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Abstract

This is the first of a series of papers devoted to lay the foundations of Algebraic Geometry
in homotopical and higher categorical contexts. In this first part we investigate a notion of
higher topos

For this, we useS-categories (i.e. simplicially enriched categories) as models for certain kind
of co-categories, and we develop the notionsStbpologies Ssites and stacksover them. We
prove in particular, that for ais-categoryT endowed with anStopology, there exists a model
category of stacks ovef, generalizing the model category structure on simplicial presheaves
over a Grothendieck site of Joyal and Jardine. We also prove some analogs of the relations
between topologies and localizing subcategories of the categories of presheaves, by proving that
there exists a one-to-one correspondence betv@&m®pologies on arS-categoryT, and certain
left exact Bousfield localizationsf the model category of pre-stacks @nBased on the above
results, we study the notion afiodel toposintroduced by Rezk, and we relate it to our model
categories of stacks oveFsites.

In the second part of the paper, we present a parallel theory wheategories Stopologies
and S-sites are replaced bsnodel categoriegsmodel topologiesand model sitesWe prove that
a canonical way to pass from the theory of stacks over model sites to the theory of stacks
over Ssites is provided by the simplicial localization construction of Dwyer and Kan. As an
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example of application, we propose a definition ¢élé K-theory of ring spectraextending
the étaleK-theory of commutative rings.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

This is the first part of a series of papers devoted to the foundations of Algebraic
Geometry in homotopical and higher categorical contexts, the ultimate goal being a
theory of algebraic geometry over monoidab-categories a higher categorical gener-
alization ofalgebraic geometry over monoidal categori@s developed, for example, in
[Del2,Del1,Ha). We refer the reader to the Introduction of the research announcement
[To-Ve 5] and to[To-Ve 4], where motivations and prospective applications (mainly
to the so-calledderived moduli spacesf [Ko,Ci-Kal,Ci-Ka2) are provided. These
applications, together with the remaining requiradnoidal part of the theory, will be
given in [To-Ve 6].

In the present work we investigate the required theonhigher sheavesor equiv-
alently stacks as well as its associated notion loifgher topoi

1.1. Topologies, sheaves and topoi

As we will proceed by analogy, we will start by recalling some basic constructions
and results from topos theory, in a way that is suited for our generalization. Our
references for this overview af&GA4-1,Sch,M-M] Throughout this introduction we
will neglect any kind of set theoretical issues, always assuming that categoriesalte
when required.

Let us start with a categor@ and let us denote byr(C) the category of presheaves
of sets onC (i.e. Pr(C) := Set¢”). If C is endowed with a Grothendieck topology
7, one can define the notion aflocal isomorphisms inPr(C) by requiring injectivity
and surjectivity only up to a-covering. We denote by, the subcategory oPr(C)
consisting of local isomorphisms. One possible way to define the category), of
sheaves (of sets) on the Grothendieck $@e1), is by setting

She(C) := Z71Pr(C),

whereZ;lPr(C) denotes thdocalizationof Pr(C) alongX; i.e. the category obtained
from Pr(C) by formally inverting the morphisms ix; (see[Sch, 19.1, 20.3.6(a)]
The main basic properties of the categdik,(C) are collected in the following well
known theorem.
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Theorem 1.0.1.Let (C, ) be a Grothendieck site anfi.(C) its category of sheaves

as defined above

1. The categorySh.(C) has all limits and colimits

2. The natural localization morphism : Pr(C) — Sh.(C) is left exact(i.e. commutes
with finite limitg and has a fully faithful right adjointj : Sh.(C) — Pr(C).

3. The categorySh.(C) is cartesian closedi.e. has internal Horobjects.

Of course, the essential image of the funcjor Sh.(C) — Pr(C) is the usual
subcategory of sheaves, i.e. of presheaves having descent with respecbverings,
and the localization functoa becomes equivalent to the associated sheaf functor. The
definition of Sh.(C) as Z;lPr(C) is therefore a way to define the category of sheaves
without even mentioning what a sheaf is precisely.

In particular, Theorenl.0.1 shows that the datum of a topologyon C gives rise
to an adjunction

a: Pr(C) — Sh(C), Pr(C)<«— Sh(C):},

with j fully faithful and a left exact. Such an adjoint pair will be called axact
localization of the categoryPr(C). Another fundamental result in sheaf theory is the
following:

Theorem 1.0.2.The rule sending a Grothendieck topologyn C to the exact local-
ization

a: Pr(C) — Sh(C), Pr(C)<«— Sh(C):},

defines a bijective correspondence between the set of topologies on C and the set of

(equivalences classesf exact localizations of the catego®r(C). In particular, for

a category T the following two conditions are equivalent

e There exists a category C and a Grothendieck topoleaggn C such that T is
equivalent toSh.(C).

e There exists a category C and a left exact localization

a:Pr(C)—T, Pr(C) «<—T:j.

A category satisfying one the previous conditions is calle@rathendieck topos.

Finally, a famous theorem by GiraudSGA4-I, Exp. IV, Theoreme 1.2]provides
an internal characterization of Grothendieck topoi.

Theorem 1.0.3.(Giraud’s Theorem)A category T is a Grothendieck topos if and only
if it satisfies the following conditions

1. The category T is has a small set of strong generators

2. The category T has small colimits

3. Sums are disjoint in Ti.e. x; x [ X =¥ for all j # k).

4. Colimits commute with pull backs

5. Any equivalence relation is effective
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The main results of this work are generalizations to a homotopical setting of the
notions of topologies, sites and sheaves satisfying analogs of Thedrénisl.0.3
We have chosen to use both the conceptSefategories(i.e. simplicially enriched
categories) and ofnodel categoriess our versions of base categories carrying homo-
topical data. For both we have developed homotopical notionsmdlogies, siteand
sheavesand proved analogs of Theorerh€.11.0.3 which we will now describe in
more details.

1.2. S-topologies, S-sites and stacks

Let T be a baseScategory. We consider the categd®Pr(T), of T°P-diagrams in
the categorySSetof simplicial sets. This category can be endowed with an objectwise
model structure for which the equivalences are defined objectwis®&. drhis model
categorySPr(T) will be called themodel category of pre-stacks on @nd will be our
higher analog of the category of presheaves of sets. The cat8§uy) comes with a
naturalYoneda embeddingh : T — SPr(T), a up to homotopy analogf the usual
embedding of a category into the category of presheaves on it (see Co2Ha8y

We now consider H@T"), the category having the same objectsTasut for which the
sets of morphisms are the connected components of the simplicial sets of morphisms in
T. Though it might be surprising at first sight, we defineSxtopology on the S-category
T to be simply a Grothendieck topology on the categoryHo(see Definition3.1.1).

A pair (T, 7), whereT is an Scategory and: is an Stopology onT, will be called an
S-site Of course, wherT is a usual category (i.e. all its simplicial sets of morphisms
are discrete), arlstopology onT is nothing else than a Grothendieck topology Bin
Therefore, a site is in particular @hsite, and our definitions are actual generalizations
of the usual definitions of topologies and sites.

For the category of presheaves of sets on a Grothendieck site, we have already
mentioned that the topology induces a notion of local isomorphisms. In the case where
(T, 7) is an Ssite we define a notion dbcal equivalencesn SPr(T) (see Definition
3.3.2. WhenT is a category, and therefo(&, 1) is a site in the usual sense, our notion
of local equivalences specializes to the notion introduced by lllusie and later by Jardine
([Jal). Our first main theorem is a generalization of the existence of the local model
category structure on the category of simplicial presheaves on a sit¢J&E8I).

Theorem 1.0.4(Theorem3.4.1, Proposition3.4.10and Corollary 3.6.2. Let (T, t) be
an S-site
1. There exists a model structure on the category (pr called thelocal model
structure,for which the equivalences are the local equivalences. This new model
category denoted by SRT), is furthermore the left Bousfield localization of the
model category SRI") of pre-stacks along the local equivalences
2. The identity functor

Id: SPr(T) — SPr(T)

commutes with homotopy fibered products
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3. The homotopy categorifo(SPr.(T)) is cartesian closedor equivalently it has
internal Hom-objects
The model category SR(T) is called themodel category of stacks on ti&site (7, 7).

This theorem is ouhigher analogof Theorem1.0.1 Indeed, the existence of the
local model structure formally implies the existencehaimotopy limitsand homotopy
colimits in SPr,(T), which are homotopical generalizations of the notion of limits and
colimits (see[Hi, Section 19). Moreover,SPr.(T) being a left Bousfield localization
of SPr(T), the identity functor Id: SPr.(T) — SPr(T) is a right Quillen functor
and therefore induces an adjunction on the level of homotopy categories

a:=Lld: Ho(SPr(T)) — Ho(SPr.(T)),
Ho(SPr(T)) <— Ho(SPr(T)) : j := RId.

It is a general property of Bousfield localizations that the fungtsrfully faithful, and
Theorem1.0.42) implies that the functom is homotopically left exacti.e. commutes
with homotopy fibered products. Finally, pai®) of Theorem1.0.4is a homotopical
analog of Theoren.0.1(3).

As in the case of sheaves on a site, it remains to characterize the essential image
of the inclusion functorj : Ho(SPr.(T)) — Ho(SPr(T)). One possible homotopy
analog of the sheaf condition is thgyperdescent propertfor objects inSPKT) (see
Definition 3.4.8. It is a corollary of our proof of the existence of the local model
structureSPr,(T) that the essential image of the inclusion funcjorHo(S Pr.(T)) —

— Ho(SPr(T)) is exactly the full subcategory of objects satisfying the hyperdescent
condition (see Corollary3.4.7. We call these objectstacks over the Ssite (7, 1)
(Definition 3.4.9. The functora : Ho(SPr(T)) — Ho(S Pr.(T)) can then be identified
with the associated stack functdDefinition 3.4.9.

Finally, we would like to mention that the model categorieBr.(T) are not in
general Quillen equivalent to model categories of simplicial presheaves on some site.
Therefore, Theoreni.0.4 is a new result in the sense that neither its statement nor
its proof can be reduced to previously known notions and results in the theory of
simplicial presheaves.

1.3. Model topoi and S-topoi

Based on the previously described notionsSefites and stacks, we develop a related
theory of topoi. For this, note that Theorert.0.4 implies that anStopology t on
an ScategoryT gives rise to the model catego&Pr,(T), which is a left Bousfield
localization of the model catego§Pr(T). This Bousfield localization has moreover the
property that the identity functor IdSPr(T) — SPr(T) preserves homotopy fibered
products. We call such a localizationleft exact Bousfield localizatioaof SPr(T) (see
Definition 3.8.7). This notion is a homotopical analog of the notion of exact localization
appearing in topos theory as reviewed before Theote®d2 The rulet +— SPr (T),
defines a map from the set @&topologies on a giverS-categoryT to the set of
left exact Bousfield localizations of the model categ@&¥r(T). The model category
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SPr(T) also possesses a natuwdditional property, calledt-completenessvhich is

a new feature of the homotopical context which does not have any counterpart in
classical sheaf theory (see Definiti@rB.2. An objectx in some model category! is
called n-truncatedif for any y € M, the mapping spac#/apy (y, x) is ann-truncated
simplicial set; an object iM is truncatedif it is n-truncated for soma >0. A model
categoryM will then be calledt-completeif truncated objects detect isomorphisms in
Ho(M): a morphismu : a — b in Ho(M) is an isomorphism if and only if, for any
truncated objeck in Ho(M), the mapu* : [b, x] — [a, x] is bijective.

The notion oft-completeness is very natural and very often satisfied as most of the
equivalences in model categories are defined using isomorphisms on certain homotopy
groups. Thet-completeness assumption simply states that an object with trivial homo-
topy groups is homotopically trivial, which is a very natural and intuitive condition.
The usefulness of this notion #fcompleteness is explained by the following theorem,
which is our analog of Theorerh.0.2

Theorem 1.0.5(Theorem3.8.3 and Corollary 3.8.5. Let T be an S-category. The cor-

respondence — SPr (T) induces a bijection between S-topologies on T and t-complete

left exact Bousfield localizations of SRY). In particular, for a model category M the

following two conditions are equivalent

e There exists an S-category T and an S-topology on T such that M is Quillen equivalent
to SPr(T).

e The model category M is t-complete and there exists an S-category T such that M
is Quillen equivalent to a left exact Bousfield localization of @PBr

A model category satisfying one the previous conditions is called a t-complete model

topos

It is important to stress that there areomplete model topoi which aneot Quillen
equivalent to anySPr;(C), for C a usual category (see Remask8.711)). Therefore,
Theoreml.0.5also shows the unavoidable relevance of considering topologies on gen-
eral S-categories rather than only on usual categories. In other words, there is no way
to reduce the theory developed in this paper to the theory of simplicial presheaves over
Grothendieck sites as done [dal,Jol]

The above notion ofmodel toposwas suggested to us by Rezk, who defined a
more general notion ofiomotopy topoga model topos without thé-completeness
assumption), which is a model category Quillen equivalent to an arbitrary left exact
Bousfield localization of som8Pr(T) (see Definition3.8.1). The relevance of Theorem
1.0.5is that, on one hand it shows that the notion $fopology we used is correct
exactly because it classifies attqomplete) left exact Bousfield localizations, and, on
the other hand it provides an answer to a question raised by Rezk on which notion of
topology could be the source of his homotopy topoi.

It is known that there exist model topoi which are rntetomplete (see Remark
3.8.7, and therefore our notion of stacks ovBicategories does not modell of
Rezk’s homotopy topoi. However, we are strongly convinced that Thedr@rb has a
more general version, in which titecompleteness assumption is dropped, involving a
corresponding notion diyper-topologyon S-categories as well as the associated notion
of hyper-stack(see Remarl3.8.7).
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Using the above notion of model topos, we also define the notioB-tdpos An
Stopos is by definition arS-category which is equivalent, as &@category, to some
LM, for M a model topos (see DefinitioB.8.8. Here we have denoted hiyM the
Dwyer—Kan simplicial localization o with respect to the set of its weak equivalences
(see the next paragraph for further explanations on the Dwyer-Kan localization).

1.4. S-Categories and model categories

Most of the S-categories one encounters in practice come from model categories via
the Dwyer—Kansimplicial localization The simplicial localization is a refined version
of the Gabriel-Zisman localization of categories. It associateS-eategoryL(C, S) to
any categoryC equipped with a subcategory C C (see (Section 2.2)), such that the
homotopy category Hd.(C, S)) is naturally equivalent to the Gabriel-Zisman localiza-
tion S~1C, but in generalL(C, S) contains non-trivial higher homotopical informations.
The simplicial localization construction is particularly well behaved when applied to a
model categorM equipped with its subcategory of weak equivalendés- M: in fact,
in this case, th&-categoryL M := L(M, W) encodes the so-calldtbmotopy mapping
spacesof the model categoryi (see Section 2.2). We will show furthermore that the
notions ofStopologies,Ssites and stacks previously described in this introduction, also
have their analogs in the model category context, and that the simplicial localization
construction allows one to pass from the theory over model categories to the theory
over S-categories.

For a modet categoryM, we consider the catego§Pr(M) of simplicial presheaves
on M, together with its objectwise model structure. We define the model category
M”" to be the left Bousfield localization dBPr(M) along the set of equivalences in
M (see Definition4.1.4. In particular, unlike that ofSPr(M), the model structure
of M” takes into account the fact thall is not just a bare category but has an
additional (model) structure. The model categddy* is called themodel category of
pre-stacks on Mand it is important to remark that its homotopy category can be
identified with the full subcategory of HS8Pr(M)) consisting of functorsF : M°P —
— SSet sending equivalences M to equivalences of simplicial sets. We construct a
homotopical Yoneda-like functor

h:M— M",
roughly speaking by sending an objecto the simplicial preshea$ — Mapy(y, x),
where Mapy (—, —) denotes the homotopy mapping space in the model catdgory
(see Definitiord.2.5. An easy but fundamental result states that the functpossesses
a right derived functor

RA : Ho(M) — Ho(M"™)

1Actua||y, in Section 4, all the constructions are given for the weaker notiopsetido-model categories
because we will need this increased flexibility in some present and future applications. However, the case
of model categories will be enough for this introduction.
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which is fully faithful (Theorem4.2.3. This is a model category version of the Yoneda
lemma.

We also define the notion of model pre-topologyon the model categoril and
show that this induces in a natural way a Grothendieck topology on the homotopy
category HoM ). A model category endowed with a model pre-topology will be called
a model site(see Definition4.3.1). For a model site(M, ), we define a notion of
local equivalencedn the category of pre-stack®”. The analog of Theorerth.0.1 for
model categories is then the following:

Theorem 1.0.6(Theorem4.6.1). Let (M, 1) be a model site

1. There exists a model structure on the categbfy, called the local model structuye
for which the equivalences are the local equivalencBsis new model category
denoted byM ™7, is furthermore the left Bousfield localization of the model category
of pre-stacksM” along the local equivalences

2. The identity functor

Id: M» — M™°

commutes with homotopy fibered products
3. The homotopy categoo(M™7) is cartesian closed
The model categoryy ™7 is called themodel category of stacken the model site
M, 7).

As for stacks ovelSsites, there exists a notion of object satisfyindnygperdescent
conditionwith respect to the topology, and we prove that Ha/™") can be identified
with the full subcategory of H@/") consisting of objects satisfying hyperdescent (see
Definition 4.6.5.

Finally, we compare the two parallel constructions of stacks &sites and over
model sites.

Theorem 1.0.7(Theorem4.7.]). Let (M, 1) be a model site

(i) The simplicial localization LM possesses an induced S-topotogyd is naturally
an S-site

(i) The two corresponding model categories of statkd* and SP¢(LM) are nat-
urally Quillen equivalent. In particularM ™" is a t-complete model topos

The previous comparison theorem finds its pertinence in the fact that the two ap-
proaches, stacks over model sites and stacks Swgtes, seem to possess their own
advantages and disadvantages, depending of the situation and the goal that one wants
to reach. On a computational level the theory of stacks over model sites seems to
be better suited than that of stacks osites. On the other han&categories and
Ssites are much more intrinsic than model categories and model sites, and this has
already some consequences, e.g. at the level of functoriality properties of the categories
of stacks. We are convinced that having the full picture, including the two approaches
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and the comparison Theorein0.7, will be a very friendly setting for the purpose of
several future applications.

1.5. A Giraud theorem for model topoi

Our version of Theorem.0.3is on the model categories’ side of the theory. The cor-
responding statement f@-categories would drive us too far away from the techniques
used in this work, and will not be investigated here.

Theorem 1.0.8(Theorem4.9.2. A combinatorial model category M is a model topos
if and only if it satisfies the following conditions

1. Homotopy coproducts are disjoints in.M

2. Homotopy colimits are stable under homotopy pullbacks

3. All Segal equivalences relations are homotopy effective

The condition of being a combinatorial model category is a set theoretic condition
on M (very often satisfied in practice), very similar to the condition of having a
small set of generators (see Appendix A.2). Conditichisand (2) are straightforward
homotopy theoretic analogs of conditio(® and (4) of Theorem1.0.3 we essentially
replace pushouts, pullbacks and colimits by homotopy pushouts, homotopy pullbacks
and homotopy colimits (see Definitioh9.7). Finally, condition(3) of Theorem1.0.8
spelled out in Definition4.9.1(3) and (4), is a homotopical version of conditi@h)
of Giraud’s theoreml.0.3 where groupoids of equivalence relations are replaced by
Segal groupoids and effectivity has to be understood homotopically.

The most important consequence of Theorgi®.8 is the following complete char-
acterization oft-complete model topoi.

Corollary 1.0.9 (Corollary 4.9.7). For a combinatorial model category Mhe follow-
ing two conditions are equivalent

(i) There exists a small S-si{@’, 7), such that M is Quillen equivalent to SRT).
(i) M is t-complete and satisfies the conditions of Theoleth8

1.6. A topological application: étale K-theory of commutatiSealgebras

As an example of application of our constructions, we give a definition ofthke
K-theory of (commutativg S-algebras which is to algebraik-theory of S-algebras
(as defined for example IfEKMM, Section VI]) what étaleK-theory of rings is
to algebraicK-theory of rings. For this, we use the notion of etale morphism&-of
algebras introduced ifMin] (and in[To-Ve 5]) in order to define amtale pre-topology
on the model category of commutati¥&-algebras (see Definitioh.2.10. Associated
to this model pre-topology, we have the model category of étale stackss)™ e the
functor K that maps arS-algebraA to its algebraicK-theory spacek (A), defines an
objectK € (Affs)™ . If K; € (Affs)™¢ is an étale fibrant model faf, we define
the space of étal&-theory of anS-algebraA to be the simplicial se,;(A) (see
Definition 5.3.1). Our general formalism also allows us to comp&rg(Hk) with the
usual definition of etal&-theory of a fieldk (see Corollary5.3.3.
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This definition of étaleK-theory of S-algebras gives a possible answer to a question
raised by RognefRo]. In the future, it might be used as a starting point to devélabe
localization techniquesn K-theory of S-algebras, as Thomason’'s style étale descent
theorem, analog of the Quillen-Lichtenbaum’s conjecture, etc. For further applications
of the general theory developed in this paper to algebraic geometry over commutative
ring spectra, we refer the reader [fio-Ve 6,To-Ve 3]

1.7. Organization of the paper

The paper is organized in five sections and one appendix. In Section 2 we review
the main definitions and results concerni&gategories. Most of the materials can be
found in the original paper$D-K1,D-K2,DHK], with the possible exception of the
last two subsections. In Section 3 we define the notiors-tdpologies,S-sites, local
equivalences and stacks ovErsites. This section contains the proofs of Theorems
1.0.4and 1.0.5 We prove in particular the existence of the local model structure as
well as internalHomis (or equivalently, stacks of morphisms). We also investigate here
the relations between Rezk’s model topoi aBdopologies. Section 4 is devoted to
the theory of model topologies, model sites and stacks over them. As it follows a
pattern very similar to the one followed in Section 3 (feccategories), some details
have been omitted. It also contains comparison results between the theory of stacks
over Ssites and the theory of stacks over model sites, as well as the Giraud's style
theorem for model topoi. In Section 5 we present one application of the theory to
the notion ofétale K-theory ofS-algebras For this we review briefly the homotopy
theory of S-modules andS-algebras, and we define an étale topology on the model
category of commutatives-algebra, which is an extension of the étale topology on
affine schemes. Finally, we use our general formalism to define the Kttheory
space of a commutative-algebra.

Finally, in Appendix A we collected some definitions and conventions concerning
model categories and the use of universes in this context.

1.8. Related works

There has been several recent works on (higher) stacks theory which use a simplicial
and/or a model categorical approach (§B&ll, H-S, Hol, Ja2 S1, To2, To3]). The
present work is strongly based on the same idea that simplicial presheaves are after all
very good models fostacks inco-groupoids and provide a powerful and rich theory. It
may also be considered as a natural continuation of the foundational jap&i®ol]

A notion of a topology on a 2-category, as well as a notiostatk over a 2-sitdas
already been considered by R. Streef$tr], D. Bourne in[Bou], and more recently
by Behrend in his work on DG-schemgBe]. Using truncation functors (Sectidh7),

a precise comparison with these approaches will appear in the second part of this work
[To-Ve 6] (the reader is also referred to Rem&¥k.9.

We have already mentioned that the notion of model topos used in Section 3.8
essentially goes back to the unpublished manusdRat], though it was originally
defined as left exact Bousfield localizations of model category of simplicial presheaves
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on some usual category, which is not enough as we have seen. A different, but similar,
version of our Giraud’'s Theorem.9.2 appeared irfRe] as conjecture. The notion of
Stopos introduced in Section 3.8 seems new, though more or less equivalent to the
notion of model topos. However, we think that both theoriesSafategories and of
model categories reach here their limits, as it seems quite difficult to define a reasonable
notion of geometric morphisms between model topoi or betw&topoi. This problem

can be solved by using Segal categoriegH{S,P] in order to introduce a notion of
Segal toposas explained ifTo-Ve 1].

A notion relatively closed to the notion of Segal topos can also be foun&2h
where Segal pre-topoare investigated and the question of the existence of a theory of
Segal topoi is addressed.

Also closely related to our approach to model topoi is the notiosceoposappeared
in the recent preprinfLu] by Lurie. The results ofLu] are exposed in a rather different
context, and are essentially disjoints from ours. Form example, the notion of topology
is not considered ifjLu] and results of type3.8.3 3.8.50r 4.9.7 do not appear in it.
Also, the notion of stack used by Lurie is slightly different from ours (however the
differences are quite subtle). An exception is Giraud’'s theorem which first appeared in
[Lu] in the context ofco-categories, and only later on in the last version of this work
(February 2004) for model categories. These two works have been done independently,
though we must mention that the first version of the present paper has been publicly
available since July 2002 (an important part of it was announcdgddrVe 5] which
appeared on the web during October 2001), whefeap appeared in June 2003.

Let us also mention that JoyHlo2] has developed a theory qgtiasi-categorieswhich
is expected to be equivalent to the theoryStategories and of Segal categories, and
for which he has defined a notion gluasi-toposvery similar to the notion of Segal
topos in[To-Ve 1]. The two approaches are expected to be equivalent. Also, the recent
work of Cisinski [Cis] seems to be closely related to a notion hyfpertopologywe
discuss in Remarl8.8.13).

Our definition of the étale topology fdb-algebras was strongly influenced by the
content offMin,MCM], and the definition of étalK-theory in the context o6-algebras
given in Section 5 was motivated by the ngio].

Notations and conventions We will use the worduniversein the sense ofSGA4-I,

Exp. I, Appendice] Universes will be denoted by € V € W.... For any universe

U we will assume thatN € U. The category of sets (resp. simplicial sets, resp. ...)
belonging to a univers&l will be denoted bySez; (resp.SSety, resp. ...). The objects
of Sery (resp. SSety, resp. ...) will be calledU-sets (resp.U-simplicial sets, resp.
...). We will use the expressiofU-small set(resp.U-small simplicial setresp. ...) to
meana set isomorphic to a set itV (resp.a simplicial set isomorphic to a simplicial
set inU, resp. ...).

Our references for model categories ffe, Ho]. By definition, our model categories
will always be closed model categories, will have aBmall limits and colimits and
the functorial factorization property. The womuivalencewill always meanweak
equivalenceand will refer to a model category structure.

The homotopy category of a model categdyis W 1M (see[Ho, Definition 1.2.1},
whereW is the subcategory of equivalences My and it will be denoted as H®1).
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The sets of morphisms in Ho7) will be denoted by[—, —]as, or simply by [—, —]
when the reference to the model categdtyis clear. We will say that two objects in
a model category are equivalent if they are isomorphic in Hd). We say that two
model categories ar@uillen equivalentif they can be connected by a finite string of
Quillen adjunctions each one being a Quillen equivalence.

The homotopy fibered product (s@idi, Section 11]or [DHK, Chapter XIV]) of a

diagram x —— z <—— ¥ in a model categoryM will be denoted byx x Qy.

In the same way, the homotopy pushout of a diagram <—— z —— y will

be denoted bw ]_[i’y. When the model categoyl is a simplicial model category, its
simplicial sets of morphisms will be denoted Bipm (—, —), and their derived functors
by RHom (see[Ho, 1.3.2).

For the notions ofU-cofibrantly generatedlJ-combinatorial andU-cellular model
category, we refer to or to Appendix B, where the basic definitions and crucial properties
are recalled in a way that is suitable for our needs.

As usual, the standard simplicial category will be denotedAbyFor any simplicial
object F € CA” in a categoryC, we will use the notatiorF, := F([n]). Similarly, for
any co-simplicial objectF € CA, we will use the notatior¥, := F([n]).

For a Grothendieck sitéC, 1) in a universelJ, we will denote byPr(C) the category
of presheaves ofJ-sets onC, Pr(C) := cset . The subcategory of sheaves @@, 1)
will be denoted bySh(C), or simply by Sh(C) if the topologyt is unambiguous.

2. Review of S-categories

In this first section we recall some facts concernthgategories. The main references
on the subject aréD-K1, D-K2, DHK], except for the material covered in the two
final subsections for which it does not seem to exist any reference. The notion of
S-category will be of fundamental importance in all this work, as it will replace the
notion of usual category in our higher sheaf theory. In Section 3, we will define what
an Stopology on anS-category is, and study the associated notion of stack.

We start by reviewing the definition db-categoryand the Dwyer—Karsimplicial
localizationtechnique. We recall the existence of model categoriediagframsover S
categories, as well as their relations with the model categoriesstficted diagrams
The new materials are presented in the last two subsections: here, we first prove a
Yoneda-like lemméor S-categories and then introduce and study the notiononfima
S-category

2.1. The homotopy theory of S-categories

We refer to[Ke] for the basic notions of enriched category theory. We will be
especially interested in the case where the enrichment takes place in the cartesian
closed categonBSetof simplicial sets.
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Definition 2.1.1. An S-category Tis a category enriched i8Set A morphismof S
categoriesT — T’ is a SSetenriched functor.

