as the proof of3.4.1. We will however give the set
of morphismH that one needs to use. We choose� to be aU-small cardinal which
is bigger than the cardinality of the set of morphisms inC and thanℵ0. Let � be a
U-small cardinal such that� > 2�.
For a fibrant objectx ∈ C, we consider a setH�(x), of representatives of the set of

isomorphism classes of objectsF∗ −→ hx in s(C, S)∧/hx satisfying the following two
conditions:
1. The morphismF∗ −→ hx is a pseudo-representable hypercover in the sense of

Definition 4.4.1.
2. For all n�0, one has Card(Fn) < �.
We setH = ∐

x∈CfH�(x), which is clearly aU-small set.
The main point of the proof is then to check that equivalences in the left Bousfield

localizationLH(C, S)∧ are exactly local equivalences. The argument follows exactly
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the main line of the proof of Theorem3.4.1 and we leave details to the interested
reader. �
The following corollaries and definitions are the same as the ones following Theorem

3.4.1.

Corollary 4.6.2. The model category(C, S)∼,� is the left Bousfield localization of
(C, S)∧ with respect to the set of morphisms

{|F∗| −→ hx |x ∈ Ob(Cf ), F∗ ∈ H�(x)}.

Proof. This is exactly the way we proved Theorem4.6.1. �

Corollary 4.6.3. An objectF ∈ (C, S)∼,� is fibrant if and only if it is objectwise fibrant,
preserves equivalences and satisfies the following hyperdescent condition:
– For any fibrant objectx ∈ C and anyH∗ ∈ H�(x), the natural morphism

F(x) 
 RwHom(hx, F ) −→ RwHom(|H∗|, F )

is an isomorphism inHo(SSet).

Proof. This follows from Corollary4.6.2 and from the explicit description of fibrant
objects in a left Bousfield localization (see[Hi, Theorem 4.1.1]). �

Remark 4.6.4.As we did in Remark3.4.6, we would like to stress here that the
proof of Theorem4.6.1(i.e. of Theorem3.4.1) proves actually both Theorem4.6.1and
Corollary 4.6.2, in that it givestwo descriptionsof the same model category(C, S)∼,�:
one as the left Bousfield localization of(C, S)∧ with respect tolocal equivalences
and the other as the left Bousfield localization of the same(C, S)∧ but this time with
respect tohypercovers(precisely, with respect to the set of morphisms defined in the
statement of Corollary4.6.2).

Definition 4.6.5. An objectF ∈ (C, S)∧ is said tohave hyperdescent(or �-hyperdescent
if the topology� has to be reminded) if for any fibrant objectx ∈ C and any pseudo-
representable hypercoverH∗ −→ hx , the induced morphism

F(x) 
 RwHom(hx, F ) −→ RwHom(|H∗|, F )

is an isomorphism in Ho(SSetU).

From now on, we will adopt the following terminology and notations.

Definition 4.6.6. Let (C, S, 
; �) be a pseudo-model site inU.
• A stackon (C, S, 
; �) is a pre-stackF ∈ (C, S)∧ that has�-hyperdescent (Definition

4.6.5).
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• The model category(C, S)∼,� is called themodel category of stackson the pseudo-
model site(C, S, 
; �). The category Ho((C, S)∧) (resp. Ho((C, S)∼,�)) is called the
homotopy category of pre-stacks(resp. thehomotopy category of stacks). Objects
of Ho((C, S)∧) (resp. Ho((C, S)∼,�)) will simply be calledpre-stackson (C, S, 
)
(resp.,stackson (C, S, 
; �)). The functora : Ho((C, S)∧) −→ Ho((C, S)∼,�) will be
called theassociated stack functor.

• The topology� is said to besub-canonicalif for any x ∈ C the pre-stackRhx ∈ Ho
((C, S)∧) is a stack (in other words if the Yoneda embeddingRhx : Ho(C, S) −→
Ho((C, S)∧) factors through the subcategory of stacks).

• For pre-stacksF andG on (C, S, 
; �), we will denote byRwHom(F,G) ∈ Ho(SSetU)

(resp. byRw,�Hom(F,G) ∈ Ho(SSetU)) the simplicial derivedHom-simplicial set
computed in the simplicial model category(C, S)∧ (resp.(C, S)∼,�).

As (C, S)∼,� is a left Bousfield localization of(C, S)∧, the identity functor
(C, S)∧ −→ (C, S)∼,� is left Quillen and its right adjoint (which is still the iden-
tity functor) induces by right derivation a fully faithful functor

j : Ho((C, S)∼,�) −→ Ho((C, S)∧).

Furthermore, the essential image of this inclusion functor is exactly the full subcategory
consisting of objects having the hyperdescent property. The left adjoint

a : Ho((C, S)∧) −→ Ho((C, S)∼,�)

to the inclusionj, is a left inverse toj.
We will finish this paragraph by the following proposition.

Proposition 4.6.7. 1. Let F and G be two pre-stacks on(C, S, 
; �). If G is a stack
then the natural morphism

Rw Hom(F,G) −→ Rw,� Hom(F,G)

is an isomorphism inHo(SSet).
2. The functorId : (C, S)∧ −→ (C, S)∼,� preserves homotopy fibered products.

Proof. Condition (1) follows formally from Corollary4.6.2 while (2) follows from
Corollary 4.5.5. �

4.7. Comparison between the S-theory and the pseudo-model theory

In this subsection, we fix a pseudo-model category(C, S, 
) in U, together with a
pre-topology� on it. The natural induced topology on Ho(C, S) will be denoted again
by �. We let T be L(C, S), the simplicial localization of(C, S) along the setS of
its equivalences. As Ho(T ) = Ho(C, S) (though the two Ho(−)’s here have different
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meanings), the topology� may also be considered as anS-topology onT. Therefore,
we have on one side a pseudo-model site(C, S, 
; �), and on the other side anS-site
(T , �), and we wish to compare the two corresponding model categories of stacks.

Theorem 4.7.1.The two model categories(C, S)∼,� and SPr�(T ) are Quillen equiva-
lent.

Proof. By Theorem2.3.5, the model categories of pre-stacksSPr(T ) and (C, S)∧
are Quillen equivalent. Furthermore, it is quite clear that through this equivalence the
notions of local equivalences inSPr(T ) and (C, S)∧ coincide. As the local model
structures are both left Bousfield localizations with respect to local equivalences, this
shows that this Quillen equivalence between(C, S)∧ and SPr(T ) induces a Quillen
equivalence on the model categories of stacks.�
Then, Corollaries3.6.2 and 3.8.5 imply the following

Corollary 4.7.2. 1. The model category(C, S)∼,� is a t-completeU-model topos.
2. The homotopy categoryHo((C, S)∼,�) is internal.
3. There exists an isomorphism of S-categories inHo(S − CatU)

LSP r�(T ) 
 L(C, S)∼,�.

Now we want to compare the two Yoneda embeddings (the simplicial one and the
pseudo-model one). To do this, let us suppose now that the topology� is sub-canonical
so that the two Yoneda embeddings factor through the embeddings of the homotopy
categories of stacks:

Rh : Ho(C, S) −→ Ho((C, S)∼,�),

Lh : Ho(T ) −→ Ho(Int (SP r�(T ))) 
 Ho(SP r�(T )).

One has Ho(C, S) = Ho(T ), and Corollary4.7.2 gives an equivalence of categories
between Ho(SP r�(T )) and Ho((C, S)∼,�).

