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Abstract. We review recent results and ongoing investigations of the sym-
plectic and Poisson geometry of derived moduli spaces, and describe applica-
tions to deformation quantization of such spaces. This paper has been written
for the proceedings of the “Algebraic Geometry” AMS summer institute, Uni-
versity of Utah, Salt Lake City 2015.
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Introduction

From the vantage point of the timeline of the AMS Summer Institutes, this
contribution is a continuation and an update of B. Toën’s 2005 overview [To1].
Our goal here is to highlight some of the remarkable developments in derived ge-
ometry that we witnessed in the past ten years.

One of the very first important results on the symplectic geometry of moduli
spaces in algebraic geometry is undoubtedly Mukai’s proof of the existence of a sym-
plectic form on the moduli of simple sheaves on Calabi-Yau surfaces S, [Mu]. This
was later generalized by Inaba to the moduli space of simple perfect complexes,
[In]. By looking at these proofs one realizes that two ingredients play different
roles in establishing the result: one is the the fact that we are considering mod-
uli of sheaves and, and the other, the fact that we are working on a Calabi-Yau
variety. Derived algebraic geometry gives a somehow more conceptual and unified
explanation of Mukai’s and Inaba’s results, as follows. First of all, these moduli
spaces are suitable open subspaces of the truncation of the derived stack Perf(S) of
perfect complexes on S. Now, we observe that Perf(S) is equivalent to the mapping
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derived stack MAP(S,Perf), where Perf is the absolute classifying derived stack for
perfect complexes, and one can prove (see [PTVV] or Section 1.2 below) that:

• Perf has a derived symplectic structure with shift 2;
• MAP(X,Y ) has a canonically induced derived symplectic structure of de-
gree (n−d) whenever X is Calabi-Yau of dimension d, and Y has a derived
symplectic structure with shift n (Theorem 1.11);

• on smooth schemes or algebraic spaces, derived 0-shifted symplectic struc-
tures coincide with usual symplectic structures.

This way, derived algebraic geometry unravels very clearly the interplay between
the two above mentioned ingredients in Mukai’s and Inaba’s results. Moreover, we
see that shifted symplectic structures exists on Perf(Y ) on a Calabi-Yau variety of
any dimension, and this is particularly relevant to the study of Donaldson-Thomas
moduli spaces on, say, Calabi-Yau 3-folds.
But, in the course of giving such an explanation, derived algebraic geometry does
more. The discovery of possible shifts in the definition of symplectic structures also
enables to produce a lot of new derived moduli spaces carrying derived symplectic
structures with non-zero shifts. E.g. the derived stack RBunG(X) of G-torsors
on a Calabi-Yau variety of dimension d, for G a smooth affine group scheme over
k, and the derived moduli stack MT of compact objects in a d-Calabi-Yau dg-
category T over k, are both (2− d)-shifted symplectic. As a non-moduli example,
we might mention that the derived intersection of two smooth lagrangian sub-
varieties in a smooth classical symplectic variety carries a canonical (−1)-shifted
symplectic structure. The reader will find more examples at the end of Section
1.2. It is also worth mentioning that the truncations, i.e. the associated classical
moduli spaces, of the vast majority of these examples are highly singular, and thus
it is only in derived geometry that one can really make sense of and exploit the
rich geometry coming from the fact that they carry a (derived) symplectic structure.

Once we have a notion of symplectic structure in derived algebraic geometry,
it is natural to ask for the corresponding notion of Poisson structure. While in the
non-derived world, the definitions of symplectic and of Poisson structures are at the
same level of difficulty, this is not the case in the derived world: defining derived
Poisson structures is considerably more involved. One of the reasons is the lack
of functoriality for polyvector fields, as opposed to the functoriality of differential
forms. Anor reason is that, in some sense, Poisson structures in derived geometry
are “less local” than symplectic structures. In order to overcome the difficulties in
defining derived Poisson structures, we were led to developing a very general tech-
nique of formal localization for derived stacks, and this technique promises to be
extremely useful in other, a priori unrelated, problems in derived algebraic geome-
try. Formal localization and derived Poisson structures are studied in [CPTVV].
Quantization is historically related to Poisson structures, and, more recently, a pre-
cise mathematical link has been established, by Kontsevich, between classical Pois-
son structures and deformation quantization (see e.g. [Ko1]). Loosely speaking, we
may understand quantization as a structured way to produce a non-commutative
deformation of a commutative “object”. Classically, the “object” to be deformed
or quantized is the product in a suitable commutative algebra. But, since moduli
spaces are ubiquitous in algebraic geometry, we may ask what it means to quantize a
moduli space. This question is not just an abstract one but it is motivated by many
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a priori unrelated problems including the Geometric Langlands Program ([Kap]),
the study of Donaldson-Thomas moduli spaces and motivic Donaldson-Thomas
invariants ([Ko-So]), topological Fukaya categories and low-dimensional topology
([STZ, Sh-Ta]), twisted topological quantum field theories ([Kap,El-Yo]), and
extended topological field theories. For example, in the study of the Donaldson-
Thomas moduli space of sheaves on a Calabi-Yau 3-fold, one looks for a perverse
sheaf on the moduli space that should be a quantization of the line bundle of (vir-
tual) half-forms. One way to produce such a perverse sheaf should be to induce it
from a quantization of the whole Donaldson-Thomas moduli space (see [BBDJS]
for some results in this direction). But what do we mean by a quantization of a
moduli space M ? The definition we take here (and in [CPTVV]) is that such a
quantization, when it exists, depends on a positive integer n and is defined ro be
a deformation of the perfect derived category D(M) of M as an En-dg-category
(see Section 3). To explain what this means, let us observe that D(M) is naturally
a symmetric monoidal dg-category (over the base ring) with respect to the ten-
sor product of perfect complexes. In other words, it is a E∞-monoidal dg-category.
This is the categorified version of commutativity of the product in an algebra, where
the algebra-product is replaced by the monoidal product in the category, i.e. the
tensor product of complexes in this case. While full commutativity is homotopically
encoded in the action of the operad E∞, less commutative structures are encoded by
similar operads En, for n a natural number. E1-algebras corresponds to associative
algebras, and, one categorical level up, E1-dg-categories corresponds to mere (i.e.
non-braided, ..., non-symmetric) monoidal dg-categories. A commutative algebra
is in particular an associative algebra, and, more generally, an E∞-dg-category is
canonically an En-dg-category, for any n. Therefore, we are allowed to consider
deformations of D(M) as an En-dg-category. We call any such deformation an
n-quantization of the moduli space M. There is an important relation between
n-quantizations of a derived moduli space M and shifted Poisson structures on M:
any n-shifted Poisson structure on M canonically induces an |n|-quantization of
M (see Section 3). This should be seen as a highly structured categorification of
Kontsevich’s deformation quantization.
As expected (though the proof of this result is definitely non-trivial, see Section 2.4),
non-degenerate n-shifted Poisson structures are the same thing as n-shifted sym-
plectic structures, and by the previous discussion, this yields a long list of derived
moduli spaces admitting a canonical quantization. We will give a few examples
of these quantizations in Section 3, but it is fair to say that that we are still far
from having extracted all the interesting geometrical information they carry, and in
particular the interaction of quantizations with other geometric structures on the
moduli spaces. This will certainly be rewarding, as the example of quantum groups
seems to indicate: the theory of quantum groups can be essentially recovered from
the 2-quantization of the classifying stacks BG, which is 2-shifted symplectic, hence
2-shifted Poisson (see Section 3.2). To put things differently we might say that, in
a sense, the theory of quantum groups was the first, though ante litteram, example
of a 2-quantization.

The main topics of this paper - shifted symplectic and Poisson geometry on
derived moduli spaces - are among the latest topics in the area of derived geometry.
Even though the study of these topics is still in an early stage, it has already led
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to some exciting applications. Among the moduli theoretic applications, we might
mention the fact that (−1)-shifted symplectic structures induce symmetric perfect
obstruction theories in the sense of [Be-Fa] (and actually all the geometrically
interesting examples of symmetric obstruction theories arise this way), and the
related important result that the Donaldson-Thomas moduli space is (−1)-shifted
symplectic and Zariski locally isomorphic to the critical locus of a potential ([BBJ]).

In Section 1 we explain and summarize the main results from [PTVV], while
sections 2 and 3 delve into the substance of [CPTVV]. The aim of our review has
been twofold: on one hand to convey the intuition behind definitions, constructions,
and proofs of the main results, and on the other hand, to explain and motivate the
slight change of point of view going from [PTVV] to [CPTVV]. The upshot is
that shifted Poisson geometry and its applications to deformation quantization of
moduli spaces require a new and broader perspective, and new technical tools,
i.e. differential calculus in an extremely general setting (Section 2.1), and formal
localization (Section 2.2). Even though these powerful tools were created in order
to solve our specific problems related to shifted Poisson structures, they constitute
also a conceptual advance, very likely to become relevant in other contexts and to
different problems in derived algebraic geometry.

We also point out that there is a parallel theory of shifted quadratic forms on
derived moduli spaces, but we will not review it here (see [Vez2,Ba] for the first
investigations in this area).

We now describe, section by section, the mathematical contents of this paper
in more details.

Shifted symplectic structures. A shifted symplectic structure on a derived stack
X with a perfect cotangent complex LX is a structured self-duality of LX up to a
shift, i.e. a quasi-isomorphism TX � LX [n] induced by a closed n-shifted 2-from
on X. The idea is an obvious generalization of the classical definition of symplectic
form, but with an important additional, purely derived algebro-geometrical feature:
for a shifted form on X, being closed is not a property but rather a datum. In other
words, there is a canonical map, called the underlying-form map, from the space
Ap,cl(X,n) of n-shifted closed p-forms on X, to the space Ap(X,n) of n-shifted
p-forms on X, but this map is not, in general, “injective” in any reasonable sense
of the word (e.g. not injective on the connected components of these spaces). The
space Sympl(X,n) is exactly the subspace of A2,cl(X,n) of closed 2-forms whose
underlying 2-from is non-degenerate, i.e. such that the induced map TX → LX [n]
is a quasi-isomorphism. Shifted symplectic structures abound, in the sense that
many moduli spaces of interest to algebraic geometers and topologists, such as the
moduli spaces of principal bundles or perfect complexes on algebraic Calabi-Yau
manifolds or compact orientable topological manifolds, have derived enhancements
carrying natural shifted symplectic structures. In Section 1 we give three general
existence results for shifted symplectic structures on derived moduli stacks, leading
to a long list of examples.

Shifted Poisson structures. Having at our disposal a theory of shifted sym-
plectic structures, it is natural to look for a more general theory of shifted Poisson
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structures on derived moduli stacks. Actually, our original motivation for such a
general theory came from the expected link between a shifted Poisson structure on
a derived stack and an induced deformation quantization of its dg-derived category
of perfect complexes. We will say more about this motivation-application below.
While classically, setting up a theory of Poisson varieties does not present more
difficulties than setting up a theory of symplectic varieties, in derived algebraic
geometry the situation is radically different. The usual bad functoriality properties
of shifted polyvectors (as opposed to the good functoriality of closed shifted forms)
together with the very delicate and intricate strictification problems related to es-
tablishing a meaningful shifted Poisson algebra structure on them, immediately
made us realize that, outside the derived Deligne-Mumford case, a full-fledged the-
ory of shifted Poisson structures on derived Artin stacks required new ideas and
tools. If X is a derived Artin stack, locally of finite presentation over the base k
(always assumed to be a Noetherian commutative Q-algebra), then its cotangent
complex LX is perfect, and we may consider the graded commutative differential
graded algebra

Pol(X,m) :=
⊕
p≥0

Γ(X,Symp(TX [−m])

of m-shifted polyvectors on X. Here, m ∈ Z, TX is the tangent complex of X,
i.e. the OX -dual of LX , Γ denotes the derived functor of global sections (i.e.
hypercohomology), and the external grading, called weight grading, is given by p.
In order to define shifted Poisson structures onX, we have to endow Pol(X,m) with
a degree m and weight −1 Lie bracket, making it into a graded Pm+1-commutative
differential graded algebra over k. In particular, Pol(X,m)[m] will be a graded
dg-Lie algebra over k, with a weight −1 Lie bracket. Then we could adopt the
following derived variation of a classical definition of Poisson structure, and put

Poiss(X,n) := Mapdgliegrk (k(2)[−1], Pol(X,n+ 1)[n+ 1])

for the space Poiss(X,n) of n-shifted Poisson structures on X, for n ∈ Z. Here
k(2)[−1] is the graded dg-Lie algebra consisting of k in pure cohomological degree
1, pure weight 2, and trivial bracket, obviously. If X is a smooth underived scheme,
n = 0, and we replace the mapping space Mapdgliegrk in the model category dgliegrk ,

with its Hom set Homdgliegrk
, then we obtain the set of bivectors π on X, whose

Schouten-Nijenhuis self bracket [π, π] is zero, i.e. exactly the set of Poisson bivectors
on X. The functoriality problems mentioned above prevent any elementary, easy
extension of (a shifted version of) the usual Schouten-Nijenhuis bracket when X is
a general derived Artin stack, locally of finite presentation over k. Hence, there is
no elementary, easy way of making sense of the above definition of Poiss(X,n).

Our solution to this problem consists of two steps. First of all, in Section 2.1
we build a very general theory of differential calculus, including de Rham alge-
bras and polyvectors, in an arbitrary symmetric monoidal model ∞-category M
enriched over k-dg modules (and satisfying suitable, mild hypotheses). In particu-
lar, for any commutative algebra A in M, we are able to make sense of the space
Sympl(A, n) of n-shifted symplectic structures on A, to define a Pn+1-commutative
differential graded algebra Pol(A, n) over k of n-shifted polyvectors on A, and hence
to make sense of the space Poiss(A, n) of n-shifted Poisson structures on A, as ex-
plained above. Moreover, we produce a general comparison map from the the space
Poissnd(A, n), of suitably defined non-degenerate n-shifted Poisson structures on A
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to Sympl(A, n). The second step is what we call formal localization (Section 2.2),
and it concerns essentially the study of the map X → XDR, for X derived Artin
stack, locally of finite presentation over k. Here XDR is the de Rham stack of X
(Definition 2.24), and the fiber of X → XDR at a closed point x : SpecK → XDR is

the formal completion X̂x ofX at the corresponding point x ∈ X;1 henceX → XDR

can be viewed as the family of formal completions of X.
The remarkable properties of the map X → XDR, allow us to associate to any

derived Artin stack X, locally of finite presentation over k, a commutative algebra
PX(∞) in a suitable symmetric monoidal model ∞-category MX constructed out
of X, such that:

• There is an equivalence of spaces Sympl(PX(∞), n) � Symp(X,n).
• After forgetting the bracket Pol(PX(∞), n) is equivalent to Pol(X,n),
in other words we finally have a way of endowing Pol(X,n) with the
structure of a graded Pn+1-commutative differential graded algebra over
k. In particular, it now makes sense to define

Poiss(X,n) := Mapdgliegrk (k(2)[−1],Pol(PX(∞), n+ 1)[n+ 1]).

• The canonical map

Poissnd(X,n) = Poissnd(PX(∞), n) → Sympl(PX(∞), n) � Symp(X,n)

is an equivalence of spaces.
• The ∞-category Perf(X) of perfect complexes on X is equivalent to a
suitably defined ∞-category of perfect PX(∞)-dg-modules.

Let us briefly describe the commutative algebra object PX(∞) in MX . As
already observed, the canonical map X −→ XDR realizes X as a family of formal
derived stacks over XDR, namely as the family of formal completions at closed
points of X. By [LuFMP] each of these formal completions is determined by a dg-
Lie algebra �x. The collection of dg-Lie algebras �x does not fit together globally in
a sheaf of dg-Lie algebras over XDR, simply because its underlying complex is the
shifted tangent complex TX [−1] of X (see [Hen]), which in general does not admit
a flat connection and thus does not descend to XDR. However, a remarkable conse-
quence of derived formal localization is that the Chevalley-Eilenberg complexes of
�x, viewed as graded mixed commutative dg-algebras, do fit together into a global
object over XDR. Up to a twist (by k(∞), see Section 2.1), this is exactly PX(∞).
Thus, formal localization tells us how to express global geometric objects on X as
correspondingly sheafified objects on XDR related to PX(∞).

Deformation quantization of derived categories. One of our main original
motivations for developing a theory of shifted symplectic and Poisson structures on
derived moduli spaces was in fact a prospective application to deformation quanti-
zation of derived categories of perfect complexes. We are now able to obtain such
applications, and we will briefly describe them here (for more details, see Section 3).
We start by defining the deformation quantization problem for n-shifted Poisson
structures, whenever n ≥ 0. For every such n, we consider a Gm-equivariant A1

k-
family of k-dg-operads BDn+1 such that its 0-fiber is the Poisson operad Pn+1 and
its generic fiber is the k-dg-operad En+1 of chains of the topological operad of little

1Note that X and XDR have the same reduced points.
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(n + 1)-disks. The general deformation quantization problem can then be loosely
stated as follows:

Deformation quantization problem. Given a Pn+1-algebra stucture on an ob-
ject in a k-linear symmetric monoidal ∞-categorie, does it exist a family of BDn+1-
algebra structures such that its 0-fiber is the original Pn+1-algebra structure ?

To be more precise, let now X be a derived Artin stack locally of finite pre-
sentation over k, and equipped with an n-shifted Poisson structure. Using the
formality of the En-operad, and the fact that for n ≥ 1 the homology operad of
En+1 is Pn+1, we can solve the deformation quantization problem above for the
Pn+1-algebra structure on PX(∞). This gives us, in particular, a Gm-equivariant
1-parameter family of En+1-algebra structures on PX(∞).

One of the main results of formal localization (Section 2.2) tells us that the
∞-category Perf(X) of perfect complexes on X is equivalent to the ∞-category of
(suitably defined) perfect PX(∞)-modules (in MX). We thus get a 1-parameter
deformation of Perf(X) as an En-monoidal ∞-category, which we call the n-
quantization of X. We also give a version of this result for n < 0 (where of course
En will be replaced by E−n). In contrast, the unshifted n = 0 case for derived
Artin stacks, which was previously addressed for smooth varieties by [Ko1,Ye], is
not currently covered by our analysis and seems to require new ideas.