More explicitly, anS-category Tconsists of the following data:

e A set Ob(T) (whose elements are called thbjects of 7.

e For any pair of objectgx, y) of Ob(T), a simplicial setHom(x,y) (called the
simplicial set ofmorphisms from x to)y A O-simplex in Hom(x, y) will simply be
called amorphismfrom x to y in T. The 1-simplices inHom(x, y) will be called
homotopies

e For any triple of objectqx, vy, z) in Ob(T), a morphism of simplicial sets (called
the compositionmorphism)

Homg(x,y) x Homy(y,z) — Homg(x, 2).

e For any objectc € Ob(T), a O-simplex Id € Hom(x, x)o (called theidentity mor-
phism atx).

These data are required to satisfy the usual associativity and unit axiomsrphism

betweenS-categoriesf : T —> T’ consists of the following data:

e A map of setsOb(T) — Ob(T").

e For any two objects< andy in Ob(T), a morphism of simplicial sets

MT(xv )’) — HomT’(f(x)v f()’)),

compatible with the composition and unit in an obvious way.
Morphisms of S-categories can be composed in the obvious way, thus giving rise to
the category ofS-categories.

Definition 2.1.2. The category ofS-categories belonging to a univer&g will be de-
noted byS — Catyj, or simply by S — Car if the universeU is clear from the context
or irrelevant.

The natural inclusion functoy : Ser — SSer, sending a set to the corresponding
constant simplicial set, allows us to construct a natural inclugio@at — S — Cat,
and therefore to see any category asSarategory. Precisely, for a catego@; j(C)
is the Scategory with the same objects @sand whose simplicial set of morphism
from x to y is just the constant simplicial set associated to thefsetic(x, y). In the
following we will simply write C for j(C).

Any S-categoryT has anunderlying category of O-simplice®; its set of objects
is the same as that of while the set of morphisms fromx to y in Tp is the set
of 0-simplices of the simplicial se{om(x, y). The construction — Ty defines a
functor § — Cat — Cat which is easily checked to beght adjoint to the inclusion
j : Cat — S — Car mentioned above. This is completely analogous to (and actually,
induced by) the adjunction between the constant simplicial set functGec—> SSet
and the 0th level set functar)g : SSet — Set.
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Any S-categoryT also has @&nomotopy categorydenoted by H@r'); its set of objects
is the same as that &f, and the set of morphisms fromto y in Ho(T) is given by
no(Homy(x, y)), the set of connected components of the simplicial set of morphisms
from x to y in T. The construction” — Ho(7') defines a functotS — Car — Cat
which is easily checked to beft adjointto the inclusionj : Cat — S — Cat. Again,
this is completely analogous to (and actually, induced by) the adjunction between the
constant simplicial set functor:cSetr —> SSet and the connected components’ functor
1o : SSet —> Set.

Summarizing, we have the following two adjunction pairs (always ordered by writing
the left adjoint on the left):

j:Cat — S — Cat, Cat <— S—Cat:(—)o,
Ob(Tp) := Ob(T), Homrp(x,y) = Homy(x, y)o,
Ho(—): S — Cat — Cat, S —Cat <— Cat: j,

Ob(HO(T)) := Ob(T), Homuor)(x,y) :=mo(Homy(x,y)).

For anS-categoryT, the two associated categori#@s and HAT) are related in the
following way. There exist natural morphisms Sfcategories

i

p
To — T —— Ho(T),

which induce a functoy : To — Ho(T'). Being the underlying category of a®&
category, the categor§p has a natural notion diomotopybetween morphisms. This
induces an equivalence relation on the set of morphismdyofby declaring two
morphisms equivalent if there is a string of homotopies between them. This equiva-
lence relation is furthermore compatible with composition. The category obtained from
To by passing to the quotient with respect to this equivalence relation is precisely
Ho(T).

Definition 2.1.3. Let f : T — T’ be a morphism ofS-categories.

1. The morphisnt is essentially surjectivéf the induced functor HOf) : Ho(T) —
— Ho(T") is an essentially surjective functor of categories.

2. The essential imageof f is the inverse image by the natural projectioh —
Ho(T’) of the essential image of H¢) : Ho(T) — Ho(T").

3. The morphismf is fully faithful if for any pair of objectsx andy in T, the
induced morphismfy , : Homy(x,y) — Hom (f(x), f(y)) is an equivalence
of simplicial sets.

4. The morphisnt is an equivalencef it is essentially surjective and fully faithful.
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The category obtained fron§ — Car by formally inverting the equivalences will be
denoted by HGS — Car). The set of morphisms in HS — Cat) between two objects
T and T’ will simply be denoted by[T, T'].

Remark 2.1.4 (DHK, Section XII-48. contains the sketch of a proof that the category

S — Cat admits a model structure whose equivalences are exactly the ones defined
above. It seems however that this proof is not complete, as the generating trivial
cofibrations of[DHK, 48.5] fail to be equivalences. In his nof#ay2, Theorem 1.9]

May informed us that he knows an alternative proof, but the reader will notice that
the notion of fibrations used ifMay2] is different from the one used i[DHK] and

does not seem to be correct. We think however that the model structure described in
[DHK] exists? as we have the feeling that one could simply replace the wrong set
of generating trivial cofibrations by the set of all trivial cofibrations between countable
S-categories. The existence of this model structure would of course simplify some of
our constructions, but it does not seem to be really unavoidable, and because of the
lack of clear references we have decided not to use it at all. This will cause a “lower
degree” of functoriality in some constructions, but will be enough for all our purposes.

Since the natural localization functéSer —> Ho(SSet) commutes with finite prod-
ucts, any category enriched BSetgives rise to a category enriched in &§8er). The
Ho(S Set)-enriched category associated to &wcategoryT will be denoted by H@T),
and has H@r') as underlying category. Furthermore, for any pair of objectndy
in Ho(T'), one hasHomy,, ) (x, y) = Homy(x, y) considered as objects in k®Ser).
Clearly, T — Ho(T) defines a functor fron§ — Cat to the category H Ser) — Cat of
Ho(SSet)-enriched categories, and a morphismSaategories is an equivalence if and
only if the induced H@SSet)-enriched functor is an H& Ser)-enriched equivalence.
Therefore, this construction induces a well-defined functor

Ho(S — Car) — Ho(Ho(SSet) — Cat),
T > Ho(T),

where HaHo(SSet) — Car) is the localization of the category of K&Ser)-enriched
categories along H8 Set)-enriched equivalences.

The previous construction allows one to define the notions of essentially surjective
and fully faithful morphisms in HES — Car). Precisely, a morphisnf : T — T’ in
Ho(S — Cat) will be called essentially surjective (resp. fully faithful) if the correspond-
ing Ho(SSer)-enriched functor HEf) : Ho(T) — Ho(T’) is essentially surjective
(resp. fully faithful) in the H@SSer)-enriched sense.

Finally, for anS-categoryT and a property? of morphisms in HQT'), we will often
say thata morphism f in Tsatisfies the property? to mean thatthe image of f in
Ho(T) through the natural projectiorf’ — Ho(T), satisfies the property. Recall
that a morphism fin an S-categoryT is just an element in the zero simplex set of
Hom(x,y) for somex andy in Ob(T).

2Recent progresses have been made in this direction by J. Bergner (private communication).
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2.2. Simplicial localization

Starting from a categor¢ together with a subcategoty c C, Dwyer and Kan have
defined in[D-K1] an S-category KC, S), which is an enhanced version of the localized
categoryS—1C. It is an S-category with a diagram of morphisms $h— Cat (viewing,
according to our general conventions, any category aS-eategory via the embedding
j:Cat — S — Cat)

C F.C L, S

where F,C is the so-calledstandard simplicial free resolution of the category &hd
in particular, the projectiom is an equivalence o®-categories. Therefore, there exists
a well-definedlocalization morphismin Ho(S — Cat)

L:C— L(C,S).

The construction(C, S) — L(C, S) is functorial in the pair(C, S) and it also extends
naturally to the case whef®is a subS-category of ar-categoryC (see[D-K1, Section
6]). Note also that by construction, @ belongs to a univers& so doesL(C, S).

Remark 2.2.1. (1) One can also check that the localization morphismeatisfies the
following universal property. For eacB-category T, let us denote by(C,T]5 the
subset of C, T = Homuos—car)(C, T) consisting of morphisms for which the induced
morphismC — Ho(T) sends morphisms @ into isomorphisms in H&') (the reader
will easily check that this property is well-defined). Then the localization morptism
is such that for anys-categoryT the induced map

L*:[L(C,S), T] — [C,T]

is injective and its image igC, T15. This property characterizes tiScategory L(C, )
as an object in the comma categafyHo(S — Car). This universal property will not
be used in the rest of the paper, but we believe it makes the meaning of the simplicial
localization more transparent.

(2) It is important to mention the fact that ar§scategoryT is equivalent to some
L(C, S), for a categoryC with a subcategory C C (this is thedelocalization theorem
of [D-K2]). Furthermore, it is clear by the construction given[i+K1] that, if T is
U-small, then so ar€, Sand L(C, S).

Two fundamental properties of the functér: (C, S) — L(C, S) are the following:
1. The localization morphisrh induces a well-defined (up to a unique isomorphism)
functor

Ho(L) : C ~ Ho(F,C) — Ho(L(C, S)),

that identifies HOL (C, S)) with the (usual Gabriel-Zisman) localizatigit1C.
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2. Let M be a simplicial model categoryyy ¢ M its subcategory of equivalences
and let In{M) be the Scategory of fibrant and cofibrant objects M together
with their simplicial sets of morphisms. The full (not simplicial) subcategory
M c M of fibrant and cofibrant objects iM has two natural morphisms in
S — Cat

M <— M —— Int(M),

which induce isomorphisms in H8 — Cat)
L(M, W) ~ LM, wn M
~ L(nt(M), W N M) ~ Int(M).

In the same way, i1 (resp.M°) is the full subcategory of fibrant (resp. cofibrant)
objects inM, the natural morphismas® — M, M® — M induce isomorphisms
in Ho(S — Cat)

Levt, wnmh ~L, wy LS, wn M ~ LM, W).

Definition 2.2.2. If M is any model category, we sétM := L(M, W), whereW c M
is the subcategory of equivalenceshh

The constructionM — LM is functorial, up to equivalences, for Quillen functors
between model categories. To see thisfletM — N be a right Quillen functor. Then,
the restriction to the category of fibrant objegts Mf — N preserves equivalences,
and therefore induces a morphism $tategories

Lf:LM" — LN'.

Using the natural isomorphisnisM® ~ LM and LN' ~ LN in Ho(S — Car), one gets
a well-defined morphismLf : LM — LN. This is a morphism in the homotopy
category H@S — Car), and one checks immediately that — LM is a functor from
the category of model categories (belonging to a fixed univérsevith right Quillen
functors, to H@S — Caty). The dual construction gives rise to a functéf — LM
from the category of model categories which belongs to a univiersand left Quillen
functors to H@S — Caty)).

The reader will check easily that if

f:M— N M<«—N:g
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is a Quillen adjunction which is a Quillen equivalence, then the morphisifis:
LM — LN and Lg : LN — LM are isomorphisms inverse to each others in
Ho(S — Cat).

2.3. Model categories of diagrams

In this paragraph we discuss the notionpré-stack over an S-categowhich is a
generalization of the notion of presheaf of sets on a usual category.

2.3.1. Diagrams
Let T be anyS-category in a univers&), andM a simplicial model category which
is U-cofibrantly generated (sdéli, 13.2] and Appendix A). SinceM is simplicial, we
may view it as anS-category, with the same set of objectsMsand whose simplicial
sets of morphisms are provided by the simplicial structure. Therefore, we may consider
the categoryM?”, of morphisms ofS-categoriesF : T — M. To be more precise, an
object F: T — M in MT consists of the following data:
e AmapF : Ob(T) — Ob(M).
e For any pair of objectsx, y) € Ob(T) x Ob(T), a morphism of simplicial sets

Fry : Homp(x,y) — Hom(F(x), F(y))

(or equivalently, morphisms, , : Homy(x,y) ® F(x) — F(y) in M) satisfying

the obvious associativity and unit axioms.

A morphismfrom F to G in MT consists of morphismgl, : F(x) — G(x) in M,
for all x € Ob(T), such that the following diagram commutes N

Fxy
Homyp(x,y) ® F(x) —— F(y)

ld® H, l l H,

Homy(x,y) ® G(x) —— G(y).
Gy

One defines a model structure @n’, by defining a morphisnH to be a fibration
(resp. an equivalence) if for ak € Ob(T), the induced morphisnH, is a fibration
(resp. an equivalence) iNl. It is known that these definitions makeg” into a sim-
plicial model category which is agaitl-cofibrantly generated (sdéli, 13.10.17]and
Appendix A). This model structure will be called ti@ojective model structure on
MT. Equivalences and fibrations i” will be called objectwise equivalenceand
objectwise fibrations

Let us suppose now thall is aninternal model category (i.e. a symmetric monoidal
model category for the direct product, in the sensgHd, Chapter 4). The category
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MT is then naturally tensored and co-tensored dverindeed, the external product
A®F e MT of Ae M andF € MT, is simply defined by the formuléd ® F)(x) :=

A x F(x) for anyx € Ob(T). For anyx andy in Ob(T), the transition morphisms of
A ® F are defined by

(AQ F)xy:=AXFyy:Homp(x,y) x A x F(x)
~Ax Homyp(x,y) x F(x) — A x F(y).

In the same way, the exponentiil' € MT of F by A, is defined by(F4)(x) := F(x)4
for any x in Ob(T).

With these definitions the model categaby’ becomes av-model category in the
sense offHo, Definition 4.2.18] WhenM is the model category of simplicial sets, this
implies thatSSer” has a natural structure of simplicial model category where expo-
nential and external products are defined levelwise. In particular, forxaayOb(T),
the evaluation functor

jr Mt — M,
F — F(x),

commutes with the geometric realization and total space functofidipSection 19.5]
As fibrant (resp. cofibrant) objects i¥” are also objectwise fibrant (resp. objectwise
cofibrant), this easily implies that commutes, up to an equivalence, with homotopy
limits and homotopy colimits. One may also directly shows tliatis indeed a left
and right Quillen functor. Finally, iM is a proper model category, then soMs’ .

Let f : T — T’ be a morphism inS — Cary. It gives rise to an adjunction

foMT — M MT — M7

where f* is defined by the usual formulg™*(F)(x) := F(f(x)), for any F € mT
and anyx € Ob(T), and f; is its left adjoint. The functorf* is clearly a right Quillen
functor, and thereforé fi, f*) is a Quillen adjunction.

The following theorem is proved ifD-K2] when M is the category of simplicial
sets; its proof generalizes immediately to our situation. As abbdés a simplicial
U-cofibrantly generated model category.

Theorem 2.3.1.I1f f : T — T’ is an equivalence of S-categorigben (f, f*) is a
Quillen equivalence of model categories

Definition 2.3.2. Let T € § — Cary be anS-category inU, and M a U-cofibrantly

generated simplicial model category. The model catedgoryl’, M) of pre-stacks on T
with values in Mis defined as

Pr(T, M) :=M"".
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We will simply write SPKT) for Pr(T, SSetyy), and call it the model category of
pre-stacks on T

Theorem 2.3.1 implies that the model categoryr (T, M), for a fixed M, is an
invariant, up to Quillen equivalence, of the isomorphism clas3 @i Ho(S — Caty)).
In the same way, iff : T — T’ is a morphism in H@S — Caty)), one can represent
f by a string of morphisms ir§ — Caty

r1 f1 P3 f3 P2n—1 Sfon—1
T Ty T T3 Ty e =< Ty —— T,

where eaclp; is an equivalence of-categories. We deduce a diagram of right Quillen
functors

21 Vi P3
Pr(T,M) —— Pr(Thy,M) <—— Pr(To,M) —— Pr(13, M)

p;n—l fgl—l
— Pr(T,-1, M) <— Pr(T', M),

such that eactp; is a right adjoint of a Quillen equivalence. By definition, this di-
agram gives &aQuillen adjunction betweerPr(T, M) and Pr(T’, M), up to Quillen
equivalenceswhich can also be interpreted as a morphism in the category of model
categories localized along Quillen equivalences. In particular, we obtain a well-defined
morphism in H@S — Cat)

Rf* := (ph) Yo(fi)o...0o(ps, 1) Yo(fs, 1) : LPr(T', M) — LPr(T, M).

Using direct images (i.e. functoré-),) instead of inverse images, one also gets a
morphism in the other direction

Lfi i= (fanm)10(p2n—1); Yo o(fro(pr)y t s LPr(T, M) — LPr(T’, M)

(again well-defined in H& — Cat)). Passing to the associated 6er)-enriched
categories, one obtains a HiSer)-enriched adjunction

LA : Ho(Pr(T, M)) — Ho(Pr(T', M)) Ho(Pr(T, M)) <— Ho(Pr(T', M)) : Rf*.

The two HdSSer)-enriched functors are well-defined up to a unique isomorphism.
When M is fixed, the construction above defines a well-defined functor from the cate-
gory Hao(S — Car) to the homotopy category of HSSer)-enriched adjunctions.
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2.3.2. Restricted diagrams

Let C be aU-small S-category,S C C a subScategory, andM a simplicial model
category which isU-cofibrantly generated. We will assume also thdtis a U-
combinatorial or U-cellular model category so that the left Bousfield localization
techniques offHi, Chapter 4]can be applied to homotopically invert ary-set of
morphisms (see Appendix A).

We consider the model categomy©, of simplicial functors fromC to M, endowed
with its projective model structure. For any objeck C, the evaluation functoi; :
M€ — M, defined byii(F) := F(x), has a left adjoint(i); : M — M€ which
is a left Quillen functor. Letl be a U-set of generating cofibrations k. For any
f:A— Bin | and any morphism: : x — y in S ¢ C, one consider the natural
morphism inM¢

SOz A [] GnB) — Gn(B).
(ix)1(A)

Since M is a U-combinatorial (orU-cellular) model category, then so ¢ (see
[Du2, i] and Appendix A). As the set of alf(Ju, for f € I andu a morphism inS
belongs toU, the following definition is well posed.

Definition 2.3.3. The model category/¢-S is the left Bousfield localization of/¢
along the set of all morphismgu, where f € I andu is a morphism inS

The model category/€-S will be called themodel category of restricted diagrams
from (C, S) to M.

Remark 2.3.4.1f M = SSety, we may takel to be the usual set of generating
cofibrations

I ={fy:0A[n] = Aln]|n>0}.

Since as it is easily checked, we have a canonical isomorphigntx = A[0]) >~ &,

in $Set©-9” for any x € C, where i, denotes the simplicial diagrams defined by
h,.(y) := Homy(y, x). Then, for anyx : x — y in S we have that the set of morphisms
faOlu is exactly the set of augmented horns on the set of morphisms- 4, (see
[Hi, Section 4.3]. This implies thatSSet©S is simply the left Bousfield localization
of SSet along the set of morphisms, — h, for anyx — y in S

By the general theory of left Bousfield localization pi], the fibrant objects in
the model categoryt©:S are the functorsF : C — M satisfying the following two
conditions:

1. For anyx € C, F(x) is a fibrant object inM (i.e. F is fibrant in M€ for the
projective model structure).

2. For any morphismy : x — y in § the induced morphisnF, ,(u) : F(x) —
F(y) is an equivalence iM.
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Now, let (F,C, F.S) be the canonical free resolution o€, S) in S — Cary (see
[D-K1]). Then, one has a diagram of pairs $tategories

p !
(C,S) <— (FC,F.S) — (F.85) YF,C)=L(C,Y¥),

inducing a diagram of right Quillen functors

p* I*
MCS —— MYFCFES < pL(C.9)

The following result is proved ifD-K2] in the case wheréf = SSet, and its proof
generalizes easily to our situation.

Theorem 2.3.5.The previously defined right Quillen functogs® and [* are Quillen
equivalences. In particularthe two model categories/-(©-5) and M€-$ are Quillen
equivalent

The model categories of restricted diagrams are functorial in the following sense.
Let f : C — D be a functor between twé/-small S-categories, and lef ¢ C and
T C D be two subS-categories such that(S) c T. The functorf induces the usual
adjunction on the categories of diagramshin

fi: M5 — MP T MOS — MPT

The adjunction(fi, f*) is a Quillen adjunction for the objectwise model structures.
Furthermore, using the description of fibrant objects given above, it is clearfthat
sends fibrant objects i/?7 to fibrant objects inM€-5. By the general formalism
of left Bousfield localizations (sepHi, Section 3), this implies that(f;, /*) is also a
Quillen adjunction for the restricted model structures.

Corollary 2.3.6. Let f : (C,S) — (D, T) be as above. If the induced morphism of
S-categoried.f : L(C, S) — L(D, T) is an equivalencethen the Quillen adjunction
(fi, f*) is a Quillen equivalence betwee®S and MP-T.
Proof. This is a consequence of Theore@8.1and2.3.5 O
2.4. The Yoneda embedding

In this paragraph we define a Yoneda embeddingSaategories. To be precise it

will be only defined as a morphism i§ — Cat for fibrant S-categories, i.e. foiS
categories whose simplicial sets of morphisms are all fibrant; for arbiSaategories,
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the Yoneda embedding will only be defined as a morphism in the homotopy category
Ho(S — Cat).

We fix T, a U-small S-category. The categor$Pr(T) (see Definition2.3.2 is natu-
rally enriched oveiSSetand the corresponding-category will be denoted bPr(T);.
Note that IntSPr(T)) is a full subS-category ofSPr(T), (recall that IntSPr(T)) is
the S-category of fibrant and cofibrant objects in the simplicial model cate§énwyT)).

Recall the following SSetenriched version of Yoneda lemma (e.g.,
[G-J, IX Lemma 1.2]

Proposition 2.4.1.Let T be an S-category. For any object x in [Et us denote by
h, the object in SPT), defined byh, (y) := Homy(y,x). Then for any simplicial
functor F : T — SSet, there is a canonical isomorphism of simplicial sets

F(x) >~ HomSPr(T)J(ﬁx, F)
which is functorial in the pair(F, x).

Then, for anyT € S — Catry, one defines a morphism @&-categoriesh : T —
SPr(T),, by setting forx € Ob(T)

h, TP — SSety,
y > Homyg(y,x).

Note that Propositior2.4.1 defines immediately: at the level of morphisms between
simplicial Homs and shows that is fully faithful (in a strong sense) as a morphism
in S — Caty. Now, the morphisnk induces a functor between the associated homotopy
categories that we will still denote by

h i HO(T) — HOo(SPr(T)s).

Now, we want to compare HSPr(T)s) to Ho(SPr(T)); note that the two HE-)'s

here have different meanings, as the first one refers to the homotopy category of an
S-category while the second one to the homotopy category of a model category. By
definition, in the set of morphisms betwe&nand G in Ho(SPr(T),), simplicially
homotopic maps inHomsp,)(F, G) = Homgp, ) (F, G)o, give rise to the same
element. Then, since simplicially homotopic mapsHw@m sp,r)(F, G) have the same
image in HaGSPr(T)) (see, for example[Hi, Corollary 10.4.5], the identity functor
induces a well-defined localization morphism

Ho(SPr(T);) — Ho(SPr(T)).

Composing this with the functok, one deduces a well-defined functor (denoted with
the same symbol)

h : HO(T) — Ho(SPr(T)).
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The following is a homotopy version of the enriched Yoneda lemma (i.e. a homotopy
variation of Propositior2.4.7).

Proposition 2.4.2. For any objectF € SPr(T) and anyx € Ob(T), there exists an
isomorphism inHo(SSery))

F(x) ~ RHom(h,, F)

which is functorial in the pait(F, x) € Ho(S Pr(T)) x Ho(T). In particular, the functor
h : HO(T) — Ho(SPr(T)) is fully faithful

Proof. Using Propositior2.4.1, since equivalences i8Pr(T) are defined objectwise,
by taking a fibrant replacement &f we may suppose th#t is fibrant. Moreover, again
by Proposition2.4.1, the unique morphism — h, has the right lifting property with
respect to all trivial fibrations, hendg, is a cofibrant object irfSPr(T"). Therefore, for
any fibrant objectF € SPr(T), one has natural isomorphisms in (§Ser))

F(x) ~ Hom(h,, F) ~ RHom(h,, F). O

The following corollary is a refined version of Propositi@w.2

Corollary 2.4.3. Let T be an S-category ify with fibrant simplicial Hom-sets. Then
the morphismi : T — SPr(T), factors throughint(SPr(T)) and the induced mor-
phismh : T — Int(SPr(T)) in S — Cat is fully faithful.

Proof. The assumption ol implies thatz, is fibrant and cofibrant irSPr(T), for
any x € Ob(T) and therefore thak factors through In¢SPr (7)) C SPr(T),. Finally,
Proposition2.4.2 immediately implies that is fully faithful. Actually, this is already
true forh : T — SPr(T)s, by Proposition2.4.1 and hence this is true for our
factorization since IntSPr(T)) is a full subScategory ofSPr(T),. O

In caseT is anarbitrary S-category inU (possibly with non-fibrant simplicial Hom
sets), one can consider a fibrant replacementl’ — RT, defined by applying the
Kan Ex®°-construction[G-J, Ill.4] to each simplicial set of morphisms i, together
with its Yoneda embedding

J h
T —— RT —— Int(SPr(RT)).

When viewed in HOS — Caty), this induces a well-defined morphism

j h
T —> RT —> Int(SPr(RT)) ~ LSPr(RT).
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Finally, composing with the isomorphisthji = (j*)~1 : LSPr(RT) ~ LSPr(T) of
Theorem2.3.1, one gets a morphism

Lh:T —s LSPr(T).

This is a morphism in H& — Caty), called theS-Yoneda embedding of When
no confusion is possible, we will simply call it the Yoneda embeddingTofNow,
Corollary 2.4.3immediately implies that x is fully faithful, and is indeed isomorphic
to the morphismi defined above wheii has fibrant simplicial Hom-sets.

Definition 2.4.4. Let T be an Scategory. An object in H& Pr(T)) is called repre-
sentableif it belongs to the essential image (see Definitidri.3 2.) of the functor
Lh:T — LSPr(T).

For any T € Ho(S — Caty), the Yoneda embeddings : T — LSPr(T) induces
an isomorphism in H& — Caty)) betweenT and the full subscategory of LS Pr(T)
consisting of representable objects.

Note that the functor induced on the level of homotopy categories

Lh : HO(T) — HO(LSPr(T)) = Ho(SPr(T))

simply sendsx € Ob(T) to the simplicial presheali, € Ho(SPr(T)).

2.5. Comma S-categories

In this subsection we will use the Yoneda embedding defined above, in order to
define, for anS-categoryT and an objectx € T, the commaS-categoryT/x in a
meaningful way.

Let T be anS-category inU, and let us consider its (usual, enriched) Yoneda em-
bedding

h:T —> SPr(T) = SSet!)”.

For any objectx € Ob(T), we consider the comma catego8Pr(T)/h,, together
with its natural induced model structure (i.e. the one created by the forgetful functor
SPK(T)/h, — SPr(T), see[Ho, p. 5). For any objecty € Ob(T), and any morphism
u:h, — h., let F, € SPr(T)/h, be a fibrant replacement af Sinceu is already

a cofibrant object inSPr(T)/h, (as we already observed in the proof of Proposition
2.4.2), the objectF, is then actually fibrant and cofibrant.
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Definition 2.5.1. The comma S-category'/x is defined to be the full suB-category
of L(SPr(T)/h,) consisting of all objectsF,, for all u of the formu : h, — h,,
y € Ob(T).

Note that sinc& belongs tol, so does th&-categoryT /x, for any objectx € Ob(T).

There exists a natural morphism in to— Cary)
T/x — L(SPr(T)/h,) — LSPr(T),

where the morphism on the right is induced by the forgetful fun&Br(7)/h, —
SPr(T). One checks immediately that the essential image of this morphism is contained
in the essential image of the Yoneda embeddirkg: T —> LS Pr(T). Therefore, there
exists a natural factorization in K& — Caty)

T/x

LSPr(T)

N

T

As the inclusion functor H& —Cary) —> Ho(S—Cary) is fully faithful (see Appendix
A), this gives a well-defined morphism in 49— Cary)

Jx:T/x — T.

It is important to observe that the functé(j,), : Ho(SPr(T/x)) — Ho(SPr(T)),
induced by, is such thatR(j,)i(x) = A,.

Up to a natural equivalence of categories, the homotopy catego(¥ Mo has the
following explicit description. For the sake of simplicity we will assume thiais a
fibrant S-category (i.e. all the simplicial set§om(x, y) of morphisms are fibrant).
The objects of HETI'/x) are simply pairs(y, u), consisting of an objecy € Ob(T)
and a O-simplext € Hom(y, x)o (i.e. a morphismy — x in the categorylp).