Corollary 4.7.3. The following diagram commutes up to an isomorphism:

Ho(C, S)

∼
��

Rh

�� Ho((C, S)∼,�)

∼
��

Ho(T )
Lh

�� Ho(SP r�(T )).
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Proof. This follows from the fact that for anyx ∈ M, one has natural isomorphisms

[Rhx, F ]Ho((C,S)∼,�) 
 F(x) 
 [Lhx, F ]Ho(SP r�(T )).

This implies thatRhx andLhx are naturally isomorphic as objects in Ho((C, S)∧).�

4.8. Functoriality

In this subsection, we state and prove in detail the functoriality results and some
useful criteria for continuous morphisms and continuous equivalences between pseudo-
model sites, in such a way that the reader only interested in working with stacks over
pseudo-model sites will find here a more or less self-contained treatment. However, at
the end of the subsection and in occasionally scattered remarks, we will also mention
the comparison between functoriality on pseudo-model sites and the corresponding
functoriality on the associated Dwyer–Kan localizationS-sites.
Recall from Section4.1 (or Section2.3.2 before Corollary2.3.6) that if (C, S) and

(C′, S′) are categories with a distinguished subset of morphisms (e.g., pseudo-model
categories) andf : C → C′ is a functor sendingS into S′, we have a Quillen adjunction

f! : (C, S)∧ −→ (C, S′)∧, (C, S)∧ ←− (C′, S′)∧ : f ∗.

If (C, S, 
) is a pseudo-model category, by Proposition4.1.5, we have in particular the
following Quillen equivalences

i∗c : (C, S)∧ 
 ((C, S)c)∧, i∗f : (C, S)∧ 
 ((C, S)f )∧

i∗cf : (C, S)∧ 
 ((C, S)cf)∧,

which will be useful to establish functorial properties of the homotopy category
Ho((C, S)∧). Indeed, if f : (C, S) −→ (C′, S′) is a functor such thatf (Scf) ⊂ S′
(e.g. a left or right Quillen functor), thenf induces well-defined functors

Rf ∗ : Ho((C′, S′)∧) −→ Ho(((C, S)cf)∧) 
 Ho((C, S)∧),

Lf! : Ho((C, S)∧) 
 Ho(((C, S)cf)∧) −→ Ho((C′, S′)∧).

The (derived)inverse imagefunctorRf ∗ is clearly right adjoint to the (derived)direct
image functor Lf!.
The reader should be warned that the direct and inverse image functors are not, in

general, functorial inf. However, the following proposition ensures in many cases the
functoriality of these constructions.
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Proposition 4.8.1. Let (C, S), (C′, S′) and (C′′, S′′) be pseudo-model categories and

(C, S)
f

�� (C′, S′)
g

�� (C′′, S′′)

be two functors preserving fibrant or cofibrant objects and equivalences between them.
Then, there exist natural isomorphisms

R(g◦f )∗ 
 Rf ∗◦Rg∗ : Ho((C′′, S′′)∧) −→ Ho((C, S)∧),

L(g◦f )! 
 Lg!◦Lf! : Ho((C, S)∧) −→ Ho((C′′, S′′)∧).

These isomorphisms are furthermore associative and unital in the arguments f and g.

Proof. The proof is the same as that of the usual property of composition for derived
Quillen functors (see[Ho, Theorem 1.3.7]), and is left to the reader.�
Examples of pairs of functors to which the previous proposition applies are given

by pairs of right or left Quillen functors.

Proposition 4.8.2. If f : (C, S) −→ (C, S) is a (right or left) Quillen equivalence
between pseudo-model categories, then the induced functors

Lf! : Ho((C, S)∧) −→ Ho((C′, S′)∧) Ho((C, S)∧) ←− Ho((C′, S′)∧) : Rf ∗

are equivalences, quasi-inverse of each others.

Proof. This is a straightforward application of Corollary2.3.6. �
Let (C, S) and (C′, S′) be pseudo-model categories and let us consider a functor

f : C −→ C′ such thatf (Scf) ⊂ S′. We will denote byfcf : (C, S) −→ (C′, S′) the
composition

fcf : (C, S)
RQ

�� (C, S)cf
f

�� (C′, S′),

whereR (respectively,Q) denotes the fibrant (resp., cofibrant) replacement functor in
(C, S). We deduce an adjunction on the model categories of pre-stacks

(fcf)! : (C, S)∧ −→ (C′, S′)∧ (C, S)∧ ←− (C′, S′)∧ : f ∗
cf .

Note that the right derived functorRf ∗
cf is isomorphic to the functorRf ∗ defined

above.
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Proposition 4.8.3. Let (C, S; �) and (C′, S′; �′) be pseudo-model sites andf : C −→
C′ a functor such thatf (Scf) ⊂ S′. Then the following properties are equivalent:
1. The right derived functorRf ∗

cf 
 Rf ∗ : Ho((C′, S′)∧) → Ho((C, S)∧) sends the
subcategoryHo((C′, S′)∼,�′

) into the subcategoryHo((C, S)∼,�).
2. If F ∈ (C′, S′)∧ has �′-hyperdescent, then f ∗F ∈ SP r(C) has �-hyperdescent.
3. For any pseudo-representable hypercoverH∗ −→ hx in (C, S)∧ (see Definition

4.4.1), the morphism

L(fcf)!(H∗) −→ L(fcf)!(hx) 
 hfcf (x)

is a local equivalence in(C′, S′)∧.
4. The functorf ∗

cf : (C′, S′)∼,� −→ (C, S)∼,� is right Quillen.

Proof. The equivalence between(1)–(3) follows immediately from the fact that fibrant
objects in(C, S)∼,� (resp. in (C′, S′)∼,�) are exactly those fibrant objects in(C, S)∧
(resp. in(C′, S′)∧) which satisfy�-hyperdescent (resp.�′-hyperdescent) (see Corollary
4.6.3). Finally, (4) and (2) are equivalent by adjunction.�

Definition 4.8.4. Let (C, S; �) and (C′, S′; �′) be pseudo-model sites. A functorf :
C → C′ such thatf (Scf) ⊆ S′, is said to becontinuousor a morphism of pseudo-
model sites, if it satisfies one of the equivalent conditions of Proposition4.8.3.

Remark 4.8.5. By the comparison Theorem4.7.1, a functorf : (C, S; �) → (C′, S′; �′)
such thatf (Scf) ⊆ S′, is continuous if and only if the induced functor(L(C, S), �) 

(L(Ccf , Scf), �) → (L(C′, S′), �′) between the simplicially localized associatedS-sites
is continuous according to Definition3.5.1.

It is immediate to check that iff is a continuous functor, then the functor

Rf ∗ : Ho((C′, S′)∼,�′
) −→ Ho((C, S)∼,�)

has as left adjoint

L(f!)∼ 
 L(fcf !) : Ho((C, S)∼,�) −→ Ho((C′, S′)∼,�′
),

the functor defined by the formula

L(f!)∼(F ) := a(Lf!(F )),

for F ∈ Ho((C, S)∼,�) ⊂ Ho((C, S)∧), wherea : Ho((C, S)∧) → Ho((C, S)∼,�) is the
associated stack functor.
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The basic properties of the associated stack functora imply that the functoriality
result of Proposition4.8.1 still holds by replacing the model categories of pre-stacks
with the model categories of stacks, iff and g are continuous.
Now we define the obvious notion of continuous equivalence between pseudo-model

sites.