Finally, in Section 3.2, we describe some examples of these n-shifted quanti-
zations, especially the quantization on a formal neighborhood of a point, and of
various derived moduli stacks of G-local systems, for G a complex reductive group.
Many more examples are awaiting a careful investigation.
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Background. We will assume the reader has some familiarity with derived al-
gebraic geometry, for which useful reviews are [To1], and the more recent [To2],
while the foundational works are Toën-Vezzosi’s [HAG-II], J. Lurie’s DAG se-
ries [LuDAG], and also the recent [LuSAG], the last two being available at
http://www.math.harvard.edu/∼lurie/ . We will use both the “old” but some-
times still useful language and theory of model categories (see e.g. [Hov,Hir]),
and the modern language and theory of ∞-categories ([LuHTT,LuHA]).
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Notations.
• Throughout this paper k will denote a noetherian commutative Q-algebra.
• We will use (∞, 1)-categories [LuHTT] as our model for ∞-categories. They will
be simply called ∞-categories.
• As a general rule, a model category is written in sans-serif fonts N, and we denote
in bold-face fonts N := L(N) the ∞-category defined as the homotopy coherent
nerve of the Dwyer-Kan localization of fibrant-cofibrant objects in N along its weak
equivalences, with the notable exceptions of the ∞-category of spaces, denoted as
T := L(sSets), and of our base ∞-category M := L(M) (Section 2). The passage
from a model category to the associated ∞-category is a localization, and thus very
similar to the passage from the category of complexes in an abelian category to the
associated derived category. This is a good example to keep in mind.
• All symmetric monoidal categories we use will be symmetric monoidal (bi)closed
categories.
• dgk will denote the symmetric monoidal model category of (unbounded) com-
plexes of k-modules, with fibrations being degreewise surjective amps, and weak
equivalences being quasi-isomorphisms. The associated ∞-category will be de-
noted by dgk. Note that dgk is then a stable symmetric monoidal ∞-category
([LuHA, Definition 2.0.0.7]).
• cdgak will denote the ∞-category of non-positively graded differential graded
k-algebras (with differential increasing the degree). Its objects will be frequently
called simply cdga’s. For A ∈ cdgak, we will write πiA := H−i(A) for any i ≥ 0.
• For A ∈ cdgak, we will denote either by L(A) or QCoh(A) the ∞-category of
A-dg-modules.
• For A ∈ cdgak, we will denote by Perf(A) the full sub-∞-category of QCoh(A)
consisting of perfect A-dg-modules.
• If X is a derived geometric stack, we will denote by QCoh(X) the k-linear
symmetric monoidal dg-category of quasi-coherent complexes on X.
• If X is a derived geometric stack, we will denote by Perf(X) the symmetric
monoidal sub-dg-category of QCoh(X) consisting of dualizable objects, i.e. perfect
complexes over X.
• If X is a derived geometric stack, we will denote by Coh(X) or the full sub-
dg category of QCoh(X) consisting of complexes whose cohomology sheaves are
coherent over the truncation t0X.
• For a morphism A → B of cdga’s, the relative cotangent complex will be denoted
LB/A ∈ L(B). When A = k, we will simply write LB instead of LB/k.
• For derived stacks, we follow the vocabulary of [HAG-II]. In particular derived
Artin stacks X will be higher derived stacks, unless stated otherwise, and always
have a cotangent complex, denoted as LX ∈ QCoh(X). The acronym lfp means,
as usual, locally finitely presented.
• For a derived stack X, Γ(X,−) will always denote the derived functor of global
sections on X (i.e. hypercohomology).

1. Shifted symplectic structures

1.1. Definitions. Let ε − dggrk be the category of graded mixed complexes of
k-dg-modules. Its objects are Z-families of k-dg-modules {E(p)}p∈Z, equipped with
dg-module maps ε : E(p) −→ E(p+1)[1], such that ε2 = 0, and the morphisms are
Z-families of morphisms in dgk commuting with ε. This is a symmetric monoidal
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model category: weak equivalences and cofibrations are defined weight-wise (i.e.
with respect to the external Z-grading, that will be called the weight grading),
the monoidal structure is defined by (E ⊗ E′)(p) :=

⊕
i+j=p E(i)⊗ E′(j), and the

symmetry constraint does not involve signs, but just swaps the two factors in E(i)⊗
E′(j). Since our base ring k has characteristic zero, the category Comm(ε−dggrk ) =:
ε− cdgagrk of commutative monoid objects in ε−dggrk is again model category, with
weak equivalences and fibrations inherited via the forgetful functor to ε − dggrk
(which is then a right Quillen adjoint). According to our general conventions, we
will denote by ε − dggr

k (respectively, ε − cdgagrk ), the ∞-category associated to
ε − dggrk (respectively to ε − cdgagrk ). Informally speaking, ε − cdgagrk is therefore
the ∞-category of {B(p) ∈ dgk}p∈Z together with mixed differential ε : B(p) →
B(p+1)[1], ε2 = 0, and maps B(p)⊗B(q) → B(p+q) which are unital, associative,
commutative, and suitably compatible with ε.

The∞-functor ε−cdgagr
k → cdgak : {B(p)} 	→ B(0) is accessible and preserves

limits, thus ([LuHTT, Corollary 5.5.2.9]) has a left adjoint DR : cdgak → ε −
cdgagrk .

Definition 1.1. The functor DR : cdgak → ε−cdgagr
k is called the de Rham

algebra ∞-functor.

Remark 1.2. If A ∈ cdgak, we can replace in the previous argument ∞-
category cdgak with A/cdgak, and the ∞-category ε − cdgagrk with DR(A)/ε −
cdgagrk , and get a relative de Rham algebra ∞-functor DR(−/A).

One can prove that DR(A) � SymA(LA[−1]) in cdgagrk (i.e. as graded cdga’s,
by forgetting the mixed differential defined on the rhs). In other words, the con-
struction DR yields the full derived de Rham complex of A, including the de Rham
differential. We are now able to define shifted closed forms on cdga’s. For m,n ∈ Z,
k(m)[n] will denote the graded k-dg-module sitting in weight degree m and in co-
homological degree −n.

Definition 1.3. Let A ∈ cdgak

• The space of closed n-shifted p-forms on A is

Ap,cl(A, n) := Mapε−dggr
k
(k(p)[−p− n],DR(A)) ∈ T.

An element in π0(Ap,cl(A, n)) is called a closed n-shifted p-form on A.
• The space of n-shifted p-forms on A is

Ap(A, n) := Mapdgk
(k[−n],∧p

ALA) ∈ T.

An element in π0(Ap(A, n)) is called a n-shifted p-form on A.
• The induced map u : Ap,cl(A, n) → Ap(A, n) is called the underlying
p-form map.

Remark 1.4. Here is a more concrete description of the space of shifted (closed)
forms. If A ∈ cdgak, and A′ → A is a cofibrant replacement in cdgak, then
⊕p≥0L

p
A/k = ⊕p≥0Ω

p
A′/k is a fourth quadrant bicomplex with vertical differential

dv induced by dA′ , and horizontal differential dh given by the de Rham differential

dv : Ωp,i
A′/k → Ωp,i+1

A′/k , dh = dDR : Ωp,i
A′/k → Ωp+1,i

A′/k .
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The Hodge filtration F • defined by F q(A) := ⊕p≥qΩ
p
A′/k is still a fourth quadrant

bicomplex, and if we put Ap,cl(A, n) := Tot
∏
(F p(A)[n+ p], we have

Ap,cl(A, n) = |Ap,cl(A, n)| n ∈ Z

where |E| denotes Mapdgk
(k,E) i.e. the Dold-Kan construction applied to the

≤ 0-truncation of the dg-module E, and Tot
∏

is the totalization by products. In
particular, we have a corresponding Hodge tower of dg-modules

... → Ap,cl(A, 0)[−p] → Ap−1,cl(A, 0)[1− p] → ... → A0,cl(A, 0),

where, for any p, the cofiber of Ap,cl(A, 0)[−p] → Ap−1,cl(A, 0)[1− p] is equivalent

to the dg-module Ap−1(A, 0)[1 − p] := (∧p−1
A LA)[1 − p] of (1 − p)-shifted (p − 1)-

forms on A (so that we have an equivalence |Ap−1(A, 0)[1− p]| � Ap−1(A, 1− p) in

T). Finally, let us observe that the rightmost dg-module A0,cl(A, 0) in the above
Hodge tower, is exactly Illusie’s derived de Rham complex of A ([Ill, ch. VIII]).

Remark 1.5. Note that the de Rham algebra functor, and hence the notion
of (closed) shifted forms, makes sense when dgk is replaced by (essentially) any
symmetric monoidal stable k-linear ∞-category M. The intermediate categories of
interest will then be ε−Mgr (generalizing ε−dggr

k ), and ε−CAlggr
M (generalizing

ε − cdgagrk ). For any A ∈ CAlgM, this will yield a cotangent complex LM
A ∈

A−ModM, a de Rham algebra functorDRM : CAlgM → ε−CAlggr
M, and a space

of n-shifted (closed) p-form Ap
M(A, n) (Ap,cl

M (A, n)), where the sub/superscript M
indicates that all the constructions are performed internally to M. This level of
generality and flexibility in the choice of the context for our differential calculus,
will prove extremely useful in the rest of the paper. As relevant cases, the reader
should keep in mind the case where M = ε− dggrk or, more generally, diagrams in
ε − dggrk . We will come back to this generalization more systematically in Section
2.1, and use it as an essential tool starting from Section 2.3.

We are now ready to globalize the above construction to derived stacks. We
start by globalizing the de Rham algebra construction (Definition 1.1). The functor
A → DR(A), and its relative version (over a fixed base B, see Remark 1.2), are
both derived stacks (for the étale topology) with values in mixed graded dga’s, so
we give the following

Definition 1.6. (1) Let F → SpecB be a map in dStk. The relative de
Rham algebra of F over B

DR(F/B) := lim
SpecC→F

DR(C/B) ∈ ε− cdgagrB

(see Remark 1.2) where the limit is taken in the ∞-category ε − cdgagrB = B/ε −
cdgagrk of graded mixed B-linear cdgas, and over all morphisms SpecC → F of
derived stacks over SpecB.

(2) For an arbitrary map F → G in dStk, we define the relative de Rham algebra
of F over G as

DR(F/G) := lim
SpecA→G

DR(FA/A) ∈ ε− cdgagrk ,

where FA denotes the base change of F → G along SpecA → G, and the limit is
taken in the ∞-category ε− cdgagrk .
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We now globalize to derived stacks the notion of (closed) shifted forms. From
Definition 1.3 one deduces ∞-functors

Ap,cl(−, n) : A 	→ Ap,cl(A, n), and Ap(−, n)) : A 	→ Ap(A, n)

from cdgak to T. By [PTVV, Proposition 1.11], these functors are derived stacks
(for the étale topology). This allows us to globalize Definition 1.3 on an arbitrary
derived stack.

Definition 1.7. Let F be a derived stack.

• The space of closed n-shifted p-forms on F is

Ap,cl(F, n) := MapdStk(F,A
p,cl(−, n)).

• The space of n-shifted p-forms on F is

Ap(F, n) := MapdStk(F,A
p(−, n)).

• The resulting induced map u : Ap,cl(F, n) → Ap(F, n) is called the under-
lying p-form map.

Note that, in general, the homotopy fiber of the underlying p-form map u can be
non-trivial (i.e. not empty nor contractible). Hence being closed is a datum rather
than a property, for a general derived stack.

Remark 1.8. (1) Equivalently, we have

Ap,cl(F, n) � lim
SpecA∈(dAff/F )op

Ap,cl(A, n),

and
Ap(F, n) � lim

SpecA∈(dAff/F )op
Ap,cl(A, n),

where the limits are taken in the ∞-category of ∞-functors from (dAff/F )op to T.

(2) Also note that we have an equivalence

Ap,cl(F, n) � Mapε−dggr
k
(k(p)[−p− n],DR(F/k))

in T.

(3) For F = SpecA, the complex ∧pLA has non-positive tor-amplitide, hence
there are no non-trivial n-shifted p-forms on F , for n > 0. For F = X an underived
smooth scheme, a similar argument shows that F admits no non-trivial n-shifted
p-forms on F , for n < 0. If moreover X is proper over k, then the degeneration of
the Hodge-to-de Rham spectral sequence implies that the underlying p-form map
is injective on π0.

For derived (higher) Artin stacks F , the space Ap(F, n) has the following equivalent
description (smooth descent).

Proposition 1.9 ([PTVV], Proposition 1.14). If F ∈ dSt is Artin, then we
have an equivalence

Ap(F, n) � MapQCoh(F )(OF ,∧pLF [n]) ,

functorial in F .
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In particular π0(Ap(F, n)) � Hn(X,∧pLF ), for F Artin. Thus an n-shifted
2-form ω can be identified with a map ω : OF → ∧2LF [n]. If F is moreover
locally of finite presentation over k (so that its cotangent complex LF is perfect,
i.e. dualizable in QCoh(F )), we may associate to such an ω an adjoint map ω� :
TF → LF [n], where TF denotes the dual of LF in QCoh(F ), and it is called the
tangent complex of F . An n-shifted 2 form ω on such an F is said to be non-
degenerate if the map ω� is an equivalence, i.e. an isomorphism in the derived
category of quasi-coherent complexes on F , and we will denote by A2

nd(F, n) the
subspace of A2(F, n) consisting of connected components of non-degenerate forms.

Definition 1.10. Let F be an derived Artin stack locally of finite presentation
over k. The space of n-shifted symplectic structures on F is defined by the following
pullback diagram in T

Sympl(F, n) ��

��

A2,cl(F, n)

��
A2

nd(F, n)
�� A2(F, n)

,

and an element in π0(Sympl(F ;n)) is called a n-shifted symplectic structure on F .

In other words, an n-shifted symplectic structure ω on F is a closed n-shifted
2-form on F whose underlying 2-form is non-degenerate; in particular, LF is self
dual, up to a shift. We use the word symplectic structure instead of symplectic
form because a shifted symplectic structure is a closed- 2-form, and with respect
to the underlying form, this consists of additional structure rather than just being
a property.

The non-degeneracy condition entails a mixture of the (higher) stacky (i.e.
positive degrees in the cotangent complex) and derived (i.e. negative degrees of
the cotangent complex) nature of the stack F , and in particular it poses severe
restrictions on the existence of shifted symplectic structures on a given stack. E.g.
it is clear that if LF has perfect amplitude in [a, b], then F may only support (a+b)-
shifted symplectic structures. More precisely, it is easy to check that for a smooth
underived scheme X, not étale over k, the space Sympl(X,n) is empty for n 
= 0,
and either empty or contractible for n = 0, and moreover, the set of connected
components of Sympl(X, 0) is in canonical bijection with the set of usual algebraic
symplectic forms on X ([PTVV, p. 298]). So, we get nothing new for smooth
underived schemes, or more generally, smooth Deligne-Mumford stacks. However,
we will see in the following subsection that there are plenty of derived schemes or
stacks carrying interesting shifted symplectic forms.

1.2. Existence theorems and examples. We will now review the three
basic existence theorems (Theorems 1.11, 1.15, 1.18, below) for shifted symplectic
structures established in [PTVV]. In combination they give a long list of non-trivial
examples of shifted symplectic stacks.

The first interesting example of a shifted symplectic stack is the classifying
stack BG of a smooth affine reductive group scheme over k. In this case, we have
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([PTVV, p. 299])

π0(Sympl(BG,n)) =

{
0 n 
= 2

Symk(g
∨)Gnd n = 2

where g is the Lie algebra of G, and Symk(g
∨)Gnd is the set of non-degenerate G-

invariant symmetric bilinear forms on g. At the level of tangent complex TBG,e �
g[1], the underlying 2-form corresponding to a non-degenerate G-invariant symmet-
ric bilinear form σ : Sym2

k(g) → k is given by the composite

TBG,e ∧ TBG,e
∼ �� g[1] ∧ g[1]

∼ �� Sym2
k(g)[2]

σ[2] �� k[2],

where the central quasi-isomorphism is given by décalage. For example, if G = GLn,
the usual map (A,B) 	→ tr(AB), for A,B (n×n) matrices over k, yields a 2-shifted
symplectic form on BGLn. This example will be vastly generalized in Theorem 1.18
below.

As a second example, for any n ∈ Z, one has that the n-shifted cotangent
stack T∗F [n] := SpecF (SymOF

(TF [−n])) of a derived Deligne-Mumford stack F
lfp over k, is canonically n-shifted symplectic via the de Rham differential of the
canonical shifted Liouville form ([PTVV, Proposition 1.21]). Recently, D. Calaque
has extended this result to derived Artin stacks lfp over k [Cal2].

The first general existence result for shifted symplectic form is an enhanced
derived version of the main result in [AKSZ].

Theorem 1.11. Let F be a derived Artin stack lfp over k, equipped with a n-
shifted symplectic form, and let X be an O-compact derived stack equipped with a
d-orientation [X] : H(X,OX) → k[−d]. If MAPdSt(X,F ) is a derived Artin stack
lfp over k, then it carries a canonical (n− d)-shifted symplectic structure.

We direct the reader to [PTVV, 2.1] for the definition of O-compact derived
stack, and for the notion of d-orientation on a O-compact derived stack (i.e. for
the special properties of the map [X] in the theorem), and to [PTVV, Theorem
2.5] for a detailed proof. Here we will content ourselves with a few comments.

First of all the class O-compact derived stacks equipped with a d-orientation
includes compact smooth oriented topological manifolds M of dimension d (identi-
fied with constant stacks with value M , and where capping with the fundamental
class gives the d-orientation), Calabi-Yau varieties of complex dimension d (where
the orientation is given by a trivialization of the canonical sheaf followed by the
trace map), and De Rham stacks X = YDR for Y a smooth and proper Deligne-
Mumford stack with connected geometric fibers, and relative dimension d/2 over
Spec k2 (where the d-orientation is induced by the choice of a fundamental class
in de Rham cohomology HdR(Y/k,O)).