Let us consider two objectsy, u) and (z,v), and a pair(f, h), consisting of a

O-simplex f € Hom(y, z) and a 1-simplex: € Hom(y, )2 such that

Oo(h) =u 01(h) = vof.
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We may represent diagramatically this situation as

Two such pairg f, h) and (g, k) are defined to be equivalent if there exist a 1-simplex
H e Homy(y,2) and a 2-simplexG € Hom,(y, x)A* such that

do(H)=f 01(H)=g 0o(G)=h 01(G) =k 02(G)=voH.

The set of morphisms in H@ /x) from (y, u) to (z, v) is then the set of equivalences
classes of such pairsf, h). In other words, the set of morphisms from, ) to (z, v)

is the set of connected components of the homotopy fiberob : Hom,(y, z) —
Homy(y, x) at the pointu.

Let (f,h) : (y,u) — (z,v) and (g,k) : (z,v) — (¢, w) be two morphisms in
Ho(T/x). The composition of f, k) and (g, k) in Ho(T/x) is the class of(go f, kh),
wherek# is the concatenation of the 1-simplicesndko f in Hom (y, x). Pictorially,
one composes the triangles as

As the concatenation of 1-simplices is well-defined, associative and unital up to ho-
motopy, this gives a well-defined, associative and unital composition of morphisms in
Ho(T /x).

Note that there is a natural projection 9x) — Ho(T)/x, which sends an
object (y,u) to the objecty together with the image ofi in no(Hom;(y, x)) =
Homuocr)(y, x). This functor is not an equivalence but is always full and essentially
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surjective. The composition functor B/x) — Ho(T)/x —> Ho(T) is isomorphic
to the functor induced by the natural morphisivix — T.

3. Stacks overSsites

This section is devoted to the definition of the notionsSabpologies,S-sites and
stacks over them. We start by definiigytopologieson Scategories, generalizing the
notion of Grothendieck topologies on usual categories and inducing an obvious notion
of S-site For anS-site T, we define a notion ofocal equivalencen the model category
of pre-stacksSPr(T'), analogous to the notion of local isomorphism between presheaves
on a given Grothendieck site. The first main result of this section is the existence of a
model structure orSPr(T), the local model structurewhose equivalences are exactly
the local equivalences. This model structure is called riwdel category of stacks
To motivate this terminology we prove a criterion characterizing fibrant objects in the
model category of stacks as objects satisfyindpy@erdescenproperty with respect
to the givenStopology, which is a homotopy analog of the usual descent or sheaf
condition. We also investigate functoriality properties (i.e. inverse and direct images
functors) of the model categories of stacks, as well as the very useful notistack
of morphismg(i.e. internalHomis).

The second main result of this section is a correspondence betSgologies on
an ScategoryT and t-complete left Bousfield localizations of the model category of
pre-stacksSPr(T). Finally, we relate our definition of stacks ovBrsites to the notion
of model toposdue to Rezk, and we conclude from our previous results that almost
all model topoi are equivalent to a model category of stacks ove-site.

3.1. S-topologies and S-sites

We refer to[SGA4-I, Exp. Il] or [M-M] for the definition of a Grothendieck topology
and for the associated sheaf theory.

Definition 3.1.1. An S-topologyon anS-categoryT is a Grothendieck topology on the
category H@T). An S-site (T, 7) is the datum of anS-categoryT together with an
Stopology T on T.

Remark 3.1.2. 1. It is important to remark that the notion of &topology on anS
categoryT only depends on the isomorphism classToé Ho(S—Cat), since equivalent
S-categories have equivalent homotopy categories.

2. From the point of view of higher category theo8/categories are models fob-
categories in which all-arrows areinvertible for all i > 1. Therefore, if one tries to
define the notion of a topology on this kind of higher categories, the stability axiom will
imply that all i-morphisms should be automatically coverings fof 1. The datum of
the topology should therefore only depends on isomorphism classes of 1-morphisms,
or, in other words, on the homotopy category. This might give a more conceptual
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explanation of Definition3.1.1 See also Remarl8.8.7 for more on topologies on
higher categories.

Let 7 € S — Caty be aU-small Scategory andSPr(T) its model category of pre-
stacks. Given any pre-stack € SPr(T), one can consider its associated presheaf of
connected components

TP —  Sety,
x = mo(F(x)).

The universal property of the homotopy category To# implies that there exists a
unique factorization

TP — > Set

\L /ngr(F)

Ho(T)?”

The constructionF +— ng’(F), being obviously functorial inF, induces a well-
defined functorSPr(T) — Setu'jo(T)ap; but, since equivalences i8Pr(T) are defined

objectwise, this induces a functor

b (=) : Ho(SPr(T)) — Ser ™.

Definition 3.1.3. Let (T, 1) be aU-small Ssite.

1. For any object € SPr(T), the sheaf associated to the preshegif(F) is denoted
by ng(F) (or mo(F) if the topology t is clear from the context). It is a sheaf on
the site(Ho(T), 7), and is called thesheaf of connected components of F

2. A morphismF — G in Ho(SPr(T)) is called at-covering(or just acoveringif
the topologyr is clear from the context) if the induced morphisif( F) — 75(G)
is an epimorphism of sheaves.

3. A morphism F — G in SPKT) is called at-covering (or just a covering if
the topologyt is unambiguous) if its image by the natural func®Prn7) —
Ho(SPr(T)) is a t-covering as defined in the previous item.

Clearly, for two objectsx andy in T, any morphismx —> y such that the sieve
generated by its image in KIB) is a covering sieve of, induces a covering, — hy.

More generally, one has the following characterization of coveringhanotopy
locally surjectivemorphisms. This is the homotopy analog of the notion of epimorphism
of stacks (see for examplea-Mo, Section, 1}, where one requires that any object in
the target is locally isomorphic to the image of an object in the source.
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Proposition 3.1.4. A morphismf : F — G in SPr(T) is a covering if it has the
following homotopy local surjectivitproperty. For any object € Ob(T), and any mor-
phism inHo(SPr(T)), h, — G, there exists a covering sieve R of xHwo(T'), such
that for any morphismu: — x in R there is a commutative diagram Ho(S Pr(T)):

F — G

I

hu - hx .

In other words f is a covering if and only if any object of G over x lifts locally and
up to homotopy to an object of. F

Proof. First of all, let us observe that both the definition of a covering and the
homotopy local surjectivity propertyold true for the givenf : F — G if and
only if they hold true forRF — RG, where R(—) is a fibrant replacement func-
tor in SPrT). Therefore, we may suppose both and G fibrant. Now, by Mac
Lane and Moerdirk[M-M, 11l.7, Corollary 6], f : F — G is a covering iff the
induced map of presheave%’(F) — ng’(G) is locally surjective. But, by Yoneda
ng (H)(y) = no(Homgp,ry(h,, H)), for any H € SPr(T) and any objecty in T.
Since F and G are fibrant, we then havel (F)(y) ~ Homuosprry (b, F) and

5 (G)(y) =~ Homuospr(r)(hy, G), for any objecty in T. But then, the local sur-

jectivity of n§"(F) — n5"(G) exactly translates to theomotopy local surjectivity
property in the proposition and we conclude. ]

Remark 3.1.5. If the morphismf of Proposition3.1.4 is an objectwise fibration (i.e.
for any x € T, the morphismF (x) — G(x) is a fibration of simplicial sets), then the
homotopy local surjectivity property implies the local surjectivity property. This means
that the diagrams

F — G
hu hx

of Proposition3.1.4 can be chosen to be commutative $Pr(7), and not only in
Ho(SPr(T)).

_

From this characterization one concludes easily that coverings have the following
stability properties.
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Corollary 3.1.6. 1. A morphism in SR{T) which is a composition of coverings is a
covering
2. Let

FF — G

L

F — G

be a homotopy cartesian diagram in SP). If f is a covering so isf’.
u v
3.Let F ——= G ——= H be two morphisms in SPF). If the morphism
vou IS a covering then so is.v
4. Let

f

F/ > G/

.

F — G

f
be a homotopy cartesian diagram in SP». If p and f’ are coverings then so is f
Proof. Properties(1) and (3) follow immediately from Propositior8.1.4 and (4)

follows from (3). It remains to prove(2). Let usf and f/ be as in(2) and let us
consider a diagram

hy
f i
F — G

L,

F — G
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As f is a covering, there exists a covering sieReover x € Ho(T), such that for any
u — x in R, one has a commutative diagram

By the universal property of homotopy fibered products, the morphisms— F and
h, — h, — G’ are the two projections of a (non unique) morphisn— F’. This
gives, for allu — x, the required liftings

h —s h

u Zx
|,
F — G U

3.2. Simplicial objects and hypercovers

Let us now considesSPr(T) := SPr(T)AUp, the category of simplicial objects in
SPr(T). Its objects will be denoted as

F.: AP — SPr(T)
[m] — F,.

As the categonSPr(T) has all kind of limits and colimits indexed i, the category
sSPr(T) has a natural structure of tensored and co-tensored categonys Sver (see
[G-J, Chapter II, Theorem 2.p]The external product of, € sSPr(T) by A € SSet,
denoted byA ® F, is the simplicial object irSPr(T) defined by

AQF,: AP — SPr(T),
n] = ] Fa-
Ay

The exponential (or co-tensor) @f, by A, is denoted byF*A and is determined by the
usual adjunction isomorphism

Hom(A ® Fy, G) ~ Hom(Fy, G2).
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Notation. We will denote by FA € SPr(T) the Oth level of the simplicial object

F& e ssPr(T).
Explicitly, the objectF/ is the end of the functor

AP x A — SPr(T),
(Inl, ImD = Tlqa, Fa-

One checks immediately that for arf, € sSPr(T), one has a natural isomorphism
FA' ~ F,.

We endow the categoryS Pr(T) with its Reedy model structure (s§ido, Theorem
5.2.5). The equivalences inSPr(T) are the morphism#, — G, such that, for any
n, the induced morphisn¥,, — G, is an equivalence ifsPr(T). The fibrations are
the morphismsF, — G, such that, for anyn] € A, the induced morphism

A}’l ~ 6An A}‘l
H< =~ Fn —> F* X G(;A”G*

is a fibration inSPr(T).
Given any simplicial setd € SSery, the functor

sSPr(T) — SPr(T),
F, +— FA

is a right Quillen functor for the Reedy model structure séhPr (7)) [Ho, Proposition
5.4.1] Its right derived functor will be denoted by

Ho(sSPr(T)) — Ho(SPr(T)),
F, > FRA,

For any object F € SPr(T), one can consider the constant simplicial object
¢(F), € sSPr(T) defined byc(F), := F for all n. One the other hand, one can
consider

(RF)A" . AP — SPr(T),
] > (REY,

where RF is a fibrant model forF in SPK(T), and (RF)Y" is the exponential object
defined using the simplicial structure &Pr(7T). The object(R F)% is a fibrant replace-
ment of c,(F) in sSPr(T). Furthermore, for any objear € SPr(T) and A € SSet,
there exists a natural isomorphism SPr(T)

(GAHYA ~ GA.
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This induces a natural isomorphism in t§&r(T))
(c(F))* ~ (RF)*)* ~ (RF)™.

However, we remark that(F)Z is not isomorphic toF4 as an object irSPr(T).
Notation. For any F € SPr(T) and A € SSety;, we will simply denote byFR4 ¢
Ho(SPr(T)) the objectc(F)24 ~ (RF)A.
We let A<, be the full subcategory oA consisting of object§p] with p<n, and
denote bys, SPr(T) the category of functorﬁfgn —> SPr(T). The natural inclusion
in: A<y, — A induces a restriction functor

i*:sSPr(T) — s,SPr(T)

which has a right adjointi,)s : s,SPr(T) — sSPr(T), as well as a left adjoint
(in)1 : s, SPr(T) — sSPr(T). The two adjunction morphisms induce isomorphisms
iX(in)x ~1d andi;(i,), =~ Id: therefore both functorsi,), and (i,), are fully faithful.

Definition 3.2.1. Let F, € sSPr(T) andn >0.
1. One defines thath skeleton and itoskeletorof F, as

Skn(Fy) = (inhiy (Fs)  Coskyp(Fy) := (in)«iy (Fy).

2. The simplicial objectF, is called n-boundedif the adjunction morphisn¥, —
Cosk,(Fy) is an isomorphism.

It is important to note tha¥,, Cosk,(F,) and Sk, (F,) all coincide in degreesn
i*(Fy) =~ i*(Coskn Fy) ~ i*(Sky Fy).
The adjunctions(i;f, (i)«) and ((i,):, ;) induce a natural adjunction isomorphism
Hom (Sk,(Fy), Gy) >~ Hom(Fy, Cosk,(Gy)),

for any F, and G, in sSPr(T) and anyn >0. As a special case, for any € SSery,
one has an isomorphism BPr(T)

FSkiA ~ (Cosk, Fo)*.
As Sk,A"™ = 0A", one gets natural isomorphisms

AAn+1
FIA ~ Cosky (Fu)nia. @)
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Lemma 3.2.1. The functorCosk, : sSPr(T) — sSPr(T) is a right Quillen functor
for the Reedy model structure @i Pr(T).

Proof. By adjunction, for any integep with p<n, one has
(Cosky(FN™ ~ FIA" (Coskn(F )Y =~ FL,
while, for p > n+ 1, one has
(Coskn(F )™ = (Coskn(F )Y
Finally, for p =n 4+ 1 one has
(Coska(F))2"" ~ FON™ (Cosky(F)A"™ ~ FIN™,

Using these formulas and the definition of Reedy fibrations Si®»(7T) one checks
immediately that the functo€osk, preserves fibrations and trivial fibrations. As it is
a right adjoint (its left adjoint beingk,), this implies thatCosk, is a right Quillen
functor. O

The previous lemma allows us to consider the right derived version of the coskeleton
functor

R Cosk, : Ho(sSPr(T)) — Ho(sSPr(T)).

It comes with a natural morphism dgssprry) — RCosk,(F), induced by the
adjunction morphism Igp,ry — (in)«i,;. There exist obviouselative notions of the
functors Sk,, and Cosk, whose formulations are left to the reader. Let us only mention
that the relative derived coskeleton of a morphisth — G, in sSPr(T) may be
defined by the following homotopy cartesian squareSPr(T):

RCosk, (Fy/Gy) — G,

| |

RCosk,(F,) —— RCosk,(Gy).

The functorR Cosko(—/c(G)4), relative to a constant diagran{G)., whereG ¢
SPr(T), has the following interpretation in terms dérived nervesFor any morphism
Fy — ¢x(G) in sSPr(T), with ¢,(G) the constant simplicial diagram with valug,
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we consider the induced morphisfn: Fop — G in Ho(SPr(T)). Let us represent this
morphism by a fibration irSPr(T), and let us consider its usual nerxg f):

N(f): A? — SPr(T),
[n] —» FoxgFoxg... XxgFo.

n times

The nerve N(f) is naturally augmented over ,Gand therefore is an object of
sSPr(T)/cs(G). Then, there is a natural isomorphism in GI8Pr(T)/c.(G))

R Cosko(Fi/csx(G)) = N(f).

Definition 3.2.3. Let (7', 7) be aU-small Ssite.
1. A morphism insSPr(T)

F, — G,

is called at-hypercover(or just ahypercoverif the topology t is unambiguous)
if for any n, the induced morphism

RA" ROA™ h RA"
F* —Fn_)F* XGQ@(?A’IG*

is a covering in HOS Pr(T)) (see Definition3.1.32)).
2. A morphism in H@sSPr(T))

F. — G,

is called at-hypercover(or just ahypercoverif the topology t is unambiguous)
if one of its representatives inSPr(T) is a t-hypercover.

Using isomorphismslj), Definition 3.2.3 may also be stated as follows. A morphism
f : Fx — G, is at-hypercoverif and only if for any n >0 the induced morphism

Fy — RCosky_1(Fy/Gs)n

is a covering in HOS Pr(T)).

Note also that in Definitior3.2.32), if one of the representatives bfs a hypercover,
then so is any representative. Being a hypercover is therefore a property of morphisms
in Ho(sSPr(T)).
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3.3. Local equivalences

Throughout this subsection, we fix [@-small S-site (7, 7).

Let x be an object inl. The topology on H@I') induces a natural topology on the
comma category H@")/x. We define a Grothendieck topology on 9 x) by pulling
back the topology of H@)/x through the natural projection Kf/x) — Ho(T)/x.

By this, we mean that a sie\igover an objecty € Ho(T/x), is defined to be a covering
sieve if and only if (the sieve generated by) its image in(Hpis a t-covering sieve

of the objecty € Ho(T')/x. The reader will check easily that this indeed defines a
topology on H@T7/x), and therefore ais-topology on7 /x. This topology will still be
denoted byzr.

Definition 3.3.1. The Ssite (T/x, ) will be called thecomma S-sitef (T, t) over x.

Let F € SPr(T), x € Ob(T) and s € no(F(x)) be represented by a morphism:
h, — F in Ho(SPr(T)) (see2.4.9. By pulling-back this morphism along the natural
morphismj, : T/x — T, one gets a morphism in H8Pr(T/x))

s jy(hy) — JI(F).

By definition of the comma category/x, it is immediate thatj’(k,) has a natural
global pointsx — j¥(k,) in HO(SPr(T/x)). Note that the morphism — j¥(h,) is
also induced by adjunction from the identity 6f ~ R(j.):(x). Therefore we obtain
a global point of j(F)

sk —> jE(h,) —> jI(F).

Definition 3.3.2. Let F € SPr(T) andx € Ob(T).
1. For any integen > 0, the sheafr, (F, s) is defined as

T (F. 8) := mo(jH(F)™ x Jr(pyRan *).

It is a sheaf on the sitéHo(T'/x), t) called thenth homotopy sheadf F pointed
ats.
2. A morphismf : F — G in SPr(T) is called ar,-equivalenceor, equivalently, a
local equivalenceif the following two conditions are satisfied:
(@) The induced morphismgo(F) — 7mo(G) is an isomorphism of sheaves on
Ho(T).
(b) For any objectx € Ob(T), any sections € np(F(x)) and any integen > 0,
the induced morphism, (F, s) — 7m,(G, f(s)) is an isomorphism of sheaves
on HO(T /x).
3. A morphism in HgSPr(T)) is a m.-equivalence if one of its representatives in
SPK(T) is a m.-equivalence.



294 B. Toén, G. Vezzosi/Advances in Mathematics 193 (2005) 257-372

Obviously, an equivalence in the model categ8R®r(T) is always an,-equivalence
for any topologyt on T. Indeed, an equivalence i8Pr(T) induces isomorphisms
between the homotopy presheaves which are the homotopy sheaves for the trivial
topology.

Note also that in Definitior8.3.23), if a representative of is a n,-equivalence then
so is any of its representatives. Therefore, being.#&quivalence is actually a property
of morphisms in HOS Pr(T)).

The following characterization of,-equivalences is interesting as it does not involve
any base point.

Lemma 3.3.3. A morphismf : F — G in SPKT) is a n.-equivalence if and only if
for any n >0 the induced morphism

n n

n
GRIA G A

is a covering
In other words f : F — G is a m,-equivalence if and only if it is a-hypercover
when considered as a morphism of constant simplicial objects if7SPr

Proof.  Without loss of generality, we can assume that a fibration between fibrant
objects in the model catego§Pr(T). This means that for any € Ob(T), the induced
morphismf : F(x) — G(x) is a fibration between fibrant simplicial sets. In particular,
the morphism

FRA" _ pROA"  h GRA
AH
in Ho(SPr(T)) is represented by the morphism 8Pr(T)
FA" . poA" o GoAn GAn.

This morphism is furthermore an objectwise fibration, and therefore the local lifting
property of z-coverings (see PropositioB.1.4 holds not only in H@S Pr(T)) but in
SPr(T) (see Remark3.1.5. Hence,f is a hypercover if and only if it satisfies the
following local lifting property.

For anyx € Ho(T), and any morphism irf8Pr(T)

n n
h, — FOA" x G{WlGA )
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there exists a covering sieR of x and, for anyu — x in R, a commutative diagram
in SPKT)

FAn - FaAVl x G(?An GAn

| |

h, —— h,.

By adjunction, this is equivalent to the following condition. For any objeet Ob(T)
and any commutative diagram iiSer

Fx) —= G(x)

I

AT ——> A"

there exists a covering siew of x in Ho(7) such that for any morphism — x in
T, whose image belongs g, there is a commutative diagram ez

F(u) —— Gu)

N

F(x) G(x)

Y

A" ——> A"

By definition of the homotopy sheaves, this last condition is easily seen to be equivalent
to being amn,-equivalence (the details are left to the reader, who might also wish to
consult[Jal, Theorem 1.12] O

Corollary 3.3.4. Let f : F — G be a morphism in SRT) and G’ — G be a
covering. Thenif the induced morphism

f i FxLG — G

is a my-equivalencethen so is f
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Proof. Apply Lemma3.3.3and Propositior8.1.62). O

Corollary 3.3.5. Let f : F — G be am.-equivalence in SR') and G’ — G be
an objectwise fibration. Therthe induced morphism

f T FxcG — G

is a m.-equivalence

Proof. This follows from Corollarny3.3.4sinceSPr(T) is a proper model category.]

Let x be an object inT and f : F — G be a morphism in H& Pr(T)). For any
morphisms : h, — G in Ho(SPr(T)), let us defineF, € Ho(SPr(T/x)) by the
following homotopy cartesian square 8Pr(T/x);

G
Jx(F) —— Ji(G)

o

Fo, ———— o
where the morphism — j¥(G) is adjoint to the morphism : R(j)i(x) ~ h, — G.

Corollary 3.3.6. Let f : F — G be a morphism in SR7"). With the same notations
as above the morphism f is an.-equivalence if and only for any : A, — G in
Ho(SPr(T)), the induced morphisnky — * is a m.-equivalence intHo(S Pr(T /x)).

Proof. By Lemma3.3.3it is enough to show that the morphighis a covering if and
only if all the F;, — x are coverings in H&® Pr(T/x)). Theonly if part follows from
Proposition3.1.62), so it is enough to show that if all th — * are coverings then
f is a covering.

Givens : h, — G in Ho(SPr(T)), let us prove that it lifts locally toF. By
adjunction,s corresponds to a morphissn— j¥(G). As the corresponding morphism
F; — = is a covering, there exists a covering sidRef = in Ho(T /x) and, for each
u — * in R, a commutative diagram in H8Pr(T/x))

KF) —— Jj3(G)

I

hu >k
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By adjunction, this commutative diagram induces a commutative diagram(6/Hg7))

F —— G

I

RGo(h,) — h,

But R(jo)i(k,) ~h; (. and by definition of the induced topology on #gx), the
morphisms in(j,)(R) form a covering sieve ox. Therefore, the commutative diagram
above shows that the morphissiifts locally to F. [

We end this paragraph by describing the behaviour.eéquivalences under homo-
topy push-outs.

Proposition 3.3.7.Let f : F — G be ar,-equivalence in SR#) and F — F’ be
an objectwise cofibratiorfi.e. a monomorphisjn Then the induced morphism

foF—F]]G
F

is a m.-equivalence
Proof. It is essentially the same proof as that[d&1, Proposition 2.2] [
3.4. The local model structure

Throughout this subsection, we fix l[a-small S-site (7, 7).

The main purpose of this paragraph is to prove the following theorem which is a
generalization of the existence of the local projective model structure on the category
of simplicial presheaves on a Grothendieck site (see for exafBpld-S, Section 5.

The proof we present here is based on some arguments foufiljrl-S,DHI] (as
well as on some hints from V. Hinich) and uses the Bousfield localization techniques
of [Hi], but does not assume the results[BFf,Jal]

Theorem 3.4.1.Let (T, t) be an S-site. There exists a closed model structure on
SPr(T), called the local projective model structyréor which the equivalences are
the n.-equivalences and the cofibrations are the cofibrations for the projective model
structure on SP(T'). Furthermore, the local projective model structureliscofibrantly
generated and proper. The category $Py together with its local projective model
structure will be denoted by SRIT).

Proof. We are going to apply the existence theorem for left Bousfield localizations
[Hi, Theorem 4.1.1}to the objectwise model structuPr(T) along a certainl-small
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setH of morphisms. The main point will be to check that equivalences in this localized
model structure are exactly,-equivalences.

3.4.1. Definition of the set H
As the S-categoryT is U-small, the set

Emy =] I Homr&

neN (x,y)e0b(T)2

of all simplices in all simplicial set of morphisms @fis also U-small. We denote by
o a U-small cardinal bigger than the cardinal 8f7) and thanXg. Finally, we letf
be aU-small cardinal withff > 2%,

The size of a simplicial preshed € SPr(T) is by definition the cardinality of the
set

[T I m.

neN xeOb(T)

We will denote it by CardF).

For an objectx € Ob(T) we consider a fibrant replacemehf < R(hk,) as well
as the simplicial object it defineR(@x)A* € sSPr(T). Note that ash, is a cofibrant
object, so isR(h,). We define a subse#’s(x) of objects insSPr(T)/R(ﬁx)A* in the
following way. We consider the following two conditions.

1. The morphismF, — R(QX)A* € Ho(sSPr(T)) is a hypercover.
2. For alln >0, one has Car@),) < f. Furthermore, for each>0, F,, is isomorphic
in Ho(SPr(T)) to a coproduct of representable objects

Fo~ [ ] A

uely

We define# 4(x) to be a set of representativeSSiﬁPr(T)/R(@X)A*, for the isomor-
phism classes of objects, € sSPr(T)/R(Qx)A* which satisfy conditiong1) and (2)
above. Note that conditio(®) insures that#’s(x) is a U-small set for any € Ob(T).

Now, for any x € Ob(T), any F. € # g(x) we consider its geometric realization
|F,| in SPK(T), together with its natural adjunction morphisff.| — R(h,) (see
[Hi, 19.5.1). Note that|F,| is naturally equivalent to the homotopy colimit of the
diagram [n] — F,. Indeed, for anyy € Ob(T), |F«|(y) is naturally isomorphic to
diagonal of the bi-simplicial sef,(y) (see[Hi, 16.10.6). We define the seH to be
the union of all thes#'s(x)’s whenx varies in Ob(T). In other words,H consists of
all morphisms

|Fi| — R(h,),
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for all x € Ob(T) and all F, € #'p(x). Clearly, the setH is U-small, so one can
apply TheorenA.2.2 or A.2.4 to the objectwise model catego8Pr(T) and the set of
morphismsH. We let Ly S Pr(T) be the left Bousfield localization &Pr(T) along the

set of morphism#d. We are going to show that equivalences ipn3Pr(T) are exactly
n.-equivalences. This will clearly implies the existence of the local model structure of
3.4.1

3.4.2. The morphisms in H are,-equivalences
The main point in the proof is the following lemma.

Lemma 3.4.2. For any objectx € Ob(T) and any hypercover, — R(hX)A*, the
natural morphism inHo(S Pr(T))

hocolim(F,,) — R(h,) >~ h,
[n]eA”

is a m,-equivalence

Proof. By applying the base change functgf : Ho(SPr(T)) — Ho(SPr(T/x))

one gets a natural morphisgyf (hocolim,,can (Fy)) —> ji(k,). By definition of the
homotopy sheaves one sees that it is enough to show that the homotopy fiber of this
morphism at the natural point — jh, is m.-contractible (see Corollar$.3.9. In

other words, one can always assume tha a final object inT, or in other words that

h, >~ x (this reduction is not necessary but simplifies notations). We can also assume
that F, is fibrant as an object inSPr(T), so Cosk,(Fy) >~ R Cosk, (Fy). We will

simply denote byG,| the homotopy colimit of a simplicial diagrag, in SPr(T).

Stepl: Let us first assume thd, is a 0-bounded hypercover. Recall that this means
that for anyn > 0 one hasF;,, ~ F,EMA", or in other words that, is the nerve of the
covering Fp —> *. Therefore, we can suppose th&g is fibrant in SPr(T), and that
F, = F} (the face and degeneracy morphisms being induced by the various projections
and diagonals). Ay — * is a covering, one can find a covering sidReof x such
that for any objectt — % in S there exists a commutative diagram

Fp — *

./

h

—u

Furthermore, ast,-equivalences are local for the topology(see Corollary3.3.9), it
is enough to prove that for any such the nerve of the morphism

Foxhu—>hu
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is a m.-equivalence. We can therefore assume that the morpltigm— = admits a
section. But then, for any objeat € Ob(T), |F.|(x) € HO(SSety)) is the geometric
realization of the nerve of a morphism of simplicial sets which has a section, and
therefore is contractible. This proves Lemrda.2 for 0-bounded hypercovers.

Step 2 Let us now assume thdt, is (n + 1)-bounded for some integer > O (see
Definition 3.2.1), and let us consider the morphism

F, — Cosk, F..