Definition 4.8.6. A continuous functorf : (C, S; �) → (C′, S′; �′) is said to be a
continuous equivalenceor an equivalence of pseudo-model sitesif the induced right
Quillen functorf ∗

cf : (C′, S′)∼,�′ → (C, S)∼,� is a Quillen equivalence.

The following criterion will be useful in the next section.

Proposition 4.8.7. Let (C, S; �) and (C′, S′; �′) be pseudo-model sites, f : C −→ C′ a
functor such thatf (Scf) ⊆ S′ and fcf : (C, S) −→ (C′, S′) the induced functor. Let us
denote by� (resp. by�′) the induced Grothendieck topology on the homotopy category
Ho(C, S) (resp.Ho(C′, S′)). Suppose that
1. The induced morphismLfcf : L(C, S) −→ L(C′, S′) between the Dwyer-Kan lo-
calizations is an equivalence of S-categories.

2. The functor

Ho(fcf) : Ho(C, S) −→ Ho(C′, S′)

reflects covering sieves(i.e., a sieve R overx ∈ Ho(C, S) is �-covering iff the sieve
generated byHo(fcf)(R) is a �′-covering sieve overfcf(x).

Then f is a continuous equivalence.

Proof. This follows easily from the comparison statement Theorem4.7.1 and from
Theorem2.3.1. �

4.9. A Giraud’s theorem for model topoi

In this section we prove a Giraud’s type theorem characterizing model topoi inter-
nally. Applied tot-complete model topoi, this will give an internal description of model
categories that are Quillen equivalent to some model category of stacks over anS-site.
We like to consider this result as an extension of Dugger characterization of combina-
torial model categories ([Du2]), and as a model category analog of J. Lurie’s theorem
characterizing∞-topoi (see[Lu, Theorem 2.4.1]). Using the strictification theorem of
Hirschowitz and Simpson (stated in Section 4.2 of[To-Ve 1]) it also gives a proof of
the Giraud’s theorem for Segal topoi conjectured in[To-Ve 1, Conjecture 5.1.1]. The
statement presented here is very close in spirit to the statement presented in[Re], with
some minor differences in that our conditions are weaker than[Re], and closer to the
original ones stated by Giraud (see[SGA4-I, Exp. IV, Theoreme 1.2]).
We start with some general definitions.

Definition 4.9.1. Let M be anyU-model category.
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The model category hasdisjoint homotopy coproductsif for any U-small family of
objects{xi}i∈I , and anyi �= j in I, the following square is homotopy cartesian:

∅ ��

��

xi

��

xj ��
L∐

i∈I
xi .

2. The homotopy colimits are stable under pullbacks in Mif for any morphism
y −→ z in M, such thatz is fibrant, and anyU-small diagramx∗ : I −→ M/z of
objects overz, the natural morphism

hocolim
i∈I (xi × h

z y) −→
(
hocolim

i∈I xi

)
× h

z y

is an isomorphism in Ho(M).
3. A Segal groupoid object in Mis a simplicial object

X∗ : �op −→ M,

such that
• for any n > 0, the natural morphism

Xn −→ X1 × h
X0

X1 × h
X0

. . . × h
X0

X1︸ ︷︷ ︸
n times

induced by then morphismssi : [1] −→ [n], defined assi(0) = i, si(1) = i + 1, is
an isomorphism in Ho(M).

• The morphism

d0 × d1 : X2 −→ X1 × h
d0,X0,d0

X1

is an equivalence in Ho(M).
4. We say thatSegal equivalences relation are homotopy effective in Mif for any

Segal groupoid objectX∗ in M with homotopy colimit

|X∗| := hocolim
n∈�

Xn,
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and anyn > 0, the natural morphism

Xn −→ X0 × h
|X∗|X0 × h

|X∗| . . . × h
|X∗|X0︸ ︷︷ ︸

n times

induced by then distinct morphisms[0] → [n], is an isomorphism in Ho(M).

We are now ready to state our version of Giraud’s theorem for model topoi.

Theorem 4.9.2.Let M be aU-combinatorial model category(see DefinitionA.2.1).
Then, M is a U-model topos if and only if it satisfies the following conditions:
1. M has disjoint homotopy coproducts.
2. Homotopy colimits in M are stable under homotopy pullbacks.
3. Segal equivalence relations are homotopy effective in M.

Proof. The fact that the conditions are satisfied in any model topos follows easily
from the well known fact that they are satisfied in the model categorySSet. The hard
point is to prove they are sufficient conditions.
Let M be aU-model category satisfying the conditions of the theorem.
We chose a regular cardinal� as in the proof of[Du2, Proposition 3.2], and let

C := M� be aU-small full sub-category ofM consisting of a set of representatives
of �-small objects inM. By increasing� if necessary, one can assume that the full
sub-categoryC of M is U-small, and is stable under fibered products inM and under
the fibrant and cofibrant replacement functors (let us suppose these are fixed once for
all). By this last condition we mean that for any morphismx → y in C, the functorial
factorizationsx → x′ → y are again inC. Let �∗ and �∗ be fibrant and cofibrant
resolution functors onM [Hi, Chapter 16]. We can also assume thatC is stable by
�∗ and�∗ (i.e. that for anyx ∈ C and any[n] ∈ �, �n(x) and�n(x) belong toC).
We note thatC is not strictly speaking a pseudo-model category but will behave pretty
much the same way.
We consider the functor

hC : M −→ SP r(C),

sending an objectx ∈ M to the simplicial presheaf

hC
x : Cop −→ SSetU,

y 
−→ Hom(�∗(y), x).

The functorh has a left adjoint

L : SP r(C) −→ M,
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sending aU-simplicial presheafF to its geometric realization with respect to�. By the
standard properties of mapping spaces, one sees that for any fibrant objectx ∈ M the
simplicial presheafhC

x is fibrant in the model category of restricted diagrams(C,W)∧.
This, and the general properties of left Bousfield localizations imply that the pair
(hC, L) defines a Quillen adjunction

L : (C,W)∧ −→ M, (C,W)∧ ←− M : hC.

Lemma 4.9.3.The right derived functor

RhC : Ho(M) −→ Ho((C,W)∧)

is fully faithful.

Proof. By the choice ofC, any objectx ∈ M is a �-filtered colimit x 
 colimi∈I xi
of objectsxi ∈ C. As all objects inC are �-small, this implies that

Rhcx 
 hocolim
i∈I RhC

xi
.

From this, one sees that to prove thatRhC is fully faithful, it is enough to prove it
is fully faithful when restricted to objects ofC. This last case can be treated exactly
as in the proof of our Yoneda Lemma4.2.3. �
By the previous lemma and by Proposition 3.2 of[Du2], we can conclude that there

is a U-small set of morphismsS in (C,W)∧ such that the above adjunction induces a
Quillen equivalence

L : LS(C,W)∧ −→ M, LS(C,W)∧ ←− M : hC.

By Corollary 3.8.5(2), it only remains to show that the left Bousfield localization of
(C,W)∧ alongS is exact, or equivalently that the functorLL commutes with homotopy
pull backs.
We start by the following particular case. Letc ∈ C and hc be the presheaf repre-

sented byc. One can seehc as an object in(C,W)∧ by considering it as a presheaf
of discrete simplicial sets. LetF −→ hc andG −→ hc be two morphisms in(C,W)∧.

Lemma 4.9.4.The natural morphism

LL(F × h
hc
G) −→ LL(F) × h

LL(hc)
LL(G)

is an isomorphism inHo(M).