As a second comment we outline the proof of Thm 1.11. One first uses the eval-
uation map ev : X×MAPdSt(X,F ) → F in order to pull back the n-shifted symplec-
tic structure ω on F , to a closed form on X ×MAPdSt(X,F ); this pullback is then
“integrated along the fiber” of the projectionX×MAPdSt(X,F ) → MAPdSt(X,F ),
and this integrated form is shown to be (n− d)-shifted symplectic. The possibility
of defining an integration along the fiber X is a consequence of the definition of

2The notion of de Rham stack will be defined and discussed in Section 2.2.
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d-orientation on an O-compact stack ([PTVV, Definition 2.3]). Finally, we ob-
serve that the general question of finding optimal conditions on X and F ensuring
that MAPdSt(X,F ) is a derived Artin stack lfp over k is delicate, the Artin-Lurie
representability criterion (even in the simplified version of [HAG-II, Appendix])
will give an answer in all the applications we will discuss below.

We come to the second existence theorem for shifted symplectic structures.
Before stating it, we need to define the notion of lagrangian structure on a map
whose target is a shifted symplectic stack. We start by defining what is an isotropic
structure on such a map.

Definition 1.12. Let X and F be derived Artin stacks lfp over k, ω a n-shifted
symplectic structure on F , and f : X → F a map. The space Isotr(f ;ω) of isotropic
structures on the map f relative to ω is the space of paths Ωf∗ω,0A2,cl(X,n) between
f∗ω and 0 in the space of n-shifted closed p-forms on X. An element in γ ∈
π0(Isotr(f ;ω)), i.e. a path between f∗ω and 0, is called an isotropic structure on f
relative to ω.

The idea, ubiquitous in all of derived geometry and higher category theory, and
that we already saw in action in the definition of closed forms (Def 1.3), is that it
is not enough to say that there exists a path between f∗ω and 0 in A2,cl(X,n) (this
would be a property), but one rather has to specify one such path (i.e. a datum).

Once an isotropic structure γ is given, it makes sense to say that it has the
property of being non-degenerate, as follows. By composition with the underlying
2-form map u : A2,cl(X,n) → A2(X,n), the path γ induces a path γu between
u(f∗ω) = f∗(u(ω)) and 0 in A2(X,n). Since LX is perfect, by adjunction, this
yields in turn a path γ�

u between (f∗(u(ω)))� and 0 in MapPerf(X)(TX ,LX [n]),

where (f∗(u(ω)))� is the composite

TX
a∨

�� f∗TF
f∗(u(ω)�) �� f∗LF [n]

a[n] �� LX [n] ,

a : f∗LF → LX being the canonical map induced by f . If we denote by tf,ω the

composite a[n] ◦ f∗(u(ω)�), we thus obtain that γ�
u is a homotopy commutativity

datum for the square

TX
��

a∨

��

0

��
f∗TF tf,ω

�� LX [n].

In particular, if we denote by T⊥
f,ω the pullback in the diagram

T⊥
f,ω

��

��

0

��
f∗TF tf,ω

�� LX [n]

(i.e. the kernel of tf,ω), we get a canonical induced map θγ : TX → T⊥
f,ω inPerf(X).

Definition 1.13. In the setting of Definition 1.12, an isotropic structure γ ∈
π0(Isotr(f ;ω)) is called non-degenerate or lagrangian if the induced map θγ : TX →



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMPLECTIC/POISSON GEOMETRY AND DEFORMATION QUANTIZATION 419

T⊥
f,ω is an equivalence in Perf(X) (i.e. an isomorphism in the underlying de-

rived/homotopy category). The space Lagr(f ;ω) of lagrangian structures on f :
X → F relative to ω is the subspace of Isotr(f ;ω) consisting of connected compo-
nents of lagrangian structures.

Remark 1.14. (1) It is easy to check that if X and F are underived smooth
schemes, ω is a usual (i.e. 0-shifted) symplectic structure on F , and f is a closed im-
mersion, then Lagr(f ;ω) is either empty or contractible, and it is in fact contractible
iff X is a usual smooth lagrangian subscheme of F via f . The nondegeneracy con-
dition ensures that the dimension of X is then half of the dimension of F , and in
fact T⊥

f,ω is then quasi-isomorphic to the usual symplectic orthogonal of TX = TX

in TF = TX . Thus, the notion of lagrangian structure reduces to the usual notion
of lagrangian subscheme in this case.

(2) By rephrasing Definition 1.13, an isotropic structure γ ∈ π0(Isotr(f ;ω)) is la-
grangian iff the (homotopy) commutative square

TX
��

a∨

��

0

��
f∗TF tf,ω

�� LX [n]

is actually a pullback square. But the square

f∗TF

tf,ω ��

f∗(u(ω)�)

��

LX [n]

id

��
f∗LF [n]

a[n]
�� LX [n]

is a pullback because f∗(u(ω)�) is an equivalence (u(ω) being non-degenerate),
hence γ is lagrangian iff the outer square in

TX
��

a∨

��

0

��
f∗TF

f∗(u(ω)�)

��

tf,ω �� LX [n]

id

��
f∗LF [n]

a[n]
�� LX [n]

is cartesian, i.e. iff the induced canonical map ργ : TX → ker(a[n]) � Lf [n − 1] is
an equivalence i.e. iff the shifted dual map Θγ := ρ∨γ [n − 1] : Tf → LX [n − 1] is
an equivalence. This shows the equivalence between Definition 1.13 and [PTVV,
Definition 2.8].

(3) As first noticed by D. Calaque, shifted symplectic structures are particular in-
stances of lagrangian structures (a fact that is obviously false inside usual, 0-shifted
and underived algebraic geometry). In fact, let n ∈ Z, X be a derived stack lfp over
k, f : X → Spec k be the structure map, and let us endow Spec k with the unique
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(n+ 1)-shifted symplectic structure ω0
n+1 (note that Lk � Ω1

k/k[0] � 0[0], therefore

for any m ∈ Z, there is a unique m-shifted symplectic form given by the the shift of
the zero form). Now, if γ ∈ π0(Lagr(f ;ω)) as in Definition 1.13, then γ is actually
a loop at 0 inside A2,cl(X,n + 1), and its class [γ] ∈ π1(Ω0,0(A2,cl(X,n + 1))) �
π0(A2,cl(X,n))3 gives an n-shifted closed 2-form ωγ onX. The non-degeneracy con-
dition on γ is equivalent to the fact that the induced map Θγ : Tf � TX → LX [n−1]
of point (2) in this Remark, is an equivalence. But it is easy to check that this
map is exactly ω�

γ , hence ωγ is indeed an n-shifted symplectic form on X. By using

again that π1(Ω0,0(A2,cl(X,n + 1))) � π0(A2,cl(X,n)), and running the previous
argument backwards, we get an equivalence of spaces Sympl(X,n) � Lagr(f : X →
Spec k, ω0

n+1).

The link between shifted symplectic structures and lagrangian structures ex-
pressed in Remark 1.14 (3) extends to the case of lagrangian intersections as follows.

Theorem 1.15. Let n ∈ Z, (F, ω) be a n-shifted symplectic stack, fi : Xi → F ,
i = 1, 2 maps between derived Artin stacks lfp over k, and γi lagrangian structures
on fi relative to ω, i = 1, 2. Then, there is a canonical induced (n − 1)-shifted
symplectic structure on the fiber product X1 ×F X2.

Recall that, according to our conventions, all fiber products of derived stacks
are taken in the ∞-category of derived stacks, and are therefore implicitly derived
fiber products. We refer the reader to [PTVV, Theorem 2.9] for a proof of Theorem
1.15. We will only give a sketch of the argument in the classical case i.e. for n = 0,
F,X1, X2 underived smooth schemes, and fi closed immersions, i = 1, 2, in order
to convey the main idea of why Theorem 1.15 is true. Under our hypotheses, X1

and X2 are usual lagrangian smooth subschemes of the smooth symplectic scheme
F . If X12 := X1 ×F X2 denotes the (derived) intersection of X1 and X2 inside F ,
we may pull back the closed form ω to X12 in two different ways, i.e. using f1 or f2,
and get two closed forms ω1 and ω2 on X12. Now, X12 is a derived fiber product,
hence these two pullbacks come equipped with a canonical path γ between them
inside A2,cl(X12, 0). On the other hand, as X1 and X2 are lagrangian subschemes
we have ω1 = ω2 = 0, so that γ is in fact a loop at 0 in A2,cl(X12, 0). Since,
π1(A2,cl(X12, 0); 0) � π0(A2,cl(X12,−1)), the class [γ] ∈ π0(A2,cl(X12,−1)) defines
a (−1)-shifted closed 2-form on X12, whose non-degeneracy follows easily from the
same property for ω. Thus [γ] is a (−1)-shifted symplectic structure on the derived
intersection X12. The appearence of a (−1)-shift here perhaps explains why this
phenomenon, even though arising from a completely classical situation in usual
(algebraic) symplectic geometry, was not observed before.

Remark 1.16. The following special case of 1.15 is particularly relevant for
applications to Donaldson-Thomas invariants (see Theorem 1.20 below). Let X be
a smooth underived scheme and g : X → A1

k a smooth function. We may embed
X inside its cotangent bundle either via the zero section or via the differential dg :
X → T∗X, and both these immersions are lagrangian with respect to the standard
symplectic structure on T∗X. The derived intersection of these two lagrangians
is called the derived critical locus of g, and is denoted by dCrit(g). Note that its

3This isomorphism is perhaps more familar to the reader in the following form: a self-
homotopy h of the zero map of complexes 0 : E → F is the same thing as map of complexes
E → F [1].
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truncation is the usual scheme-theoretic critical locus of g. Now, Theorem 1.15
endow dCrit(g) with a canonical (−1)-shifted symplectic structure ωg. One can
rather easily give an explicit description of ωg using Koszul resolutions (see, e.g.
[Vez1]), and observe that a similar result holds by replacing dg with an arbitrary
closed 1-form on X. However, since derived critical loci are particularly important
as local models of (−1)-shifted symplectic structures, the generalization to derived
zero schemes of closed 1-forms has not yet received much attention. Also notice
that the previous construction can be easily generalized to build derived zero loci
of sections of arbitrary locally free sheaves on X.

Remark 1.17. One may combine Theorem 1.11 and Definition 1.13 together
with a notion of relative orientation, in order to get a relative version of Theorem
1.11. This is due to D. Calaque ([Cal, 2.3]). Here is an outline of the construction.
Given a map of derived stacks b : B → X, and a perfect complex E on X, we
let H(XrelB,E) be the fiber of the induced map bE : Γ(X,E) → Γ(B, b∗E). We
define a relative d-orientation on b is a map ηb : H(XrelB,OX) → k[−d] satisfying
the following two non-degeneracy properties. First of all, we assume that B is O-
compact, and we require that the composite map Γ(B,OB) → H(XrelB,OX)[1] →
k[−d + 1] defines a (d− 1)-orientation on B. Then, for any E ∈ Perf(X), we ask
that the induced map

Γ(X,E)⊗H(XrelB,E∨)
α �� H(XrelB,OX)

ηb �� k[−d]

yields, by adjunction, an equivalence Γ(X,E) � H(XrelB,E∨)[−d]. Here α is the
map induced on the vertical fibers of

Γ(X,E)⊗ Γ(X,E∨)
tr ��

id⊗bE∨

��

Γ(X,OX)

bOX

��
Γ(X,E)⊗ Γ(B, b∗E∨)

tr (bE⊗id) �� Γ(B,OB).

Given a d-orientation ηb on the map b : B → X, a (n+ 1)-shifted symplectic stack
Y ′, a map � : Y → Y ′, and a lagrangian structure on f , we may consider the derived
stack

MAPdSt(b, f) := MAPdSt(B, Y )×MAPdSt(B,Y ′) MAPdSt(X,Y ′)

of arrows from b to f . The generalization of Theorem 1.11 to this relative sit-
uation says that if MAPdSt(b, �) and MAPdSt(X,Y ) are derived Artin stacks lfp
over k, then MAPdSt(b, �) has a canonical (n − d + 1)-shifted symplectic form,
and there is a canonical lagrangian structure on the natural map MAPdSt(X,Y ) →
MAPdSt(b, �). If we take B to be empty (so that ηb is just a d-orientation onX), and
Y = (Spec k, ω0

n+1), we have MAPdSt(b, �) � (Spec k, ω0
n−d+1), and by Remark

1.14 (3), we get back Theorem 1.11. But we may also take Y = (Spec k, ω0
n+1),

and B arbitrary (non-empty), and we get a lagrangian structure on the restriction
map MAPdSt(X,Y ) → MAPdSt(B, Y ) � MAPdSt(b, �), where MAPdSt(B, Y ) is
(n−d+1)-symplectic (consistently with Theorem 1.11, since B is (d−1)-oriented by
hypothesis, and Y is n-shifted symplectic by Remark 1.14 (3)). In other words, what
we gain in this case, is that restriction to the boundary (for maps to a fixed shifted
symplectic target) is endowed with a lagrangian structure. Examples of relative ori-
entations includes topological examples (where b is the inclusion of the boundary in
a compact oriented topological d-manifold with boundary), and algebro-geometric
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ones where b is the inclusion of the derived zero locus (Remark 1.16) of a section of
the anti-canonical bundle of a smooth projective variety of dimension d. When B
is a K3 surface inside a Fano 3-fold, this might be compared with [Ty, Proposition
2.2]. For more details, we address the reader to [Cal, 3.2.2], and [To2, p. 227].

The last general existence theorem for shifted symplectic structures is a gener-
alization of the 2-shifted symplectic structure on BGLn described at the beginning
of this subsection.
Let Perf be the derived stack classifying perfect complexes. It can be defined as
the functor sending a cdga A to the nerve of the category of cofibrant perfect A-
dg-modules with morphisms only the quasi-isomorphisms (as an ∞-functor it sends
A to the coherent nerve of the Dwyer-Kan localization of the previous category).
The truncation of Perf is the (higher) stack first introduced and studied in [Hi-Si].
Though Perf is not strictly speaking a derived Artin stack lfp over k, it is quite
close to it: it is locally geometric, i.e. it is a union of open derived Artin substacks

lfp over k, e.g. Perf � ∪n≥0Perf
[−n,n], where Perf [−n,n] is the derived stack classify-

ing perfect complexes of Tor-amplitude contained in [−n, n] ([To-Va, Proposition
3.7]). In particular, it makes sense to ask wether Perf carries a shifted symplectic

structure, as we know its substack Perf [−0,0] = BGL �
∐

n≥0 BGLn does. As shown

in [PTVV, Theorem 2.12], the answer is affirmative.

Theorem 1.18. The derived stack Perf has a canonical 2-shifted symplectic
structure.

We will briefly give an idea of the proof, and address the readers to [PTVV,
Theorem 2.12] for all details. First of all, by definition, Perf carries a universal
perfect complex E , and we consider its perfect OPerf-Algebra of endomorphisms
B := REndOPerf

(E) � E∨ ⊗OPerf
E . One checks that TPerf � B[1], and thus gets a

well defined map

ω0 :TPerf ∧OPerf
TPerf

∼ �� SymOPerf
(B)[2] mult �� B[2]�E∨ ⊗OPerf

E [2]
tr[2] �� OPerf [2]

where tr denotes the trace (or evaluation) map for the perfect complex E . So, ω0

is a well defined, and non-degenerate 2-shifted 2-form on Perf. So, it only remains
to show that there exists a 2-shifted closed 2-form ω on Perf, whose underlying
2-form is ω0. By [To-Ve-2], or [Hoy, Theorem 2.1], one can prove that the weight
2 component of the refined Chern character Ch(E) (with values in negative cyclic
homology) as defined in [To-Ve-1] is indeed a 2-shifted closed 2-form on Perf whose
underlying 2-form is 1

2ω
0, thus ω := 2Ch2(E) is indeed a 2-shifted symplectic form

on Perf whose underlying 2-form is ω0.

By combining Theorem 1.11, Theorem 1.15, and Theorem 1.18, we get the
following (non-exhaustive) list of geometrically interesting classes of examples of
n-shifted symplectic derived stacks:

• the derived stack Perf(X) := MAPdSt(X,Perf) of perfect complexes on a Calabi-
Yau variety of dimension d (n = 2− d).
• the derived stack Perf(M) := MAPdSt(const(M),Perf) of perfect complexes on a
compact oriented topological manifold M of dimension d (n = 2− d).
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• the derived stack RVectn(X) of rank n vector bundles on a Calabi-Yau variety
of dimension d (n = 2− d).
• the derived stack RVectn(M) of rank n vector bundles on a compact oriented
topological manifold M of dimension d (n = 2− d).
• the derived stack RBunG(X) of G-torsors on a Calabi-Yau variety of dimension
d, for G reductive (n = 2− d).
• the derived stack RLocG(M) of G-local systems on a compact oriented topological
manifold M of dimension d (n = 2− d)
• MAPdSt(X,Y ), for X a smooth and proper d-dimensional Calabi-Yau scheme,
and Y a smooth symplectic scheme (n = −d).
• MAPdSt(X,T∗Y [m]), for X a smooth and proper d-dimensional Calabi-Yau
scheme, and Y a derived Artin stack lfp over k (n = m− d).
• iterated derived free loop spaces MAPdSt(const((S

1)d), Y ) of a smooth symplectic
scheme Y , and more generally, MAPdSt(const(M), Y ), for M a compact oriented
topological d-manifold, and Y a smooth symplectic scheme (n = −d).
• the derived stack RLocDR

G (X) of flat G-bundles on X, a d-dimensional smooth
and proper Deligne-Mumford stack (n = 2− 2d).
• the derived moduli stack MAPdSt(XDol,Perf) of Higgs fields on a proper and
smooth Deligne-Mumford stack of dimension d (n = 2− 2d).
• the derived moduli stackMT of compact objects in a d-Calabi-Yau dg-category T ,
e.g. the so-called non-commutative K3 sub-dg-category of the derived dg-category
of a cubic 4-fold (n = 2− d, and d = 2 for a non-commutative K3).4

Remark 1.19. If X is a proper and smooth scheme over k, and D is a smooth
Calabi-Yau divisor in the anti-canonical class, then Remark 1.17 together with
Thms. 1.11 and 1.18 give us a lagrangian structure on the restriction map Perf(X) =
MAPdSt(X,Perf) → MAPdSt(D,Perf) = Perf(D), The same is true for the restric-
tion map RBunG(X) → RBunG(D) between the derived stack of torsors under a
smooth reductive group scheme G over k.