For any integemp, and any simplicial seK € SSer, there is a co-cartesian square of
simplicial sets

SkyK ———> Skpi1K

| |

]_[ aAIH_l ]_[ Ap+l

Koartl Kpt1
This induces a cartesian squareSRr(T)

Skp+1K

F, -

| |

aAerl
1_[K]7+1 Fp+1 - nK@A/H'l F*

Sk, K
*

As F, is fibrant for the Reedy structure and a hypercover, each bottom horizontal
morphism is a fibration which is again a covering. This shows by induction and by

Proposition3.1.41), that F*Sk”“K — ka"K is a covering and a fibration for any

i > 0. But, since we have
(Cosk, F*)K ~ F*Sk"K,

we easily conclude that for an¥ e SSery such thatk = Sk,K for somep, the
natural morphism

FX — (Cosk, F)X
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is again a fibration and a covering. In particular, takiig= A”, one finds that the
natural morphism

Fp — (Coskn Fy))p

is a fibration and a covering.
Let U, be the bi-simplicial object such thdf, ., is the nerve of the morphism
F, — (Cosk, Fy)p. It fits into a commutative diagram of bi-simplicial objects

F., —— Cosk,F,

e

U*,*v

where F, and Cosk, F, are considered as constant in the second spot. Furthermore,

for any p, Uy« — (Cosk, Fy), is a O-truncated hypercover. Therefore, 8tep 1,
we deduce that

|diag(Us )| >~ hocolim hocolim(U, ,) — |Cosk, Fy|
p q

is a m,-equivalence.

Now, let U, := diag(U, ) be the diagonal ofU, .. It fits into a commutative
diagram

e

F, —— Cosk,F,

A

U..

We are going to construct a morphisth — F,. that will be a retract of compatible
with the two projectionst and ¢ (i.e. construct a retraction ap on ).

The above diagram consists clearly of isomorphisms in degwees, showing that
7 is a retract of¢ is degreesp <n. As F, is (n+ 1)-bounded, to extend this retraction
to the wholeg, it is enough to define a morphisti, 1 — F,+1 which is equalized
by all the face morphism¢},.1 — F,,. But, by definition

An+l An+l An+1
Upi1=F, X FaAn+1F* X ... X FEA"+1F* ,
* *

(n+1) times



302 B. Toén, G. Vezzosi/Advances in Mathematics 193 (2005) 257-372

and so any of the natural projectiori$,.1 — F,+1 to one of these factors will
produce the required extension.

In conclusion, the morphisn¥, — Cosk, F, is a retract ofU, — Cosk, F,
which itself induces ar,-equivalence on the homotopy colimits. As-equivalences
are stable by retracts, this shows that the induced morphisin—- |Cosk, F.| is also
a m.-equivalence. Therefore, by induction arand Step 1, this implies thaf,| — =
is a m,-equivalence.

Step3: Finally, for a general hypercovef,, the ith homotopy presheaf dff,| only
depends on thath coskeleton ofF, for i < n (as the(n — 1)-skeleton of|F,| and
|Cosk, Fy| coincide). In particular, theth homotopy sheaf ofF,| only depends on
RCosk,(F,) for i < n. Therefore one can always suppose tliat= Cosk, F, for
some integen and apply Step 2.

Lemma3.4.2is proved. [

Now, let f : F — G be anyH-local equivalence (i.e. an equivalence ip £Pr(T)),
and let us prove that it is a.-equivalence. By definition oH-local equivalences, the
induced morphism on thel-local models

LHf : LHF — LHG

is an objectwise equivalence, and in particular.aequivalence. By considering the
commutative diagram

f

F — G

L

LyF —— LyG,
Luf

one sees that it is enough to show that the localization morphiSms> Ly F and
G — LyG are n,-equivalences. But the functorgl can be defined via the small
object argument applied to the set of augmented hornsl,or(H) (see[Hi, Section
4.3)). In the present situation, the morphismsAiiH) are either trivial cofibrations in
SPr(T) or projective cofibrations which are isomorphic in 88®r(T)) to

h
N'@I|F| [] oA"®RM,) — A" ®R(L,).
ON" Q| Fy|

By Proposition 3.3.7 and Lemma3.4.2 these morphisms are.-equivalences, and
therefore all morphisms iM(H) are projective cofibrations and,-equivalences. As
m-equivalences are also stable by filtered colimits, another application of Proposition
3.3.7shows that relative cell complexes difH) are againt,-equivalences. This shows
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that the localization morphisms —> Ly F are alwaysr,-equivalences, and finish the
proof thatH-local equivalences are.-equivalences.

3.4.3. n,-Equivalences are H-local equivalences

To conclude the proof of Theore®.4.1, we are left to show that,-equivalences
are H-local equivalences.

Recall that we denoted by a U-small cardinal bigger thattg and than the cardi-
nality of the setE(T) of all simplices in all simplicial set of morphisms i Recall
also thatf is a U-small cardinal withff > 2%

Lemma 3.4.3.Let f : F — G be a morphism in SRT) which is an,-equivalence
and an objectwise fibration between fibrant objects. THen any objectx € Ob(T)
and any morphismr(h,) — G, there exists anF, € # 3(x) and a commutative
diagram in SP(T)

F —— G

]

|Fil —— R(h,).

Proof. By adjunction, it is equivalent to find a commutative diagrams§Pr(7T)

FA* - > GA*

]

F. —— R )N

with F, € #'g(x). We will define F, inductively. Let us suppose we have constructed
F(n), € sSPr(T)/R(h,)A", with a commutative diagram

*

FA* [ GA

I

F(n), — RN,
Pn

such thatSk, F(n), = F(n),, and p,, is a Reedy fibration and a hypercover in degrees
i <n. By the latter condition we mean that

i RN

i oA
F(n); — F(n) X R,
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is an objectwise fibration and a covering for angn (we do not requirep, to be
a Reedy fibration). We also assume that Car@),,) < p for any m. We need the
following (technical) factorization result with control on the cardinality.

Lemma 3.4.4.Let f : F — G be a morphism in SRT) such thatCard F) and
Card G) are both strictly smaller tharf. Then there exists a factorization in SPF)

with i a trivial cofibration p a fibration and CardRF) < f.

Proof. We use the standard small object argument in order to produce such a factor-
ization (see[Ho, Section 2.1.2] The trivial cofibrations inSPr(T) are generated by
the set of morphisms

A Qh — A"®h,,

forall x € Ob(T) and alln € N, 0<k <n. This set is clearly of cardinality smaller than
Ro.o, and therefore is strictly smaller thgh Furthermore, for any of these generating
trivial cofibrations, the set of all commutative diagrams

F —— G

| |

Al’l,k ®hx - S Al’l ®hx
is in bijective correspondence with the set of all commutative diagrams

F(x) —— G(x)

I

Al‘l,k PR A”

By the assumptions made éhandG, this set is therefore of cardinality strictly smaller
than . Furthermore, by the choice df, it is clear that Cardd ® &,) <« < f for any
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finite simplicial setA. Therefore, the push-out

F ——— R

| |

UA”®@X44>EUV®m
1

wherel consists of all objects € Ob(T) and commutative diagrams

F ——— G

| |

An,k ®ﬁx . Al ®hx
is such that

Card F1) <Card F) + Card( ]_[ A ® ﬁx) < f+ Cardl).o.
1

But Card/) < o.f, and therefore one has C&r) < f5. As the factorization
F RF G is obtained after a numerable number of such push-outs

constructions (sefHo, Theorem 2.1.13]

F F1 F, RF = colim; F;,

we conclude that Caf® F) < f5. The proof of Lemma3.4.4is achieved. [
Let us come back to the proof of Lemn3a4.3 We consider the following diagram:

ﬁA)H»l 1

) n+
FArH—l I Fo X GEA’H']-GA

|

AAn+1 n+1
FM™ X g oma R
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By Lemma3.4.4 we can suppose that C&Rri%,)) < f. Therefore, by induction on
n

1+1

AAn+1 K
Card F(n)?2" x R )M,,HR(QX)A ) < B.

This implies that there exists &-small setd of objects inT, with CardJ) < f5, and
a covering

~AAn+1 n+1
[ 2 — FoOi® xRN
zelJ

Now, by considering the induced diagram

FAH+1 5An+1 GAt1+1

X G[‘A"+1

|

]_[ h7
el

HF

and using the fact that the top horizontal morphism is a covering, one sees that there
exists, for allz € J, a covering sieveS, of z € Ho(T), and a commutative diagram

AAn+1 n+1
FAn+l - FDA X GﬁA”Jrl A
I A, L 2,
zeJ,(u—z)€Ss; zeJ

Clearly, one has

Card ]_[ h, | <Cardy).2*.a < .

zeJ,(u—>z)€eS;
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We now consider the commutative diagram

n+1 n+1
FAn+1 _— I7aA X G6A1l+1GA

| |

aAlH-l

An+l
* X R(]lX)BA”+1R(hx)

U kL F

zeJ,(u—z)eSs;

Lemma3.4.4implies the existence of an objet(n+ 1) € SPr(T), with Card H (n +
1)) < f, and a factorization

h aAn+l An+l
zeJ,(u—>7)€S; " H(n+1) > F(”)* X R(hx)ﬁA”JrlR(hx)

into an objectwise trivial cofibration followed by a fibration ®Pr(T). Since the
morphism

n+1 AAn+1 n+1
FA — PO & GMnHGA

is an objectwise fibration, there exists a commutative diagrai@RAnT)

AAan+1 n+1
oA X G5A11+l A

N |

Aan+1
b o Hu+1) — Fm)” X poh it RO

An+l

An+l
zeJ,(u—>7)€eS; ) :

We defineF(n + 1), := F(n), for any p < n+ 1, and F(n + 1),41 to be the
coproduct ofH (n + 1) together withL, 1 F, the (n + 1)th latching space of' (n). The
face morphismsF'(n + 1),+1 — F(n), are defined as the identity aoh,1F(n) and
via the (n + 1) natural projections (corresponding to the face inclusidfis— dA"*1)

Foy'y™ — F™' = Fn),
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on the factorH (n + 1). Then, by adjunction, one has a natural commutative diagram
in s,11SPr(T)

FA

| T

Fin+1, — RGN,

Pn+1

which extends via the functaoii, 1), to the required diagram inSPr(T). It is clear
by construction, thap, 1 is a Reedy fibration and a hypercover in degre€s: + 1
and that itsnth skeleton isp,,. Therefore, by defining, to be the limit of theF (n)’s,
the natural morphisn¥, — R(@X)A* is a hypercover. It is also clear by construction
that F satisfies condition2) defining the set#'g(x). [

We are now ready to finish the proof thaf-equivalences arél-local equivalences.
Let f : F — G be amn,-equivalence; we can clearly assuifnt be an objectwise fi-
bration between fibrant objects. FurthermoreHalwcal equivalences are already known
to be n,-equivalences, we can also suppose thHata H-local fibration betweei-local
objects. We are going to prove thiats in fact an objectwise equivalence.

Let

| |

N'®h, — A'®h,

be a commutative diagram i8PrT). We need to show that there exist a lifting
A" ® h, — F. By adjunction, this is equivalent to showing that the natural morphism

AT n
— FLA X G(’.’A”GA

—X

lifts to a morphismi, — FA”.
As F and G are objectwise fibrant, the previous morphism factors through

hy — R(hy) — F x Lo GY
An application of Lemma3.4.3to the morphism

n n n
FA N F@A XGJA"GA
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which satisfies the required hypothesis, shows that there exists. an#’s(x) and a
commutative diagram

FAIl o FaA)l x GaAn GA}'I

| |

|Fy| ———— R(&,)

By adjunction, this commutative diagram yields a commutative diagram

F G

|

A"®|F ] O0A"Q®R(h,)

n
ON"®|F,| — AT@RG.

The horizontal bottom morphism is ait-local equivalence by definition, and therefore
a lifting A" ® R(h,) — F exists in the homotopy category Hoy SPr(T)). But, as

f is aH-local fibration,F and G are H-local objects andR(%,) is cofibrant, this lifting
can be represented BPr(7) by a commutative diagram

¥

F —— G

O

A" ® R(h,)

Composing withh, — R(h,), we obtain the required lifting. This implies that.-
equivalences areél-local equivalences, and completes the proof of the existence of the
local model structure.

By construction SPr;(T) is the left Bousfield localization 0c8Pr(7T") along the set of
morphismsH: this implies that it is alU-cellular andU-combinatorial model category.
In particular, it isU-cofibrantly generated. Finally, propernessS#r,(7T) follows from
Corollary 3.3.5and Propositior3.3.7.

This concludes the proof of Theoreg4.1 [

Let us keep the notations introduced in the proof of Theo®ml We choose a
U-small cardinalf as in the proof and consider, for any objact Ob(T), the subset
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of hypercovers# g(x).

Corollary 3.4.5. The model category SBR(T) is the left Bousfield localization of
SPr(T) with respect to the set of morphisms

{IFs]l — h, | x € Ob(T), Fy € Hp(x)}.
Proof. This is exactly the way we proved Theore3m.1 [

Remark 3.4.6. It is worthwhile emphasizing that the proof of Theoreé3.1 shows
actually a bit more than what's in its statement. In fact, the argument proves both
Theorem3.4.1and Corollary3.4.5 in that it givestwo descriptionsof the same model
category SPr.(T): one as the left Bousfield localization &Pr(T) with respect to
local equivalencesnd the other as the left Bousfield localization of the s&R&T)

but this time with respect tdwypercovers(more precisely, with respect to the set of
morphisms defined in the statement of Coroll&r¢.5.

In the special case wher€l’, 7) is a usual Grothendieck site (i.e. whénis a
category), the following corollary was announced[Bul] and proved in[DHI].

Corollary 3.4.7. An objectF € SPr.(T) is fibrant if and only if it is objectwise fibrant
and for any objectc € Ob(T) and any H, € # g(x), the natural morphism

F(x)~RHom(h,, F) — RHom(|Hy|, F)
is an isomorphism irHo(SSer).

Proof. This follows from TheorenB3.4.1 and from the explicit description of fibrant
objects in a left Bousfield localization (s¢di, Theorem 4.1.7] O

The previous corollary is more often described in the following way. For any
H, € #g(x) and anyn>0, H, is equivalent to a coproduct of representables

H, ~ h

—Uj;
iel,

Therefore, for anyH, € #'g(x) and any fibrant objecE in SPr(T), the simplicial
set RHom(|Hy|, F) is naturally equivalent to the homotopy limit of the cosimplicial
diagram inSSet

[nl— [] Fan

iel,

Then, Corollary3.4.7 states that an objedt € SPr(T) is fibrant if and only if, for
any x € Ob(T), F(x) is fibrant, and the natural morphism
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iel,

F(x) — f[lr(l)]!T (H F(Mi))

is an equivalence of simplicial sets, for amy. € #'g(x).

Definition 3.4.8. 1. A hypercoverH, — h, is said to besemi-representablé for
any n>0, H, is isomorphic in H@S Pr(T)) to a coproduct of representable objects

H, ~ h,.

uel,

2. An objectF € SPr(T) is said tohave hyperdesceiif, for any objectx € Ob(T)
and any semi-representable hyperco¥gr— h,, the induced morphism

F(x)~RHom(h,, F) — RHom(|Hy|, F)
is an isomorphism in H@ Sety)).

An immediate consequence of the proof of Theor8m.1 is that an objectF e
SPr(T) has hyperdescent with respect to all hypercolfgre # 3(x) if and onlyif it
has hyperdescent with respect to all semi-representable hypercovers.

From now on we will adopt the following terminology and notations.

Definition 3.4.9. Let (T, 7) be anSsite in U.
1. A stackon the site(T, 7) is a pre-stackF € SPr(T) which satisfies the hyperde-
scent condition of Definitior8.4.8
2. The model categor$Pr (T) is also called thenodel category of stacksn the S
site (T, t). The category HGS Pr(T)) (resp. H@S Pr.(T))) is called thehomotopy
category of pre-stacksand (resp. thenomotopy category of stagksObjects of
Ho(SPr(T)) (resp. H@S Pr.(T))) will simply be called pre-stackson T (resp.,
stackson (7, 7)). The functora : Ho(SPr(T)) — Ho(SPr(T)) will be called
the associated stack functor
3. The topologyr is said to besub-canonicalif for any x € Ob(T), the pre-stack
h, € Ho(SPr(T)) is a stack (in other words, if the Yoneda embeddihg :
Ho(T) — Ho(SPr(T)) factors through the subcategory of stacks).
4. For pre-stack& andG on T, we will denote byRHom (F, G) € Ho(SSet)) (resp.
by R:Hom(F, G) € Ho(SSery)) the derivedHom-simplicial set computed in the
simplicial model categonsSPr(T) (resp.SPr.(T)).

Let us explain why, given DefinitioB.4.91), we also call the objects in H8Pr.(T))
stacks (Definition3.4.92)). As SPr(T) is a left Bousfield localization oSPr(T), the
identity functor SPr(T) — SPr.(T) is left Quillen, and its right adjoint (which is
still the identity functor) induces a fully faithful functor
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i HO(SPre(T)) — Ho(SPr(T))

Furthermore, the essential image of this inclusion functor is exactly the full subcate-
gory consisting of objects having the hyperdescent property; in other words, the es-
sential image ofj is the full subcategory of H& Pr(T)) consisting of stacks. We

will often identify Ho(S Pr.(T)) with its essential image vi@ (which is equivalent to
Ho(SPr.(T))). The left adjoint

a : Ho(SPr(T)) — Ho(SPr(T))

to the inclusionj, is a left inverse tg. Note thatF € Ho(SPr(T)) is a stack iff the
canonical adjunction map’ — ja(F) (which we will write asF — a(F) taking into
account our identification) is an isomorphism in 8@ r(7)).

As explained in the Introduction, this situation is the analog for stacks over
Ssites of the usual picture for sheaves over Grothendieck sites. In particular, this
gives asheaf-likedescription of objects of H& Pr.(T)), via the hyperdescent prop-
erty. However, this description is not as useful as one might at first think, though it
allows to prove easily that some adjunctions are Quillen adjunctions (see for example,
[DHI, 7.1], [To2,To3, Proposition 2.2.2, Proposition 2.9f to check that ais-topology
is sub-canonical.

We will finish this paragraph with the following proposition.

Proposition 3.4.10.1. Let F and G be two pre-stacks on T. If G is a stattien the
natural morphism

RHom(F,G) — R;Hom(F, G)

is an isomorphism irHo(SSet).
2. The functorld : SPr(T) — SPr(T) preserves homotopy fibered products

Proof. Condition (1) follows formally from Corollaryd.4.5 To prove(2) it is enough
to show thatrw.-equivalences are stable under pull-backs along objectwise fibrations,
and this follows from Corollang.3.5 O

Remark 3.4.11.1f M is any left proper U-combinatorial orU-cellular (see Appendix

A) simplicial model category, one can also define the local projective model structure on
Pr(T, M) := MT" as the left Bousfield localization of the objectwise model structure,
obtained byinverting hypercoversThis allows one to consider the model category of
stacks on theSsite (T, 1) with values in M Moreover, in many cases (e.g., symmetric
spectra|[HSS], simplicial abelian groups, simplicial groups, etc.) the local equivalences
also have a description in terms of some appropriately defineguivalences. We will

not pursue this here as it is a purely formal exercise to adapt the proof of Theorem
3.4.1to these situations.
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In many cases these model categories of stacks with valudd imay also be
described by performing the constructions definiMgdirectly in the model category
SPr.(T). More precisely, one can consider e.g. the categories of symmetric spectra,
abelian group objects, group objects etc.,.SRr(7T'), and use some general results to
provide these categories with model structures. For reasonable model cat®fduidls
approaches give Quillen equivalent model categories (e.g. for group objeBBri(T),
and stacks of simplicial groupsn (7, 1)). The reader might wish to consyBek] in
which a very general approach to these considerations is proposed.

3.5. Functoriality
Let (T, 1) and (T’, ") be two U-small Sssites andf : T — T’ a morphism of

S-categories. As we saw in Secti@x3.1before Theoren2.3.1, the morphisnt induces
a Quillen adjunction on the model categories of pre-stacks

fi: SPr(T) — SPr(T') SPr(T) «<— SPr(T") : f*.

Definition 3.5.1. We say that the morphisihis continuous(with respect to the topolo-
giest and ') if the functor f* : SPr(T') — SPr(T) preserves the subcategories of
stacks.

As the model categories of stack®r.(7T) and SPr/(T) are left Bousfield localiza-

tions of SPr(T) and SPKT’), respectively, the general machinery [bfi] implies that
f is continuous if and only if the adjunctioff;, f/*) induces a Quillen adjunction

fi: SPro(T) — SPr (T SPr.(T) «<— SPry(T) : f*

between the model category of stacks.

Recall from the proof of Theoren3.4.1 that we have defined the sets of distin-
guished hypercovers#'g(x), for any objectx € 7. These distinguished hypercovers
detect continuous functors, as shown in the following proposition.

Proposition 3.5.2. The morphism f is continuous if and only for any x € Ob(T)
and any H, € #g(x), the induced morphism

LAGH) — LAh,) = by

is an isomorphism irHo(S Pry (T")).

Proof. This follows immediately by adjunction, from CorollaB.4.7. [
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3.6. Injective model structure and stacks of morphisms

The goal of this paragraph is to present an injective version of the local model
structure onSPr(T') for which cofibrations are monomorphisms, and to use it in order
to constructstacks of morphismdgEquivalently, we will show that the injective model
category of stacks over d@hsite possesses derived internal Hom’s, and as a consequence
the homotopy category of stacks t6Pr(T)) is cartesian closedin the usual sense of
[ML, Chapter IV, Section 1Q] These stacks of morphisms will be important especially
for applications to Derived Algebraic Geometry (48e-Ve 4, 6]), since many of the
moduli stacksare defined as stacks of morphisms to a certdassifying stack(for
example, the stack of vector bundles on a scheme).

Before going into details, let us observe that in general, as explaingtt$) Section
11], the projective model structure @Pr.(T) is not aninternal model categoryi.e. is
not a closed symmetric monoidal model category for the direct prdéiet Definition
4.2.6] and therefore the interndfonis of the categorySPr.(T) are not compatible
with the model structure. This prevents one from defining derived intdtoalls in
the usual way (i.e. by applying the interndloms of SPr(T) to fibrant models for
the targets and cofibrant models for the sources). One way to solve this problem is to
work with another model category which is internal and Quillen equivalel8RgT).

The canonical choice is to use amective model structure on SPF), analogous to
the one described ifyal]

Proposition 3.6.1. Let (T, 7) be an S-site inU. Then there exists a simplicial closed
model structure on the category S, called thelocal injective model structure,
and denoted bySPrnj -(T) where the cofibrations are the monomorphisms and the
equivalences are the local equivalences. Morepttee local injective model structure
on SPKT) is proper and internaf®

Proof. The proof is essentially the same as the proof of our TheoBednl The
starting point is the objectwise injective model struct@®riyj(7), for which equiv-
alences and cofibrations are defined objectwise. The existence of this model structure
can be proved by the same cardinality argument as in the case whisrex usual
category (sedJal). The model categonbsPrn(T) is clearly proper,U-cellular and
U-combinatorial, so one can apply the localization techniquefH@f. We define the
model categonBPrinj - (T') as the left Bousfield localization @Prnj(7) along the set
of hypercoversH defined in the proof of Theorer®.4.1 Note that the identity functor
SPrinj,(T) — SPr(T) is the right adjoint of a Quillen equivalence. From this and
Theorem3.4.1we deduce that equivalences $fPrinj - (T') are exactly the local equiva-
lences of Definition3.3.2 This proves the existence of the model categ®Byinj (7).
The fact that it is proper follows easily from the fact the model cate@®etis proper
and from the description of equivalencesS®rnj -(T) as m.-equivalences. It only re-

3Recall once again that a model category is said toiriernal if it is a monoidal model category
(in the sense ofHo, Definition 4.2.6) for the monoidal structure given by the direct product.
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mains to show thaSPrin; - (T') is internal. But, as cofibrations are the monomorphisms
this follows easily from the fact that finite products preserves local equivalences.

As the equivalences iSPry; (T) and SPr(T) are the same, the corresponding
homotopy categories coincide

Ho(S Prinj,«(T)) = HO(S Pr.(T)).

Since the homotopy category of an internal model category is known to be cartesian
closed, Propositior8.6.1 implies the following corollary.

Corollary 3.6.2. For any S-site T inlU, the homotopy category of stacki®(S Pr.(T))
is cartesian closed

Proof. Apply [Ho, Theorem 4.3.2]to the symmetric monoidal model category
SPrinj,-(T), with the monoidal structure given by the direct produdtl

Definition 3.6.3. 1. The internalHoms of the category HES Pr.(T)) will be denoted
by

R: Hom(—, —) : HO(SPr(T)) x HO(SPr(T)) — HO(SPr(T)).

2. Let (T, 1) be anSsite in U, andF, G be stacks in HeS Pr.(T)). The stack of
morphismsfrom F to G is defined to be the stack

R A om(F,G) € HO(SPry(T)).
Explicitly, we have for any pair of stacks and G
R; K om(F, G) =~ Hom(F, RinjG),

where Rj; is the fibrant replacement functor in the objectwise injective model category
SPrinj(T), and # om is the internalHom functor of the categonBPr(T). In fact, if G
is a stack, then botRinjG and #om(F, RinjG) are stacks.

Actually, Proposition3.6.1gives more than the cartesian closedness afStfe.(7)).
Indeed, one can consider the full sub-categ@Wrin;, «(T)' of fibrant objects in
SPrinj, T(T) As any object is cofibrant |r$5Pr.nJ «(T), for any two objectd= and G in
SPrInJ «(T)f the internal Homx#om(F, G) is also a flbrant object and therefore lives
in SPry;, +(T)f. This shows in particular theBPrip;, (T becomes cartesian closed for
the direct product, and therefore one can associate to it a nzSEPra] «(T)f-enriched
categorysS Prinj, «(T)f. Precisely, the set of object HPrinj, «(T)f is the set of fibrant
objects inSPrinj - (T'), and for two such objects and G the object of morphisms is
Hom(F,G).



316 B. Toén, G. Vezzosi/Advances in Mathematics 193 (2005) 257-372

The SPrinj,T(T)f—enriched categorySPrmj,f(T)f yields in fact aup-to-equivalence

SPrinj,T(T)f-enrichment of the S-category.SPr (T). Indeed, asSPr(T) and
SPrinj,-(T) has the same simplicial localizations (because they are the same categories
with the same notion of equivalence), one has a natural equivalenSeategories

LSPr(T) = LSPrinj:(T) =~ Int (S Prinj,(T)).

Recall that thes-categoryZnt (S Prinj,<(T)) consists of fibrant objects i8Pry; -(T) and
their simplicial Hom-sets. In other words tf&Setenriched categorynt (S Prinj,(T))

is obtained from théSPrinj,T(T)f—enriched category?Prinj,r(T)f by applying the global
section functorl” : S Prinj-(T) — SSet. In conclusion, one has a triple

(LSPr(T), SPrinj «(T)", %),
where o is an isomorphism in H® — Cat) betweenLSPr.(T) and the underlying
S-category ofSPrinj,T(T)f. This triple is what we refer to as aup-to-equivalence

SPrinj,T(T)f—enrichment ofLS Pr.(T). For example, théSPrinj,T(T)f—enriched functor

Hom : (SPrin.«(T) )P x SPrinj (T)" —> SPrinj «(T)f

gives rise to a well-defined morphism in Hb— cat)
R A om : LSPr(T)? x LSPr{(T) — LSPr(T),

lifting the internal Hom-structure on the homotopy category($4or (7).

Remark 3.6.4. This last structure is at first sight more subtle than the cartesian closed-
ness of the homotopy categoHo(SPr.(T)), as SPrinj’f(T)f encodes strictly associa-

tive and unital compositions between stacks of morphisms, which are only described by
Ho(SPr.(T)) as up-to-homotopy associative and unital compositions. This looks like
comparing the notions of simplicial monoids (i.e. monoidsSiet and up-to-homotopy
simplicial monoids (i.e. monoids in HSSer)), and the former is well known to be

the right notion However, we would like to mention that we think that tBeategory
alone LSPr (T) € Ho(S — Cat), together with the fact that H8 Pr.(T)) is cartesian
closed, completely determines its up—to—equivaIeS(Feﬁnj,T(T)f-enrichment. In other
words, the structure

(LSPr(T), SPrinj «(T), )

only depends, up to an adequate notion of equivalence, os-ttategoryLSPr(T).
Unfortunately, investigating this question would drive us way too far from our purpose,
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as we think the right context to treat it is the general theoryyhmetric monoidal
S-categoriesas briefly exposed ifiTo4, Section 5.1]

3.7. Truncated stacks and truncation functors

We start by recalling some very general definition of truncated objects in model
categories.

Definition 3.7.1. 1. Let n>0. An objectx € Ho(M) is called n-truncatedif for any
y € Ho(M), the mapping spac&apy (y, x) € Ho(SSetr) is n-truncated.

2. An objectx € Ho(M) is called truncatedif it is n-truncated for some integer
n=>0.

Clearly, a simplicial seX is n-truncated in the sense above if and only initruncated
in the classical sense (i.e. if for any base poir¢ X, m;(X,x) =0 for all i > n).