Proof. Up to an equivalence, we can writeF as a homotopy colimit hocolimi∈I hxi

for somexi ∈ C. As homotopy pull-backs commutes with homotopy colimits this shows
that one can supposeF andG of the form ha and hb, for a and b two objects inC.
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Now, as in Lemma4.2.2, one checks thathx and Rhcx are naturally isomorphic in
Ho((C,W)∧). For this, we easily deduce that the natural morphism

ha × h
hc
hb −→ ha×h

cb
,

is an equivalence in(C,W)∧ (hereha×h
cb

can be seen as an object ofC because of
our stability assumptions). Therefore, to prove the lemma it is enough to check that
for any x ∈ C the natural morphismhx −→ hC(x) induces by adjunction a morphism
L(hx) −→ x which is an equivalence inM. But, ashx is always a cofibrant object in
(C,W)∧, one has

L(hx) 
 LL(hx) 
 LL(hcx) 
 x

by Lemma4.9.3. �
Let

∐
i∈I hci be a coproduct withci ∈ C, and

F −→
∐
i∈I

hci ←− G

be two morphisms in(C,W)∧.

Lemma 4.9.5.The natural morphism

LL
(
F × h∐

i∈I hci
G
)

−→ LL(F) × h

LL

(∐
i∈I

hci

)LL(G)

is an isomorphism inHo(M).

Proof. As for Lemma4.9.4, one can reduce to the case whereF andG are of the
form ha andhb. Lemma4.9.5will then follows easily from our assumption(1) on M.
�
We are now ready to treat the general case.

Lemma 4.9.6.The functorLL preserves homotopy pull-backs.

Proof. Let F �� H G�� be two morphisms in(C,W)∧. One can, as

for lemma4.9.4suppose thatF andG are of the formha andhb. We can also suppose
that H is fibrant in (C,W)∧.
We let

∐
ihxi −→ H be an epimorphism of simplicial presheaves withxi ∈ C, and

we replace it by an equivalent fibrationp : X0 −→ H . We setX∗ the nerve ofp,
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which is the simplicial object of(C,W)∧ given by

Xn := X0 × HX0 × H . . . × HX0︸ ︷︷ ︸
n times

,

and for which faces and degeneracies are given by the various projections and gen-
eralized diagonals. Asp is a fibration between fibrant objects one sees thatX∗ is a
Segal groupoid object in(C,W)∧. Furthermore, asp is homotopically surjective (as a
morphism of simplicial presheaves), the natural morphism

|X∗| −→ H

is an equivalence in(C,W)∧. Finally, asX0 is equivalent to
∐

ihxi , Lemma4.9.5
implies thatLL(X∗) is a Segal groupoid object inM, and one has|LL(X∗)| 
 LL(H)

as L is left Quillen. Assumption(3) on M implies that

LL(X0 × h
HX0) 
 LL(X1) 
 LL(X0) × h

LL(H)LL(X0).

To finish the proof of Lemma4.9.6 it is then enough to notice that sinceX0 −→ H is
surjective up to homotopy, the morphismsha, hb −→ H can be lifted up to homotopy
to morphisms toX0 (because they correspond to elements inH(a) and H(b)), and
therefore

ha × h
Hhb 
 ha × h

X0
(X0 × h

HX0) × h
Hhb.

One can then apply Lemma4.9.5. �
Theorem4.9.2 is proven. �
The following corollary is an internal classification oft-complete model topoi.

Corollary 4.9.7. Let M be aU-combinatorial model category. Then the following are
equivalent.
1. The model category M satisfies the conditions ofTheorem4.9.2and is furthermore
t-complete.

2. There exists aU-small S-site(T , �) such that M is Quillen equivalent to SPr�(T ).

Proof. Conditions (1) and (2) follow from Theorem4.9.2combined with our Theorem
3.8.3. �
From the proof of Theorem4.9.2 one also extracts the following consequence.

Corollary 4.9.8. Let M be aU-combinatorial model category. Then the following are
equivalent:
1. The model category M satisfies the conditions of Theorem4.9.2and is furthermore
t-complete.
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2. There exists aU-model category N, and aU-small full subcategory of cofibrant
objectC ⊂ Nc, and a topology� onHo(C) := (W ∩ C)−1C, such that M is Quillen
equivalent to(C,W)∼,�. Furthermore, the natural functorHo(C) −→ Ho(N) is
fully faithful and its image is stable under homotopy pull backs.

This last corollary states thatM is Quillen equivalent to the model category of stacks
over something which is “almost” a pseudo-model site. However, the sub-categoryC
produced during the proof of Theorem4.9.2 is not a pseudo-model site as it is not
stable by equivalences inN. On the other hand, one can show that the closureC of C
by equivalences inN is a pseudo-model site, and that the natural morphismLC −→ LC

is an equivalence ofS-categories.

Corollary 4.9.9. If M is a U-model topos(resp. a t-completeU-model topos) then so
is M/x for any fibrant objectx ∈ M.

Proof. Indeed, ifM is a U-combinatorial model category satisfying the conditions
of Theorem4.9.2 then so doesM/x for any fibrant objectx. Furthermore, one can
check that for anyS-site (T , �), and any objectF the model categorySPr�(T )/F is
t-complete. This implies that ifM is furthermoret-complete then so isM/x. �

Corollary 4.9.10. 1. AnyU-model topos M is Quillen equivalent to a left proper model
category for which avery object is cofibrant and which is furthermore internal(i.e. is
a symmetric monoidal model category for the direct product moniodal structure).
2. For anyU-model topos M and any fibrant objectx ∈ M, the categoryHo(M/x)

is cartesian closed.

Proof. It is enough to check this forM = LSSP r(T ), for someU-smallS-categoryT
and some U-small set of morphismsS in SPr(T ) such that Id : SP r(T )

−→ LSSP r(T ) preserves homotopy fiber products. We can also replace the projec-
tive model structureSPr(T ) by the injective oneSPrinj (T ) (see Proposition3.6.1),
and therefore can supposeM of the formLSSP rinj (T ), again withId : SP rinj (T ) −
→ LSSP rinj (T ) preserving homotopy fiber products. We know thatSPrinj (T ) is an
internal model category in which every object is cofibrant, and from this one easily
deduces that the same is true for the exact localizationLSSP rinj (T ).
Condition (2) follows from (1) and Corollary4.9.9. �

5. Étale K-theory of commutative S-algebras

In this section we apply the theory of stacks over pseudo-model sites developed in the
previous section to the problem of defining a notion of étaleK-theory of a commutative
S-algebra i.e. of a commutative monoid in Elmendorf–Kriz–Mandell-May’s category of
S-modules (see[EKMM] ). The idea is very simple. We only need two ingredients: the
first is a notion of anétale topologyon the model category(AlgS) of commutativeS-
algebras and the second is the corresponding model category ofétale stackson (AlgS).
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Then, in analogy with the classical situation (see[Ja1, Section 3]), étale K-theorywill be
just defined as a fibrant replacement of algebraicK-theory in the category of étale stacks
over (AlgS). The first ingredient is introduced in Section5.2 as a natural generalization
of the conditions defining étale coverings in Algebraic Geometry; the second ingredient
is contained in the general theory developed in Section4. We also study some basic
properties of this étaleK-theory and suggest some further lines of investigation.
A remark on the choice of our setting forcommutative ring spectrais in order.