As a sample consequence of Theorem 1.11, 1.15, and 1.18, we recall the fol-
lowing important result ([BBJ, Corollary 5.19]) by Brav-Bussi-Joyce, establishing
the existence of a local algebraic potential for Donaldson-Thomas moduli spaces
attached to Calabi-Yau 3-folds.

Theorem 1.20 (Brav-Bussi-Joyce). The moduli space MDT of simple coherent
sheaves or of complexes of coherent sheaves on a Calabi-Yau 3-fold is Zariski-locally
isomorphic, as a (−1)-shifted symplectic derived scheme, to the derived critical locus
(as in Remark 1.16) of a regular function f : U → A1

k over a smooth k-scheme U .

The function in the statement is called the Donaldson-Thomas potential. Our
existence theorems combine to give MDT a (−1)-shifted symplectic structure, and
the authors achieve Theorem 1.20 by proving a local structure theorem (Darboux
style) for derived schemes X endowed with a (−1)-shifted symplectic structure: any
such X is Zariski-locally a derived critical locus of a regular function on a smooth
scheme. A similar statement in the C-analytic category was proved before by Joyce-
Song [Jo-So, Theorem 5.4] using Gauge Theory, and a version valid formally locally
at any point of MDT , by Kontsevich-Soibelman [Ko-So, Section 3.3]. Obviously,
Theorem 1.20 is a considerably stronger and more precise result.

4See e.g. [Ko-So, 3.3] for a definition of a d-Calabi–Yau dg-category, and [To2, 5.3] for a
sketch of a proof of this result.
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2. Shifted Poisson structures

Setting up a notion of shifted Poisson structure for sufficiently general derived
Artin stacks turns out to be much more complicated than the case of shifted sym-
plectic structures, described in the previous section. On the other hand, a shifted
Poisson structure on a derived stack F is exactly the right structure that controls
the deformation quantization of the ∞-category of perfect complexes on F . There-
fore, in order to establish deformation quantizations for all the shifted symplectic
derived moduli spaces listed at the end of Section 1, one also needs a comparison
between shifted symplectic structures and (non-degenerate) shifted Poisson struc-
tures. Unfortunately, this comparison, which classically takes no more than two
lines, is rather tricky in the derived setting, due to the fact that all the structures
involved in the comparison are weak ones i.e. defined up-to-homotopy. The general
theory of shifted Poisson structures, a comparison with shifted symplectic struc-
tures, and applications to deformation quantization of derived moduli spaces, have
all been developed recently in [CPTVV], which is more than 100 pages long. In this
Section we give a summary of the main constructions and results from [CPTVV],
and a guide to its reading.

2.1. Differential calculus. In order to be able to define and study shifted
Poisson structures on derived Artin stacks, we will need to have at our disposal a
machinery of derived differential calculus (de Rham complex, shifted polyvectors
etc.) working in sufficiently general setting. Thus, let M be a stable presentable
symmetric monoidal ∞-category which is k-linear i.e. enriched over the ∞-category
dgk ([LuHA, Definition 2.0.0.7]). In this paper, M will always be obtained as the
coherent nerve of the Dwyer-Kan localization of a dgk-enriched symmetric monoidal
model category M satisfying some additional technical properties for which we ad-
dress the reader to [CPTVV, 1.1 and 1.2] 5. And we will suppose that the enrich-
ment is induced by a symmetric monoidal functor dgk → M.

For our present purposes, it will be enough to keep in mind some of the examples
we will be most frequently interested in: M could be dgk itself, the ∞-category
dggr

k of Z-graded dg-modules over k, the ∞-category ε−dgk of mixed dg-modules
over k, the ∞-category ε − dggr

k of Z-graded mixed dg-modules over k, or more
generally, any category of diagrams in the previous examples.

We denote by CAlgM the model category of commutative algebras in M, and
by CAlgM = L(CAlgM), the corresponding ∞-category.

The symmetric monoidal model category ε − Mgr of mixed graded objects in
M is defined by replacing dgk with M in the definition at the beginning of Section
1.1 (and with the cohomological shift defined here as P [1] := P k[−1], for P ∈ Mgr,
using the co-tensor enrichment of M over dgk). The model category of commutative
monoids in ε − Mgr is denoted by ε − CAlggrM , and called the model category of
graded mixed algebras in M. The corresponding ∞-categories will be denoted by
ε−Mgr, and ε−CAlggr

M. Note that we have a canonical equivalence of∞-categories
CAlg(ε−Mgr) � ε−CAlggr

M ([LuHA, Theorem 4.5.4.7]).

5By [Ni-Sa], it is likely that any k-linear stable presentable symmetric monoidal ∞-category
can be obtained this way.
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2.1.1. De Rham theory. As explained in Remark 1.5, for any A ∈ CAlgM, we

have the associated de Rham algebra DRM(A), a mixed graded algebra in M,

where DRM : CAlgM → ε−CAlggr
M is the left adjoint to the ∞-functor sending

B ∈ ε −CAlggr
M to its weight 0 part B(0). Note that if A ∈ cdgak, then DR(A)

of Definition 1.1 is exactly DRM(A), with M = dgk. There is an ∞-functor

A−ModM −→ T , P 	−→ Der(A,P ) := MapCAlgM/A(A,A⊕ P )

which is co-represented by an A-module LM
A in M, called the cotangent complex

or cotangent object of A. As in Section 1.1, one can prove ([CPTVV, Proposition
1.3.12]) that the canonical map

SymA(L
M
A [−1]) −→ DRM(A)

is functorial in A, and an equivalence inCAlggr
M (i.e. forgetting the mixed structure

in the target). In other words, the construction DRM endows the graded algebra
SymA(LM

A [−1]) with a canonical (weak) mixed differential, the (weak) de Rham
differential.

For the sake of brevity, we will omit the completely analogous definitions and
results in the relative setting, i.e. for morphisms in CAlgM. We will instead say
a few words about strict models of the above constructions, i.e. inside the model
category M. First of all, if A′ ∈ CAlgM, then the functor

A′ −ModM −→ T , P 	−→ Der(A′, P ) := HomCAlgM/A′(A′, A′ ⊕ P )

is co-represented by an A′-module Ω1
M,A′ in M called the module of Kähler differ-

entials of A′. If A ∈ CAlgM and QA is a cofibrant model for A in CAlgM, then
we have a canonical equivalence Ω1

M,QA � LM
A in A − ModM � QA − ModM.

Furthermore, the functor ε−CAlggr
M → CAlgM selecting the weight 0 component,

has a left adjoint DRM, thus for any A′ ∈ CAlgM, DRM(A′) is a strict mixed
graded algebra in M. Still for an arbitrary A′ ∈ CAlgM, we also have a functorial
isomorphism

SymA′(Ω1
M,A′ [−1]) −→ DRM(A′)

in the category CAlggr
M of strict graded algebras in M. This precisely says that

SymA′(Ω1
M,A′ [−1]) has a strict mixed structure, the de Rham differential. If A ∈

CAlgM and QA is a cofibrant model for A in CAlgM, then there is a an equiv-

alence DRM(QA) � DRM(A) in ε − CAlggr
M, i.e. DRM(QA), or equivalently

SymA′(Ω1
M,QA[−1]) with the induced mixed structure, is a strict model forDRM(A)

in ε−CAlggr
M.

Differential forms. Again as in Section 1.1, as suggested in Remark 1.5, we may
define (closed) shifted differential forms for commutative algebras in M.

Definition 2.1. Let A ∈ CAlgM.

• The space of closed n-shifted p-forms on A is

Ap,cl
M (A, n) := Mapε−Mgr(1M(p)[−p− n],DRM(A)) ∈ T.

An element in π0(Ap,cl
M (A, n)) is called a closed n-shifted p-form on A.

• The space of n-shifted p-forms on A is

Ap
M(A, n) := MapM(1M[−n],∧p

AL
M
A ) ∈ T.

An element in π0(Ap
M(A, n)) is called a n-shifted p-form on A.
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• Since SymA(LM
A [−1]) � DRM(A), there is an induced map

u : Ap,cl(A, n) → Ap(A, n),

called the underlying p-form map.

If ω is a n-shifted 2-form on A, and we assume that LM
A is dualizable in A −

ModM, then u(ω) induces a map u(ω)� : TM
A → LM

A [n] in A−ModM, where TM
A

denotes the dual of LM
A . We say that ω is non-degenerate if u(ω)� is an equivalence.

Definition 2.2. Let A ∈ CAlgM. The space of n-shifted symplectic structures

on A is the subspace Sympl(A, n) ofAp,cl
M (A, n) whose connected components consist

of non degenerate forms.

Remark 2.3. Note that, even if the notation Sympl(A, n) does not record M,
this space obviously depends on the category M inside which we are working. In
Section 2.2, we will explain how the abstract Definition 2.2 gives back the definition
of a shifted symplectic structure on a derived Artin stack (Definition 1.10).

2.1.2. Polyvectors. Let Liegrk be the graded Lie operad in dgk, where the bracket
operation has degree −1. We let dgLiegrk be the model category of Liegrk -algebras,
i.e. graded Lie-algebras in dgk, where the (strict) Lie bracket has weight −1; we
denote by dgLiegrk , the corresponding ∞-category L(dgLiegrk ). By using our enrich-
ing functor dgk → M, we get an operad LiegrM in M. Taking algebras with respect
to this operad, we have LiegrM , the model category of graded Lie-algebras in M, and
LiegrM, the corresponding ∞-category L(LiegrM ).

Similarly, for n ∈ Z, we will denote by Pn the dg-operad (i.e. the operad in dgk)
whose algebras are Poisson cdga’s with a bracket of degree (1−n). Recall that, for
n > 1, Pn can be identified with the operad of chains of the topological n-little disks
operad En (see [Coh]). We will also be interested in a graded version of Pn, denoted
by Pgr

n : this is an operad in dggrk , whose algebras have multiplication of weight (=
external grading) 0, and bracket of weight −1. The corresponding model categories
of algebras will be denoted by Pn − Algdgk = Pn − cdgak, and Pgr

n − Algdgk =

Pn − cdgagrk ; the associated ∞-categories by Pn − Algdgk
= Pn − cdgak, and

Pgr
n −Algdgk

= Pn − cdgagr
k .

By using our enriching functor dgk → M, we thus get operads PM,n in M, and
Pgr
M,n in Mgr. Note that Pgr

M,n-algebras are commutative algebras B in Mgr endowed

with a bracket operation [−,−]p,q : B(p)⊗M B(q) → B(b+ q− 1)[1− n], which is a
graded bi-derivation, and endows B[n− 1] with a Lie algebra structure inside Mgr.
The corresponding ∞-categories L(PM,n −Alg) and L(Pgr

M,n − Alg) of algebras over

these operads, will be denoted by PM,n −Alg and Pgr
M,n −Alg, respectively.

For A′ ∈ CAlgM, p ≥ 0, and m ∈ Z, we define the object (in M) of m-shifted,

degree p polyvectors PolM(A′, n)(p) on A′, as follows. We consider T(p)(A′,m) ∈ M
the sub-object of HomM(A

′⊗p

, A′[mp]) (where HomM is the internal Hom-object
in M) consisting of (shifted) multiderivations ([CPTVV, Section 1.4.2.]). There
is a natural action of the symmetric group Σp on HomM(A

′⊗p

, A′[mp]) induced by

its standard action on A′⊗p

and by the (−1)m × Sign action on A′[mp]. this action
restricts to an action on T(p)(A′,m), and we denote by T(p)(A′,m)Σp the M-object
of Σp-invariants. By standard conventions, we put T(0)(A′,m) = A′, and notice

that T(1)(A′,m) = HomM(Ω
1
M,A′ , A′[m]).
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Definition 2.4. For A′ ∈ CAlgM, and n ∈ Z, we define the Mgr-object of
n-shifted polyvectors on A′ to be

PolM(A′, n) :=
⊕
p

T(p)(A′,−n)Σp .

As in the classical case, there is a “composition” (by insertion) of shifted mul-
tiderivations and there is a Schouten-Nijenhuis-like bracket of shifted multideriva-
tions, so that PolM(A′, n) becomes a graded Pn+1-algebra in M, i.e. an object in
PM,n+1 − Alg.

Remark 2.5. If A′ is such that Ω1
M,A′ is (strictly) dualizable in A′−ModM, then

it is easy to prove that there is an isomorphism T(p)(A′,m)Σp � Symp(TM,A′ [−m])

in M, and more generally PolM(A′, n) � ⊕p≥0Sym
p(TM,A′ [−m]) in PM,n+1 − Alg,

where TM,A′ is the A′-dual of Ω1
M,A′ (and, on the rhs the multiplication is the one

induced by Sym, while the bracket is the one canonically induced by the Lie bracket
in TM,A′). Note that, however, we have not used TM,A′ directly, in order to define

PolM(A′, n). We used multiderivations instead, and the the possible definitions
agrees only under the hypotheses that Ω1

M,A′ is (strictly) dualizable.

The construction A′ 	→ PolM(A′, n) is not fully functorial, since we can nei-
ther pullback nor pushforward multiderivations in general. However it is possible
to define a restricted functoriality ([CPTVV, Lemma 1.4.13]) at the level of ∞-
categories, enabling us to give the following

Definition 2.6. Let n ∈ Z, and CAlgfét
M the sub∞-category ofCAlgM whose

maps are only the formally étale ones (i.e. maps A → B such that LB/A � 0): Then
there is a well-defined ∞-functor

PolM(−, n) : CAlgfét
M −→ PM,n+1 −Alg,

such that if A ∈ CAlgM and A′ is a fibrant-cofibrant replacement of A inside

CAlgM, then we have an equivalence PolM(A, n) � PolM(A′, n) in PM,n+1 −Alg.

Remark 2.7. If A ∈ CAlgM is such that LM
A is dualizable in A−ModM, then

one deduces from Remark 2.5 an equivalence PolM(A,m) � ⊕p≥0Sym
p(TM

A [−m]).

We are now in a position to give the definition of a shifted Poisson structure.
Recall that if A ∈ CAlgM, thenPolM(A, n) ∈ PM,n+1−Alg, so that, in particular,

PolM(A, n)[n] ∈ LiegrM.

Definition 2.8. Let n ∈ Z, and A ∈ CAlgM. The space of n-shifted Poisson
structures on A is

Poiss(A, n) := MapLiegr
M
(1M[−1](2),PolM(A, n+ 1)[n+ 1]),

where 1M[−1](2) is the Lie algebra object in M given by 1M sitting in pure
cohomological degree 1, and pure weight 2, with (strictly) trivial bracket.

This definition mimicks the classical one: if M = dgk, and we replace Map by
strict Hom-set in dgLiegrk , in the above definition, we get exactly the set of Poisson
bivectors on A (the bracket being trivial on 1[−1](2) = k[−1](2), the image of 1 ∈ k
gives a biderivation on π on A, such that [π, π] = 0).
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2.1.3. Standard realizations over k. For the theory of shifted Poisson structures
on derived stacks that we develop in Section 2.3 we will systematically need to pass
to global sections. This procedure can be implemented already at the level of
generality of the present section, by considering what we call standard realizations
over k. A more technical notion of realization over k (the Tate realization) will be
discussed later on in this Section.

One of our standing hypotheses on the base symmetric monoidal dgk model
category M is that the unit 1M is cofibrant. Hence we get a Quillen adjunction,
with 1M ⊗− left adjoint,

1M ⊗− : dgk �� M : Homk(1M,−)��

where ⊗ denotes the tensor dgk-enrichment ofM, andHomk is the Hom-enrichment
of M in dgk. This induces a derived ∞-adjunction on the associated ∞-categories

1M ⊗− : dgk �� M : RHomk(1M,−) ,��

and we define the standard realization functor as the right adjoint

| − | := RHomk(1M,−).

Actually this is the first of a series of realization functors induced on various cate-
gories of algebras in M. In fact, since 1M is a comonoid object in M (hence in M),
| − | is actually a lax symmetric monoidal ∞-functor, hence it is a right adjoint on
various functor on categories of “algebras” in M. Our notation will always be | − |
for each of these induced realization functors. For example, we have

|−| : CAlgM → cdgak , |−| : CAlggr
M → cdgagrk , |−| : ε−CAlgM → ε−cdgak

|−| : ε−CAlggr
M → ε−cdgagr

k , |−| : LieM → dgLiek , |−| : LiegrM → dgLiegrk

| − | : PM,n −Alg → Pn − cdgak , | − | : Pgr
M,n −Alg → Pn − cdgagr

k .

In particular, we get realizations

|LM
B/A| =: LB/A ∈ dgk , |DRM(B/A)| =: DR(B/A) ∈ ε− cdgagrk

|PolM(A, n)| =: Pol(A, n) ∈ Pn+1 − cdgagr
k .

Note that when M = dgk, all this realization functor are (equivalent to) the iden-
tity functors.

Later on, we will consider realization functors on categories of diagrams in
M, and it will be useful to recall the following fact. The dgk-enriched Hom in a
category of diagrams Iop → M, satisfies

HomMIop (1MIop , F ) � lim
x∈Iop

HomM(1M, F (x)),

since the monoidal unit 1MIop is given by the constant Iop-diagram at 1M. This
observation is the reason for the appearance, in Thm 2.34, of (derived) global
sections of various algebras over the derived affine site of a derived stack.

Example 2.9. As examples of the use of standard realization, by definition of
| − | as a right adjoint, we have, for any A ∈ CAlgM, the following equivalences



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMPLECTIC/POISSON GEOMETRY AND DEFORMATION QUANTIZATION 429

in T:

Poiss(A, n) � MapdgLiegr
k
(k[−1](2),Pol(A, n+ 1)[n+ 1]),

Ap,cl
M (A, n) � Mapε−dggr

k
(k(p)[−p− n],DR(A)),

Ap
M(A, n) � Mapdgk

(k[−n],∧p
|A|LA).