We now fix anS-site (T, 7) in U, and we consider the corresponding model category
of stacksSPr (7).

Definition 3.7.2. Let n>0 be an integer. A morphisny : F — G in SPr(T)
is a m<,-equivalence(or a local n-equivalenceif the following two conditions are
satisfied:
1. The induced morphismgy(F) — mo(G) is an isomorphism of sheaves on (9.
2. For any objectx € Ob(T), any sections € ng(F(x)) and any integeli such
thatn>i > 0, the induced morphism; (F,s) — 7;(G, f(s)) is an isomorphism of
sheaves on H@'/x).

Theorem 3.7.3.There exists a closed model structure on @Pr called the n-truncated
local projective model structurdor which the equivalences are thec ,-equivalences
and the cofibrations are the cofibrations for the projective model structure ol73Pr
Furthermore the n-local projective model structure lg-cofibrantly generated and
proper.

The category SRIT') together with its n-truncated local projective model structure
will be denoted by SPr"(T).

Proof. The proof is essentially a corollary of Theored™.1 Let J (resp.,l) be a
U-small set of generating trivial cofibrations (resp., generating cofibrations) for the
model categorySPr(T). Let J’ be the set of morphisméA' ® h, — A’ ® h,, for

all i > n and allx € Ob(T). We defineJ(n) = J U J’'. Finally, let W(n) be the set

of m<,-equivalences. It is easy (and left to the reader) to prove [tHaf Theorem
2.1.19]can be applied to the se#® (n), | andJ(n). O

Corollary 3.7.4. The model category S§|”(T) is the left Bousfield localization of
SPr.(T) with respect to the morphism®A' ® h, — A’ ® b, for all i > n and all
x € Ob(T).
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Proof. This follows immediately from the explicit description of the sétn) of
generating cofibrations given in the proof of Theor8ui.3 above. [J

Note that Corollaries3.4.5 and 3.7.4 also imply thatSPrf”(T) is a left Bousfield
localization of SPK(T).

For the next corollary, an objeck € SPr(T) is called objectwise n-truncatedf
for any x € Ob(T), the simplicial setF(x) is n-truncated (i.e. for any base point
s € F(x)o, one hasr; (F(x),s) =0 for i > n).

Corollary 3.7.5. An object F € SPrf"(T) is fibrant if and only if it is objectwise
fibrant, satisfies the hyperdescent conditi@@ee Definition3.4.8§ and is objectwise
n-truncated

Proof. This again follows formally from the explicit description of the skt:) of
generating cofibrations given in the proof of Theor8mi.3 O

From the previous corollaries we deduce that the identity functorSi#r,(T) —
SPrS"(T) is a left Quillen functor, which then induces an adjunction on the homotopy
categories

t<n = LId : HO(SPr(T)) — HO(SPrS"(T))
HO(S Pro(T)) <— Ho(SPr="(T)) : j, := RId.

Note however that the functor
t<n:Ld: HO(SPro(T)) — Ho(SPrS"(T))

does not preserves homotopy fibered products in general. Finallg fully faithful
and a characterization of its essential image is given in the following lemma.

Lemma 3.7.6.Let F € SPr(T) and n>0. The following conditions are equivalent
1. F is an n-truncated object in the model category 8Pn (in the sense of
Definition 3.7.7).
2. For any x € Ob(T) and any base point € F(x), one hasn;(F,s) = 0 for any
I >n.
3. The adjunction morphisnf¥ — j,t<,(F) is an isomorphism irHo(S Pr.(T)).

Proof. The three conditions are invariant under isomorphisms S, (7)); we
can therefore always assume tlkais fibrant in SPr.(T).

To prove that(1) = (2), it is enough to observe th&;Hom(h,, F) ~ F(x). Con-
versely, let us suppose thé?) holds and letj : F — RF be a fibrant replacement in
SPrf”(T). The hypothesis oir and Corollary3.7.5imply that| is a w.-equivalence,
thus showing that we can assurRdo be fibrant inSPrf”(T), and by Corollary3.7.5
again, that- can be also assumed to be objectwisteuncated. In particular, the natural

morphism FA — F' is an objectwise trivial fibration for any > n. Therefore,
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one has for any > n,
R.Hom (G, F)®% ~ RHom (G, F') ~ RHom (G, F®') ~ R.Hom(G, F)®%".

This implies thatR,; Hom (G, F) is n-truncated for anyG € SPr.(T). This proves the
equivalence betwee(l) and (2).

For any F € Ho(S Pr.(T)), the adjunction morphisnk — j,t<,(F) is represented
in SPr(T) by a fibrant resolutiory : F — RF in the model categorﬁPrf”(T). If F
satisfies condition2), we have already seen thpis a n.-equivalence, and therefore
that (3) is satisfied. Conversely, by CorollaB.7.5 RF always satisfies conditio?)
and then(3) = (2). O

In the rest of the paper we will systematically use Lem&i@.6 and the functor
jn to identify the homotopy category KIS)Prf"(T)) with the full subcategory of
Ho(SPr.(T)) consisting ofn-truncated objects. We will therefore never specify the
functor j,. With this convention, the functar¢, becomes an endofunctor

t<n : HO(SPro(T)) — Ho(SPr (7)),

called thenth truncation functor There is an adjunction morphism ld- r<,, and
for any F € Ho(SPr.(T)), the morphismF — r<,(F) is universal among mor-
phisms fromF to an n-truncated object. More precisely, for amytruncated object
G € Ho(SPry(T)), the natural morphism

ReHom(t<n(F), G) — RcHom(F,G)

is an isomorphism in HF Set).

Definition 3.7.7. The nth truncation functoris the functor previously defined
t<y t HO(SPr(T)) — HO(SPr(T)).

The essential image ok, is called the subcategory oftruncated stacks

Note that the essential image o, is by construction equivalent to the category
Ho(S PrS"(T)).

The following proposition gives a complete characterization of the category of 0-
truncated stacks and of the Oth truncation functes.

Proposition 3.7.8. The functorny’ : SPr(T) — Pr(Ho(T)) induces an equivalence
of categories

Ho(S Pr.S0(T)) ~ Sho(Ho(T))
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where Sh(Ho(T)) denotes the category of sheaves of sets on the usual Grothendieck
site (Ho(T), 7).

Proof. Let us first suppose that the topologyis trivial. In this case, we define a
quasi-inverse functor as follows. By considering sets as constant simplicial sets, we
obtain an embeddingr(Ho(T)) ¢ SPr(Ho(T)) that we compose with the pullback

p* . SPr(Ho(T)) — SPr(T) along the natural projectiop : T —> Ho(T). It is

quite clear thatF +— ngr(F) and F — p*(F) induce two functors, inverse of each
others

)" Ho(SPr<9(T)) = Pr(Ho(T)) : p*.

In the general case, we use Corollé@y.5 We need to show that a preshdafe Pr
(Ho(T)) is a sheaf for the topology if and only if the corresponding objegi*(F)
has the hyperdescent property. This last step is left to the reader as an exercise.

Remark 3.7.9. 1. The previous proposition implies, in particular, that the homotopy
category of stacks HS Pr.(T)) always contains the category of sheaves on the site
(Ho(T), t) as the full subcategory of O-truncated objects. Again, we will not mention
explicitly the functor p* : Sh.(Ho(T)) — Ho(SPr.(T)) and identify Sh.(Ho(T))
with the full subcategory of H& Pr.(T)) consisting of O-truncated objects.

2. Propositior3.7.8is actually just the Oth stage of a series of similar results involving
higher truncations. In fact Propositidh7.8can be generalized to a Quillen equivalence
betweenSPr="(T) and a certain model category of presheaves-gfoupoids on the
(n + 1)-categoryt<,(T) obtained fromT by applying then-th fundamental groupoid
functor to its simplicial sets of morphisms (sf¢-S, Section 2, p. 28] We will not
investigate these results further in this paper.

3.8. Model topoi

Let M be anyU-cellular [Hi, Section 14.1]or U-combinatorial[Sm,Du2, Definition
2.1] left proper model category (see also Appendix A). Let us recall from Theorem
A.2.2 andA.2.4 that for anyU-set of morphism$in M, the left Bousfield localization
LsM exists. It is a model category, whose underlying category isMtilvhose cofibra-
tions are those oM and whose equivalences are the so-cafiddcal equivalence§Hi,
Section 3.4] A left Bousfield localization oM is any model category of the formgld/,
for a U-small setS of morphisms inM.

The following definition is a slight modification of the a notion communicated to
us by Rezk[Re]. It is a model categorical analog of the notion of topos defined as a
reflexive subcategory of the category of presheaves with an exact localization functor
(see for examplg¢Sch, Chapter 20]

Definition 3.8.1. 1. If T is an S-category, deft exact Bousfield localizationf SPr(T)
is a left Bousfield localization {SPr(T) of SPr(T), such that the identity functor
Id: SPr(T) — LgSPr(T) preserves homotopy fiber products.
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2. A U-model toposs a model category itV which is Quillen equivalent to a left
exact Bousfield localization a8Pr(T) for someT € S — Caty.

For 2, recall our convention throughout the paper, according to which two model
categories are Quillen equivalent if they can be connected by a @ihda of Quillen
equivalences, regardless of their direction. We will also need the following general
definitions related to the notion of truncated objects in a model category (see Remark
3.8.7 for some comments on it).

Definition 3.8.2. Let M be any model category.

We say thatM is t-completeif truncated objects detect isomorphisms in (B0 i.e.
if a morphismu : a — b in Ho(M) is an isomorphism if and only if, for any truncated
objectx in Ho(M), the mapu* : [b, x] — [a, x] is bijective.

A U-model topos ig-completeif its underlying model category iscomplete.

The next theorem shows that given &ategoryT, t-complete left exact Bousfield
localizations of SPr(T) correspond exactly to simplicial topologies dn It should
be considered as a homotopy analog of the correspondence for usual Grothendieck
topologies as described e.g. [[Bch, Theorem 20.3.7]

Theorem 3.8.3.Let T be alU-small S-category. There exists a bijective correspondence
between S-topologies on T and left exact Bousfield localizations off$Rvhich are
t-complete

Proof.

Let 7 (T) be the set ofStopologies onT, which by definition is also the set
of Grothendieck topologies on KB). Let Z(T) be the set of left exact Bousfield
localizations ofSPK(T), and %,(T) C %(T) the subset of those which ate&eomplete.
We are first going to define maps: .7 (T) — %,(T) and s : #,(T) — 7 (T),

The map¢ : 7(T) — %:(T).

Let Tt € 7 (T) be anStopology onT. According to Corollary3.4.5and Proposition
3.4.1402), SPr.(T) is a left exact Bousfield localization o8Pr(T). We are going
to show thatSPr (T) is alsot-complete. We know by Lemma&.7.6 that an object
F € Ho(SPr.(T)) is n-truncated if and only ifF ~ t<, (F). Therefore, if a morphism
f: F — G satisfies condition3) of Definition 3.8.2 one has

[t<n(F), Hl > [F, H] > [G, H] = [1<,(G), H]

for any n-truncated objectHd € Ho(SPr-(T)). This implies that for anyn, the in-
duced morphismg, (F) — t<,(G) is an isomorphism in I—l((SPrf"(T)), and hence
in Ho(SPr:(T)). In other words,f is an n<,-equivalence for anyn, and hence a
n.-equivalence. This shows that the model categ®Br.(T) is a t-complete model
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category and allows us to define the map: 7(T) — %,(T) by the formula
(1) = SPr(T).

The mapy : %,(T) — 7 (T).

Let Lg¢SPr(T) € 4,(T), and let us consider the derived Quillen adjunction given by
the identity functor Idt SPr(T) — LsSPr(T)

a:=[LId: HOo(SPr(T)) — Ho(LsSPr(T))
Ho(SPr(T)) «<— Ho(LsSPr(T)) : Rld =: i.

The reader should note that the above funetas not equal a priori to the associated
stack functor of Definition3.4.95), as noStopology onT has been given yet. We
know thatj is fully faithful and identifies HOLsS Pr(T)) with the full subcategory
of Ho(SPr(T)) consisting ofSlocal objects (segHi, Definition 3.2.41(a); Theorem
4.1.1(2)).

We consider the full subcategory ”@(LsSPr(T)) (resp. Hoco(SPr(T))) of Ho
(LsSPr(T)) (resp. of HgSPr(T))) consisting of O-truncated objects. Note that in
general, an objeck in a model category is O-truncated if and only if for any1,
the natural morphismcm" —> xRA" is an equivalence. As both andi preserve
homotopy fiber products, they also preserve O-truncated objects. Therefore we have an
induced adjunction

ao : Ho< o(SPr(T)) — Ho<o(LsSPr(T)),
Ho<o(SPr(T)) <— Ho<o(LsSPr(T)) : io.

Now, the functorrs” : Ho(S Pr(T)) —> Set"°™” induces an equivalence of categories
Ho<o(SPr(T)) ~ SetHoM™ =. pr(Ho(T)),
and so the adjunctioKug, ig) is in fact equivalent to an adjunction
ao: Pr(Ho(T)) — Ho<o(LsSPr(T)), Pr(Ho(T)) «— Hogo(LsSPr(T)) : io,

where, of course, the functag is still fully faithful and the functorag is exact. By
[Sch, Theorem 20.3.7}there exists then a unique Grothendieck topolegyn Ho(T)
such that the essential image igfis exactly the full subcategory of sheaves on(Ap

for the topologyz. The functorag is then equivalent to the associated sheaf functor.
Thus, we defing) : 4,(T) — 7 (T) by the formulay/(LsSPr(T)) :=t € 7 (T).

Proof of ¢oyy = Id.
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Let LsSPr(T) € #4,(T) be a left exact Bousfield localization &Pr(T) and t =
Y(LsSPr(T)) the corresponding topology om. We need to prove that the set of
Slocal equivalences equal the setof-equivalences. Recall that we have denoted by

a:=LId : Ho(SPr(T)) — Ho(LsSPr(T))
HO(SPr(T)) «<— Ho(LsSPr(T)) : RId =: i,

the adjunction induced by the identity functor:ld.sSPr(T) — SPr(T).

Let us first prove tha&local equivalences are,-equivalences. Equivalently, we need
to prove that for any morphisnf : F — G which is an equivalence inJSPr(T), f
is an hypercover it8Pr;(T). For this we may assume thtand G are both objectwise
fibrant objects. As the identity functor IdSPr(T) — SPr.(T) preserves homotopy
fiber products, the induced morphism

n n n
FA — F‘{qA XG[,A}'!GA

is still an Slocal equivalence. Using this fact and Lemr8&8.3 one sees that it is
enough to show that is a covering in aSPr.(T).

Recall that the topologyt is defined in such a way that the associated sheaf to
a presheaf of setE on HO(T) is igag(E) (where the adjunctior(ag, ig) is the one
considered above in the definition of the m@p It is therefore enough to prove that
the induced morphisnag(m5” (F)) — ao(f’ (G)) is an isomorphisnt.

Lemma 3.8.4. For any F € Ho(SPr(T)), one has
ao(mh" (F)) =~ aonf) (ia(F)).

Proof. This immediately follows from the adjunctiorig, i) and (ag, ig), and the fact
that =" is isomorphic to the O-th truncation functog on H(SPr(T)). O

As f is an Slocal equivalence, the morphisia(F) — ia(G) is an isomorphism in
Ho(SPr(T)), and therefore the same is true for

ao(nl' (F)) =~ aonly (ia(F)) — aonb (ia(G)) ~ ao(nh (G)).

We have thus shown that tiglocal equivalences are.-equivalences. Conversely,
to show thatr,-equivalences ar&local equivalences it is enough to show that for any
x € Ob(T) and any hypercoveF, — h, in SPr(T), the natural morphism

ia(|F)) — ia(h,)

4 Recall thatngr(F) is a presheaf of sets on Kb), that is considered via the projection: T —

Ho(T) as a presheaf of discrete simplicial sets Bnand therefore as an object BPr(T).
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is an isomorphism in H& Pr(T)) (see Corollary3.4.5. As a preserves homotopy
fibered products, one haga(G))RK ~ ia(GRK), for any G € Ho(SPr(T)) and any
finite simplicial setk (here(—)RX is computed in the model categoBPK(T)). There-
fore, for anyn, one has, byt-completeness,

t<n(ia([Fy])) = t<n(ia(|RCosky Fyl).

This shows that one can assume tlfat = R Cosk,(F,/h,), for somen (i.e. that
F. — h, is relatively n-bounded). Furthermore, the same argument as in the proof
of Theorem3.4.1, but relative tok,, shows that, by induction, one can assume 0.
In other words, one can assume tlfatis the derived nerve of a coveringy — #,
(which will be assumed to be an objectwise fibration).

By the left exactness property & and i, the objectia(|Fx|) is isomorphic in
Ho(SPr(T)) to the geometric realization of the derived nerveiatFo) — ia(h,).
This implies that for anyy € Ob(T), the morphismia(|F.[)(y) — ia(h,)(y) is
isomorphic in HgS Set) to the geometric realization of the nerve of a fibration between
simplicial sets. It is well known that such a morphism is isomorphic irf$$er) to an
inclusion of connected components. Therefore it is enough to show that the morphism

g ((a(|F)) — mg (ia(h,))

induces an isomorphism on the associated sheaves. By Ley8athis is equivalent
to showing that the morphism

ioaonyy (ia(|Fyl)) —> ioaomh (ia(h,))

is an isomorphism of presheaves of sets or{Ho This morphism is also isomorphic
to

ioao(rg (IFx))) —> ioaomy’ (k)
whose left-hand side is the sheaf associated to the co-equalizer of the two projections
pri, pra . ngr(Fo) X ngr(,lx)ngr(Fo) — ngr(l_zx),

whereas the right-hand side is the sheaf associatexgrtd_zx). To conclude the proof,

it is enough to notice thairg’(Fo) — ng’(@x) induces an epimorphism of sheaves
(becauseF, is a hypercover) and that epimorphisms of sheaves are always effective
(see[SGA4-I, Exp. Il, Theoreme 4.3]

Proof of yo¢p = Id.
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Let © be a topology orl. By definition of the maps) and ¢, to prove thatjo¢p =
Id, it is equivalent to show that the functaf,” : Ho(S Pr-(T)) — Pr(Ho(T)), when
restricted to the full subcategory of O-truncated objects iS40 (7)), induces an
equivalence to the category of sheaves on the @it&(7'), t). But this follows from
Proposition3.7.8 [

Corollary 3.8.5. Let M be a model category ihJ. The following conditions are equiv-
alent
1. The model category M is a t-completé-model topos
2. The model category M is t-complete and there exist§-amall category C and
a subcategoryS C C, such that M is Quillen equivalent to a left exact Bousfield
localization of M©$ (see Definition2.3.3.
3. There exists dJ-small S-site(T, 7) such that M is Quillen equivalent to SRT).

Proof. The equivalence of2) and (3) follows immediately from Theoren2.3.5and
the delocalization theoreniD-K2, Theorem 2.5] while (1) and (3) are equivalent by
Theorem3.8.3 [

The previous results imply in particular the following interesting rigidity property
for S-groupoids.

Corollary 3.8.6. Let T be alU-small S-category such thato(T) is a groupoid (i.e.
every morphism in T is invertible up to homotdpy¥hen there is no non-trivial t-
complete left exact Bousfield localization of &P.

Proof. In fact, there is no non-trivial topology on a groupoid, and therefore there is
no non-trivial Stopology onT. [

Remark 3.8.7. 1. There exist-completelU-model topoi which are not Quillen equiv-
alent to someSPr (T), for T a U-small category. Indeed, wheh is a category, the
model categorySPr (T) is such that any object is a homotopy colimits of O-truncated
objects (this is because representable objects are O-truncated). It is not difficult to see
that this last property is not satisfied whénis a generalS-category. For example,
let T = BK(Z,1) be theS-category with a unique object and the simplicial monoid
K (Z,1) as simplicial set of endomorphisms. The®Pr(T) is the model category of
simplicial sets together with an action &f(Z, 1), and O-truncated objects iBPr(T)
are all equivalent to discrete simplicial set with a trivial actionk€Z, 1). Therefore
any homotopy colimit of such will be a simplicial set with a trivial action KyZ, 1).
However, the action ofK(Z, 1) on itself by left translations isiot equivalent to a
trivial one.

2. As observed by Lurie, there are examples of left exact Bousfield localization of
SPr(T) which arenot of the formSPr.(T'). To see this, letT, 1) be a Grothendieck site
and consider the left Bousfield localizationol.SPr(T) of SPr(T) along only those
hypercovers which are nerves of coverings (obviously, not all hypercovers are of this
kind). Now, an example due to Simpson shows that there are GrothendieckZsites
such that loy SPr(T) is not the same aSPr.(T) (see for exampldDHI, Example
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(A.10)]). However, leoy SPr(T) is a left exact Bousfield localization &Pr(T), and
the topology it induces off via the procedure used in the proof of Theor&®8.3
coincides withz. Of course, the point here is thatdySPr(T) is not a t-complete
model category. This shows that one cannot omit the hypothesis@apleteness in
Theorem3.8.3

3. Though the hypothesis dfcompleteness in Theore®8.3is quite natural, and
allows for a clean explanation in terms 8ftopologies, it could be interesting to look
for a similar comparison result without such an assumption. One way to proceed would
be to introduce a notion dfiyper-topologyon a category (or more generally on &n
category), a notion which was suggested to us by some independent remarks of Hinich,
Joyal and Simpson. A hyper-topology on a category would be essentially the same thing
as a topology with the difference that one specifies directly the hypercovers and not only
the coverings; the conditions it should satisfy are analogous to the conditions imposed
on the family of coverings in the usual definition of a Grothendieck (pre)topology. The
main point here is that for a given Grothendieck gif€ 7), the two hyper-topologies
defined usingall t-hypercovers on one side or onboundedz-coveringson the other
side, will not be equivalent in general. It seems reasonable to us that our Tha@&m
can be generalized to a correspondence between hyper-topologi€sand arbitrary
left exact Bousfield localizations @Pr(T). This notion of hypertopology seems to be
closely related to Cisinki's results ifCis].

4. Theorem3.8.3 suggests also a way to think bfgher topologieson n-categories
(and of higher topo) for n>1 as appropriatdeft exact localizationsIn this case,
the explicit notion of higher topology (that one has to reconstruct e.g. assuming the
Theorem still holds for higher categories), will obviously depend on more then the
associated homotopy category. For example, for the case of 2-categories, as opposed to
the case when allmorphisms are invertible for > 1 (see Remarld.1.2), a topology
should give rise to some kind of topologies on the various categories of 1-morphisms
and these topologies should satisfy some compatibility condition with respect to the
composition.

We finish this paragraph with the following definition.

Definition 3.8.8. An U — S-toposis an S-category which is isomorphic in H8 — Cat)
to someLSPr.(T), for (T, 1) a U-small Ssite.

4. Stacks over pseudo-model categories

In this section we define the notion offraodel pre-topologyn a model category and
the notion ofstackson suchmodel sitesA model pre-topology is a homotopy variation
of the usual notion of a Grothendieck pre-topology and it reduces to the latter when
the model structure is trivial (i.e. when equivalences are isomorphisms and any map
is a fibration and a cofibration). We develop the theory in the slightly more general
context of pseudo-model categoriege of full subcategories of model categories that
are closed under equivalences and homotopy pull-backs (see Defihilidih We have
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chosen to work in this more general context because in some applications we will need
to use subcategories of model categories definetidigotopy invariant conditionbut

not necessarily closed under small limits and/or colimits (e.g., certain subcategories of
objects offinite presentation The reader is however strongly encouraged to cancel
everywhere the worghseudo-in the following and to restore it only when interested in
some application that requires such a degree of generality (as for example, the problem
of defining étaleK-theory on the pseudo-model category of connective commutative
S-algebras, see Propositidhl.2. On the other hand, the theory itself presents no
additional difficulty, except possibly for the linguistic one.

4.1. Model categories of pre-stacks on a pseudo-model category

In this subsection we will define the (model)category of pre-stacks q@seado-
model category which is essentially a category with weak equivalences that admits a
nice embedding into a model category.

Definition 4.1.1. A U-small pseudo-model categorng a triple (C, S, 1) whereC is a
U-small categoryS C C is a subcategory of and:: C — M is a functor to a model
U-categoryM satisfying the following four conditions:
1. The functor: is fully faithful.
2. One has(S) = Wni1(C), whereW is the set of weak equivalences in the model
categoryM.
3. The categoryC is closed under equivalences i, i.e. if x — y is an equivalence
in M andx (resp.y) is in the image ofi, then so isy (resp.X).
4. The categonC is closed under homotopy pullbacks .
The localizations—1C will be called thehomotopy categorgf (C, S) and often denoted
by Ho(C, S) or simply HaC) when the choice o6 is unambiguous.

Condition (4) of the previous definition can be precised as follows. Denoting by
Ho(1) : S~1C — Ho(M) the functor induced by (due to(2).), which is fully faithful
due to(1) and(3), the image of H@), that coincides with its essential image, is closed
under homotopy pullbacks.

Note also that because of conditiaB) of Definition 4.1.1 the functor: is an
isomorphism fromC to its essential image iM. Hence we will most of the time
identify C with its image 1(C) in the model category; therefore an objeck € C
will be called fibrant (respectively,cofibran) in C if 1(x) is fibrant (resp. cofibrant) in
M. Moreover, we will sometimes call the maps $simply equivalences.

Conditions(3) and (4) imply in particular that for any diagram
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of fibrant objects inC, such thatp is a fibration, the fibered product x ;y ex-
ists. Indeed, this fibered product exists in the ambient model categorgnd being
equivalent to the homotopy fibered product, it also belongstby conditions (3)
and (4).

Remark 4.1.2. 1. Being a pseudo-model category is not a self-dual property, in the
sense that iM is a pseudo-model category, theff? is not pseudo-model in general.
Objects satisfying Definitiort.1.1 should be called more correcthjght pseudo-model
categoriesand the dual definition (i.e. closure by homotopy push-outs) should deserve
the name ofleft pseudo-model categoriHowever, to simplify the terminology, we fix
once for all Definition4.1.1as it is stated.

2. Note that ifM is a model category with weak equivalen&¥sthe triple (M, W, Id,)
is a pseudo-model category. Moreover, a pseudo-model categesséntiallya model
category. In fact, conditiongl)—(3) imply that C satisfies conditiongl), (2) and (4)
of the definition of amodel structurdn the sense ofHo, Definition 1.1.3] However,C
is not exactly a model category in general, since it is not required to be complete and
co-complete (sefHo, Definition 1.1.4}, and the lifting property3) of [Ho, Definition
1.1.3]is not necessarily satisfied.

3. If Cis a complete and co-complete category &donsists of all isomorphisms
in C, then (C, S,Id¢) is a trivial pseudo-model category, where we consider @n
the trivial model structure with equivalences consisting of all isomorphisms and any
map being a fibration (and a cofibration). @ is not necessarily complete and co-
complete but has finite limits, then we may view it asrigial pseudo-model category
by replacing it with its essential image iRr(C) or SPr(C), endowed with the trivial
model structures, and takingto be all the isomorphisms.

Example 4.1.3.1. Letk be a commutative ring antlf := Ch(k)°? the opposite model
category of unbounded chain complexeskahodules (se¢Ho, Definition 2.3.3). The
full subcategoryC < M of homologically positiveobjects (i.e. objects?, such that
H;(P,) =0 for i <0) is a pseudo-model category.

2. Let k be a commutative ring (respectively, a field of characteristic zero) and let
M := (Eo — Alg,)°P (respectively,M = CDGA]”) be the opposite model category of
E~.-algebras over the category of unbounded cochain complexésrafdules (resp.,
the opposite model category of commutative and unital differential gr&etldebras
in non-positive degrees) which belong to (see for exampldHin] for a description
of these model structures). We say that an objeaf M is finitely presentedf for
any filtered direct diagran€ : J — M°P, with J € U, the natural map

hocolim Map,,., (A, C;) — Mapye <A, hocolimC,>
jeJ ’ jeJ ’

is an equivalence of simplicial sets. Here Map(—, —) denotes the mapping spaces
(or function complexes) in the model categavi’? (see[Ho, Section 5.4). The reader
will check that the full subcategorg < M of finitely presented objects is a pseudo-
model category.
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3. Let A be a commutativeS-algebra as defined ifEKMM, Chapter 2, Section
3]. Let M be the opposite category of the comma model category of commutative
S-algebras undeA: an object inM is then a map of commutativé-algebrasA — B.
Then, the full subcategor¢ — M consisting of finitely presented-algebras (see the
previous example or DefinitioB.2.]) is a pseudo-model category. The full subcategory
C < M consisting ofétale mapsA — B (see Definition5.2.3 is also a pseudo-model
category. This pseudo-model category will be called shell étale siteover A.

4. Let X be a scheme and (X, () be the category of unbounded cochain complexes
of ¢-modules. There exists a model structure@(iX, (V) where the equivalences are the
local quasi-isomorphisms. Then, the full subcategoryCoX, (V) consisting ofperfect
complexess a pseudo-model category.