Although we choosed to build everything in this Section starting from[EKMM] ’s cat-
egoryMS of S-modules, completely analogous constructions and results continue to
hold if one replaces from the very beginningMS with any other model for spec-
tra having a well behaved smash product. Therefore, the reader could replaceMS

with Hovey–Shipley–Smith’s categorySp� of symmetric spectra (see[HSS]) or with
Lydakis’ categorySF of simplicial functors (see[Ly] ), with no essential changes.
Moreover, one could also apply the constructions we give below for commutativeS-

algebras, to the category ofE∞-algebras over any symmetric monoidal model category
of the type considered by Markus Spitzweck in[Sp, Section 8, 9]. In particular, one
can repeat with almost no changes what is in this Section starting from Spitzweck’s
generalization ofS-modules as presented in[Sp, Section 9].
The problem of defining an étaleK-theory of ring spectra was suggested to us

by Paul-Arne Ostvær and what we give below is a possible answer to his question.
We were very delighted by the question since it looks as a particularly good test of
applicability of our theory. For other applications of the theory developed in this paper
to moduli spaces in algebraic topology we refer the reader to[To-Ve 3].

5.1. S-modules,S-algebras and their algebraic K-theory

The basic reference for what follows is[EKMM] . We fix two universesU and V

with U ∈ V. These universes are, as everywhere else in this paper, to be understood
in the sense of[SGA4-I, Exp. I, Appendice]andnot in the sense of[EKMM, 1.1].

Definition 5.1.1.• We will denote byMS the category ofS-modules in the sense of
[EKMM, II, Definition 1.1] which belong toU.

• AlgS will denote the category of commutativeS-algebras inU, i.e. the category
of commutative monoids inMS. Its opposite category will be denoted by AffS.
Following the standard usage in algebraic geometry, an objectA in AlgS, will be
formally denoted by SpecA when considered as an object in AffS.

• If A is a commutativeS-algebra,MA will denote the category ofA-modules belong-
ing to U and AlgA the category of commutativeA-algebras belonging toU (i.e. the
comma categoryA/AlgS of objects in AlgS underA or equivalently the category
of commutative monoids inMA).

• We denote by Algconn, S the full subcategory of AlgS consisting ofconnective al-
gebras; its opposite category will be denoted by Affconn, S. If A is a (connective)
algebra, we denote by Algconn, A the full subcategory of AlgA consisting of connec-
tive A-algebras; its opposite category will be denoted by Affconn, A.
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Recall thatMA is a topologically enriched, tensored and cotensored over the category
(Top) of topological spaces inU, left properU-cofibrantly generatedV-small model
category where equivalences are morphisms inducing equivalences on the underlying
spectra (i.e. equivalences are created by the forgetful functorMA → S, whereS
denotes the category of spectra[EKMM, I and VII, Theorem 4.6]belonging toU)
and cofibrations are retracts of relative cellA-modules [EKMM, III, Definition 2.1
(i), (ii); VII, Theorem 4.15]. Note that since the realization functor| − | : SSet →
Top is monoidal, we can also viewMS and MA as tensored and cotensored over
SSet.
Moreover, a crucial property ofMS andMA, for any commutativeS-algebraA, is

that they admit a refinement of the usual “up to homotopy” smash product of spectra
giving them the structure of (topologically enriched, tensored and cotensored over the
category (Top) of topological spaces or overSSet) symmetric monoidal model categories
[EKMM, III, Theorem 7.1].
Finally, both AlgS and AlgA for any commutativeS-algebra A are topo-

logically or simplicially tensored and cotensored model categories[EKMM, VII,
Corollary 4.10].

Proposition 5.1.2. Let 
 : Algconn, S ↪→ AlgS be the full subcategory of connective al-
gebras andW| the set of equivalences inAlgconn, S. Then(Aff conn, S = (Algconn, S)op,

W
op
| , 
op) is a V-small pseudo-model category(see Definition4.1.1).

Proof. The only nontrivial property to check is stability of(Algconn, S)op under
homotopy pullbacks, i.e. stability of Algconn, S under homotopy push-outs in AlgS. Let
B ← A → C be a diagram in Algconn, S; by Spitzweck[Sp, p. 41, after Lemma 9.14],

there is an isomorphismB ∧ L
AC 
 B

∐ h
AC in Ho(MA), where the left hand side is

the derived smash product overA while the right hand side is the homotopy pushout
in AlgA. Therefore it is enough to know that for any connectiveA-modulesM andN,
one has�i (M ∧ L

AN) ≡ TorAi (M,N) = 0 if i < 0; but this is exactly[EKMM, Chapter
IV, Proposition 1.2 (i)]. �
For any commutativeS-algebraA, the smash product− ∧ A− on MA induces (by

derivation) on the homotopy category Ho(MA) the structure of a closed symmetric
monoidal category[EKMM, III, Theorem 7.1]. One can therefore define the notion of
strongly dualizable objectsin Ho(MA) (as in [EKMM, Section III.7, (7.8)]). The full
subcategory of the categoryMc

A of cofibrant objects inMA, consisting of strongly
dualizable objects will be denoted byMsd

A , and will be endowed with the induced
classes of cofibrations and equivalences coming fromMA. It is not difficult to check
that with this structure,Msd

A is then a Waldhausen category (see[EKMM, Section
VI] ). Furthermore, ifA −→ B is a morphism of commutativeS-algebras, then the
base change functor

f ∗ := B ∧ A(−) : Msd
A −→ Msd

B ,
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being the restriction of a left Quillen functor, preserves equivalences and cofibrations.
This makes the lax functor

Msd− : Aff S −→ CatV,

SpecA 
→ Msd
A ,

(Specf : SpecB → SpecA) 
→ f ∗

into a lax presheaf of WaldhausenV-small categories. Applying standard strictification
techniques (e.g.[May1, Theorem 3.4]) and then taking the simplicial set (denoted by
|wS•Msd

A | in [Wa]) whose�-spectrum is the WaldhausenK-theory space, we deduce
a presheaf ofV-simplicial sets ofK-theory

K(−) : Aff S −→ SSetV,

SpecA 
→ K(Msd
A ).

The restriction of the simplicial presheafK to the full subcategory AffconnS of connective
affine objects will be denoted by

K|(−) : Aff connS −→ SSetV.

Following Section 4.1, we denote by Aff∧
S (resp. by AffconnS )∧) the model category

of pre-stacks over theV-small pseudo-model categories AffS (resp. AffconnS ).

Definition 5.1.3. The presheafK (respectively, the presheafK|) will be considered as
an object in Aff∧S (resp. in (AffconnS )∧) and will be called thepresheaf of algebraic K-
theory over the symmetric monoidal model categoryMS (resp. therestricted presheaf
of algebraic K-theory over the categoryMconn

S of connectiveS-modules). For any
SpecA ∈ Aff S, we will write

K(A) := K(SpecA).