2.1.4. Comparison between Poisson algebras and shifted Poisson pairs. We need
a few notations. For an arbitrary ∞-category C, I(C) will denote its moduli space
or maximal ∞-subgroupoid of equivalences (so that I(C) ∈ T), CΔ[1] the ∞-
category of morphisms in C, and ev0, ev1 : CΔ[1] → C the source and target
∞-functors. For a model category C, we denote by CW

cf the category of cofibrant-
fibrant objects in C with morphisms given by weak equivalences.

The nerve of CW
cf is called the moduli space or classifying space (of objects and

equivalences) of C. It is a general fact (going back essentially to Dwyer and Kan)
that we have an equivalence of spaces between the moduli space of C and the space
I(C). In other words, we may (and will) identify the moduli space of C with the
moduli space of the associated ∞-category C. We will be interested, below, in the
moduli spaces of the ∞-categories PM,n −Alg, LiegrM, and CAlgM, associated to
the model categories PM,n+1 − Alg, LiegrM , and CAlgM, respectively.

For A ∈ PM,n − Alg, we will write PM,n(A) for the space of Pn algebra
structures on A having the given underlying commutative algebra structure. More
precisely, there is a forgetful ∞-functor U : PM,n −Alg → CAlgM (forgetting the
bracket structure), and the fiber of U at a given A ∈ CAlgM is an ∞-groupoid,
i.e. a space, that we denote by PM,n(A).

We have a canonical ∞-functor

v : I(CAlgM) � A 	−→ (1[−1](2),PolM(A, n)[n]) ∈ LieAlggr
M × LieAlggr

M

(note that A 	→ PolM(A, n) is functorial with respect to equivalences in CAlgM,
since obviously equivalences are formally étale). Borrowing ideas from [Vez2, 3.1],
we define the space PoisseqM,n as the following pullback of in T

PoisseqM,n
��

q

��

I((LieAlggr
M)Δ[1])

(I(ev0),I(ev1))

��
I(CAlgM)

I(v)
�� I(LieAlggr

M × LieAlggr
M) .

Thus, informally speaking, PoisseqM,n is the moduli space of n-shifted Pois-

son pairs (A, π), consisting of a commutative algebra A in M together with a
n-shifted Poisson structure on A (see Definition 2.8). More precisely, let PoisseqM,n

be the category whose objects are pairs (A, π) where A is a fibrant-cofibrant object
in CAlgM, and π is a n-shifted Poisson structure on A, i.e a map 1M[−1](2) →
PolM(A, n+1)[n+1] in the homotopy category of LieAlggr

M , and whose morphisms
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(A, π) → (A′, π′) are weak equivalences u : A → A′ in CAlgM such that the diagram

PolM(A, n+ 1)[n+ 1]

PolM(u,n+1)[n+1]

��

1M[−1](2)

π

����������������

π′
�����

���
���

���
�

PolM(A′, n+ 1)[n+ 1]

is commutative in the homotopy category of LieAlggrM . Then, the nerve of PoisseqM,n

is equivalent to PoisseqM,n.

There is a (strict) functor w : PM,n+1 − AlgW
cf → PoisseqM,n, sending a strict

Pn+1-algebra B in M to the pair (B, π), where π is induced, in the standard way,
by the (strict) Lie bracket on B (since the bracket is strict, it is a strict biderivation
on B). Restriction to weak equivalences (between cofibrant-fibrant objects) in
PM,n+1−Alg ensures this is a functor, and note that objects in the image of w are,
by definition, strict pairs (B, π), i.e. the shifted Poisson structure π : 1M[−1](2) →
PolM(A, n+ 1)[n+ 1] is an actual morphism in LieAlggr

M (rather than a map in its
homotopy category). We have a commutative diagram of functors

PM,n+1 −AlgW
cf

u
����

���
���

���
�

w �� PoisseqM,n

q
�����

���
���

�

(CAlgM)
W
cf

where u forgets the bracket structure, and q is the functor (A, π) 	→ A. Taking
the nerves of the previous diagram, we get a commutative diagram in T (where we
have kept the same name for the maps)

I(PM,n+1 −Alg)

u
����

���
���

���
��

w �� PoisseqM,n

q
		���

���
���

�

I(CAlgM).

Note that u, and q are both surjective, since they both have a section given by
the trivial bracket or strict shifted Poisson structure. Moreover, the fiber of q
at A ∈ CAlgM is obviously equivalent to the space PoissM(A, n) of n-shifted
Poisson structures on A (Definition 2.8). The following is a slight enhancement of
[Me, Theorem 3.2].

Theorem 2.10. The map of spaces w : I(PM,n+1 − Alg) → PoisseqM,n is an
equivalence.

Proof. It is enough to prove that for any fibrant-cofibrant A ∈ CAlgM, the map
induced by w between the u and q fibers over A is an equivalence. But, since these
fibers are, by definition, PM,n+1(A) (the moduli space of Pn-algebra structures on
A having the given underlying commutative algebra structure), and PoissM(A, n)
(the space of n-shifted Poisson structure on A), this is exactly [Me, Theorem 3.2].
�
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For future reference, we also state the following immediate consequence.

Corollary 2.11. (V. Melani) For any A ∈ CAlgM, the map w of Theorem
2.10 induces an equivalence

wA : PM,n+1(A) � PoissM(A, n)

between the moduli space of Pn-algebra structures on A (having the given under-
lying commutative algebra structure), and the moduli space of n-shifted Poisson
structures on A.

Proof. As mentioned above, this is exactly [Me, Theorem 3.2]. �

Remark 2.12. (1) Theorem 3.2 in [Me] is stated for the model category M
of bounded above cochain complexes of k-modules, but the proof is general and it
extends immediately to our general M. The original statement seems moreover to
require a restriction to those cdga’s having a dualizable cotangent complex. This
is due to the fact that the author uses the tangent complex (i.e. the dual of the
cotangent complex) in order to identify derivations. However, the actual proof pro-
duces an equivalence between (weak, shifted) Lie brackets and (weak) biderivations.
Therefore if one identifies derivations using the linear dual of the symmetric algebra
of the cotangent complex, the need to pass to the tangent complex disappears, and
the result holds, with the same proof and without the assumption of the cotangent
complex being dualizable (see Remark 2.7). This is the main reason we adopted
Definition 2.4 and 2.6 as our definition of polyvectors.

(2) Melani’s proof of [Me, Theorem 3.2] also shows that the natural map from the
classifying space I(PM,n+1 − Alg) of strict Pn+1-algebras in M to the classifying
space I(PM,n+1,∞−Alg) of weak Pn+1-algebras in M (where the operad PM,n+1,∞
is any cofibrant resolution of PM,n+1 in the model category of operads in M) is an
equivalence.

We also have the following, easier, strict analog of Corollary 2.11.

Proposition 2.13. [[CPTVV], Proposition 1.4.8] For any A ∈ CAlgM, there
is a natural bijection

PM,n(A) � HomLiegrM
(1M(2)[−1],PolM(A, n)[n])

between the set of (strict) Pn-algebra structures on A inM, and the set of morphisms

1(2)[−1] → PolM(A, n)[n] of Lie algebra objects in Mgr.

As an immediate consequence of Theorem 2.10, we get the following, useful,
strictification result

Corollary 2.14. Any weak shifted Poisson pair in PoisseqM,n is equivalent to a
strict pair.

Proof. By Theorem 2.10, an object (A, π) ∈ PoisseqM,n (i.e. an a priori weak pair),

is equivalent to a pair of the form w(B), where B ∈ PM,n+1 −Alg (i.e. is a strict
Pn+1-algebra in M), whose underlying commutative algebra is weakly equivalent to
A in CAlgM. We conclude by observing that objects in the image of w are always
strict pairs. �
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The DR-to-Pol construction. Let A′ ∈ PM,n − Alg. By Proposition 2.13, the
Pn algebra structure on the underlying commutative algebra of A′ is encoded by
a strict map π : 1M[−1](2) → PolM(A′, n)[n] of graded Lie algebras in M. Since

the weight q part of PolM(A′, n) is, by definition, T(q)(A′,−n)Σq , π induces a map
1M → T(2)(A′,−n)Σ2 [n+ 1] that we still denote by π. Write

[−,−]p,q : PolM(A′, n)(p)⊗M PolM(A′, n)(q) → PolM(A′, n)(p+ q − 1)[−n]

for the Lie bracket part of the graded Pn+1-algebra structure on PolM(A′, n), the
family of composite maps in M

T(q)(A′,−n)

εq



������
�������

�������
�������

�������
� � 1M ⊗M T(q)(A′,−n)

π⊗id �� T(2)(A′,−n)Σ2 [n+ 1]⊗M T(q)(A′,−n)Σq

[−,−]2,q[n+1]

��
T(q+1)(A′,−n)Σq+1 [1],

for q ∈ N, is easily verified to be the mixed differential of a mixed graded algebra
structure on PolM(A′, n) inside M.

Moreover, since PolM(A′, n)(0) = A′, by the universal property of DRM(A′) the
identity A′ → A′ induces a map

φA′,π : DRM(A′) −→ PolM(A′, n)

of mixed graded algebras in M.

Remark 2.15. The above construction of the mixed differential ε = (εq)q is a
generalization of the classical construction associating to a classical Poisson bivector
π on a smooth manifold, the differential dπ := [π,−] on polyvectors, where [−,−]
is the Schouten-Nijenhuis bracket, and d2π = 0 is equivalent to the bivector π being
Poisson.

A slight elaboration of this construction yields (by choosing strict models, see
[CPTVV, 1.4.3] for details), the following derived version:

• functors DRM,PolM(−, n) : (PM,n+1 −Alg)eq → ε−CAlggr
M;

• a morphism Φ : DRM → PolM(−, n) betwen the above functors.

Here (PM,n+1 −Alg)eq is the ∞-category of Pn+1-algebras in M with only equiv-

alences as morphisms (this ensures that PolM(−, n) is indeed a functor), and we

slightly abuse notation by writing DRM for the composition of the usual DRM

with the forgetful functor (PM,n+1 −Alg)eq → CAlgM.

2.1.5. From non-degenerate Poisson algebra structures to symplectic structures.
Classically, one way of stating that a Poisson structure (on a smooth scheme or
manifold X) is non degenerate is by declaring that the analog of the above map Φ
establishes an isomorphism of mixed graded algebras between the de Rham algebra
and the algebra of polyvectors. Analogously, we say that A ∈ PM,n+1 − Alg

is non degenerate if ΦA : DRM(A) → PolM(A, n) is an equivalence of mixed
graded algebras in M. For such an A, by Corollary 2.11, we also get a map
αA : 1M(2) → PolM(A, n)[n+ 1] in ε−Mgr. By putting these together, we get a
diagram

DRM(A)[n+ 1]
ΦA �� PolM(A, n)[n+ 1] 1M(2)

αA��
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in ε−Mgr, exhibiting bothDRM(A)[n+1] and 1M(2) as objects in the overcategory

ε−Mgr/PolM(A, n)[n+ 1]. We can then give the following

Definition 2.16. Let A ∈ PM,n+1 −Alg. The space of closed 2-shifted forms
compatible with the given Pn-structure on A is the space of lifts of αA along ΦA,
i.e. the space

Comp2,clM (A, n) := Mapε−Mgr/PolM(A,n)[n+1](1M(2),DRM(A)[n+ 1]).

The reasons for using the words “closed forms” in the previous definition are
the following. First of all there is a “forgetful” map

Comp2,clM (A, n) −→ Mapε−Mgr (1M(2),DRM(A)[n+ 1]) = A2,cl
M (A, n− 1)

to the actual space of closed 2-shifted forms on A. Moreover, if A happens to be

non degenerate, then Comp2,clM (A, n−1) is contractible (since ΦA is an equivalence),

hence there is a unique closed (n − 1)-shifted 2-form ωA ∈ π0(A2,cl
M (A, n − 1)) on

A, via the above “forgetful” map. Moreover, by definition, such an ωA is non
degenerate since A is: ω is thus a symplectic structure on A. If we denote by
Pnd
M,n(A) the subspace of PM,n(A) whose connected components consist of non

degenerate elements, we get the following

Proposition 2.17. For A ∈ CAlgM the above construction yields a well-
defined map of spaces WA : Pnd

M,n(A) → SymplM(A, n− 1).

There is a parallel (and in fact equivalent) notion of non-degenerate shifted
Poisson structure in M. Let B ∈ CAlgM such that LM

B is a dualizable in
B −ModM. An n-shifted Poisson structure π ∈ π0(PoissM(B, n)) defines a map
1M → Sym2

B(T
M
B [−n − 1])[n + 2] in M, and thus induces, by adjunction, a map

LM
B → TM

B [−n] in B −ModM: we say that π is non degenerate if this map is an
equivalence. The subspace of PoissM(B, n) whose connected components consist

of non degenerate elements will be denoted by PoissndM(B, n). The notions of non
degeneracy for Poisson algebras and for Poisson structures coincide in the following
sense

Proposition 2.18. Let B ∈ CAlgM such that LM
B is a dualizable in B −

ModM. The equivalence wB of Corollary 2.11, restricts to an equivalence

Pnd
M,n(B) � PoissndM(B, n− 1).

As a consequence of Proposition 2.17, we thus get a map

W ′
B : PoissndM(B, n− 1) −→ SymplM(B, n− 1).

The map W ′
B in Proposition 2.18 is called the comparison map between non

degenerate shifted Poisson structures and shifted symplectic structures. We will
study it for derived Artin stacks in Section 2.4.

Remark 2.19. It is possible that the map W ′
B in Proposition 2.18 will turn

out to be an equivalence, for very general M. We have proven this in our geometric
case of interest (see Theorem 2.40). The difficulty in general stems from the fact
that while for the source of W ′

B we have Theorem 2.11 and Proposition 2.13, and
we thus are able to perform the DR-to-Pol construction and produce the map
W ′

B, we don’t have anything similar for the target of W ′
B. One runs into serious

difficulties even just trying to construct an inverse equivalence to W ′
B at the level

of connected components. The first obstacle is that a shifted symplectic structure
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is, by definition, a weak map (i.e. a map in the relevant homotopy category). Even
if we could strictify this map (getting a strictly closed shifted 2-form), we are still
left with the problem that non degeneracy is a weak property, i.e. the property of
a map being a quasi-isomorphism, and therefore cannot be readily used to build a
strict Lie bracket on the de Rham algebra. One might be able to overcome these
difficulties in general but we do not know how to do this at the moment.

2.1.6. Tate realizations over k. In this section, we will concentrate on the spe-
cial case M = ε − dggrk , with its associated ∞-category M = ε − dggr, and in the
next Section we will apply the definitions and results obtained here to categories of
diagrams in M.

The unit of the symmetric monoidal category M is k(0), i.e. the complex k[0]
sitting in pure weight 0, with the trivial mixed differential. The enriching symmetric
monoidal functor is given by dgk → M : V 	→ V (0), the tensor enrichment is then
given by V ⊗ E := V (0)⊗M E, for E ∈ M. The enriched hom object is thus

Homk(E,E′) := Zε(HomM(E,E′)(0)) ∈ dgk ,

where HomM denotes the internal Hom in M, and, for F ∈ M, we write Zε(F (0)) ∈
dgk for the kernel of the map of k-dg-modules ε : F (0) → F (1)[1].

The standard realization functor | − | : M → dgk, for M = ε − dggr, is in
some sense unsatisfactory since an easy computation ([CPTVV, Proposition 1.5.1])
shows that |E| �

∏
p≥0 E(p), for E ∈ M, so that all negative weights are lost under

standard realization. An obvious way to modify | − | and remedy this flaw is to
consider |E|t := colimi≥0

∏
p≥−i E(p), instead. This new functor | − |t : M → dgk

will be called the Tate realization functor for M. By definition, there is a canonical
morphism | − | → |− |t of ∞-functors. One can show, exactly as for | − |, that | − |t
is lax symmetric monoidal as well, so that it is inherited by categories of algebras.
In particular, we also get Tate realization functors

| − |t : ε−CAlggr
M → ε− cdgagrk , | − |t : Pgr

M,n −Alg → Pn − cdgagr
k .

As in the linear case, there are canonical morphisms | − | → | − |t of ∞-functors
between realizations on the level of these algebra structures.

Let us put this into a broader perspective, and relate the Tate realization to a
standard realization (on a different category). Let us start by the fact that there
is an equivalence in dgk

Homk(k(i), k(i+ 1)) = RHomk(k(i), k(i+ 1)) � k[0]

(where Homk denotes the dgk-enriched Hom in M), giving rise to the following
canonical ind-object in M

k(∞) := {k(0) → k(1) → · · · → k(i) → k(i+ 1) → · · · } ∈ Ind(M).

One can then show that the Tate realization functor forM is related to the standard
realization | − |Ind for Ind(M), by

| − |t � | − ⊗k(∞) |Ind : M −→ dgk

where we have implicitly used the canonical functor M → Ind(M), sending an
object E to the constant ind-diagram in M with value E.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SYMPLECTIC/POISSON GEOMETRY AND DEFORMATION QUANTIZATION 435

Moreover, since k(i) ⊗ k(j) � k(i + j), k(∞) is a commutative monoid object
in Ind(M), hence

A ∈ CAlgM ⇒ A(∞) := A⊗ k(∞) ∈ k(∞)/CAlgInd(M).

Therefore it make sense to consider the relative objects

DRInd(M)(A(∞)/k(∞)) ∈ ε−Alggr
Ind(M) ,

PolInd(M)(A(∞)/k(∞), n) ∈ PInd(M),n+1 −Alggr ,

and their standard realizations (on algebras in Ind(M))

DR(A(∞)/k(∞)) ∈ ε− cdgagrk , Pol(A(∞)/k(∞), n) ∈ Pn+1 − cdgagr
k .

For de Rham algebras and polyvectors, we have the following comparison result

Proposition 2.20. If A ∈ CAlgM, then we have a canonical equivalence

DRt(A) := |DR(A)|t � DR(A(∞)/k(∞))

in ε−cdgagrk . If moreover LM
A is dualizable in A−ModM, then we have a canonical

equivalence
Polt(A, n) := |Pol(A, n)|t � Pol(A(∞)/k(∞))

in Pn+1 − cdgagrk .