Recall from Sectior2.3.2that for any categore in U and any subcategory C C,
we have defined (Definitio2.3.3 the model categor)SSetﬁ’S of restricted diagrams
on (C, S) of simplicial sets. Below, we will consider restricted diagrams(6f?, S°P),

where (C, S, 1) is a pseudo-model category.

Definition 4.1.4. 1. Let (C, S) be a category with a distinguished subset of morphisms.
The model categor)SSetgp‘SUp, of restricted diagrams of simplicial sets 66°”, S°7)
will be denoted by(C, §)" and called thamodel category of pre-stacks @@, S) (note
that if (C, S, 1) is a pseudo-model category;, S)* does not depend or).

2. Let (C, S, 1) be a pseudo-model category and (&t (resp.Cf, resp.C®f) be the
full subcategory ofC consisting of cofibrant (resp. fibrant, resp cofibrant and fibrant)
objects, ands® := c°N S (resp.S' := cf N S, resp.s<f := ¢ N §). We will denote
by ((C, $)9" (resp. ((C, $))”, resp. ((C, $)*)") the model category of restricted
diagrams ofU-simplicial sets on(C¢, 5% (resp. on(C', s7)°7, resp. on(C®f, s¢F)°p).

Objects of (C, S)* are simply functorsF : C°? — SSet; and, as observed in
Section2.3.2 F is fibrant in(C, $)* if and only if it is objectwise fibrant and preserves
equivalences.

The category(C, S)" is naturally tensored and co-tensored o$eer, with exter-
nal products and exponential objects defined objectwise. This make$)” into a
simplicial closed model categaryrhis model category is furthermore left propés;
cellular andU-combinatorial (se¢Du2,Hi, Chapter 14jand Appendix A). The derived
simplicial Homis of the model categoryC, )" will be denoted by

R, Hom(—, —) : Ho((C, $)™)°P x Ho((C, $)") — Ho((C, $H)™).

The derived simplicialHoms of the model categorieg(C, $)%)", ((C,$S)")* and
((c, $)H”, will be denoted similarly by

Ru.cHom(—, =), RutHom(—, =), RyctHom(—,—).
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For an objectx € C, the evaluation functoy’ : (C, S)* — SSery is a right Quillen
functor. Its left adjoint is denoted byj,), : SSeryy — (C, $)*. We note that there is
a canonical isomorphism, >~ (j,)i(x) in (C, S)", whereh, : C? — SSet; sends
an objecty € C to the constant simplicial seHom(y,x). More generally, for any
A € SSetyy, one has(j;)i(A) >~ A® h,.

As (C,S$)" is a left Bousfield localization ofSPr(C), the identity functor Id:
SPr(C) — (C,S)" is left Quillen. In particular, homotopy colimits of diagrams
in (C,8)" can be computed in the objectwise model categ8Br(C). On the con-
trary, homotopy limits in(C, S)” are not computed in the objectwise model structure;
moreover, the identity functor Id (C, §)* — SPr(C) does not preserve homotopy
fibered products in general.

As explained in Sectior2.3.2 (before Corollary2.3.9, if (C,S) and (C’, S’) are
categories with distinguished subsets of morphisms (e.g., pseudo-model categories) and
f:C — C’is a functor sending into §’, then we have a direct and inverse image
Quillen adjunction

fii (C, " — (C, ", (C,H" «— (C', SH": f~
In particular, if (C, S, 1) is a pseudo-model category, we may consider the inclusions
(€89 c(C.s). (.shcc.s. « 5% ccs).

As a consequence of Theore2i3.5 (or by a direct check), we get

Proposition 4.1.5. Let (C, S, 1) be a pseudo-model category. The natural inclusions
ic: (C.5% = (C.,S), it:(C.8 = (C.9), ig:(C,H = (C, 9,

induce right Quillen equivalences

i5(C, )N = ((C, 9O, if 1 (C,H ~((C, NN, i%:(C,H ~((C,HH".

These equivalences are furthermore compatible with derived simplicial, Horthe
sense that there exist natural isomorphisms

Ru,c Hom(R(ic)* (—), R(ic)*(—)) =~ Ry Hom(—, -),
Ru,f Hom(R(i)*(—), RG)*(—)) >~ Ry Hom(—, —),

Ru,cf Hom(R(icH)* (), R(icH)* (—)) = Ry Hom(—, —).
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4.2. The Yoneda embedding of a pseudo-model category

Let us fix a pseudo-model catego€¢, S, 1 : C — M). Throughout this subsection
we will also fix acofibrant resolution functotI’ : M — M2, i) in the model category
M (see[Hi, 17.1.3, (1)). This means that for any objeete M, I'(x) is a co-simplicial
object inM, which is cofibrant for the Reedy model structure &', together with a
natural equivalencé(x) : I'(x) — c¢*(x), c¢*(x) being the constant co-simplicial object
in M at x. Let us remark that when the model categdlyis simplicial, one can use
the standard cofibrant resolution functbrx) := A* ® Q(x), whereQ is a cofibrant
replacement functor .

We define the functoh : C — SPr(C), by sending eachr € C to the simplicial
presheaf

h,: M? — SSety,
y = Hompy(I'(y),x),

where, to be more explicit, the presheafresimplices of, is given by the formula
(h)n(=) == Homp (I'(=)n, X).

Note that for anyy € M, I'(y), — y is an equivalence iM, thereforey € C implies
that I'(y) € C2 (sinceC is a pseudo-model category).

We warn the reader that the two functdrisand z from C to (C, $)" are different
and should not be confused. For amye C, h, is a presheaf of discrete simplicial
sets (i.e. a presheaf of sets) wheréagsis an actual simplicial presheaf. The natural
equivalence (—) : I'(—=) — ¢*(—) induces a morphism iGC, $)*

hy = Hom(c*(—),x) — Hom(I'(—),x) = h,,

which is functorial inx € M.

If, for a moment we denote by : C — (C, $)" and byh™ : M — (M, W)" the
functor defined for the pseudo-model categoti€s s, 1) and (M, W, Id), respectively,
we have a commutative diagram

EC
cC — ([C, N

l y E

M;MA

where 1* is the restriction, right Quillen functor.
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Lemma 4.2.1. Both functorsh : C — SPr(C) and h¢ : C — (C, S)" preserves
fibrant objects and equivalences between them

Proof. The statement foh : M — SPr(M) follows from the standard properties of
mapping spaces, s¢do, Section 5.4Jor [Hi, Proposition 18.1.3, Theorem 18.8.7he
statement forh : M — M” follows from the previous one and frofjdi, Theorem
18.8.7(2)] Finally, the statements fok : C — SPr(C) and h¢ : ¢ — (C, )"
follow from the previous ones foM and from the commutativity of diagram (red),
since r* is right Quillen. [

Lemma4.2.1enables us to define a right derived functoriofs

Rh: S~1C — Ho((C, $)™),
X > (hoRo1)(x).

where R denotes a fibrant replacement functor NMhand we implicitly used the fact
that Ri(x) is still in C for x € C. Also note that, by definition ofC, $)”, the functor
h:C — (C,S)" preserves equivalences, hence induces a functeh)Has—1C —
Ho((C, $)").

The reader should notice that (f”, i) is another cofibrant resolution functor M,
then the two derived functoRAz and RA’ obtained using, respectively, and I, are
naturally isomorphic. Therefore, our construction does not depend on the cholce of
once one moves to the homotopy category.

Lemma 4.2.2. The functorsHo(k) and Rk from S~1C to Ho((C, S)") are canonically
isomorphic. More preciselyif R be a fibrant replacement functor in,NMhen the natural
equivalence (—) : I'(—) — ¢*(—) induces for any x € C, an equivalence inC, $)*
(hence a fibrant replacementy Lemmad.2.])

hy = Hom(—,x) — Hom(I'(—), R(x)) =ﬁR(x).

Proof.

First we show that ifx is a fibrant and cofibrant object i€, then the natural
morphismh, — h, is an equivalence if(C, $))". To see this, lett — x, be a
simplicial resolution ofx in M, hence inC (see[Hi, 17.1.2]). We consider the following
two simplicial presheaves:

hy, 1 (CO? —  SSery,
y — Hom(y, xy),

hy, : (COHP — SSety,
y — diag(Hom(I'(y), x4)).
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The augmentatio’'(—) — ¢(—) and co-augmentation — x, induce a commutative
diagram in((C, $)°H"

hX Hh}(

TP

hy, —— h,,

By the properties of mapping spaces (4e, Section 5.4), both morphismsc and
d are equivalences i®Pr(C®). Furthermore, the morphist, — h,, is isomorphic
in Ho(SPr(C°) to the induced morphism, — hocolim,,jcah,,. As each morphism
hy — hy, is an equivalence in(C, $)°)", this implies thatd is an equivalence
in ((C, $)%”". We deduce from this that also the natural morphism— £, is an
equivalence in(C, $)©)". Let us show how this implies that for anye C, the natural
morphismh, — hy, is an equivalence iC, $)".

Since for any equivalence — 7’ in C, the induced map, — h, is an equivalence
in (C, $)" (see Remark.3.9), it is enough to show that, for any € C, the canonical
maphg, — hp, is an equivalence. By the Yoneda lemma for(Ha $)"), it is enough
to show that the induced maf ompo(c,5)) (Mg, F) = Hompoc,s)»)(hrx, F) IS @
bijection for any F € Ho((C, $)"). Now,

Homuoc,5y (G, F) = mo(Ry, Hom (G, F))

for any G and F in (C, $)*, hence it is enough to show that we have an induced
equivalence of simplicial sets

Ry Hom(hg,, F)) ~ Ry Hom(hy, F).

By the properties of mapping spaces ($B@, Section 5.4), if Q denotes a cofibrant
replacement functor i, the maph,, — h g, IS an equivalence igC, S)"; there-
fore, if we denote by(—)c¢ th restriction toC®, we have an equivalence of simplicial
sets

Ry Hom((hg,, F)) ~ Rw,CM((ﬁQRX)C» Fo).
Since QR(x) is fibrant and cofibrant, we have already proved that

Rw,cM((ﬁQRx)cv Fo) — Rw,cM((hx)c» Fo)

is an equivalence of simplicial sets and we conclude siRge: Hom((hy)c, Fc)) ~
R, Hom(h,, F) by Proposition4.1.5 O
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The main result of this subsection is the following theorem.

Theorem 4.2.3.1f (C,S,1: C — M) is a pseudo-model categgrihe functor Rh :
S~1C — Ho((C, $)") is fully faithful

Proof. We will identify C as a full subcategory dfl and S—1C as a full subcategory
of Ho(M) using . For anyx andy in S~1C, letting R be a fibrant replacement functor
in M, one has

Homg-10(x,y) >~ mo(Hompy (I'(x), R(y))
since Hdp) is fully faithful and Hom(I'(—), R(—)) is a homotopy mapping complex in
M (see[Ho, 5.4]). As (C, S, 1) is a pseudo-model category, we hafem s (I'(x)), R(y))

= Homc(I'(x), R(y)). But, by definition of A and the enriched Yoneda lemma in
(C, $)", we have isomorphisms of simplicial sets

Homc(I'(x), R(y)) = hp(yy(x) = Hom c gy (hx, hp(y)-

Now, A, is cofibrant in(C, $)" and, by Lemma4.2.], QR(y) is fibrant in (C, $)*, so
that

mo(Hom c g)r (hyx, hg(y))) = Homuo(c,5)0 (hxs Igy))

since (C, S)" is a simplicial model category. Finally, by Lemnda2.2 we have
Homuo(c,s)) (hx, hg(y)) = Homuo(c,s)») (Rh,, Rh )

showing thatR# is fully faithful. O

Corollary 4.2.4. For any x € C and any F € SPr(C), there is an isomorphism in
Ho(SSet)

Rw HOm(C’S)A (hx, F) >~ F(x)

Definition 4.2.5. For any pseudo-model catego(¥, S, 1) which is U-small, the fully
faithful embedding

RA : Ho(C, §) — Ho((C, $)")
is called theYoneda embeddingf (C, S, 1).
Remark 4.2.6. 1. According to Definition4.2.5 the Yoneda embedding of a pseudo-

model category a priori depends on the embeddingC < M. However, it will be
shown in4.7.3that it only depends on the paiiC, S).
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2. The Yoneda embedding for (pseudo-)model categories is one of the key ingredients
used in[To-Ve 2] to prove that, for a large class of Waldhausen categorie-theory
only depends on the Dwyer—Kan simplicial localization (though it is known to depend
on strictly more than the usual localization).

4.3. Model pre-topologies and pseudo-model sites

Definition 4.3.1. A model pre-topology on aU-small pseudo-model categof¢, S, 1),
is the datum for any objeat € C, of a setCov.(x) of subsets of objects in HG, S)/x,
called z-covering familiesof x, satisfying the following three conditions.

1. (Stability) For all x € C and any isomorphism — x in Ho(C, S), the one-element
set{y — x} is in Cov(x).

2. (Composition If {u; — x}ie; € Covc(x), and for anyi € I, {v;; — u;}jes, € Cov—
T(u;), the family {v;; — x}ics, jes; iS IN Covy(x).

3. (Homotopy base chanyAssume the two previous conditions hold. For gny —
x}ier € Covy(x), and any morphism in H@, S), y — x, the family {u; x ﬁy —
Viier is in Covc(y).

A U-small pseudo-model category, S, 1) together with a model pre-topology will
be called alU-small pseudo-model site

Remark 4.3.2. 1. Note that in the third conditionHomotopy base-chanpeve used
the homotopy fibered product of diagrams —— z <—— ¥ in Ho(M). By this

we mean the homotopy fibered product of a lift (up to equivalence) of this diagram to
M. This is a well-defined object in Ha7) but only up to anon-canonicalisomorphism
in Ho(M) (in particular it is not functorially defined). However, conditig8) of the
previous definition still makes sense because we assumed the two previous conditions
(1) and (2) hold.

2. When the pseudo-model structure @@, S) is trivial as in Remark4.1.2 2, a
model pre-topology orC, S) is the same thing as a Grothendieck pre-topology on the
categoryC as defined ifSGA4-1, Exp. Il]. Indeed, in this case we have a canonical
identification HGC, S) = C under which homotopy fibered products correspond to
fibered products.

Let (C, S, 1; 1) be aU-small pseudo-model site and Ha §) = S~1C the homotopy
category of(C, S). A sieveR in Ho(C, §) over an objectt € Ho(C, S) will be called
a t-covering sievdf it contains at-covering family.

Lemma 4.3.3. For any U-small pseudo-model sitéC, S, 1; 1), the t-covering sieves
form a Grothendieck topology oHo(C, S).

Proof. The stability and composition axioms of Definitien3.1 clearly imply condi-
tions (i’) and (iii”) of [M-M, Chapter Ill, Section 2, Definition 2]It is also clear that
if u:y— x is any morphism in HEC, S), and if R is a sieve onx which contains
a t-covering family {u; — x};<;, then the pull-back sieve*(R) contains the family
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{ui x "y — ylic;. Therefore, the homotopy base change axiom of Definidail
implies condition (ii") of [M-M, Chapter lll, Section 2, Definition 2] [

The previous lemma shows that ani/-6mall) pseudo-model sitéC, S, 1 1) gives
rise to a {U-small) Ssite (L(C, S), 1), where L(C, S) is the Dwyer—Kan localization
of C with respect toS andz is the Grothendieck topology on Ko(C, S)) = Ho(C, S)
defined byr-covering sieves. We will say that ti&topologyt on L(C, S) is generated
by the pre-topologyr on (C, S).

Conversely a topology on HOC, S) induces a model pre-topology on the pseudo-
model category(C, S, 1) in the following way. A subset of objectq:; — x}ier in
Ho(C, S)/x is defined to be a-covering family if the sieve it generates is a covering
sieve (for the given topology on H@, S)).

Lemma 4.3.4.Let (C, S,1) be a U-small pseudo-model category and letbe a
Grothendieck topology omdo(C, S). Then the t-covering families inHo(C, S) de-
fined above form a model pre-topology @@, S, 1), called theinduced model pre-

topology

Proof. Conditions (1) and (2) of Definition 4.3.1 are clearly satisfied and it only
remains to check conditio¢8). For this, let us recall that the homotopy fibered products
have the following semi-universal property in #8 S). For any commutative diagram
in Ho(C, S)

there exists a morphism — z x "y compatible with the two projections wandy. Us-
ing this property one sees that for any subset of objggts> x};<; in Ho(C, S)/x, and
any morphismu : y — x, the sieve ovey generated by the familyu; x "y — y}ic;
coincides with the pull-back by of the sieve generated biy;; — x};c;. Therefore,
the base change axioiii’) of [M-M, Chapter IIl, Section 2, Definition 2]mplies the
homotopy base change propei) of Definition 4.3.1 [

Lemmas4.3.3and4.3.4show that model pre-topologies on a pseudo-model category
(C, S) are essentially the same as Grothendieck topologies qd HY), and therefore
the same thing as&-topologies on theS-category L(C, S). As in the usual case (i.e.
for the trivial model structure orC, S)) the two above constructions are not exactly
mutually inverse but we have the following

Proposition 4.3.5. Let (C, S, 1) be a pseudo-model category. The rule assigning to a
model pre-topologyr on (C, S, 1) the S-topology orL(C, S) generated byt and the
rule assigning to an S-topology anC, S) the induced model pre-topology @@, S, 1),
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induce a bijection

Saturated model S -topologies
pre-topologies onC, S, 1) on L(C, S)

where we call a model pretopologysaturated if any family of morphisms kHo(C, S)/x
that contains ar-covering family for x is again a-covering family for x

Proof. Straightforward from Lemma.3.3and4.3.4 O

Example 4.3.6.1. Topological spacesLet us take axC = M the model category of
U-topological spacesJop, with S = W consisting of the usual weak equivalences.
We define a model pre-topology in the following way. A family of morphism in
Ho(Top), {X; — Xlier, I € U, is defined to be inCov.(X) if the induced map
[1;c;m0(X;) — mo(X) is surjective. The reader will check easily that this defines a
topology onTop in the sense of Definitiod.3.1

2. Strong model pre-topologies fdf-algebras over kLet k be a commutative ring
(respectively, a field of characteristic zero) and det= M := (Eo — Alg,)?? (resp.
C = M := (CDGALq, )°?) be the opposite model category &f,-algebras over the
category of (unbounded) complexeskefnodules (resp., the opposite model category of
commutative and unital differential grad&ehlgebras in negative degrees) which belong
to U; see for examplgBo-Gu, n] for a description of these model structures. kdie
one of the usual topologies defined &schemes (e.g. Zariski, Nisnevich, étale, ffpf
or ffqc). Let us define thestrong topologyzsyy on M in the sense of Definitiod.3.1,
as follows. A family of morphisms in H&/?), {B — A;}ics, I € U, is defined to be
in Cov,(B) if it satisfies the two following conditions.
e The induced family of morphisms of affileschemegSpec®(A;) — Sped(B)}ic;

is a t-covering.
e For anyi € I, one hasH*(A;) ~ H*(B) ® yoz H°(A;).
In the case of negatively graded commutative differential graded algebras over a field
of characteristic zero, the strong étale topolo@y)s;r has been considered iiBe].
We will use these kind of model pre-topologies|[ifo-Ve 6] to give another approach
to the theory of DG-schemes ¢tkl, Ci-Ka2] (or, more generally, to the theory of
E~-schemes, when the base ring is not a field of characteristic zero) by viewing them
as geometric stacks over the category of complexes of k-modules

3. Semi-strong model pre-topologies fBk,-algebras over kWith the same notations
as in the previous example, we define feni-strong topologyssiyr on M by stipulating
that a family of morphisms in H@1°P), {B — A;}ic;, I € U, is in Cov(B) if the
induced family of morphisms of affink-schemes

{Spec H*(A;) — SpecH*(B)}ics
is a t-covering.

4. The Tor=o model pre-topology folE-algebras over kLet k be a commutative
ring andC = M := (E« — Alg,)?” be the opposite model category éf.-algebras
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over the category of (unbounded) complexesk-afiodules which belong téJ. For any

E~-algebraA, we denote by Mog the model category oA-modules (sedHin] or

[Sp]). We define thepositive Tor-dimensiorpre-topology,Tor>o, on M, as follows.

A family of morphisms in HeM?), {fi : B — A;}ics, I € U, is defined to be in

Covrer.o(B) if it satisfies the two following conditions:

e For anyi e I, the derived base-change functoy = — ® L 4; : Ho(Modp) —
Ho(Mody,) preserves the subcategoriespafsitive modulegi.e. of modulesP such
that H(P) = 0 for anyi <0).

e The family of derived base-change functors

{Lf* : Ho(Modp) — Ho(Modx,)}ier

is conservative (i.e. a morphism in Hdodp) is an isomorphism if and only if, for
anyi € I, its image in HgMody,) is an isomorphism).
This positive Tor-dimension pre-topology is particularly relevant in interpretiigher
tannakian duality([Tol]) as a part of algebraic geometry over the category of un-
bounded complexes démodules. We will come back on this {ifo-Ve 6].

We fix a model pre-topology on a pseudo-model categot¢, S, ) and consider
the pseudo-model sitéC, S, 1; 7). The induced Grothendieck topology on ¢dh S)
described in the previous paragraphs will still be denoted.by

Let F € (C, $)" be a pre-stack on the pseudo-model it S, 1; 7), and letF —
RF be a fibrant replacement & in (C, S)*. We may consider the presheaf of con-
nected components d&@F, defined as

ng (RF):C? —  Set,
X — mo(RF (x)).

Since any other fibrant model dF in (C, $)" is actually objectwise equivalent to
RF, the presheafzgr(RF) is well-defined up to a unique isomorphism. This defines a
functor

ng” :(C, ) —  Pr(C),
F — ny (RF).

As RF is fibrant, it sends equivalences @to equivalences of simplicial sets, hence the
presheafnf)q(F) always sends equivalences @to isomorphisms, so it factors through
Ho(C, S)°P. Again, this defines a functor

ny 1 (C, 8)" — Pr(Ho(C, S)),
F > ny! (F).

Finally, if ¥ — G is an equivalence inC, S)", the induced morphisnR F — RG
is an objectwise equivalence, and therefore the induced morp:lz@%m}“) — ngq(c)
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is an isomorphism of presheaves of sets. In other words, the fum@f‘tdactors through
the homotopy category HeC, $)*) as

g : Ho((C, $)) — Pr(Ho(C, S)).

Definition 4.3.7. Let (C, S, 1; 1) be a pseudo-model site it.

1. For any object € (C, S)", the sheaf associated to the presheg‘i(F) is denoted
by nj(F) (or mo(F) if the topology« is clear from the context). It is a usual sheaf on
the site(Ho(C, S), 1), and is called thesheaf of connected componewisF;

2. A morphismf : F — G in Ho((C, $)") is called az-covering(or just acovering
if the topology t is clear from the context) if the induced morphism of presheaves
ny (F) — 7y’ (G) induces an epimorphism of sheaves on(€iaS) for the topology
T,

3. A morphismF — G in (C, $)” is called at-covering(or just acoveringif the
topology t is clear) if the induced morphism in K@, $)*) is a t-coveringaccording
to the previous definition.

Coverings in the model category, S)* behave exactly as coverings in the model
category of pre-stacks over &@hsite (see SectioB3.1). It is easy to check (Proposition
3.1.4 that a morphismF — G between fibrant objects itC, S)” is a t-covering iff
for any objectx € C and any morphisnk, — G in (C, )", there exists a covering
family {u; — x};c; in C (meaning that its image in HG@, S) is a t-covering family),
and for eachi € I, a commutative diagram in HeC, S$)™)

F — G

o

— =

Moreover, we have the following analog of Propositi8ri.a

Proposition 4.3.8. Let (C, S, 1; 7) be a pseudo-model site
1. A morphism in SRIT) which is a composition of coverings is a covering
2. Let

f/

F' — G

L

F — G

be a homotopy cartesian diagram (i, S)". If f is a covering then so ig’.
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u v
3.Let F ——= G ——= H be two morphisms inC, $)"*. If the morphism

vou IS a covering then so is.v
4. Let

I

F/ > G/

.

F — G
f

be a homotopy cartesian diagram €, S)". If p and f’ are coverings then so
is f.
Proof. Easy exercise left to the readef]

4.4. Simplicial objects and hypercovers

In this subsection we fix a pseudo-model sit, S, 1; 7) in U and keep the nota-
tions of Section3.2, with SPKT) replaced by(C, S)*; more precisely we tak§ =
L(C°P, S°P) (with the inducedStopology, see Propositiod.3.5 and use Theorem
2.3.5with M = SSet to have definitions and results of Secti@?2 available for
(C, )" = SSer 5"

We introduce a nice class of hypercovers that will be used in the proof of the
existence of the local model structure; this class will replace our distinguished set of
hypercoversH used in the proof of Theorerd.4.1

Definition 4.4.1. 1. An object F € (C, S)" is called pseudo-representabld it is a
U-small disjoint union of representable presheaves

F ~ ]_[hu.

uel

2. A morphism between pseudo-representable objects

fo]]t— T

uel veJ

is called apseudo-fibrationf for all u € I, the corresponding projection

fe [l L] Homhu hy) — ] Hom(hu. hy) ~ | | Home(u. v)

uel velJ velJ velJ

is represented by a fibration i@.
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Let

£l — T

uel veJ

be a morphism between pseudo-representable objects, and for any let I, be
the sub-set ofl of componentsh, which are sent tor,. The morphism is called a
pseudo-coveringf for any v € J, the family of morphisms

{hu - hv}uelu

corresponds to a covering family in the pseudo-model &iteS).
4. Letx be a fibrant object irC. A pseudo-representable hypercowdrx is an object
Fy —> hy in s(C, $)"/h, such that for any integet >0 the induced morphism

(’}Aﬂ Aﬂ
F, — F* X hﬁA"hx

is a pseudo-fibration and a pseudo-covering between pseudo-representable objects.
The first thing to check is that pseudo-representable hypercovers are hypercovers.

Lemma 4.4.2. A pseudo-representable hypercovEr — h, is a t-hypercover(see
Definition 3.2.3.

Proof. It is enough to check that the natural morphism

n R[}AH h RA”
F, * X hB@A” hx

FfAn X JOAT //lx
is an isomorphism in H@C, $)*). But this follows from the fact thal preserves finite
limits (when they exists) and the fact thaf, S) is a pseudo-model category]

4.5. Local equivalences

This subsection is completely analogous (actually a bit easier, because the notion of
comma site is completely harmless here) to Sec8h

Let (C, S, 1; t) be aU-small pseudo-model site, andbe a fibrant object irC. The
comma categoryC/x, S, 1) is then endowed with its natural structure of a pseudo-
model category. The underlying category@gx, the category of objects over The
equivalencesSin C/x are simply the morphisms whose imagesQrare equivalences.
Finally, the embedding : C — M induces an embedding: C/x — M/1(x). The
comma category//i(x) is endowed with its natural model category structure (st
Section 1]. It is easy to check thatC/x, S, 1) is a pseudo-model category in the sense
of Definition 4.1.1
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We define a model pre-topology, still denoted f§yon the comma pseudo-model cat-
egory (C/x, S, 1) by declaring that a familffu; — y};c; of objects in H@(C/x, S))/y
is at-covering family if its image family under the natural functor ¢46/x, S))/y —
Ho((C, S))/y is at-covering family fory. As the objectx is fibrant in (C, S) the for-
getful functor(C/x, S) — (C, S) preserves homotopy fibered products, and therefore
one checks immediately that this defines a model pre-topotagy(C/x, S, 1).

Definition 4.5.1. The pseudo-model site€”/x, S, 1; 7) will be called thecomma pseudo-
model siteof (C, S, 1; 7) over the (fibrant) objeck.

Remark 4.5.2. Note that in the case wherg, S, 1) is a right proper pseudo-model
category, the hypothesis thatis fibrant is unnecessary.

For any objectx € C, the evaluation functor

Jr(C, 8" —> SSery,
F = F)

has a left adjoint(j,),. The adjunction
(o = SSetyy —> (C, S)"  SSetyy «— (C, S)" : j*

X

is clearly a Quillen adjunction.

Let F € (C, $)", x a fibrant object in(C, S) ands € ny’ (F(x)) be represented by
a morphisms : 1, — F in Ho((C, $)*). By pulling-back this morphism through the
functor

Rj;: :Ho((C, $)") — Ho((C/x, $H™)
one gets a morphism in HEC/x, $)™)
s Rjk(hy) — RjI(F).