Remark 5.1.4. 1. Note that we adopted here a slightly different definition of the al-
gebraicK-theory spaceK(A) as compared to[EKMM, VI, Definition 3.2]. In fact our
Waldhausen categoryMsd

A (of strongly dualizable objects) contains[EKMM] category
fCA of finite cell A-modules[EKMM, III, Definition 2.1] as a full subcategory; this
follows from [EKMM, III, Theorem 7.9]. The Waldhausen structure onfCA [EKMM,
VI, Section 3] is however different from the one induced (via the just mentioned fully
faithful embedding) by the Waldhausen structure we use onMsd

A : the cofibrations in
fCA are fewer. However, the same arguments used in[EKMM, p. 113] after Propo-
sition 3.5, shows that the two definitions give isomorphicKi groups for i > 0 while
not, in general, fori = 0. One should think of objects infCA as free moduleswhile
objects inMsd

A should be considered asprojective modules.
2. Given any commutativeS-algebraA, instead of considering the simplicial set

K(A) = |wS•Msd
A | whose�-spectrum is the WaldhausenK-theory spectrum of the
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Waldhausen categoryMsd
A , we could as well have taken this spectrum itself and have

defined aspectra-, or better anS-modules-valued presheafon AffS. SinceS-modules
forms a nice simplicial model category, a careful inspection shows that all the con-
structions we made in the previous section still make sense if we replace from the very
beginning the model category of simplicial presheaves (i.e. of contravariant functors
from the source pseudo-model category to simplicial sets inV) with the model category
of MS-valued presheaves (i.e. of contravariant functors from the source pseudo-model
category to the simplicial model category ofS-modules). This leads naturally to a
theory ofprestacksor, given a topology on the source pseudo-model or simplicial cat-
egory, to a theory ofstacks inS-modules(or in any other equivalent good category of
spectra).
3. The objectsK andK| are in fact underlying simplicial presheaves of presheaves

of ring spectra, which encodes the ring structure on theK-theory spaces. We leave to
the reader the details of this construction.
4. A similar construction as the one given above, also yields aK-theory presheaf on

the category ofE∞-algebras in a general symmetric monoidal model categoryM. It
could be interesting to investigate further the output of this construction whenM is
one of themotivic categories considered in[Sp, 14.8].

Definition 5.1.5. Let � (resp.�′) be a model pretopology on the model category AffS

(resp. on the pseudo-model category Affconn
S ), as in Definition4.3.1, and let Aff∼,�

S

(resp.(Aff connS )∼,�′
) the associated model category of stacks (Theorem4.6.1). Let K −

→ K� (resp.K| −→ K|�′ ) be a fibrant replacement ofK (resp. ofK|) in Aff ∼,�
S

(resp. in (Aff connS )∼,�′
). The K�-theory spaceof a commutativeS-algebraA (resp.

the restrictedK�′ -theory spaceof a commutative connectiveS-algebraA) is defined
as K�(A) := K�(SpecA) (resp. asK|�′(A) := K|�′(SpecA)). The natural morphism
K −→ K� (resp.K| −→ K|�′ ) induces a natural augmentation (localization morphism)
K(A) −→ K�(A) (resp.K|(A) −→ K|�′(A)).

Remark 5.1.6. Though we will not give all the details here, one can define also an
algebraicK-theory andK�-theory space ofany stackX ∈ Aff ∼,�

S . The only new in-
gredient with respect to the above definitions is the notion of1-Segal stackPerfX of
perfect modules over X, that replacesMsd

A in the definition above. This notion is de-
fined and studied in the forthcoming paper[To-Ve 6]. Of course, a similar construction
is also available for the restrictedK-theory.

5.2. The étale topology on commutativeS-algebras

In this section we define an analog of the étale topology in the category of commu-
tative S-algebras, by extending homotopically to these objects the notions offormally
étalemorphism and of morphismof finite presentation.
The notion of formally étale morphisms we will use has been previously considered

by Rognes[Ro] and by McCarthy[MCM] and Minasian[Min] .
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We start with the following straightforward homotopical variation of the algebraic
notion of finitely presented morphism between commutative rings (cf.[EGAI, Chapter
0, Proposition 6.3.11]).

Definition 5.2.1. A morphism f : A → B in Ho(AlgS) will be said to beof finite
presentationif for any filtered direct diagramC : J → AlgA, the natural map

hocolim
j∈J MapAlgA

(B,Cj ) −→ MapAlgA

(
B,hocolim

j∈J Cj

)

is an equivalence of simplicial sets. Here MapAlgA
(−,−) denotes the mapping space

in the model category AlgA.

Remark 5.2.2. 1. It is immediate to check that the condition for MapAlgA
(−,−) of

commuting (up to equivalences) withhocolim is invariant under equivalences. Hence
the definition of finitely presented is well posed for a map in the homotopy category
Ho(AlgS).
2. Since any commutativeA-algebra can be written as a colimit of finite CWA-

algebras, it is not difficult to show thatA → B is of finite presentation if and only if
B is a retract of a finite CWA-algebra. However, we will not use this characterization
in the rest of this section.

We refer to[Ba] for the definition and basic properties of topological André–Quillen
cohomology of commutativeS-algebras. Recall[Ba, Definition 4.1] that if A → B is
a map of commutativeS-algebras, andM a B-module, thetopological André-Quillen
cohomologyof B relative toA with coefficient inM is defined as

TAQ∗(B|A,M) := �−∗FB(�B|A,M) = Ext∗B(�B|A,M),

where�B|A := LQRI (B ∧ L
AB), Q being themodule of indecomposablesfunctor [Ba,

Section 3] and I the augmentation idealfunctor [Ba, Section 2]. We call �B|A the
topological cotangent complexof B over A. In complete analogy to the (discrete)
algebraic situation where a morphism of commutative rings is formally étale if the
cotangent complex is homologically trivial (or equivalently has vanishing André–Quillen
cohomology), we give the following (compare, on the algebro-geometric side, with[Ill,
Chapter III, Proposition 3.1.1])

Definition 5.2.3.• A morphismf : A → B in Ho(AlgS) will be said to beformally
étale if the associated topological cotangent complex�B|A is weakly contractible.

• A morphismf : A → B Ho(AlgS) is étale if it is of finite presentation and formally
étale. A morphism SpecB → SpecA in Ho(Aff S) is étale if the mapA → B in
Ho(AlgS) inducing it, is étale.
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Remark 5.2.4. 1. Note that if A′ → B ′ and A′′ → B ′′ are morphisms in AlgS,
projecting to isomorphic maps in Ho(AlgS), then�B ′|A′ and�B ′′|A′′ are isomorphic in
the homotopy category ofS-modules. Therefore, the condition given above of being
formally étale is well-defined for a map in Ho(AlgS).
2. THH-étale morphisms.If A is a commutativeS-algebra,B a commutativeA-

algebra, we recall that AlgA is tensored and cotensored over Top or equivalently over
SSet; therefore it makes sense to consider the objectS1 ⊗ LB in Ho(AlgA), where the
derived tensor product is performed in AlgA. By a result of McClure, Schwänzl and Vogt
(see[EKMM, IX, Theorem 3.3]), S1 ⊗ LB is isomorphic to THHA(B;B) ≡ THH(B|A)

in Ho(AlgA) and is therefore a model fortopological Hochschild homologyas defined
e.g in [EKMM, IX.1] . Moreover, note that any choice of a point∗ → S1 gives to
S1 ⊗ LB a canonical structure ofA-algebra.
A mapA → B of commutativeS-algebras, will be calledformally THH-étale if the

canonical mapB → S1 ⊗ LB is an isomorphism in Ho(AlgA); consequently, a map
A → B of commutativeS-algebras, will be called THH-étale if it is formally THH-
étale and of finite presentation. As shown by Minasian[Min] THH-étale morphisms
are in particular étale.
3. It is easy to see that a morphism of commutativeS-algebrasA → B is formally

THH-étale if and only ifB is a co-discreteobject in the model category AlgA i.e.,
if for any C ∈ AlgA the mapping space MapAlgA

(B,C) is a discrete (i.e. 0-truncated)
simplicial set. From this description, one can produce examples of étale morphisms
of S-algebras which are not THH-étale. The following example was communicated
to us by Michael Mandell. LetA = HFp = K(Fp,0) (H denotes the Eilenberg-
Mac LaneS-module functor, see[EKMM, IV, Section 2]), and perform the following
construction. Start withF1(A), the free commutativeA-algebra on a cell in degree−1.
In �−1(F1(A)) there is a fundamental class but also lots of other linearly independent
elements as for example the FrobeniusF. We letB to be theA-algebra defined by the
following homotopy co-cartesian square:

F1(A)
1−F

��

��

F1A

��

A �� B.