Remark 2.21. As already observed in the linear case, in general, none of
the morphisms DR(A) → DRt(A), Pol(A, n) → Polt(A, n) are equivalences. If
A ∈ ε −CAlggr

M happens to have only non-negative weights (this will be the case
in our application to derived stacks), then also LA will have the same property,
and DR(A) → DRt(A) will indeed be an equivalence. However, the dual to LA, if
existing, will have postive weights, so that Pol(A, n) → Polt(A, n) will not be an
equivalence, even in this case. So, at least for applications to derived stacks, while
the introduction of the Tate realization will not make any difference for DR, it will
definitely do for Pol, and indeed the interesting realization will be Polt rather than
the standard one.

2.2. Formal derived stacks and formal localization. A crucial ingredient
in the theory of shifted Poisson structures on general derived Artin stacks is the
method of formal localization. Formal localization is interesting in its own right
as a new, very powerful tool that will prove useful in many other situations inside
derived geometry, especially in order to globalize tricky constructions and results,
whose extension from the local case presents obstructions that only vanish formally
locally. An example is given by obstructions living in de Rham cohomology (even,
say, on a smooth scheme X). Suppose we wish to glue some construction that we
can perform “locally” on X, and we know that obstructions to globalize live in
de Rham cohomology of X (e.g. we would like to globalize an algebraic version of
the Darboux lemma). Since de Rham cohomology never vanishes Zariski or étale
locally, it is going to be hard or impossible, depending on the specific problem,
to suppress the obstructions and glue with respect to these topologies. On the
other hand, for any x ∈ X, the de Rham cohomology of the formal completion

X̂x does vanish, so we may try to glue the construction performed on the family

{X̂x |x ∈ X} to a construction on X. But in order to do this we need a result
telling us when and how we are able to glue objects along the family of formal
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completions. This is exactly the content of formal localization and below we will
sketch how it works and why it is useful.

The following conventions will be adopted throughout this section. A cdga A is
called almost finitely presented if H0(A) is a k-algebra of finite type, and each
Hi(A) is a finitely presented H0(A)-module. We will write dAffk for the opposite
∞-category of almost finitely presented cdga’s, and we will simply refer to its objects
as derived affine schemes without mentioning the finite presentation condition. In
particular, when writing SpecA, we implicitly assume that SpecA is an object
of dAffk. The ∞-category dAffk is equipped with its usual étale topology of
[HAG-II, Definition 2.2.2.3], and the corresponding ∞-topos of derived stacks will
be denoted by dStk. Its objects will simply be called derived stacks, instead of
the more precise but longer locally almost finitely presented derived stacks over k.
With these conventions, an algebraic derived n-stack X will have a smooth atlas
by objects in dAffk, and in particular, it will have a bounded above cotangent
complex in Coh(X).

2.2.1. Formal derived stacks. As the name suggests, formal localization deals
with formal derived stacks, which we now define.

Definition 2.22. A formal derived stack is a derived stack F satisfying the
following conditions.

(1) F is nilcomplete i.e. for all SpecA ∈ dAffk, the canonical map

F (A) −→ lim
k

F (A≤k)

(induced by the Postnikov tower of A) is an equivalence in T.
(2) F is infinitesimally cohesive i.e. for all cartesian squares of almost finitely

presented k-cdga’s in non-positive degrees

B ��

��

B1

��
B2

�� B0,

such that each π0(Bi) −→ π0(B0) is surjective with nilpotent kernel, then
the induced square

F (B) ��

��

F (B1)

��
F (B2) �� F (B0),

is cartesian in T.

Remark 2.23. (1) The property of being infinitesimally cohesive is a derived
variation of the Schlessinger condition in classical deformation theory ([Sch]). In
particular, one can show that any derived Artin stack F is a formal derived stack
([HAG-II, Appendix]), and it is actually cohesive i.e. sends any diagram as in 2.22
(2), with the nilpotency condition possibly omitted, to pullbacks in T ([LuDAG,
DAG IX, Corollary 6.5] and [LuDAG, DAG XIV, Lemma 2.1.7]).
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(2) A small limit of formal derived stacks is a formal derived stack.

Let the ∞-functor i : algred
k −→ cdgak be the inclusion of the full reflective sub

∞-category of reduced discrete objects (i.e. R ∈ cdgak such that R is discrete and
R � H0(R) is a usual reduced k-algebra). The ∞-functor i has a left adjoint

(−)red : cdgak −→ algred
k , A 	−→ Ared := H0(A)/Nilp(H0(A),

and it is easy to verify that we get an induced ∞-functor i∗ : dStk −→ Stred,k,

where Stred,k is the ∞-category of stacks on (algred
k )op for the étale topology. Now

i∗ has both a right adjoint i∗, and a left adjoint i!, both fully faithful, and i!i
∗ is

left adjoint to i∗i
∗.

Definition 2.24.

(1) The functor (−)DR := i∗i
∗ : dStk −→ dStk is called the de Rham stack

functor. By adjunction, for any F ∈ dStk, we have a canonical natural
map qF : F → FDR.

(2) The functor (−)red := i!i
∗ : dStk −→ dStk is called the reduced stack

functor. By adjunction, for any F ∈ dStk, we have a canonical natural
map ιF : Fred → F .

(3) Let f : F −→ G be a morphism in dStk. We define the formal completion

Ĝf of G along the morphism f as the fibered product in dStk:

Ĝf
��

��

FDR

fDR

��
G qG

�� GDR.

Since the left adjoint to i is (−)red, then it is easy to see that FDR(A) � F (Ared),

and (SpecA)red � Spec (Ared), for any A ∈ cdgak. Thus Ĝf (A) = G(A)×G(Ared)

F (Ared), for f : F → G in dStk. We already observed that (−)DR is right adjoint
to (−)red, as functors dStk → dStk. We list a few elementary properties of these
constructions:

• FDR is a formal derived stack for any F ∈ dStk.

• If G is a formal derived stack, the formal completion Ĝf , along any map
f : F → G in dStk, is again a formal derived stack.

• For any F ∈ dStk, if j : t0F → F denotes the canonical map in dStk
from the truncation of F to F , then the canonical map F̂j → F is an
equivalence.

Our main object of study in the next section, will be the map q : F → FDR.
If K is a field, and x : SpecK → FDR is a point (by adjunction, this is the same
thing as a K-point of F , since K is reduced), then the fiber of q at x is exactly the

(classical) formal completion X̂x of X at the closed point x. More generally, we
have

Proposition 2.25. Let F ∈ dStk, SpecA ∈ dAffk, and u : SpecA −→ FDR,
corresponding to a morphism u : SpecAred −→ F . Then the base-change derived
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stack F ×FDR
SpecA is equivalent to the formal completion ̂(SpecA× F )(i,u) of

the graph morphism

(i, u) : SpecAred −→ SpecA× F,

where i : SpecAred −→ SpecA is the natural map.

Remark 2.26. Suppose that F ∈ dStk has a cotangent complex (e.g. F is
a derived Artin stack). Then LF/FDR

exists, and we have an equivalence LF �
LF/FDR

in QCoh(F ). In fact, by the transitivity sequence for the map q : F →
FDR. it is enough to show that LFDR

� 0. But this follows immediately from
the equivalences: FDR(A ⊕ E) � F ((A ⊕ E)red) � F (Ared) � FDR(A), for any

A ∈ cdga≤0
k , and any E ∈ dg≤0

A .

2.2.2. Formal localization for X → XDR. The general theory of formal local-
ization is developed in detail in Section 2 of [CPTVV]. Instead of giving a complete
account, we will content ourselves with the application of the general theory to our
main case of interest, i.e. to the map q : X → XDR. Throughout this Section, X
will be derived Artin stack lfp over k (hence with a perfect cotangent complex).

The map X → XDR as a family of formal derived stacks. First of all, let us
observe that q : X → XDR is an algebraisable family of perfect formal derived stacks,
i.e. for any derived point SpecA → XDR the corresponding fiber XA → SpecA
of q has the following properties:

(1) XA is a formal derived stack, and the canonical map (XA)red → SpecAred

is an equivalence in dStk.
(2) The relative cotangent complex LXA/A is perfect (by Remark 2.26 and

base change).
(3) XA has a cohomologically bounded above coherent cotangent complex

LXA
(i.e. for any xB : SpecB → XA, the fiber x∗

BLXA
is a cohomologi-

cally bounded above coherent B-dg-module).
(4) XA is equivalent to the formal completion of X × SpecA along the map

SpecAred → X×SpecA, induced by the chosen derived point SpecA →
XDR, and the canonical map SpecAred → SpecA (see Proposition 2.25).

Properties 1-3 caracterize a family of perfect formal derived stacks over A, while
property 4 says that the family is algebraisable ([CPTVV, Section 2.1, 2.2.]).

Crystalline structure sheaf and shifted principal parts. Let us consider the
∞-functor

D : dAffop
k −→ ε− cdgagrk , A 	−→ DR(Ared/A)

(whereDR(Ared/A) is defined in Definition 1.1, via Remark 1.2). Note that D(A) �
SymAred

(LAred/A[−1]) in cdgagrk (Section 1.1). The functor D satisfies étale descent,
and thus we have an induced ∞-functor

D : dStopk −→ ε− cdgagrk , F 	−→ lim
SpecA→F

D(A).

We consider the following prestacks of mixed graded cdga’s on dAff/XDR

DXDR
:= D(OXDR

) :(dAffk/XDR)
op −→ ε− cdgagr

k , (SpecA → XDR) 	−→ D(A),

PX :(dAffk/XDR)
op −→ ε− cdgagr

k , (SpecA → XDR) 	−→ D(XA).
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Note that there is a natural equivalence

PX(SpecA → XDR) � SymAred
(LSpecAred/XA

[−1])

in cdgagr
k ([CPTVV, Proposition 2.2.6]).

Definition 2.27. The prestack DXDR
onXDR is called the crystalline structure

sheaf for X. The prestack PX on XDR is called the prestack of principal parts for
X.

Remark 2.28. The prestack PX on XDR is a graded mixed model for the
classical sheaf of principal parts on X. Indeed, we have |PX | � q∗OX , where
q : X → XDR; and, for X smooth over a field, q∗OX is the usual sheaf of (infinite)
principal parts on X (as defined in [EGA IV, 16.7]).

Remark 2.29. An alternative interpretation of PX can be given as follows. As
already observed, the canonical map X −→ XDR realizes X as a family of formal
derived stacks over XDR, namely as the family of formal completions at closed
points of X. By [LuFMP] these formal completions are determined by a dg-Lie
algebra �x. The dg-Lie algebra �x itself does not extend globally as a sheaf of dg-Lie
algebras over XDR, simply because its underlying complex is TX [−1], the shifted
tangent complex of X ([Hen]), does not descend to XDR. However, a remarkable
consequence of derived formal localization (Theorem 2.34) is that the Chevalley-
Eilenberg complexes of �x, for x ∈ X, viewed as a graded mixed commutative
dg-algebras, do glue to a global object over XDR. This is exactly PX . Then, the
Formal Localization Theorem 2.34 tells us exactly how to express global geometric
objects on X as correspondingly sheafified objects on XDR related to PX .

Note that, by functoriality of D, we have a natural morphism DXDR
→ PX

of prestacks of mixed graded cdga’s on XDR. In particular, if we consider the ∞-
category M′ of prestacks on dAffk/XDR with values in ε − dggr

k , then DXDR
∈

CAlg(M′), and PX ∈ DXDR
/CAlg(M′). We let M := DXDR

− ModM′ . Then
PX ∈ CAlg(M) � DXDR

/CAlg(M′), and, for any n ∈ Z, we may consider
(Section 2.1)

PolM
′
(PX/DXDR

, n) = PolM(PX , n) ∈ Pgr
M,n+1 −Alg

DRM′
(PX/DXDR

) = DRM(PX) ∈ ε−CAlggr
M .

We will also consider the following prestacks on dAff/XDR obtained by Tate real-
izations:

Polt(PX/DXDR
, n) : (dAffk/XDR)

op −→ Pn+1 − cdgagr
k

(SpecA → XDR) 	−→ |Polε−dggr

(PX(A)/DXDR
(A), n)|t

DRt(PX/DXDR
) : (dAffk/XDR)

op −→ ε− cdgagrk

(SpecA → XDR) 	−→ |DRε−dggr

(PX(A)/DXDR
(A))|t.

Remark 2.30. It is worth pointing out that while PX and DXDR
are not

stacks, all Polt(PX/DXDR
, n), DR(PX/DXDR

), and DRt(PX/DXDR
) are stacks

([CPTVV, Corollary 2.4.9]).
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Analogously (see Section 2.1), if we consider the ∞-category M′
Ind of prestacks

on dAffk/XDR with values in Ind(ε − dggr
k ), then (see Section 2.1) DXDR

(∞) ∈
CAlg(M′

Ind), and PX(∞) ∈ DXDR
(∞)/CAlg(M′

Ind). We letMInd := DXDR
(∞)−

ModM′
Ind

. Then PX(∞) ∈ CAlg(MInd) � DXDR
(∞)/CAlg(M′

Ind), and, for any
n ∈ Z, we may consider

PolM
′
Ind(PX(∞)/DXDR

(∞), n) = PolMInd(PX(∞), n) ∈ Pgr
MInd,n+1 −Alg ,

DRM′
Ind(PX(∞)/DXDR

(∞)) = DRMInd(PX(∞)) ∈ ε−CAlggr
MInd

.

And we also have the following prestacks on dAff/XDR obtained by standard
realizations:

Pol(PX(∞)/DXDR
(∞), n) : (dAffk/XDR)

op �� Pn+1 − cdgagr
k

(SpecA → XDR)
	 �� |PolInd(ε−dggr)(PX(∞)(A)/DXDR

(∞)(A), n)|
and

DR(PX(∞)/DXDR
(∞)) : (dAffk/XDR)

op �� ε− cdgagr
k

(SpecA → XDR)
	 �� |DRInd(ε−dggr)(PX(∞)(A)/DXDR

(∞)(A))| .

Remark 2.31. By Proposition 2.20 and Remark 2.21, we get equivalences

DRM′
(PX/DXDR

) � DRt(PX/DXDR
) � DR(PX(∞)/DXDR

(∞)) ,

Polt(PX/DXDR
, n) � Pol(PX(∞)/DXDR

(∞), n),

but notice that PolM
′
(PX/DXDR

, n) is not in general equivalent to the previous
ones.

The Formal Localization theorem. We have already defined the mixed graded
k-cdgas DR(X/k), and DR(X/XDR) (Definition 1.6). It is an easy consequence
of the equivalence LX � LX/XDR

(Remark 2.26), that DR(X/k) � DR(X/XDR)
in ε − cdgagrk . We can give a similar, general definition of shifted polyvectors on
X, at least as a graded k-cdga.

Definition 2.32. Let F → G be a map between derived stacks, both having
cotangent complexes (so that LF/G exists, too). We define the graded k-dg module
of n-shifted relative polyvectors as

Pol(F/G, n) �
⊕
p≥0

(HomQCoh(F )(⊗pLF/G,OF [−pn]))hΣp ∈ cdgagr
k .

In the above definition, QCoh(F ) is regarded as a dg-category over k, and
HomQCoh(F ) denotes its k-dg-module of morphisms; the Σp-action on

HomQCoh(F )(⊗pLF/G,OX [pn])

is induced by Σp acting in the standard way on ⊗pLF/G, and via (−1)n times the

sign representation on OF [−pn] = OF [−n]⊗
p

.
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Remark 2.33. (1) Again by Remark 2.26, we have an equivalence

Pol(X/XDR, n) � Pol(X/k, n)

in cdgagr
k .

(2) When LF/G is perfect over F (e.g. for F = X derived Artin stack lfp over k,
and G = XDR), then we may express Pol(F/G, n) using the dual relative tangent
complex TF/G as (see Remark 2.5)

Pol(F/G, n) �
⊕
p≥0

Γ(F, Symp(TF/G[−n]) ∈ cdgagrk .

The problem with Definition 2.32 is that, in general, it is impossible to directly
endow Pol(F (/G, n), as defined, with a bracket and give it the structure of a graded
Pn+1-differential graded algebras over k. This is where the next result comes to
rescue.

Theorem 2.34 (Formal localization for X → XDR). Let X be an Artin derived
stack locally of finite presentation over k.

(1) There is a natural equivalence of ∞-categories

Perf(X) � PX −Modperf
M ,

where M was defined right after Remark 2.29, and PX −Modperf
M is the

full sub-∞-category of PX −ModM, consisting of prestacks E of graded
mixed PX -modules on dAff/XDR satisfying the following two conditions:

• For all SpecA −→ XDR, the graded mixed PX(A)-module E(A) is
equivalent, just as a graded PX(A)-module, to PX(A) ⊗Ared

E0, for
some E0 ∈ Perf(Ared).

• E is quasi-coherent in the sense that: for all SpecB −→ SpecA in
dAffk/XDR, the induced morphism E(A)⊗PX(A) PX(B) −→ E(B)
is an equivalence.

(2) There are natural equivalences of graded mixed cdga’s over k

DR(X/XDR) � DR(X/k) � Γ(XDR,DR(PX/DXDR
))

� Γ(XDR,DRt(PX/DXDR
)).

(where Γ denotes derived global sections , i.e.

Γ(XDR,F) = lim
SpecA→XDR

F(A),

the limit being taken in the ∞-category where F is valued).
(3) For each n ∈ Z, there are natural equivalences of graded dg-modules over

k

Pol(X/XDR, n) � Pol(X/k, n) � Γ(XDR,Polt(PX/DXDR
, n))

� Γ(XDR,Pol(PX(∞)/DXDR
(∞), n)).

(4) Let MInd be the ∞-category defined right after Remark 2.30. The natural
∞-functor

PX −Modperf
M −→ PX(∞)−Modperf

MInd
,

induced by the base change (−)⊗ k(∞), is an equivalence.
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(5) For each n ∈ Z, there are canonical equivalences in T.

Symp(X,n) � Symp(PX/DXDR
, n) � Symp(PX(∞)/DXDR

(∞), n)

where Symp(PX/DXDR
, n) and Symp(PX(∞)/DXDR

(∞), n) are defined as
in Definition 2.2 (with M and MInd, respectively, as defined in the pre-
vious paragraph).