By definition of the comma pseudo-model categd@/x, S), it is immediate that
Rj¥(hy) has a natural global point — Rj*(h,) in Ho((C/x, $)"). Observe that the
morphism+ — Rj(h,) can also be seen as induced by adjunction from the identity
of hy >~ L(jy)i1(x). We therefore obtain a global point

sk — Rjf(hy) — RjI(F).
Definition 4.5.3. 1. For an integen > 0, the sheatfr,(F, s) is defined to be

T (F, 5) = mo(RjF (F)™ X g oymean %)
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It is a usual sheaf on the sitHo(C/x, S), 7) called thenth homotopy sheabf F
pointed at s
A morphism f : F — G in (C, §)" is called an,-equivalence(or equivalently a
local equivalencgif the following two conditions are satisfied:
1. The induced morphismg(F) — 7mo(G) is an isomorphism of sheaves on 4o S);
2. For any fibrant object € (C, S), any sections € ny (F(x)) and any integen > 0,
the induced morphisnr, (F, s) — w0, (G, f(s)) is an isomorphism of sheaves on
Ho(C/x, S).

As observed in SectioB.3, an equivalence in the model categd, S)” is always
a m.-equivalence, for any model pre-topologyon (C, S).

The m.-equivalences in(C, S)* behave the same way as thg-equivalences in
SPr(T) (see Section3.3). We will therefore state the following basic facts without
repeating their proofs.

Lemma 4.5.4. A morphismf : F — G in (C, $)" is a n,-equivalence if and only if
for any n >0, the induced morphism

is a covering. In other words is a m,.-equivalence if and only if it is a-hypercover
when considered as a morphism between constant simplicial object, i§)".

Corollary 45.5. Let f : F — G be a morphism in(C, $)* and G’ — G be a
covering. Thenif the induced morphism

flFxté — ¢
is a m.-equivalenceso is f
Let f : F — G be a morphism in(C, S)*. For any fibrant objeck € (C, §) and

any morphisms : 1, — G in Ho((C, $)"), let us defineF; € Ho(((C, S)/x)") via
the following homotopy cartesian square:

Rj7(f)
Rjf(F) —— RjI(G)

| |

Fy ———— %

where the morphismx — R;¥(G) is adjoint to the morphisms : L(j)i(x)
~h, — G.
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Corollary 4.5.6. Let f : F — G be a morphism in(C, $)*. With the same notations
as above the morphism f is ar.-equivalence if and only if for any : A, — G in
Ho((C, $)"), the induced morphisny — * is a m,-equivalence irHo(((C, S)/x)").

Proposition 4.5.7. Let f : F — G be amn,-equivalence in(C, $)* and F — F’ be
an objectwise cofibratiorfi.e. a monomorphisjn Then the induced morphism

f/:F/—>F/]_[G/
f

is a m,-equivalence

Proof. As F — F’ is an objectwise monomorphisnk’ [[;G’” is a homotopy co-
product inSPr(C), and therefore iC, S)*. One can therefore replaée G and F’ by

their fibrant models in(C, S)" and suppose therefore that they preserve equivalences.
The proof is then the same as [idal, Proposition 2.2] O

4.6. The local model structure

The following result is completely similar to Theore3.1, also as far as the proof is
concerned. Therefore we will omit to repeat the complete proof below, only mentioning
how to replace the sdéd used in the proof of Theorer®.4.1

Theorem 4.6.1.Let (C, S, 1; 1) be a pseudo-model site. There exists a closed model
structure on SP(C), called thelocal projective model structurdor which the equiv-
alences are ther,-equivalences and the cofibrations are the cofibrations for the pro-
jective model structure oriC, S)”. Furthermore the local projective model structure
is U-combinatorial and left proper

The category SRIC) together with its local projective model structure will be denoted
by (C, $)™".

Proof. It is essentially the same as the proof3#.1 We will however give the set
of morphismH that one needs to use. We choas¢o be aU-small cardinal which
is bigger than the cardinality of the set of morphismsGrand thanXq. Let f be a

U-small cardinal such thaf > 2%

For a fibrant objectc € C, we consider a setiy(x), of representatives of the set of
isomorphism classes of objects —> h, in s(C, )"/ h, satisfying the following two
conditions:

1. The morphismF, — h, is a pseudo-representable hypercover in the sense of

Definition 4.4.1
2. For alln >0, one has Card),) < f.

We setH = [[ .t Hp(x), which is clearly alU-small set.

The main point of the proof is then to check that equivalences in the left Bousfield

localization Ly (C, S) are exactly local equivalences. The argument follows exactly
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the main line of the proof of TheorerB.4.1 and we leave details to the interested
reader. [J

The following corollaries and definitions are the same as the ones following Theorem
3.4.1

Corollary 4.6.2. The model categoryC, S)™" is the left Bousfield localization of
(C, $)* with respect to the set of morphisms

{|Fil — hylx € Ob(CT), F. € Hy(x)}.

Proof. This is exactly the way we proved Theoret6.1 [

Corollary 4.6.3. An objectF € (C, S)™" is fibrant if and only if it is objectwise fibrant
preserves equivalences and satisfies the following hyperdescent condition
— For any fibrant objectr € C and any H, € Hg(x), the natural morphism

F(x) =~ RyHom(hy, F) — RyHom(|Hyl|, F)

is an isomorphism irHo(S Set).

Proof. This follows from Corollary4.6.2 and from the explicit description of fibrant
objects in a left Bousfield localization (s¢di, Theorem 4.1.7] O

Remark 4.6.4. As we did in Remark3.4.6 we would like to stress here that the
proof of Theoren¥.6.1(i.e. of Theoren3.4.1) proves actually both Theorerh6.1and
Corollary 4.6.2 in that it givestwo descriptionsof the same model catego(y’, S)™*:

one as the left Bousfield localization @t”, S)* with respect tolocal equivalences
and the other as the left Bousfield localization of the sameS)” but this time with
respect tohypercoverg(precisely, with respect to the set of morphisms defined in the
statement of Corollary.6.2.

Definition 4.6.5. An objectF € (C, $)” is said tohave hyperdescelfor t-hyperdescent

if the topologyt has to be reminded) if for any fibrant objecte C and any pseudo-
representable hypercovéf, — h,, the induced morphism

F(x) ~ RyHom(hy, F) — Ry Hom(|Hy|, F)
is an isomorphism in H@ Sety)).
From now on, we will adopt the following terminology and notations.
Definition 4.6.6. Let (C, S, 1; 7) be a pseudo-model site it.

e A stackon (C, S, 1; 7) is a pre-stack’ € (C, S)” that hast-hyperdescent (Definition
4.6.5.
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e The model categoryC, S)™" is called themodel category of stacksn the pseudo-
model site(C, S, 1; 7). The category HQC, S)") (resp. HG(C, S)™%)) is called the
homotopy category of pre-stackeesp. thehomotopy category of stagksObjects
of Ho((C, $)*) (resp. Ha(C, S)™")) will simply be called pre-stackson (C, S, 1)
(resp.,stackson (C, S, 1; 7)). The functora : Ho((C, $)*) — Ho((C, $)™%) will be
called theassociated stack functor

e The topologyr is said to besub-canonicaif for any x € C the pre-stack®l, € Ho
((C, $H™) is a stack (in other words if the Yoneda embeddi®g, : Ho(C, S) —
Ho((C, $)") factors through the subcategory of stacks).

e For pre-stack& andG on (C, S, 1; 1), we will denote byR,, Hom(F, G) € Ho(S Sety))
(resp. byRy, Hom(F, G) € Ho(SSety)) the simplicial derivedHom-simplicial set
computed in the simplicial model categotg, S)" (resp.(C, S)™7).

As (C,$™" is a left Bousfield localization of(C, S)", the identity functor

(C,H" — (C, ™" is left Quillen and its right adjoint (which is still the iden-
tity functor) induces by right derivation a fully faithful functor

Jj : Ho((C, $)™") — Ho((C, $)™).

Furthermore, the essential image of this inclusion functor is exactly the full subcategory
consisting of objects having the hyperdescent property. The left adjoint

a : Ho((C, $)") — Ho((C, $)™")

to the inclusionj, is a left inverse tg.
We will finish this paragraph by the following proposition.

Proposition 4.6.7.1. Let F and G be two pre-stacks oiT, S, 1; 7). If G is a stack
then the natural morphism

Ry Hom(F, G) — Ry, Hom(F, G)

is an isomorphism irHo(S Ser).
2. The functorld : (C, $)* — (C, §)™" preserves homotopy fibered products

Proof. Condition (1) follows formally from Corollary4.6.2 while (2) follows from
Corollary 4.5.5 O

4.7. Comparison between the S-theory and the pseudo-model theory

In this subsection, we fix a pseudo-model categ@ty S, 1) in U, together with a
pre-topologyz on it. The natural induced topology on Ko S) will be denoted again
by 7. We letT be L(C, S), the simplicial localization of(C, S) along the setS of
its equivalences. As H@) = Ho(C, S) (though the two HO6-)'s here have different
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meanings), the topology may also be considered as &topology onT. Therefore,
we have on one side a pseudo-model se S, 1; 7), and on the other side a®&site
(T, ), and we wish to compare the two corresponding model categories of stacks.

Theorem 4.7.1. The two model categorieg”, S)™" and SPy(T) are Quillen equiva-
lent

Proof. By Theorem2.3.5 the model categories of pre-stacB®r(T) and (C, $)"
are Quillen equivalent. Furthermore, it is quite clear that through this equivalence the
notions of local equivalences i8Pr(T) and (C, S)* coincide. As the local model
structures are both left Bousfield localizations with respect to local equivalences, this
shows that this Quillen equivalence betwe@ S)" and SPr(T) induces a Quillen
equivalence on the model categories of stacks.

Then, Corollaries3.6.2 and 3.8.5imply the following

Corollary 4.7.2. 1. The model categoryC, S)™* is a t-completeU-model topos
2. The homotopy categortdo((C, S)™%) is internal
3. There exists an isomorphism of S-categorieHm(S — Cary))

LSPr(T)~ L(C, §)™ .

Now we want to compare the two Yoneda embeddings (the simplicial one and the
pseudo-model one). To do this, let us suppose now that the topol@ygub-canonical
so that the two Yoneda embeddings factor through the embeddings of the homotopy
categories of stacks:

Rh : Ho(C, §) — Ho((C, §)™),
Lh : HO(T) —> Ho(Int(SPr.(T))) ~ HO(S Pr+(T)).

One has HeC, S) = Ho(T), and Corollary4.7.2 gives an equivalence of categories
between HOSPr.(T)) and HA(C, S)™Y).

Corollary 4.7.3. The following diagram commutes up to an isomorphism

Rh
Ho(C, S) —— Ho((C, $)™7)

Nl lw

HO(T) —— Ho(SPr.(T)).
Lh
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Proof. This follows from the fact that for any € M, one has natural isomorphisms
[RA,, Flhoqc,s)~7) = F(x) = [Lh,, FlHo(SPr.(T))-
This implies thatRk, and Lk, are naturally isomorphic as objects in ¢6, $)").0

4.8. Functoriality

In this subsection, we state and prove in detail the functoriality results and some
useful criteria for continuous morphisms and continuous equivalences between pseudo-
model sites, in such a way that the reader only interested in working with stacks over
pseudo-model sites will find here a more or less self-contained treatment. However, at
the end of the subsection and in occasionally scattered remarks, we will also mention
the comparison between functoriality on pseudo-model sites and the corresponding
functoriality on the associated Dwyer—Kan localizatigssites.

Recall from Sectiord.1 (or Section2.3.2 before Corollary2.3.9 that if (C, S) and
(C’, 8" are categories with a distinguished subset of morphisms (e.g., pseudo-model
categories) ang’ : C — C’ is a functor sending into S’, we have a Quillen adjunction

fii(C,H — (C,$H", (C, 9" «— (C',SH": f*.

If (C,S,1) is a pseudo-model category, by Proposited.5 we have in particular the
following Quillen equivalences

5 (C. 9~ ((C.HY, if:(C,9H ~(C,HH
i%:(C, 8" ~((C, )",

which will be useful to establish functorial properties of the homotopy category
Ho((C, $)). Indeed, if f : (C,S) — (C',§") is a functorsuch that (S c §’
(e.g. a left or right Quillen functor), thehinduces well-defined functors

Rf* : Ho((C', §)) — Ho(((C, $)¢)") ~ Ho((C, $)),
Lfi : Ho((C, $)) ~ Ho(((C, §)*)") — Ho((C’, $")).

The (derived)inverse imagdunctor R f* is clearly right adjoint to the (derivedjirect
image functor L f;.

The reader should be warned that the direct and inverse image functors are not, in
general, functorial irf. However, the following proposition ensures in many cases the
functoriality of these constructions.
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Proposition 4.8.1. Let (C, S), (C’, S") and (C”, S”) be pseudo-model categories and

f g
(C, S) N (Cl, S/) N (C/,, S//)

be two functors preserving fibrant or cofibrant objects and equivalences between them.
Then there exist natural isomorphisms

R(gof)* ~ Rf*oRg* : Ho((C", $")") — Ho((C, $)"),
L(gof) = Lgol fi : HO((C, $)") — Ho((C”, §")").

These isomorphisms are furthermore associative and unital in the arguments f. and g

Proof. The proof is the same as that of the usual property of composition for derived
Quillen functors (se¢Ho, Theorem 1.3.7] and is left to the reader.C]

Examples of pairs of functors to which the previous proposition applies are given
by pairs of right or left Quillen functors.

Proposition 4.8.2.1f f : (C,S) — (C,S) is a (right or left) Quillen equivalence
between pseudo-model categoridsen the induced functors

Lf : Ho((C, $)") — Ho((C’, ")) Ho((C, $)") «— Ho((C’, $H") : Rf*

are equivalencesquasi-inverse of each others

Proof. This is a straightforward application of Corollag3.6 [

Let (C, S) and (C’, S’) be pseudo-model categories and let us consider a functor
f 1 C — €’ such thatf (s c §’. We will denote by fe : (C, S) — (C', §) the
composition

RO f
fet: (C,8) ——= (C,8 —— (C', 5,

where R (respectively,Q) denotes the fibrant (resp., cofibrant) replacement functor in
(C, S). We deduce an adjunction on the model categories of pre-stacks

(fehr : (C, )" — (€', $)" (C, )" «— (C",SH" : f§.

Note that the right derived functdR fj; is isomorphic to the functoiR f* defined
above.
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Proposition 4.8.3. Let (C, S; ) and (C’, §’; 7') be pseudo-model sites and: C —
C’ a functor such thatf ($¢") c §’. Then the following properties are equivalent
1. The right derived functoR f% ~ Rf* : Ho((C’, §)") — Ho((C, $)") sends the
subcategoryHo((C’, $)™7) into the subcategoryHo((C, §)™7).
2. If F e (C', S hast'-hyperdescentthen f*F € SPr(C) has t-hyperdescent
3. For any pseudo-representable hypercovdr — h, in (C, S)" (see Definition
4.4.7), the morphism

L(fet)r(Hy) —> L(fe)i1(hy) = g

is a local equivalence iC’, S")".
4. The functor £ : (C', 8")™" — (C, $)™" is right Quillen

Proof. The equivalence betwed)—(3) follows immediately from the fact that fibrant
objects in(C, §)™" (resp. in(C’, §)™%) are exactly those fibrant objects i@, S$)*
(resp. in(C’, $")"*) which satisfyt-hyperdescent (resp!-hyperdescent) (see Corollary
4.6.3. Finally, (4) and (2) are equivalent by adjunction.(]

Definition 4.8.4. Let (C, S; 1) and (C’, §’; 7') be pseudo-model sites. A functgf :
C — C' such thatf(s°) c §, is said to becontinuousor a morphism of pseudo-
model sitesif it satisfies one of the equivalent conditions of Proposit{8.3

Remark 4.8.5. By the comparison Theorem7.1, a functorf : (C, S; 1) — (C', §'; 1)
such thatf(SCf) C &', is continuous if and only if the induced functék (C, S), t) ~
(L(C%, 8%, 1) > (L(C’, §'), 7') between the simplicially localized associatBdites
is continuous according to Definitiod.5.1

It is immediate to check that if is a continuous functor, then the functor
Rf*: Ho((C', §)™) — Ho((C, $)™)
has as left adjoint
L(A)™ = L(fer1) : HO((C, $)™F) — Ho((C', §)™T),
the functor defined by the formula
L™ (F) = a(Lfi(F)),

for F € Ho((C, $)™%) c Ho((C, $)"), wherea : Ho((C, $)*) — Ho((C, $)™%) is the
associated stack functor.
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The basic properties of the associated stack funatamply that the functoriality
result of Propositior4.8.1 still holds by replacing the model categories of pre-stacks
with the model categories of stacks,fiaind g are continuous.

Now we define the obvious notion of continuous equivalence between pseudo-model
sites.

Definition 4.8.6. A continuous functorf : (C, S;1) — (C’,S’;7) is said to be a
continuous equivalencer an equivalence of pseudo-model sitéghe induced right
Quillen functor f% : (C", §)™" — (C, $)™" is a Quillen equivalence.

The following criterion will be useful in the next section.

Proposition 4.8.7. Let (C, S; 1) and (C’, §’; 7') be pseudo-model siteg : C — C’ a
functor such thatf (S€") € 8’ and fef : (C, S) — (C’, §’) the induced functor. Let us
denote byr (resp. byt’) the induced Grothendieck topology on the homotopy category
Ho(C, S) (resp.Ho(C’, S")). Suppose that
1. The induced morphisni.fe; : L(C,S) — L(C’, S’) between the Dwyer-Kan lo-
calizations is an equivalence of S-categories
2. The functor

Ho( f¢f) : Ho(C, S) — Ho(C’, ")

reflects covering sievgge., a sieve R ovex € Ho(C, S) is t-covering iff the sieve
generated byHo( f¢f)(R) is a t’-covering sieve ovelfg(x).
Then f is a continuous equivalence

Proof. This follows easily from the comparison statement Theorkihl and from
Theorem2.3.1 O

4.9. A Giraud’s theorem for model topoi

In this section we prove a Giraud's type theorem characterizing model topoi inter-
nally. Applied tot-complete model topoi, this will give an internal description of model
categories that are Quillen equivalent to some model category of stacks o®sitan
We like to consider this result as an extension of Dugger characterization of combina-
torial model categorieg[@u2]), and as a model category analog of J. Lurie’s theorem
characterizingoo-topoi (see[Lu, Theorem 2.4.7] Using the strictification theorem of
Hirschowitz and Simpson (stated in Section 4.2[T#-Ve 1]) it also gives a proof of
the Giraud's theorem for Segal topoi conjecturedTo-Ve 1, Conjecture 5.1.1]The
statement presented here is very close in spirit to the statement preseffRa], iwith
some minor differences in that our conditions are weaker {Ra}, and closer to the
original ones stated by Giraud (s¢8GA4-I, Exp. IV, Theoreme 1.2]

We start with some general definitions.

Definition 4.9.1. Let M be anyU-model category.
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The model category hadisjoint homotopy coproducti$ for any U-small family of
objects{x;}ic;, and anyi # j in |, the following square is homotopy cartesian:

) — X

-

Xj ——— ]_[ Xj.
iel

2. The homotopy colimits are stable under pullbacks inifMfor any morphism
y — z in M, such thatz is fibrant, and anyU-small diagramx, : I — M/z of
objects overz, the natural morphism

hocolim(x; x "y) — <hoco|imx,~> x My
iel ’ iel ’

is an isomorphism in Ha@\).
3. A Segal groupoid object in Ms a simplicial object

X, AP — M,

such that
e for anyn > 0, the natural morphism

h h h
X,,—>X1XXOX1XXO... X ¥ X1

0

ntimes
induced by then morphismss; : [1] — [r], defined ass; (0) =i, s;(1) =i + 1, is

an isomorphism in H@V).
e The morphism

h
doxdy: Xo — X1 X do,Xo,dOXl

is an equivalence in Ha1).
4. We say thatSegal equivalences relation are homotopy effective inf fbr any
Segal groupoid objeck, in M with homotopy colimit

| X«| := hocolimX,,
neA
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and anyn > 0, the natural morphism

h h h
X, — Xo x |X*|X0 XX, X |X*|Xo

ntimes
induced by then distinct morphismg0] — [r], is an isomorphism in H@/1).
We are now ready to state our version of Giraud's theorem for model topoi.

Theorem 4.9.2.Let M be aU-combinatorial model categorysee DefinitionA.2.1).
Then M is a U-model topos if and only if it satisfies the following conditions

1. M has disjoint homotopy coproducts

2. Homotopy colimits in M are stable under homotopy pullbacks

3. Segal equivalence relations are homotopy effective in M

Proof. The fact that the conditions are satisfied in any model topos follows easily
from the well known fact that they are satisfied in the model cate@8gt The hard
point is to prove they are sufficient conditions.

Let M be aU-model category satisfying the conditions of the theorem.

We chose a regular cardindl as in the proof of[Du2, Proposition 3.2]and let
C := M, be aU-small full sub-category oM consisting of a set of representatives
of J-small objects inM. By increasing/ if necessary, one can assume that the full
sub-categoryC of M is U-small, and is stable under fibered productdMnand under
the fibrant and cofibrant replacement functors (let us suppose these are fixed once for
all). By this last condition we mean that for any morphism- y in C, the functorial
factorizationsx — x’ — y are again inC. Let I', and I'* be fibrant and cofibrant
resolution functors orM [Hi, Chapter 16] We can also assume thét is stable by
I'y, and I'™* (i.e. that for anyx € C and any[n] € A, I',(x) and I"*(x) belong toC).
We note thatC is not strictly speaking a pseudo-model category but will behave pretty
much the same way.

We consider the functor

h€ M — SPr(C),
sending an object € M to the simplicial presheaf

Qf :C? — SSety,
y +—> Hom(I™*(y), x).

The functork has a left adjoint

L:SPr(C) — M,



354 B. Toén, G. Vezzosi/Advances in Mathematics 193 (2005) 257-372

sending al-simplicial presheaf to its geometric realization with respect o By the
standard properties of mapping spaces, one sees that for any fibrant okjedt the
simplicial presheat¢ is fibrant in the model category of restricted diagragas w)".
This, and the general properties of left Bousfield localizations imply that the pair
(h€, L) defines a Quillen adjunction

L:(C, W) — M, (C,W)" «— M :h®.

Lemma 4.9.3. The right derived functor
RAC : Ho(M) — Ho((C, W)™)
is fully faithful.

Proof. By the choice ofC, any objectx € M is a /-filtered colimit x ~ colim;¢;x;
of objectsx; € C. As all objects inC are A-small, this implies that

RhS ~ hocolimRAC .
iel !

From this, one sees that to prove tfiRiC is fully faithful, it is enough to prove it
is fully faithful when restricted to objects df. This last case can be treated exactly
as in the proof of our Yoneda Lemn#a2.3 [

By the previous lemma and by Proposition 3.2[Dli2], we can conclude that there
is a U-small set of morphism$in (C, W)”* such that the above adjunction induces a
Quillen equivalence

L:Lg(C,W)" — M, Lgs(C,W)" «— M :h®.

By Corollary 3.8.52), it only remains to show that the left Bousfield localization of
(C, W)" alongSis exact, or equivalently that the functbZ. commutes with homotopy
pull backs.

We start by the following particular case. Lete C and i be the presheaf repre-
sented byc. One can seé. as an object iNC, W) by considering it as a presheaf
of discrete simplicial sets. Let — hc andG — h¢ be two morphisms in(C, W)".

Lemma 4.9.4. The natural morphism
LL(F x . G) —> LL(F) x { 4, ,LL(G)
is an isomorphism irHo(M).
Proof. Up to an equivalence, we can write as a homotopy colimit hocolipg; A,

for somex; € C. As homotopy pull-backs commutes with homotopy colimits this shows
that one can suppodge and G of the formh, andh,, for a andb two objects inC.
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Now, as in Lemma4.2.2 one checks thak, and RiS are naturally isomorphic in
Ho((C, W)*). For this, we easily deduce that the natural morphism

h
hg X hchb — hax’gb’

is an equivalence ifC, W)" (hereh,,, can be seen as an object Gfbecause of

our stability assumptions). Therefore, to prove the lemma it is enough to check that
for any x e C the natural morphisnk, — A€ (x) induces by adjunction a morphism
L(hy) — x which is an equivalence iM. But, ash, is always a cofibrant object in

(C, W)», one has

L(hy) ~ LL(hy) ~ LL(hS) ~ x

by Lemma4.9.3 O
Let [[,. ke be a coproduct with; € C, and

F — ]_[hc,-‘_G

iel
be two morphisms inC, W)".

Lemma 4.9.5. The natural morphism

LL( 1T A

iel

LL (F x }h-e,hc.G> S LL(F) x" ( >[LL(G)

is an isomorphism irHo(M).

Proof. As for Lemma4.9.4 one can reduce to the case whé&end G are of the
form h, andh,. Lemma4.9.5will then follows easily from our assumptiofi) on M.
O

We are now ready to treat the general case.

Lemma 4.9.6. The functorlLL preserves homotopy pull-backs

Proof. Let F ——= H <=—— G be two morphisms inC, W)". One can, as

for lemma4.9.4 suppose thaF and G are of the formi, andh,. We can also suppose
that H is fibrant in (C, W)".

We let [ [;hy, — H be an epimorphism of simplicial presheaves withe C, and
we replace it by an equivalent fibratiom : Xo — H. We setX, the nerve ofp,
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which is the simplicial object ofC, W) given by

X, =Xox gXoxXg... x gXo,

ntimes

and for which faces and degeneracies are given by the various projections and gen-
eralized diagonals. Ap is a fibration between fibrant objects one sees thiatis a

Segal groupoid object inC, W)*. Furthermore, ap is homotopically surjective (as a
morphism of simplicial presheaves), the natural morphism

| Xy — H

is an equivalence inC, W)". Finally, as Xo is equivalent to][;4,,, Lemma4.9.5
implies thatl L(X,) is a Segal groupoid object ikl, and one has$l L(X,)| >~ LL(H)
asL is left Quillen. Assumption3) on M implies that

LL(Xo x " Xo) ~ LL(X1) ~ LL(X0) x ’;LL(H)[LL(XO).

To finish the proof of Lemma.9.6it is then enough to notice that siné& — H is
surjective up to homotopy, the morphisrhg, i, — H can be lifted up to homotopy
to morphisms toXo (because they correspond to elementsHiu) and H (b)), and
therefore

hg X }I’{hb ~ h, X };(O(XO X }I'{Xo) X }Ilihb.

One can then apply Lemm&9.5 0O
Theorem4.9.2is proven. O
The following corollary is an internal classification tEomplete model topoi.

Corollary 4.9.7. Let M be aU-combinatorial model category. Then the following are
equivalent
1. The model category M satisfies the conditiongb&orem4.9.2and is furthermore
t-complete
2. There exists dJ-small S-site(T, 7) such that M is Quillen equivalent to SRT).

Proof. Conditions (1) and (2) follow from Theoresh9.2 combined with our Theorem
383 O
From the proof of Theorem.9.2 one also extracts the following consequence.

Corollary 4.9.8. Let M be aU-combinatorial model category. Then the following are
equivalent
1. The model category M satisfies the conditions of Theatéh®? and is furthermore
t-complete
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2. There exists dJ-model category Nand a U-small full subcategory of cofibrant
objectC ¢ N€¢, and a topologyr on Ho(C) := (W N C)~1C, such that M is Quillen
equivalent to(C, W)™ . Furthermore the natural functorHo(C) — Ho(N) is
fully faithful and its image is stable under homotopy pull backs

This last corollary states thad is Quillen equivalent to the model category of stacks
over something which is “almost” a pseudo-model site. However, the sub-cat€gory
produced during the proof of Theoret9.2 is not a pseudo-model site as it is not
stable by equivalences iN. On the other hand, one can show that the clogtiref C
by equivalences il is a pseudo-model site, and that the natural morpHigi— LC
is an equivalence o&-categories.

Corollary 4.9.9. If M is a U-model topogresp. a t-completdJ-model toposthen so
is M/x for any fibrant objectx € M.

Proof. Indeed, if M is a U-combinatorial model category satisfying the conditions
of Theorem4.9.2 then so doesM/x for any fibrant objectx. Furthermore, one can
check that for anyS-site (T, 1), and any objecF the model categonsPr.(T)/F is
t-complete. This implies that iM is furthermoret-complete then so i8//x. O

Corollary 4.9.10. 1. Any U-model topos M is Quillen equivalent to a left proper model
category for which avery object is cofibrant and which is furthermore intethal is
a symmetric monoidal model category for the direct product moniodal strjcture
2. For any U-model topos M and any fibrant objeete M, the categoryHo(M /x)
is cartesian closed

Proof. It is enough to check this fo = LgSPr(T), for someU-small S-categoryT

and some U-small set of morphismsS in SPr(T) such thatid : SPr(T)

— LgSPr(T) preserves homotopy fiber products. We can also replace the projec-
tive model structureSPr(T') by the injective oneSPr;,;(T) (see Propositior8.6.1),

and therefore can suppo## of the form LgSPr;,;(T), again withId : SPr;(T) —

— LgSPriy;(T) preserving homotopy fiber products. We know ti&Rr;,;(7) is an
internal model category in which every object is cofibrant, and from this one easily
deduces that the same is true for the exact localizakiofiPr;,; (T).