The morphism 1− F being étale, we have thatB is an étaleA-algebra. However, one
has�1(MapAlgA(B,A)) 
 Z/p �= 0, and thereforeA −→ B is not THH-étale (because
MapAlgA(B,A) is not 0-truncated).

Proposition 5.2.5. If C ← A → B is a diagram inHo(AlgS) and A → B is étale,
then the homotopy co-base change mapC → B

∐ h
AC is again étale.

Proof. The co-base change invariance of the finite presentation property is easy and
left to the reader. The co-base change invariance of the formally étale property follows
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at once from[Sp, p. 41, after Lemma 9.14]and the “flat base change” formula for the
cotangent complex[Ba, Proposition 4.6]

�B∧L
AC|C 
 �B|A ∧ AC.

As an immediate consequence we get the following corollary.�

Corollary 5.2.6. Let A be a commutativeS-algebra. The subcategoryAff étA of Aff A
consisting of étale mapsSpecB → SpecA, is a pseudo-model category.

For any (discrete) commutative ringR, we denote byHR = K(R,0) the Eilenberg-
Mac LanecommutativeS-algebra associated toR [EKMM, IV, Section 2].

Proposition 5.2.7.A morphism of discrete commutative ringsR → R′ is étale iff
HR → HR′ is étale.

Proof. By Pirashvili and Richater[Pi-Ri] and Basterra and McCarthy[Ba-MC], we
can apply to topological André–Quillen homology and André–Quillen homology the
two spectral sequences at the end of[Schw, Section 7.9]to conclude that the algebraic
cotangent complexLR′/R is acyclic iff the topological cotangent complex�HR′|HR is
weakly contractible; therefore the two formal etaleness do imply each other. Also the
two finite presentation condition easily imply each other, since the functor�0 is left
adjoint and therefore preserves finitely presented objects. So we only have to observe
that a finitely presented morphism of discrete commutative ringsR −→ R′ is étale iff
it has an acyclic algebraic cotangent complex[Ill, Chapter III, Proposition 3.1.1]. �
The following proposition compare the notions of étale morphisms of commutative

rings and commutativeS-algebras in the connective case.

Proposition 5.2.8. Let k be a commutative ring(in U), andHk −→ B be an étale mor-
phism of connective commutativeS-algebras. Then, the natural mapB −→ H(�0(B))

[EKMM, Proposition IV.3.1] is an equivalence of commutativeS-algebras. Therefore,
up to equivalences, Hk −→ B is of the formHk −→ Hk′ where k → k′ is an étale
extension of discrete commutative rings.

Proof. Consider the sequence of maps of commutativeS-algebrasHk −→ B −→
H�0(B); this gives a fundamental cofibration sequence[Ba, Proposition 4.3])

�B|Hk ∧ BH�0(B) −→ �H�0(B)|Hk −→ �H�0(B)|B.

Since Hk −→ B is étale, by McCarthy and Minasian[MCM, Proposition 3.8(2)]
also Hk −→ H�0(B) is étale; therefore the first two terms are contractible, hence
�H�0(B)|B 
 ∗, too. Now, the mapB −→ H�0(B) is a 1-equivalence (see also[Ba,
Proof of Theorem 8.1]) and therefore,�H�0(B)|B 
 ∗ and [Ba, Lemma 8.2], tell us
that �1B 
 0. Then,B −→ H�0(B) is also a 2-equivalence and the same argument
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shows then that�2B 
 0, etc. Therefore�iB 
 0, for any i�1 and we get the first
statement. The second one follows from this and Proposition5.2.7. �

Remark 5.2.9. Note that Proposition5.2.8 is false if we remove the connectivity hy-
pothesis. In fact, theHFp-algebraB described in Remark5.2.4(3) is étale but has,
by construction, non-vanishing homotopy groups in infinitely many negative degrees.
Actually, even restricting to THH-etale characteristic zero will not be enough in order
to avoid this kind of phenomenon (see e.g.[To-Ve 3, Rem. 2.19]).

Definition 5.2.10. For each SpecA ∈ Ho(Aff S), let us define Cov́et (SpecA) as the set
of finite families {fi : SpecBi −→ SpecA}i∈I of morphisms in Ho(Aff S), satisfying
the following two conditions:
1. for any i ∈ I , the morphismA −→ Bi is étale;
2. the family of base change functors

{Lf ∗
i : Ho(MA) −→ Ho(MBi

)}i∈I

conservative, i.e. a morphism in Ho(MA) is an isomorphism if and only if, for any
i ∈ I , its image in Ho(MBi

) is an isomorphism.

We leave to the reader the easy task of checking that this actually defines a model pre-
topology (ét) (see Definition4.3.1), called theétale topologyon AffS. By restriction to
the sub-pseudo-model category (see Proposition5.1.2) Aff conn, S of connective objects,
we also get a pseudo-model site(Aff conn, S, ét), called therestricted étale site.
If A is a commutative (resp. commutative and connective)S-algebra, the pseudo-

model category (see Corollary5.2.6) Aff ét/A (resp. Affconn, ét/A), together with the
“restriction” of the étale topology, will be called thesmall étale site(resp. therestricted
small étale site) over A. More precisely, let us consider the obvious forgetful functors

F : Aff ét/A −→ Aff S,

F ′ : Aff conn, ét/A −→ Aff S.

By definition of the pseudo-model structures on Affét/A (resp. on Affconn, ét/A), F
(resp.F ′) preserves (actually, creates) equivalences. Therefore, we say that family of
morphisms{Spec(Ci) → Spec(B)} in Ho(Aff ét/A) (resp. in Ho(Aff conn, ét/A)) is an
étale covering family of(SpecB → SpecA) in Aff ét/A (resp. Affconn, ét/A) iff its image
via Ho(F ) (resp. via Ho(F ′)) is an étale covering family of Spec(B) in Aff S i.e.
belongs to Cov́et (SpecA) (Definition 5.2.10).
We finish this paragraph by the following corollary that compare the small étale sites

of a ring k and of its associated Eilenberg–Mac LaneS-algebraHk.

Corollary 5.2.11. Let k be a discrete commutative ring, (aff ét/k, ét) be the small étale
affine site overSpec(k) consisting of affine étale schemesSpec(k′) → Spec(k), and
H : affét/k −→ Aff conn, ét/Hk be the Eilenberg-Mac Lane space functor. Then H induces
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a continuous equivalence of étale pseudo-model sites

H : (aff ét/k, ét) → (Aff conn, ét/HK , ét).

Proof. Propositions5.2.8and5.2.7 imply that the conditions of Proposition4.8.7are
satisfied. �

5.3. Étale K-theory of commutativeS-algebras

The following one is the main definition of this section.

Definition 5.3.1.• For anyA ∈ AlgS, we define itsétale K-theory spaceKét (A) by
applying Definition5.1.5 to � = (ét).