The proof of Theorem 2.34 can be found in [CPTVV, Corollary 2.4.12, Propo-
sition 2.4.15].

Remark 2.35. Let us explain why the formal localization Theorem 2.34 is
important and useful.

(1) Points 1 and 4 in Theorem 2.34 are absolutely crucial since they allow us to
completely recover perfect complexes on X as certain, explicitly identified, mixed
graded modules over PX or PX(∞). This makes manipulations on perfect com-
plexes much easier, and will allow us to go from a quantization of PX(∞) to a
quantization of Perf(X) (see Section 3.1).

(2) Point 2 in the above Theorem lets us completely recover (with its full structure
of mixed graded algebra) the descent-theoretic definition 1.6 of the de Rham algebra
on X in terms of PX/DXDR

.

(3) Point 3 is important because it allows us not only to recover the ’geometri-
cal” polyvectors of Definition 2.32, but also to establish a full graded Pn+1-algebra
structure on them. This is essential in order to be able to define shifted Poisson
structures on X (Definition 2.36).

(4) The last point of Theorem 2.34 lets us completely recover shifted symplectic
forms onX in terms of shifted symplectic form on PX/DXDR

(or PX(∞)/DXDR
(∞)).

This have the effect to enable a definition of shifted Poisson and shifted symplectic
structures in terms of the very same object PX/DXDR

(or PX(∞)/DXDR
(∞)), thus

opening the way for a comparison between them (see Theorem 2.40).

2.3. Shifted Poisson structures. We are finally ready to define shifted Pois-
son structures on a derived Artin stack X lfp over k. In the previous Section (Def-
inition 2.27), we constructed two prestacks DXDR

, and PX := DX/XDR
of graded

mixed cdga’s on XDR , together with a map of prestacks DXDR
→ PX , exhibiting

PX as a prestack of DXDR
-linear graded mixed cdga’s on XDR. By passing to

Tate realization, we obtain the prestack Polt(PX/DXDR
, n) of graded Pn+1-cdga’

on dAff/XDR.

Definition 2.36. If X is a derived Artin stack lfp over k, and n ∈ Z, we define

• the graded Pn+1-cdga over k, Pol(X,n) := Γ(XDR,Polt(PX/DXDR
, n)) of

n-shifted polyvectors on X;
• the space Poiss(X,n) := MapdgLiegr

k
(k(2)[−1],Pol(X,n + 1)[n + 1]) of n-

shifted Poisson structures on X. An n-shifted Poisson structure on X is
an element π ∈ π0(Poiss(X,n)).
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In the second item of the previous definition, dgLiegrk is the ∞-category of graded
k-linear dg-Lie algebras, and k(2)[−1] denotes k sitting in cohomological degree 1,
in weight degree 2, endowed with trivial bracket and trivial differential.

Since LX is perfect, by Theorem 2.34 (3) and Remark 2.33, there is an equiv-
alence

Pol(X,n) � Pol(X/k, n) �
⊕
p≥0

Γ(X,Symp(TX [−n])

of graded mixed dg-modules over k. This justifies the use of the word polyvectors
for Pol(X,n).

The intuition behind our definition of Poiss(X,n) is that if X is a smooth
scheme, n = 0, and we replace MapdgLiegr

k
with the usual, strict Homdgliegrk

, one

gets that an element inHomdgliegrk
(k(2)[−1],Pol(X,n+1)[n+1]) is exactly a bivector

field π, such that [π, π] = 0, [−,−] being the usual Schouten-Nijenhuis bracket on
algebraic polyvector fields on X; in other words, such a π is a usual algebraic
Poisson bivector on X. See also Example 2.38 (1) below.

We can give an alternative description of the space Poiss(X,n). Recall from
the previous section that the stabilized versions DXDR

(∞) and PX(∞) of DXDR

and PX are both prestacks of commutative monoid objects in Ind(ε − dggr) on
XDR, and that there is an analogous canonical map DXDR

(∞) → PX(∞). We let
Pn+1(PX(∞)/DXDR

(∞)) be the space of those Pn+1-algebras structures on PX(∞),
in the ∞-category M of prestacks, on XDR, of DXDR

(∞)-modules inside Ind(ε −
dggr), which are compatible the given commutative algebra structure on PX(∞)
in M. An elaboration of Corollary 2.11 yields the following comparison

Theorem 2.37 ([CPTVV], Theorem 3.1.2). For any derived Artin stack X
lfp over k, and any n ∈ Z, we have a canonical equivalence in T

Poiss(X,n) � PM,n+1(PX(∞)/DXDR
(∞)).

This theorem should be viewed as a vast generalization to derived Artin stacks
of the equivalence between the notion of Poisson bivectors on X and Poisson brack-
ets on OX , well-known for smooth schemes X.

Examples 2.38.
(1) If X is a smooth scheme, then the space Poiss(X, 0) is discrete and equivalent
to the vector space of usual algebraic Poisson brackets on OX .

(2) If G is a reductive group scheme over k, and g its Lie algebra, then one has
([CPTVV, 3.1])

π0(Poiss(BG,n)) �

⎧⎪⎨⎪⎩
∧3
k(g)

G , n = 1,

Sym2
k(g)

G , n = 2,

0 , n 
= 1, 2.

The comparison theorem in the next section, together with the coisotropic
(combined with the results of Section 1.2), and the intersection theorem in Section
2.5, will provide more examples of shifted Poisson structures.
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2.4. Comparison between non degenerate shifted Poisson structures
and shifted symplectic structures. In this Section, we establish a derived ana-
log of the usual equivalence between classical non-degenerate Poisson structures
and symplectic structures.

Let X be a derived Artin stack lfp over k, n ∈ Z, and π ∈ π0(Poiss(X,n)) be an
n-shifted Poisson structure on X (Definition 2.36). By considering the “forgetful”
map

MapdgLiegr
k
(k(2)[−1],Pol(X,n+1)[n+1]) −→ Mapdggr

k
(k(2)[−1],Pol(X,n+1)[n+1]),

together with the equivalence in dggr
k

Pol(X,n+ 1)[n+ 1] �
⊕
p

Γ(X,Symp
OX

(TX [−n− 1])[n+ 1]

(see Remark 2.33), π induces a morphism k(2) → ⊕pΓ(X,Symp
OX

(TX [−n−1])[n+2]

in dggr
k , and thus defines an element απ ∈ H−n(X,Φ

(2)
n (TX)), where

Φ(2)
n (TX) :=

{
Sym2

OX
TX , if n is odd

∧2
OX

TX , if n is even.

We denote by π
 the map LX → TX [−n] induced, via adjunction, by απ.

Definition 2.39. Let X be a derived Artin stack lfp over k, and n ∈ Z. An n-
shifted Poisson structure π ∈ π0(Poiss(X,n)) is non-degenerate if the induced map

π
 : LX → TX [−n] is an equivalence. We denote by Poissnd(X,n) the subspace
of Poiss(X,n) whose connected components are non-degenerate n-shifted Poisson
structures on X.

We are now ready to construct the comparison map between the space of shifted
Poisson structures and the space of shifted symplectic structures on derived Artin
stacks.

Recalling from the previous section, let M′
Ind is the category of prestacks on

dAff/XDR with values in Ind(ε − dggr
k ), and MInd the category of DXDR

(∞)-
modules in M′. Then A := PX(∞) belongs to CAlgM. By Proposition 2.18

and Th. 2.37, we have an equivalence Pnd
M,n+1(PX(∞)/DXDR

(∞)) � Poissnd(X,n),

where Pnd
n+1(PX(∞)/DXDR

(∞)) is the subspace of non degenerate Pn+1-algebra
structures on PX(∞)/DXDR

(∞), compatible with the underlying commutative
DXDR

(∞)-algebra structure on PX(∞).
Recall from Proposition 2.17, that for any M, and any A ∈ CAlgM with a

dualizable cotangent complex, we have a map Pnd
M,n+1(A) → Sympl(A, n), from the

moduli space of those non-degenerate Pn+1-algebra structures in M on A which
are compatible with the given commutative algebra structure on A, to the moduli
space of n-shifted symplectic structures on A. With our current choice of M, we
thus get a map

Poissnd(X,n) � Pnd
M,n+1(PX(∞)/DXDR

(∞)) −→ Sympl(PX(∞)/DXDR
(∞), n).

But by Theorem 2.34, we have Sympl(PX(∞)/DXDR
(∞), n) � Sympl(X,n), so we

obtain a comparison map

ψ : Poissnd(X,n) −→ Sympl(X,n)

from the space of non-degenerate n-shifted Poisson structures on X, to the space
of n-shifted symplectic structures on X. One of the main result of [CPTVV], and
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the key to quantize all the shifted symplectic moduli spaces constructed in Section
1.2, is the following

Theorem 2.40 ([CPTVV], Theorem 3.2.4). Let X be a derived Artin stack

lfp over k, and n ∈ Z. The canonical map ψ : Poissnd(X,n) → Sympl(X,n) is an
equivalence in T.

In spite of being expected, and somehow very natural, Theorem 2.40 has
a rather technical and non-trivial proof. It is not too difficult showing that ψ
induces isomorphisms on all the homotopy groups πi’s for i ≥ 1. More diffi-
cult is proving that ψ is an isomorphism on π0: this is achieved in [CPTVV]
by first showing that the functors A 	→ Pnd

M,n+1(PX(∞)(A)/DXDR
(∞)(A)), and

A 	→ Sympl(PX(∞)(A)/DXDR
(∞)(A), n) are both formal derived stacks (Defi-

nition 2.22), and then showing that it is enough to prove the isomorphism on

dAff red/Xred. This reduced case is then specifically handled by using pairings and
copairings on L∞-algebras, the L∞-algebra being given, for any u : SpecA → X,
with A reduced, by an L∞-model for (u∗LX)∨[−1]. Similar techniques have been
used in [Co-Gw].

2.5. Coisotropic structures. In this section we discuss briefly the notion
of a coisotrpic structure on a map to a general n-shifted Poisson target. This is
analogous to the notion of a lagrangian structure from Definition 1.13. A new
feature of the Poisson context is that the definition of coisotropic structure itself
requires a non-trivial statement - Rozenblyum’s additivity theorem (see also [Saf2]
for another proof). This additivity theorem asserts that for every n ≥ 1 and every
symmetric monoidal ∞-category M, satisfying our standard hypotheses, there is
a natural equivalence between the ∞-category PM,n+1 −Alg and the ∞-category
Alg(PM,n−CAlg) of unital and associative algebras in the category PM,n−Alg6

(note that PM,n is a Hopf operad, hence PM,n −Alg inherits a natural symmetric
monoidal structure).

The additivity equivalence is functorial in M, with respect to symmetric mon-
oidal ∞-functors, and commutes with the forgetful functors to M
(see [CPTVV, Remark 3.4.2] for more details). The main utility of the additivity
theorem is that it allows us to make sense of Pn+1-structures on morphisms between
commutative algebras in M. More precisely, if we write PM,(n+1,n) −Alg for the
∞-category of pairs (A,B) consisting of an object A ∈ Alg(PM,n −Alg) and an
A-module B in PM,n −AlgM , then by the additivity theorem PM,(n+1,n) −Alg
comes equipped with two forgetful ∞-functors (A,B) 	→ A, and (A,B) 	→ B to
PM,n+1 −Alg, and PM,n −Alg, respectively. Furthermore, the forgetful functor
PM,n −Alg → AlgM induces a natural forgetful functor from PM,(n+1,n) −AlgM
to the ∞-category of pairs (A,B) where A ∈ Alg(CAlgM) and B is an A-module
in CAlgM. The ∞-category of such pairs is naturally equivalent to the ∞-category
Mor(CAlgM) of morphisms in CAlgM. In particular, given a morphism ϕ : A →
B between commutative algebras in M, we can define the space of PM,(n+1,n)-
structures on ϕ as the fiber of the ∞-functor PM,(n+1,n) − Alg → Mor(AlgM)

6The same result holds for the operads En of little n-disks, and it is known as Dunn-Lurie
additivity [LuHA, 5.1.2.2].
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over ϕ. We will write

PM,(n+1,n)(ϕ) := PM,(n+1,n) −Alg ×Mor(CAlgM) {ϕ}
for this space. Note that by construction the space PM,(n+1,n)(ϕ) projects naturally
both to the space PM,n+1(A) of Pn+1-structures on the source A, and to the space
PM,n(B) of Pn-structures on the target B.

Let f : X → Y is a morphism of derived stacks locally of finite presentation
over k. We specialize the construction above to the following case:

• M := MX,Ind is the ∞-category defined in Section 2.4 (i.e. if M′
X,Ind is

the ∞-category of prestacks on dAff/XDR with values in Ind(ε − dggr
k ),

then MX,Ind is the ∞-category of DXDR
(∞)-modules in M′

X,Ind).

• ϕ is the induced map f∗
P : f∗

DR(PY (∞)) → PX(∞).

Note that the map f∗
DR(DYDR

(∞)) → DXDR
(∞) is an equivalence and so f∗

P may
indeed be considered as a morphism in CAlgM.

Now, if Y is endowed with an n-shifted Poisson structure π, then PY (∞) is
canonically an object in PMY,Ind,n+1 −Alg (Theorem 2.37), and thus its pull-back
f∗
DR(PY (∞)) is canonically an object in PM,n+1 −Alg. We denote this object by
Pπ
Y,f (in order to distinguish it from f∗

DR(PY (∞)) as an object in CAlgM). To ease

notation, we will write P(n+1,n)(f
∗
P) for PM,(n+1,n)(f

∗
P), and Pn+1(f

∗
DR(PY (∞)))

for PM,n+1(f
∗
DR(PY (∞))). So it makes sense to consider the fiber of the projection

map P(n+1,n)(f
∗
P) → Pn+1(f

∗
DR(PY (∞))) over Pπ

Y,f .

Definition 2.41. Let f : X → Y be a morphism of derived stacks locally of
finite presentation over k and assume that Y is equipped with an n-shifted Poisson
structure π. The space of coisotropic structures on f relative to π is the fiber

Cois(f, π) := P(n+1,n)(f
∗
P)×Pn+1(f∗

DR(PY (∞))) {Pπ
Y,f}.

A coisotropic structure on f relative to π is an element in π0 Cois(f, π).

In other words, a coisotropic structure on f : X → Y consists of the datum
of a DXDR

(∞)-linear Pn-algebra structure on PX(∞) (the target of f∗
P), together

with a suitably compatible structure of module over Pπ
Y,f (the source of f∗

P), inside

the ∞-category of DXDR
(∞)-linear graded mixed Pn-algebras on XDR.

Remark 2.42. This notion of coisotropic structure has the expected geometric
behavior:

(i) Using the other projection map P(n+1,n)(f
∗
P) → Pn(PX(∞)) (i.e. the

map keeping only the target of f∗
P ), and Theorem 2.37, we get that a

choice of a coisotropic structure on f : X → Y relative to an n-shifted
Poisson structure π on Y , tautologically induces an (n−1)-shifted Poisson
structure on the source X.

(ii) If πω is a non-degenerate Poisson structure corresponding to an n-shifted
symplectic structure ω on Y , then, keeping the notations of Definition
2.41, one expects a natural equivalence of spaces Lag(f, ω) ∼= Cois(f, π)nd

between the space of lagrangian structures on f (see Definition 1.13) and
the space of suitably non-degenerate coisotropic structures on f . This is
being investigated by Melani and Safronov (see [Me-Sa]).

(iii) The Lagrangian intersection theorem, Theorem 1.15 was recently extended
to the Poisson context in [Me-Sa]. Suppose (Y, π) be an n-shifted Poisson
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Artin stack locally of finite presentation over k. Let fi : Xi → Y , i = 1, 2
be maps of derived Artin stacks each endowed with coisotropic structures
relative to π. Then, Melani and Safronov prove that the derived fiber
product X1 ×Y X2 has a natural, induced (n − 1)-shifted Poisson struc-
ture such that the natural map X1 ×Y X2 → X1 ×X2 is a morphism of
(n − 1)-shifted Poisson stacks, where in the target X2 is endowed with
the (n − 1)-shifted Poisson structure from point (i) above, and X1 with
the corresponding opposite (n−1)-shifted Poisson structure (see [Me-Sa]
for details). A classical, i.e. 0-shifted, and purely cohomological pre-
cursor of this result was proved in [Gi-Ba]. Aside from its conceptual
significance, the coisotropic intersection theorem of [Me-Sa] has many
purely utilitarian corollaries. It allows us to extend the list of examples
at the end of Section 2.3, by providing many more examples of shifted
Poisson structures on moduli stacks, hence of moduli stacks admitting
natural deformation quantizations (see Section 3). For instance, recently
Spaide [Spa] applied coisotropic inersections to construct and characterize
shifted Poisson structures on moduli spaces of framed sheaves in arbitrary
dimension as well as on the moduli of monopoles.

3. Deformation quantization

Recall that for an ordinary smooth scheme X over k, a classical (unshifted)
Poisson structure π can be viewed as the infinitesimal to the deformation of OX

as a sheaf of associative algebras on X. According to the algebraic deformation
quantization results of Kontsevich [Ko1] and Yekutieli [Ye] every ordinary Poisson
scheme (X, π) admits a quantization as a stack of algebroids. That is we can always
find a stack of algebroids X defined over k[[�]] with (X mod �) = X and with infin-
itesimal π. Moreover [Ko1,Ye] all possible quantizations with a given infinitesimal
depend on a choice of a formality quasi-isomorphism (Drinfeld associator) and are
classified by deformation of (X, π) as a Poisson scheme over k[[�]]. In particular
the trivial Poisson deformation corresponding to the k[[�]]-linear Poisson bivector
� · π gives rise to a preferred quantization of (X, π). This preferred quantization
is Kontsevich’s canonical quantization, or in the case of a non-degenerate π is the
algebraic Fedosov canonical quantization of Bezrukavnikov-Kaledin [Bez-Ka].