Condition (2) follows from (1) and Corollary4.9.9 [

5. Etale K-theory of commutative S-algebras

In this section we apply the theory of stacks over pseudo-model sites developed in the
previous section to the problem of defining a notion of étaliheory of a commutative
S-algebra i.e. of a commutative monoid in Elmendorf-Kriz—Mandell-May'’s category of
S-modules (se¢EKMM] ). The idea is very simple. We only need two ingredients: the
first is a notion of arétale topologyon the model categoryAlgg) of commutativeS-
algebras and the second is the corresponding model categétglefstackon (Algs).
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Then, in analogy with the classical situation ($&&1, Section 3] étale K-theorywill be

just defined as a fibrant replacement of algebkaiheory in the category of étale stacks
over (Algg). The first ingredient is introduced in Sectiét? as a natural generalization

of the conditions defining étale coverings in Algebraic Geometry; the second ingredient
is contained in the general theory developed in SectiokVe also study some basic
properties of this étal&-theory and suggest some further lines of investigation.

A remark on the choice of our setting famommutative ring spectras in order.
Although we choosed to build everything in this Section starting ff&MM]'s cat-
egory ./#s of S-modules, completely analogous constructions and results continue to
hold if one replaces from the very beginning’s with any other model for spec-
tra having a well behaved smash product. Therefore, the reader could reglace
with Hovey—Shipley—Smith’s categorgp® of symmetric spectra (sefiSS]) or with
Lydakis’ categorySF of simplicial functors (seglLy]), with no essential changes.

Moreover, one could also apply the constructions we give below for commutative
algebras, to the category @f.-algebras over any symmetric monoidal model category
of the type considered by Markus Spitzweck[Bp, Section 8, 9]In particular, one
can repeat with almost no changes what is in this Section starting from Spitzweck’s
generalization ofS-modules as presented [Bp, Section 9]

The problem of defining an étalg-theory of ring spectra was suggested to us
by Paul-Arne Ostveer and what we give below is a possible answer to his question.
We were very delighted by the question since it looks as a particularly good test of
applicability of our theory. For other applications of the theory developed in this paper
to moduli spaces in algebraic topology we refer the readdieeVe 3].

5.1. S-modules,S-algebras and their algebraic K-theory

The basic reference for what follows [EKMM]. We fix two universesU and V
with U € V. These universes are, as everywhere else in this paper, to be understood
in the sense ofSGA4-I, Exp. |, Appendicepnd not in the sense ofEKMM, 1.1].

Definition 5.1.1.e¢ We will denote by.# s the category ofS-modules in the sense of
[EKMM, II, Definition 1.1] which belong toU.

e Algg will denote the category of commutative-algebras inU, i.e. the category
of commutative monoids in#s. Its opposite category will be denoted by Aff
Following the standard usage in algebraic geometry, an oBjeict Algg, will be
formally denoted by Spet when considered as an object in Aff

e If Ais a commutativeS-algebra,.#Z 4 will denote the category oA-modules belong-
ing to U and Alg, the category of commutativ@-algebras belonging t&J (i.e. the
comma categoryd/Algs of objects in Algs under A or equivalently the category
of commutative monoids in# ).

e We denote by Alg,,, s the full subcategory of Alg consisting ofconnective al-
gebras its opposite category will be denoted by Affn s. If A is a (connective)
algebra, we denote by Alg,, 4 the full subcategory of Alg consisting of connec-
tive A-algebras; its opposite category will be denoted by 4.



B. Toén, G. Vezzosi/Advances in Mathematics 193 (2005) 257-372 359

Recall that# 4 is a topologically enriched, tensored and cotensored over the category
(Top) of topological spaces i), left proper U-cofibrantly generated/-small model
category where equivalences are morphisms inducing equivalences on the underlying
spectra (i.e. equivalences are created by the forgetful funatar — %, where &
denotes the category of spectaKMM, | and VII, Theorem 4.6]belonging toU)
and cofibrations are retracts of relative célimodules[EKMM, III, Definition 2.1
@, (i); VI, Theorem 4.15] Note that since the realization functpr | : SSet —

Top is monoidal, we can also view/s and .# 4, as tensored and cotensored over
SSet

Moreover, a crucial property of#/s and .# 4, for any commutativeS-algebraA, is
that they admit a refinement of the usual “up to homotopy” smash product of spectra
giving them the structure of (topologically enriched, tensored and cotensored over the
category (Top) of topological spaces or 0&$et symmetric monoidal model categories
[EKMM, lIl, Theorem 7.1]

Finally, both Algs and Alg, for any commutative S-algebra A are topo-
logically or simplicially tensored and cotensored model categofiesMM, VII,
Corollary 4.10]

Proposition 5.1.2. Let 1 : Alg.onn s = Algs be the full subcategory of connective al-
gebras andW) the set of equivalences Wlg.,n, s- Then (Aff conn s = (Alggonn )7
W/, 1°P) is a V-small pseudo-model catego(gee Definitiond.1.D.

Proof. = The only nontrivial property to check is stability qfAlg;q,, s)° under
homotopy pullbacks, i.e. stability of Alg,, s under homotopy push-outs in Alg Let
B <~ A — C be a diagram in Alg,,, s; by Spitzweck[Sp, p. 41, after Lemma 9.14]

there is an isomorphisn® /\E\C ~ B]_[’j,C in Ho(.# p), where the left hand side is
the derived smash product ovArwhile the right hand side is the homotopy pushout
in Alg 4. Therefore it is enough to know that for any connectivenodulesM and N,
one hasr; (M A %N) = Tor;.“(M, N) =0 if i < 0; but this is exactiffEKMM, Chapter
IV, Proposition 1.2 ()] O

For any commutativeS-algebraA, the smash product A 4— on .# 4 induces (by
derivation) on the homotopy category Hé 4) the structure of a closed symmetric
monoidal categorfEKMM, Ill, Theorem 7.1} One can therefore define the notion of
strongly dualizable object;n Ho(.# 4) (as in [EKMM, Section 1.7, (7.8)). The full
subcategory of the category/S of cofibrant objects in# 4, consisting of strongly
dualizable objects will be denoted b)/%jd, and will be endowed with the induced
classes of cofibrations and equivalences coming frafp. It is not difficult to check
that with this structure,/%f;,d is then a Waldhausen category (sigEEKMM, Section
VI]). Furthermore, ifA — B is a morphism of commutativé-algebras, then the
base change functor

f*i=BAa(=) MY — M,
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being the restriction of a left Quillen functor, preserves equivalences and cofibrations.
This makes the lax functor

Y a Aff s — Caty,
SpecA > A,
(Specf : SpecB — Specd) +—  f*

into a lax presheaf of Waldhausér-small categories. Applying standard strictification
techniques (e.gilMayl, Theorem 3.4] and then taking the simplicial set (denoted by
|wS.ﬂjd| in [Wa]) whose Q-spectrum is the Waldhauséfrtheory space, we deduce
a presheaf ofV-simplicial sets ofK-theory

K(—): Affg — SSery,
SpecA — K (/5.

The restriction of the simplicial preshekifto the full subcategory A" of connective
affine objects will be denoted by

K\(—) : Aff LM — SSery.

Following Section 4.1, we denote by Aff(resp. by Af>"") the model category
of pre-stacks over th&-small pseudo-model categories Affresp. Affo™).

Definition 5.1.3. The presheaK (respectively, the preshed|) will be considered as
an object in Affg (resp. in (Aff"”) and will be called thepresheaf of algebraic K
theory over the symmetric monoidal model categaty; (resp. therestricted presheaf
of algebraic ktheory over the category#&™" of connective S-modules). For any
SpecA € Aff s, we will write

[K(A) := K(SpecA).

Remark 5.1.4. 1. Note that we adopted here a slightly different definition of the al-
gebraicK-theory spacd<(A) as compared t¢KMM, VI, Definition 3.2]. In fact our
Waldhausen categorfy%f;,d (of strongly dualizable objects) contaifiEKMM] category
f€4 of finite cell A-modules[EKMM, llI, Definition 2.1] as a full subcategory; this
follows from [EKMM, lll, Theorem 7.9] The Waldhausen structure gft6 4 [EKMM,
VI, Section 3]is however different from the one induced (via the just mentioned fully
faithful embedding) by the Waldhausen structure we use/ﬂi‘?: the cofibrations in
f%4 are fewer. However, the same arguments usefEKIMM, p. 113] after Propo-
sition 3.5, shows that the two definitions give isomorplic groups fori > 0 while
not, in general, foi = 0. One should think of objects if% 4 asfree moduleswvhile
objects in/%jd should be considered gmojective modules

2. Given any commutativeéS-algebraA, instead of considering the simplicial set
K(A) = |wS.ﬂjd| whose Q-spectrum is the Waldhausdf-theory spectrum of the
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Waldhausen categorwjd, we could as well have taken this spectrum itself and have
defined aspectra, or better anS-modules-valued presheah Affs. Since S-modules
forms a nice simplicial model category, a careful inspection shows that all the con-
structions we made in the previous section still make sense if we replace from the very
beginning the model category of simplicial presheaves (i.e. of contravariant functors
from the source pseudo-model category to simplicial setg)invith the model category
of .4 s-valued presheaves (i.e. of contravariant functors from the source pseudo-model
category to the simplicial model category &-modules). This leads naturally to a
theory of prestacksor, given a topology on the source pseudo-model or simplicial cat-
egory, to a theory otacks inS-modules(or in any other equivalent good category of
spectra).

3. The objectK and K| are in fact underlying simplicial presheaves of presheaves
of ring spectra, which encodes the ring structure onKhtheory spaces. We leave to
the reader the details of this construction.

4. A similar construction as the one given above, also yielt#stheory presheaf on
the category ofE.-algebras in a general symmetric monoidal model categgtylt
could be interesting to investigate further the output of this construction wheis
one of themotivic categories considered {i$p, 14.8]

Definition 5.1.5. Let © (resp.t’) be a model pretopology on the model category (Aff
(resp. on the pseudo-model category &ff), as in Definition4.3.1 and let Affg’f

(resp. (Aff °§°“”)~’T’) the associated model category of stacks (Theotesl). Let K —

— K. (resp. K| — K|¢) be a fibrant replacement df (resp. of K|) in Aff &
(resp. in (Aff CSO””)”*T’). The K.-theory spaceof a commutativeS-algebraA (resp.
the restrictedK ;/-theory spaceof a commutative connectiv&-algebraA) is defined

as K;(A) := K. (SpecA) (resp. asKy(A) := K|y (Specd)). The natural morphism
K — K; (resp.K| — Kj) induces a natural augmentation (localization morphism)
K(A) — K:(A) (resp.[§|(A) — K¢ (4)).

Remark 5.1.6. Though we will not give all the details here, one can define also an
algebraicK-theory andK.-theory space ofiny stackX e Aff gf. The only new in-
gredient with respect to the above definitions is the notiorl-&egal stackPerfy of
perfect modules over,xhat replacesﬂjd in the definition above. This notion is de-
fined and studied in the forthcoming pagé&o-Ve 6]. Of course, a similar construction

is also available for the restrictdd-theory.

5.2. The étale topology on commutati®ealgebras

In this section we define an analog of the étale topology in the category of commu-
tative S-algebras, by extending homotopically to these objects the notiofsrmially
étale morphism and of morphisrof finite presentation

The notion of formally étale morphisms we will use has been previously considered
by Rognes[Ro] and by McCarthy{MCM] and MinasianMin].
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We start with the following straightforward homotopical variation of the algebraic
notion of finitely presented morphism between commutative rings[EsbAl, Chapter
0, Proposition 6.3.1}]

Definition 5.2.1. A morphism f : A — B in Ho(Algs) will be said to beof finite
presentationif for any filtered direct diagranC : J — Alg4, the natural map

ho]ceojlim Mapyg, (B, Cj) — Mapyyg, <B, hojceojliij>

is an equivalence of simplicial sets. Here MaR (=, —) denotes the mapping space
in the model category Alg.

Remark 5.2.2. 1. It is immediate to check that the condition for I\A@(—, —) of
commuting (up to equivalences) withocolim is invariant under equivalences. Hence
the definition of finitely presented is well posed for a map in the homotopy category
Ho(Algg).

2. Since any commutativé-algebra can be written as a colimit of finite CW
algebras, it is not difficult to show that — B is of finite presentation if and only if
B is a retract of a finite C\WA-algebra. However, we will not use this characterization
in the rest of this section.

We refer to[Ba] for the definition and basic properties of topological André—Quillen
cohomology of commutativé-algebras. RecallBa, Definition 4.1]that if A — B is
a map of commutativéS-algebras, andM a B-module, thetopological André-Quillen
cohomologyof B relative toA with coefficient inM is defined as

TAQ*(B|A, M) := n_Fp(Qpa, M) = Exty(Qpja, M),

where Qg4 := LORI(B A E‘B), Q being themodule of indecomposablésnctor [Ba,
Section 3]and | the augmentation ideafunctor [Ba, Section 2] We call Qg4 the
topological cotangent complerf B over A. In complete analogy to the (discrete)
algebraic situation where a morphism of commutative rings is formally étale if the
cotangent complex is homologically trivial (or equivalently has vanishing André—Quillen
cohomology), we give the following (compare, on the algebro-geometric side,[Mjth
Chapter 1ll, Proposition 3.1.}1]

Definition 5.2.3.e¢ A morphism f : A — B in Ho(Algg) will be said to beformally
etaleif the associated topological cotangent compiex 4 is weakly contractible.

e A morphismf : A — B Ho(Algg) is étaleif it is of finite presentation and formally
étale. A morphism SpeB — SpecA in Ho(Aff s) is étaleif the mapA — B in
Ho(Algs) inducing it, is étale.
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Remark 5.2.4. 1. Note that if A — B’ and A” — B” are morphisms in Alg,
projecting to isomorphic maps in Kalgs), then Qg4 and Qpr 4 are isomorphic in
the homotopy category of-modules. Therefore, the condition given above of being
formally étale is well-defined for a map in kalgg).

2. THH-étale morphismslIf A is a commutativeS-algebra,B a commutativeA-
algebra, we recall that Algis tensored and cotensored over Top or equivalently over
SSet therefore it makes sense to consider the oba® B in Ho(Alg 4), where the
derived tensor product is performed in AlgBy a result of McClure, Schwénzl and Vogt
(see[EKMM, IX, Theorem 3.3), $1 ® L B is isomorphic to THH (B; B) = THH(B|A)
in Ho(Alg 4) and is therefore a model fdopological Hochschild homologgs defined
e.g in [EKMM, 1X.1]. Moreover, note that any choice of a poit— S gives to
s1® LB a canonical structure ok-algebra.

A map A — B of commutativeS-algebras, will be calledormally THH-étaleif the
canonical mapB — S ® LB is an isomorphism in H@lg,); consequently, a map
A — B of commutativeS-algebras, will be called THHtale if it is formally THH-
étale and of finite presentation. As shown by Minasjitin] THH-étale morphisms
are in particular étale.

3. It is easy to see that a morphism of commutatd«algebrasA — B is formally
THH-étale if and only ifB is a co-discreteobject in the model category Algi.e.,
if for any C € Alg, the mapping space Mag, (B, C) is a discrete (i.e. O-truncated)
simplicial set. From this description, one can produce examples of étale morphisms
of S-algebras which are not THH-étale. The following example was communicated
to us by Michael Mandell. LetA = HF, = K(F,,0) (H denotes the Eilenberg-
Mac LaneS-module functor, sedEKMM, 1V, Section 2]), and perform the following
construction. Start withF1(A), the free commutativé-algebra on a cell in degreel.

In m_1(F1(A)) there is a fundamental class but also lots of other linearly independent
elements as for example the FrobenkisWe let B to be theA-algebra defined by the
following homotopy co-cartesian square:

1-F
Fi1(A) ——= F1A

L

A — B.

The morphism 1 F being étale, we have th& is an étaleA-algebra. However, one
hasmi(Mapaig, (B, A)) >~ Z/p # 0, and therefored — B is not THH-étale (because
Map g, (B, A) is not O-truncated).

Proposition 5.2.5.1f C < A — B is a diagram inHo(Algg) and A — B is étale
then the homotopy co-base change ntap> B ]_[ZC is again étale

Proof. The co-base change invariance of the finite presentation property is easy and
left to the reader. The co-base change invariance of the formally étale property follows
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at once from[Sp, p. 41, after Lemma 9.144nd the “flat base change” formula for the
cotangent complexBa, Proposition 4.6]

QB/\%C|C ~ Q3|A A aC.

As an immediate consequence we get the following corollaril

Corollary 5.2.6. Let A be a commutativ&-algebra. The subcategorprfif of Aff 4
consisting of étale mapSpecB — SpecA, is a pseudo-model category

For any (discrete) commutative rirfg we denote byH R = K(R, 0) the Eilenberg-
Mac LanecommutativeS-algebra associated & [EKMM, |V, Section 2].

Proposition 5.2.7. A morphism of discrete commutative rings — R’ is étale iff
HR — HR' is étale

Proof. By Pirashvili and RichatefPi-Ri] and Basterra and McCartHBa-MC], we
can apply to topological André—Quillen homology and André—Quillen homology the
two spectral sequences at the end®¢hw, Section 7.9jo conclude that the algebraic
cotangent complexX g, is acyclic iff the topological cotangent compléXy gy r is
weakly contractible; therefore the two formal etaleness do imply each other. Also the
two finite presentation condition easily imply each other, since the fungiais left
adjoint and therefore preserves finitely presented objects. So we only have to observe
that a finitely presented morphism of discrete commutative riRgs—> R’ is étale iff
it has an acyclic algebraic cotangent comp]#k Chapter Ill, Proposition 3.1.1] [

The following proposition compare the notions of étale morphisms of commutative
rings and commutativé-algebras in the connective case.

Proposition 5.2.8. Let k be a commutative rin@gn U), and Hk —> B be an étale mor-
phism of connective commutati#ealgebras. Thenthe natural mapB — H (ng(B))
[EKMM, Proposition 1V.3.1]is an equivalence of commutatii&algebras. Therefore
up to equivalencesHk — B is of the formHk — Hk' wherek — k' is an étale
extension of discrete commutative rings

Proof. Consider the sequence of maps of commutatralgebrasHk — B —>
Hmo(B); this gives a fundamental cofibration sequefi8ea, Proposition 4.3]

Qpiak AN BHT0(B) — QunoB)\Hk — QH7o(B)|B-

Since Hk — B is étale, by McCarthy and MinasiafMCM, Proposition 3.8(2)]
also Hk — Hmng(B) is étale; therefore the first two terms are contractible, hence
QunoB)|B = *, 100. Now, the mapB — Hno(B) is a 1l-equivalence (see al§Ba,
Proof of Theorem 8.})]and therefore Qp,5) 8 ~ * and [Ba, Lemma 8.2] tell us
that 118 ~ 0. Then,B — Hmnp(B) is also a 2-equivalence and the same argument
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shows then thati;B ~ 0, etc. Thereforer; B >~ 0, for anyi>1 and we get the first
statement. The second one follows from this and Propos8i@. [

Remark 5.2.9. Note that Propositiorb.2.8 is false if we remove the connectivity hy-
pothesis. In fact, thel/ [ ,-algebraB described in Remarb.2.43) is étale but has,

by construction, non-vanishing homotopy groups in infinitely many negative degrees.
Actually, even restricting to THH-etale characteristic zero will not be enough in order
to avoid this kind of phenomenon (see €fo-Ve 3, Rem. 2.19]

Definition 5.2.10. For each Spet € Ho(Aff ), let us define Coy(Sped) as the set
of finite families {f; : SpecB; —> SpecA};c; of morphisms in HOAff ), satisfying
the following two conditions:

1. for anyi € I, the morphismA — B; is étale

2. the family of base change functors

{U_fl* Ho( A 4) — HO(’/%B,')}iGI

conservative, i.e. a morphism in Ha 4) is an isomorphism if and only if, for any
i €1, its image in H@.# ;) is an isomorphism.

We leave to the reader the easy task of checking that this actually defines a model pre-
topology €t) (see Definitiond.3.7), called theétale topologyon Affs. By restriction to
the sub-pseudo-model category (see Proposhidm) Aff conn s Of connective objects,
we also get a pseudo-model sit&ff conn s. €7), called therestricted étale site

If A is a commutative (resp. commutative and connecti@edlgebra, the pseudo-
model category (see Corollary.2.§ Aff ;4 (resp. Affeonn ¢1/4), together with the
“restriction” of the étale topology, will be called ttmmall étale sitgresp. therestricted
small étale site over A. More precisely, let us consider the obvious forgetful functors

F:Affg 40— Affs,
F/3Aﬁconn ét)A — Aﬁg

By definition of the pseudo-model structures on Aff (resp. on Affonn 4/4), F
(resp. F’) preserves (actually, creates) equivalences. Therefore, we say that family of
morphisms{SpecC;) — SpecB)} in Ho(Aff ;) (resp. in HAAff conn ¢1/4)) IS an
étale covering family of Spe® — Spect) in Aff ;4 (resp. Affeonn ¢1/4) iff its image
via Ho(F) (resp. via HQF’)) is an étale covering family of Speg) in Aff g i.e.
belongs to Coy (Spect) (Definition 5.2.10.

We finish this paragraph by the following corollary that compare the small étale sites
of a ring k and of its associated Eilenberg—Mac LaBealgebraHk.

Corollary 5.2.11. Let k be a discrete commutative rin@ff; ., é1) be the small étale
affine site overSpeck) consisting of affine étale schem8geck’) — Speck), and
H : affgyx — Aff conn é/m1 b€ the Eilenberg-Mac Lane space functéhen H induces
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a continuous equivalence of étale pseudo-model sites
H : (affs i, et) — (Aff conn ér/HK s €1).

Proof. Propositions5.2.8and5.2.7 imply that the conditions of Propositioh.8.7 are
satisfied. [J

5.3. Etale K-theory of commutativ@-algebras
The following one is the main definition of this section.

Definition 5.3.1.e¢ For any A € Algg, we define itsétale ktheory spacel;, (A) by
applying Definition5.1.5t0 7 = (ét).

o ForanyA e Alg®"", we define itgestricted étale K-theory spade;, (A) by applying
Definition 5.1.5to0 7/ = (ét).

The following proposition shows that, as in the algebraic case[Jefl, Theorem
3.10)), also in our context, étalg-theory can be computed on the small étale sites.

Proposition 5.3.2.Let A be a commutativéresp. commutative and connecdive-
algebra and(Aff 5 ,4)™ ° (resp. (Aff conn ét/a)” ¢y the model category of stacks on
the small étale site (resp. on the restricted small étale site) AvEor any presheaf
on Affs, we denote byr*™ (resp.Fls’") its restriction to Aff; 4 (resp. to Affonn et/a)-
Then the mapK*™ — K3 (resp.Kf’" — K") induced via restriction by a fibrant

replacementk — K, (resp.K| — K,) in (Aff g)™ ¢ (resp. in(Aff conns) ™ %), is a
fibrant replacement iAff 5, 4)™ ¢ (resp. in(Aff conn sya) ™ ).

Proof. We prove the proposition in the non-connective case, the connective case is
the similar.
Let us consider the natural functor

o Affasa — Affs,

from the small étale site of Speécto the big étale site. It is clear that the associated
restriction functor

. ~.ét -~ 6t
AR — Aff

preserves equivalences (one can apply for example Lerdr5a). Furthermore, if
SpecB — SpecA is a fibrant object in Aff; 4, then the pseudo-representable hy-
percovers (see Definitiod.4.1) of SpecB are the same in Aff,4, and in Affs/4
(because each structure map of a pseudo-representable hypercover is étale). This im-
plies by Corollary4.6.3 that the functorf* preserves fibrant objects. In particular, if

K — Ky is a fibrant replacement in AFf“, so is its restriction to Afef;’/e/g. O
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As a consequence, we get the following comparison result to algebraickéthiory
for fields; if R is a (discrete) commutative ring, we denote Ky, (R) its étaleK-theory
space (e.g[Jal).

Corollary 5.3.3. For any discrete commutative ring, kwe have an isomorphism
K (Hk) >~ Kz (k) in HO(S Set).

Proof. This follows from corollariess.2.11, 5.3.2 and from the comparison between
algebraicK-theory of a commutative rindR and algebraidk-theory of the S-algebra
HR (see[EKMM, VI, Remark 6.1.5(1)]. O
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Appendix A Model categories and universes
In this appendix we have collected the definitions ldfcofibrantly generatedl-

cellular andU-combinatorial model categories for a universeg that have been used
all along this work.
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Throughout this appendix, we fix a univergé
A.1. U-cofibrantly generated model categories

Recall that a category is &J-category, or equivalently a locally-small category,
if for any pair of objects(x, y) in C the setHom¢(x, y) is a U-small set.

Definition A.1.1. A U-model category is a categohM endowed with a model structure
in the sense ofHo, Definition 1.1.3]and satisfying the following two conditions:

1. The underlying category d¥l is a U-category.

2. The underlying category d¥l has all kind of U-small limits and colimits.

Let o be the cardinal of dJ-small set (we will simply say is a U-small cardina).
Recall from[Ho, Definition 2.1.3]that an objeck in a U-model categorn, is a-small
if for any U-small a-filtered ordinal A, and anyA-sequence

YO Y1 .. Y= Vg4l > ...
the natural map
colimg_; Hom(x, yg) —> Hom(x, colimg_;yg)

is an isomorphism.
We will use (as we did in the main text) the following variation of the notion of
cofibrantly generated model categooy [Ho, Definition 2.1.17]

Definition A.1.2. Let M be alU-model category. We say théd is U-cofibrantly gen-
eratedif there existU-small setsl andJ of morphisms inM, and alU-small cardinal
o, such that the following three conditions are satisfied:

1. The domains and codomains of the mapd ahd J are a-small.

2. The class of fibrations ig-inj.

3. The class of trivial fibrations i&in;.

The main example of &J-cofibrantly generated model category is the model cate-
gories SSery of U-small simplicial sets.

The main “preservation” result is the following easy proposition (B¢ Section
13.8, 13.9, 13.10]

Proposition A.1.3. Let M be aU-cofibrantly generated model category

1. If C is a U-small category then the categoryM€ of C-diagrams in M is again
a U-cofibrantly generated model category in which equivalences and fibrations are
defined objectwise

2. Let us suppose that M is furthermoreS&er;-model category in the sense [pio,
Definition 4.2.18](in other words, M is a simplicialU-cofibrantly generated model
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category, and let T be all-small S-category. Therithe categoryM’ of simplicial
functors from T to M is again dJ-cofibrantly generated model category in which
the equivalences and fibrations are defined objectwise. The model cat&fforis
furthermore aSSery-model category in the sense [¢fo, Definition 4.2.18]

A standard construction we have been using very often in the main text is the
following. We start by the model categorySery of U-small simplicial sets. Now,
if V is a universe withU € V, then the categorySery is V-small. Therefore, the
category

SSet;”

SPr(SSety) := SSet,,

of V-small simplicial presheaves afiSery, is a V-cofibrantly generated model cate-
gory.

This is the way we have considered, in the main text, model categories of diagrams
over a base model category avoiding any set-theoretical problem.

A.2. U-cellular and U-combinatorial model categories

The following notion ofcombinatorial model categoris due to Jeff Smith (see, for
example,[Du2, Bek, Section 2, I, Section 1]

Definition A.2.1. 1. A categoryC is called U-locally presentablgsee[Du2]) if there
exists alU-small set of objectsy in C, which are alla-small for some cardinat in
U and such that any object i@ is an a-filtered colimit of objects inCyp.

2. A U-combinatorial model categoris a U-cofibrantly generated model category
whose underlying category iB-locally presentable.

The following localization theorem is due to J. Smith (unpublished). Recall that a
model category ideft proper if the equivalences are closed with respect to pushouts
along cofibrations.

Theorem A.2.2. Let M be a left proper U-combinatorial model categoryand S ¢ M
be a U-small subcategory. Then the left Bousfield localizatigy/ of M with respect
to S exists

Let us recall from[Hi, Section 12.7]the notion ofcompactnessWe will say that
an objectx in a U-cofibrantly generated model categdw is compactis there exists
a U-small cardinalx such thatx is a-compact in the sense @i, Definition 13.5.1]
The following definition is our variation of the notion afellular model categoryof
[Hi].

Definition A.2.3. A U-cellular model category is a U-cofibrantly generated model
category with generatingJ-small sets of cofibration$ and of trivial cofibrations],
such that the following two conditions are satisfied:
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1. The domains and codomains of mapsl iare compact.
2. Monomorphisms irM are effective.

The main localization theorem ¢Hi] is the following.

Theorem A.2.4 (Hirschhorn [Hi, Theorem 4.1.1). Let M be a left proper U-cellular
model category andd ¢ M be a U-small subcategory. Then the left Bousfield local-
ization LgM of M with respect to S exists

Finally, let us mention the following “preservation” result.

Proposition A.2.5. If in Proposition A.1.3, M is U-combinatorial (resp. U-cellular),
then so areM® and M7,
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