• For anyA ∈ AlgconnS , we define itsrestricted étale K-theory spaceKét (A) by applying
Definition 5.1.5 to �′ = (ét).

The following proposition shows that, as in the algebraic case (cf.[Ja1, Theorem
3.10]), also in our context, étaleK-theory can be computed on the small étale sites.

Proposition 5.3.2. Let A be a commutative(resp. commutative and connective) S-
algebra and(Aff ét/A)

∼, ét (resp. (Aff conn, ét/A)
∼, ét ) the model category of stacks on

the small étale site (resp. on the restricted small étale site) overA. For any presheafF
on AffS, we denote byF sm (resp.F sm| ) its restriction to Aff́et/A (resp. to Affconn, ét/A).
Then the mapKsm → Ksm

ét
(resp.Ksm| → Ksm

ét
) induced via restriction by a fibrant

replacementK → Két (resp.K| → Két ) in (Aff S)∼, ét (resp. in (Aff conn,S)∼, ét ), is a
fibrant replacement in(Aff ét/A)

∼, ét (resp. in(Aff conn, ét/A)
∼, ét ).

Proof. We prove the proposition in the non-connective case, the connective case is
the similar.
Let us consider the natural functor

f : Affét/A −→ AffS,

from the small étale site of SpecA to the big étale site. It is clear that the associated
restriction functor

f ∗ : Aff∼,ét
S −→ Aff

∼,ét

ét/A

preserves equivalences (one can apply for example Lemma4.5.4). Furthermore, if
SpecB −→ SpecA is a fibrant object in Aff́et/A, then the pseudo-representable hy-
percovers (see Definition4.4.1) of SpecB are the same in Aff́et/A and in AffS/A

(because each structure map of a pseudo-representable hypercover is étale). This im-
plies by Corollary4.6.3, that the functorf ∗ preserves fibrant objects. In particular, if
K −→ Két is a fibrant replacement in Aff∼,ét

S , so is its restriction to Aff∼,ét

ét/A
. �
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As a consequence, we get the following comparison result to algebraic étaleK-theory
for fields; if R is a (discrete) commutative ring, we denote byKét (R) its étaleK-theory
space (e.g.[Ja1]).

Corollary 5.3.3. For any discrete commutative ring k, we have an isomorphism
Két (Hk) 
 Két (k) in Ho(SSet).

Proof. This follows from corollaries5.2.11, 5.3.2 and from the comparison between
algebraicK-theory of a commutative ringR and algebraicK-theory of theS-algebra
HR (see[EKMM, VI, Remark 6.1.5(1)]). �
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Appendix A Model categories and universes

In this appendix we have collected the definitions ofU-cofibrantly generated,U-
cellular andU-combinatorial model categories for a universeU, that have been used
all along this work.
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Throughout this appendix, we fix a universeU.

A.1. U-cofibrantly generated model categories

Recall that a category is aU-category, or equivalently a locallyU-small category,
if for any pair of objects(x, y) in C the setHomc(x, y) is a U-small set.

Definition A.1.1. A U-model category is a categoryM endowed with a model structure
in the sense of[Ho, Definition 1.1.3]and satisfying the following two conditions:
1. The underlying category ofM is a U-category.
2. The underlying category ofM has all kind ofU-small limits and colimits.

Let � be the cardinal of aU-small set (we will simply say� is aU-small cardinal).
Recall from[Ho, Definition 2.1.3]that an objectx in aU-model categoryM, is �-small,
if for any U-small �-filtered ordinal�, and any�-sequence

y0 → y1 → . . . y� → y�+1 → . . .

the natural map

colim�<�Hom(x, y�) −→ Hom(x, colim�<�y�)

is an isomorphism.
We will use (as we did in the main text) the following variation of the notion of

cofibrantly generated model categoryof [Ho, Definition 2.1.17].

Definition A.1.2. Let M be aU-model category. We say thatM is U-cofibrantly gen-
erated if there existU-small setsI and J of morphisms inM, and aU-small cardinal
�, such that the following three conditions are satisfied:
1. The domains and codomains of the maps ofI and J are �-small.
2. The class of fibrations isJ-inj.
3. The class of trivial fibrations isI-inj.

The main example of aU-cofibrantly generated model category is the model cate-
goriesSSetU of U-small simplicial sets.
The main “preservation” result is the following easy proposition (see[Hi, Section

13.8, 13.9, 13.10]).

Proposition A.1.3. Let M be aU-cofibrantly generated model category.
1. If C is a U-small category, then the categoryMC of C-diagrams in M is again
a U-cofibrantly generated model category in which equivalences and fibrations are
defined objectwise.

2. Let us suppose that M is furthermore aSSetU-model category in the sense of[Ho,
Definition 4.2.18](in other words, M is a simplicialU-cofibrantly generated model
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category), and let T be aU-small S-category. Then, the categoryMT of simplicial
functors from T to M is again aU-cofibrantly generated model category in which
the equivalences and fibrations are defined objectwise. The model categoryMT is
furthermore aSSetU-model category in the sense of[Ho, Definition 4.2.18].

A standard construction we have been using very often in the main text is the
following. We start by the model categorySSetU of U-small simplicial sets. Now,
if V is a universe withU ∈ V, then the categorySSetU is V-small. Therefore, the
category

SP r(SSetU) := SSet
SSet

op
U

V

of V-small simplicial presheaves onSSetU, is a V-cofibrantly generated model cate-
gory.
This is the way we have considered, in the main text, model categories of diagrams

over a base model category avoiding any set-theoretical problem.

A.2. U-cellular andU-combinatorial model categories

The following notion ofcombinatorial model categoryis due to Jeff Smith (see, for
example,[Du2, Bek, Section 2, I, Section 1].

Definition A.2.1. 1. A categoryC is calledU-locally presentable(see[Du2]) if there
exists aU-small set of objectsC0 in C, which are all�-small for some cardinal� in
U and such that any object inC is an �-filtered colimit of objects inC0.
2. A U-combinatorial model categoryis a U-cofibrantly generated model category

whose underlying category isU-locally presentable.

The following localization theorem is due to J. Smith (unpublished). Recall that a
model category isleft proper if the equivalences are closed with respect to pushouts
along cofibrations.

Theorem A.2.2. Let M be a left proper, U-combinatorial model category, and S ⊂ M

be aU-small subcategory. Then the left Bousfield localizationLSM of M with respect
to S exists.

Let us recall from[Hi, Section 12.7]the notion ofcompactness. We will say that
an objectx in a U-cofibrantly generated model categoryM is compactis there exists
a U-small cardinal� such thatx is �-compact in the sense of[Hi, Definition 13.5.1].
The following definition is our variation of the notion ofcellular model categoryof
[Hi] .

Definition A.2.3. A U-cellular model categoryM is a U-cofibrantly generated model
category with generatingU-small sets of cofibrationsI and of trivial cofibrationsJ,
such that the following two conditions are satisfied:
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1. The domains and codomains of maps inI are compact.
2. Monomorphisms inM are effective.

The main localization theorem of[Hi] is the following.

Theorem A.2.4 (Hirschhorn [Hi, Theorem 4.1.1]). Let M be a left proper, U-cellular
model category andS ⊂ M be aU-small subcategory. Then the left Bousfield local-
ization LSM of M with respect to S exists.

Finally, let us mention the following “preservation” result.

Proposition A.2.5. If in PropositionA.1.3, M is U-combinatorial (resp.U-cellular),
then so areMC andMT .
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