In this section we discuss the extension of the deformation quantization problem
to shifted Poisson structures on derived Artin stacks. We argue that the canonical
n-shifted quantization always exists as long as n 
= 0 and again depends on the
choice of a Drinfeld associator. Ineterestingly enough the special case when n = 0
remains the hardest case and the best existing quantization results are still those of
[Ko1,Ye]. The natural question of extending the [Ko1,Ye] quantization of smooth
Poisson schemes to 0-shifted Poisson derived Artin stacks requires new ideas and
will not be treated here.

3.1. Weak and strong quantization. Informally, shifted Poisson structures
arise when we study deformations of X in which we allow only partial non com-
mutativity in the deformed product structure. More precisely, an n-shifted Poisson
structure can be viewed as the infinitesimal for deforming the commutative (= E∞)
algebra structure on PX(∞) to an En+1-algebra structure.
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To spell this out, recall that for n ≥ 1 the operad En of chains little n-
dimensional disks is a k-linear dg-operad which is given by the chain complexes
C•(FMn, k) of the Fulton-MacPherson’s topological operad FMn. By definition,
the space of operations of FMn labeled by a finite set I is the Fulton-MacPherson
compactified configuration space FMn(I) of I-labeled configurations of points in
Rn. For n ≥ 2 the Postnikov tower of the spaces FMn(I) induces a filtration of
En whose associated graded is the graded k-linear homology operad H•(FMn, k)
of FMn which is known to be the operad Pn controlling (n − 1)-shifted Poisson
algebras. We can now apply the Rees construction to the filtration on En to ob-
tain a dg-operad BDn (for Beilinson-Drinfeld) which is linear over k[h] and deforms
the filtered operad En to its associated graded Pn. This deformation makes sense
for n = 1 as well. In this case, E1 is the operad controlling associative algebra
structures. For every finite I, the k-module of operations E1(I) labeled by I is
the non-commutative polynomial algebra k〈xi|i ∈ I〉 which is naturally filtered
by monomial degree. The associated graded to this filtration is the commutative
polynomial algebra k[xi|i ∈ I] equipped with the induced Lie bracket, i.e. we have
grE1(I) = P1(I). Again applying the Rees construction to the filtration gives a
k[h]-linear operad BD1 which interpolates between E1 and P1. The difference be-
tween this case and the case n ≥ 2 is that P1 is not the homology of E1. In fact E1

is already formal and isomorphic to H•(FM1, k).
Nevertheless, for any n ≥ 1 we constructed a k[�]-linear dg-operad operad

BDn such that BDn ⊗k[�] k ∼= Pn and BDn ⊗k[�] k[�, �
−1] ∼= En[�, �

−1]. With this
in place, we are now ready to formulate the quantization problem in the shifted
setting. Suppose X is a derived Artin stack, locally of finite presentation over k.
We use again the notations from Section 2.2.2: M′

Ind is the ∞-category of prestacks
on dAffk/XDR with values in Ind(ε − dggr

k ), so that DXDR
(∞) ∈ CAlg(M′

Ind),
PX(∞) ∈ DXDR

(∞)/CAlg(M′
Ind), and we define MInd := DXDR

(∞)−ModM′
Ind

.
By Theorem 2.37 specifying an n-shifted Poisson structure π on X is equiv-

alent to specifying a PMInd,n+1-algebra structure on the Tate stack of principal
parts PX(∞), compatible with its given commutative DXDR

(∞)-algebra structure.
Suppose n ≥ 0, then we have two flavors of the quantization problem:

(strong quantization): Construct a DXDR
(∞)-linear BDn+1-algebra

structure on PX(∞)⊗ k[�], such that after tensoring with ⊗k[�]k we get
the Pn+1-structure given by π.

(weak quantization): Construct a BDn-monoidal structure on the∞-cate-
gory (Theorem 2.34, (1) and (4))

Perf(X)⊗k k[�] ∼= PX(∞)−Modperf
MInd

⊗k k[�]

which after ⊗k[�]k recovers the Pn-monoidal structure on PX(∞) −
Modperf

MInd
corresponding to π via Rozenblyum’s additivity theorem.

Remark 3.1. It is natural to expect that a solution to the strong quantiza-
tion problem yields a solution to the weak quantization problem by passing to the
category of perfect complexes over the BDn+1-algebra provided by the strong quan-
tization. For this to make sense we need a BD-version of the additivity theorem.
In other words we need to know that, for any k-linear presentable stable symmetric
monoidal ∞-category N , there exists a natural equivalence of ∞-categories:

(3.1) BDn+1 −AlgN
∼= Alg (BDn −AlgN )
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which specializes to Rozenblyum’s additivity at � = 0 and to Dunn-Lurie’s additiv-
ity from [LuHA, 5.1.2.2] at � = 1. Rozenblyum recently proved that the additivity
equivalence (3.1) exists and so to any the strong shifted quantization we can indeed
associate a weak shifted quantization.

Our main result in this setting is the following unobstructedness theorem

Theorem 3.2 ([CPTVV], Theorem 3.5.4). Let X be a derived Artin stack
locally of finite presentation over k, equipped with an n-shifted Poisson structure π.
If n > 0 then there is a canonical strong quantization.

The above theorem is analogous to the existence of canonical quantization for un-
shifted smooth schemes. In fact, at this stage, the proof of the theorem is almost
a tautology. Since the operad En+1 is formal and for n > 0 its homology is Pn+1,
we can choose a formality equivalence of k-dg-operads αn+1 : En+1 � Pn+1. The
map αn+1 induces an equivalence BDn+1 � Pn+1 ⊗k k[�] which is the identity mod
�. Therefore one can consider PX(∞)⊗k k[�] as a stack of DXDR

(∞)-linear graded
mixed BDn+1-algebras on XDR, and by construction this stack is a strong defor-
mation quantization of PX(∞).

By specializing the BDn+1-algebra structure at � = 1 we can then view PX(∞)
as a En+1-algebra in MInd. By [LuHA, 5.1.2.2 and 5.1.2.7], the ∞-category
PX(∞) − ModMInd

has an induced En-monoidal structure, and one checks that

its full sub-category PX(∞) − Modperf
MInd

inherits an En-monoidal structure that

we will denote by (PX(∞) − Modperf
MInd

)En, π. The subscript π indicates that the

En+1-algebra structure on PX(∞), hence the induced En-monoidal structure on

PX(∞)−Modperf
MInd

, depends on π, while the subscript En records the En-monoidal

structure. This is exactly the deformation of Perf(X) ∼= PX(∞)−Modperf
MInd

that
we were looking for. We record this fact in the following

Definition 3.3. With the notation above, and n > 0, the weak quantization
of X with infinitesimal π is the En-monoidal ∞-category

Perf(X, π) := (PX(∞)−Modperf
MInd

)En, π.

Quantization for n < 0. The quantization problem for n-shifted Poisson struc-
tures with n < 0 can be understood by looking at parameter spaces which are them-
selves dg schemes. Concretely, let n < 0 and let π be an n-shifted Poisson structure
on some derived stack X lfp over k. Let �2n a formal variable of cohomological
degree 2n, and consider the stack PX(∞)[�2n] of Ind-objects in graded k(∞)[�2n]-
linear mixed cdgas over XDR. Because of the homological shift it is equipped with
a k(∞)[�2n]-linear P1−n-structure, induced by �2n ·π (Theorem 2.37). Since n < 0,
this brings us back to the situation of positively shifted Poisson structures.

Proceeding as before, we choose a formality equivalence of k-dg-operads α1−n :
E1−n � P1−n, and thus view PX(∞)[�2n] as a k(∞)[�2n]-linear E1−n-algebra.
Again by using Dunn-Lurie’s additivity [LuHA, 5.1.2.2 and 5.1.2.7], the∞-category

PX(∞)−Modperf
MInd

comes equipped with an induced E−n-monoidal structure. We

will write (PX(∞) − Modperf
MInd

)E−n, π for this E−n-monoidal category. Thus for
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n < 0 we can define the weak quantization of X with infinitesimal π as the E−n-
monoidal ∞-category

Perf(X, π) := (PX(∞)−Modperf
MInd

)E−n, π.

As before, the underlying ∞-category of Perf(X, π) is Perf(X) ⊗k k[�2n] =:
Perf(X)[�2n]. Hence for n < 0 our weak quantization of X consists then of the
datum of a E−n-monoidal structure on Perf(X)[�2n], and by the strong version of
Rozenblyum’s additivity, such a quantization can be considered as a deformation of
the standard symmetric (i.e. E∞-) monoidal structure on Perf(X)[�2n]. Note that
this standard symmetric monoidal structure on Perf(X)[�2n] recovers the standard
symmetric monoidal structure on Perf(X) after base change along the canonical
map k[�2n] → k.

Remark 3.4. This quantization answers a conjecture of Kapustin [Kap, 3.2]
which concerns the n = −1 case. Note that Kapustin considers Z/2-graded derived
categories, and therefore the fact that we work over k[�2n] is immaterial: we really
obtain a quantization of the Z/2 perfect derived category of X, since Perf(X)[�2n]
and Perf(X) coincide after Z/2-periodization.

3.2. Examples and vistas.
(a) Quantization of moduli. The equivalence of shifted symplectic and non-
degenerate shifted Poisson structures from Theorem 2.40 combined with the n >
0 (or n < 0) quantization scheme described in the previous section provides a
canonical En-monoidal (or E−n-monoidal) deformation of the ∞-category of perfect
complexes on the various shifted symplectic moduli stacks listed at the end of
section 2.3. For example:

• For a derived Artin stack X locally of finite presentation we obtain a
canonical quantization of the shifted cotangent stack T ∗X[n] for n 
= 0.
The shifted cotangent stack T ∗X[n] has a natural n-shifted symplectic
form [Cal2]. If we denote the corresponding non-degenerate n-shifted
Poisson structure by πn, then the modules over the En-monoidal (or E−n-
monoidal) category Perf(T ∗X[n], πn) will be the modules over the n-
shifted differential operators on X.

• For a complex reductive group G we obtain canonical quantizations of:
– the derived stack RLocG(M) of G-local systems on a compact ori-

ented topological manifold M of dimension 
= 2;
– the derived stack RLocDR

G (X) of algebraic G-local systems on a
smooth complex projective variety X of dimension > 1;

– the derived stack RHiggsG(X) of algebraic G-Higgs bundles on a
smooth complex projective variety X of dimension > 1;

– the derived stack RBunG(X) of algebraic G-torsors on a smooth com-
pact Calabi-Yau variety X of dimension 
= 2.
Similarly we get quantizations of the stack of perfect complexes on a

compact oriented topological manifold M of dimension 
= 2, of the derived
stack of perfect complexes over XDR for a smooth complex projective
variety X of dimension > 1, of the derived stack of perfect complexes
of Higgs bundles on a smooth complex projective variety of dimension
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> 1, and on the derived stack of perfect complexes on a smooth compact
Calabi-Yau variety of dimension 
= 2.

• For a smooth compact Calabi-Yau dg category T of dimension 
= 2 we
get a canonical weak quantization of the derived moduli stack MT of
compact objects in T . For instance we can take T to be the category of
graded matrix factorizations of a cubic polynomial f in 3n variables with
n 
= 2. Applying the general quantization procedure to this setting we
get an (n − 2)-shifted quantization of the moduli stack of graded matrix
factorizations of f .

(b) Quantization formally at a point. Let (X, π) be an n-shifted Poisson
derived Artin stack locally of finite presentation and let x : ∗ = Spec k → X be a
closed point. It can be checked [CPTVV, Lemma 3.6.1] that any n-shifted Poisson

structure on X induces an n-shifted Poisson structure on the formal completion X̂x

at x.
As a (non-mixed) graded cdga over k, PX̂x

is equivalent to

Sym(L∗/X̂x
[−1]) ∼= Sym(x∗LX̂x

) ∼= Sym(x∗LX) .

We therefore get a graded mixed Pn+1-algebra structure on Sym(x∗LX), whose
underlying graded mixed cdgas is PX̂x

. After a choice of formality αn+1, we get

a graded mixed En+1-structure on Sym(x∗LX) whenever n > 0. When π is non-
degenerate at x and the induced n-shifted Poisson structure on PX̂x

is strict and

constant, then the graded mixed En+1-structure on Sym(x∗LX) can be described
explicitly in terms of Kontsevich’s graph complex [CPTVV, 3.6.1]. When the
underlying dg-Lie algebra is formal, the explicit formula then identifies the En+1-
structure on Sym(x∗LX) with the Weyl n-algebra recently introduced by Markarian
[Mar].

(c) Quantization of BG. Suppose G is an affine group scheme, and let X = BG
be the classifying stack of G. Note that XDR = B(GDR). Let x : ∗ → BG be
the classifying map of the unit e : ∗ → G. We have a fiber sequence of groups

Ĝe −→ G −→ GDR, and hence B̂Gx � B(Ĝe).
As we noted in (b) the pull-back of PX along xDR : ∗ → BGDR is PX̂x

. Thus
the symmetric monoidal ∞-category

Perf(BG) � PX −ModPerf
ε−dggr

is equivalent to the symmetric monoidal ∞-category of GDR-equivariant objects in

Perf(BĜe) � PX̂x
−ModPerf

ε−dggr .

In view of this the quantization of an n-shifted Poisson structure on BG will be de-
termined completely by the GDR-equivariant graded mixed En+1-algebra structure
on PX̂x

obtained from the equivalence αn+1 : Pn+1 � En+1.
This algebra structure can be analyzed in concrete terms. Before we look more

closely at the 1 and 2-shifted cases it is useful to observe that as a graded mixed

cdga over k the algebra PX̂x
� D(BĜe) admits an explicit description. Indeed, in

[CPTVV, 3.6.2] it is proven that D(BĜe) is actually equivalent to the Chevalley-
Eilenberg graded mixed cdga CE(g) of the Lie algebra g = Lie(G).
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The case n = 1 for G reductive. For a reductive group G the 1-shifted Poisson
structures on BG are simply elements in ∧3(g)G. If π is such an element, then
the induced 1-shifted Poisson structure on the graded mixed cdga CE(g) is given
explicitly as a semi-strict P2-structure (see [Me]): all structure 2-shifted polyvectors
are trivial except for the 3-ary one which is constant and given by π.

The weak 1-shifted deformation quantization in particular gives rise to a de-
formation of the category Repfd(g) of finite dimensional representation of g as a
monoidal category. For specific choices of π we recover familiar monoidal deforma-
tions:

Example 3.5. Given a non-degenerate invariant pairing 〈 , 〉 on g, we can
choose π as the dual of the G-invariant linear form

∧3
g −→ k, (x, y, z) 	−→ 〈x, [y, z]〉 .

Alternatively, any invariant symmetric 2-tensor t ∈ Sym2(g)G leads to such an

element π = [t1,2, t2,3] ∈ ∧3(g)G. In these cases the deformation of Repfd(g) as a
monoidal category can be obtained by means of a deformation of the associativity
constraint only (see [Dr1]), which then looks like

Φ = 1⊗3 + �2π + o(�2) ∈ U(g)⊗3[[�]] .

The case n = 2 for G reductive. For a reductive group G the equivalences classes
of 2-shifted Poisson structures on BG are in bijection with elements t ∈ Sym2(g)G.
The induced 2-shifted Poisson structure on the graded mixed cdga CE(g) is strict
and constant. The graded mixed E3-structure on CE(g) given by our deformation
quantization then takes the form of a Weyl 3-algebra, as described in [Mar].

Note that this graded mixed E3-structure is GDR-equivariant by construction,
so it leads to an E2-monoidal deformation of Perf(BG). This in particular leads to

a braided monoidal deformation of Repfd(g).
Such deformation quantizations of BG have already been constructed:

• when g is reductive and t is non-degenerate, by means of purely alge-
braic methods: the quantum group U�(g) is an explicit deformation of
the enveloping algebra U(g) as a quasi-triangular Hopf algebra.

• without any assumption, by Drinfeld [Dr2], using transcendental methods
similar to the ones that are crucial in the proof of the formality of E2.

It is known that Drinfeld’s quantization is equivalent to the quantum group one in
the semi-simple case (see e.g. [Ka] and references therein).

Remark 3.6. It is interesting to note that our quantization, in contrast to
Drinfeld’s, relies on the formality of E3 rather than on the formality of E2.

(d) Relative and absolute quantization. An important question that is not
addressed in this paper or in [CPTVV] is the question of quantizing lagrangian
structures on maps with shifted symplectic targets or quantizing coisotropic struc-
tures on maps with shifted Poisson targets. The quantization problem in this
relative stting can be formulated in a manner similar to the absolute quantization
from Section 3.1.

Suppose (Y, π) is an n-shifted derived Artin stack locally of finite presenta-
tion, and f : X → Y is a morphism of derived stacks furnished with a coisotropic
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structure κ relative to π. The ∞ categories Perf(X) and Perf(Y ) are symmet-
ric monoidal categories and via the pullback functor f∗ : Perf(Y ) → Perf(X)
the category Perf(X) becomes a module over Perf(Y ) so that its E∞-monoidal
structure becomes linear over the E∞-monoidal structure on Perf(Y ). In other
words f∗ makes Perf(X) is an E∞-algebra over Perf(Y ). Assume for simplicity
n > 0. Then the weak quantization of (Y, π) gives a deformation of Perf(Y ) to an
En-monoidal category Perf(Y, π). The weak quantization problem for f is to
find a concurrent deformation of Perf(X) as an algebra over Perf(Y ). In other
words, we need to deform Perf(X) to an En−1-monoidal category Perf(X,κ), so
that the functor f∗ deforms to a functor qf∗ : Perf(Y, π) → Perf(X,κ) exhibit-
ing Perf(X,κ) as a module, inside En−1-monoidal ∞-categories, over Perf(Y, π),
viewed as an E1-algebra in En−1-monoidal categories. Here again we use Dunn-
Lurie additivity [LuHA, §5.1.2] asserting the equivalence between E1-algberas in
En−1-algebras and En-algebras, in any base symmetric monoidal ∞-category.

Note that the extension from the absolute to the relative case is not tautological
as the swiss-cheese operad, which governs the deformations of pairs of an En algebra
and an En−1 module over it, is not formal. Nevertheless we expect that such relative
quantizations are again unobstructed for n > 0 and we are currently investigating
the problem.

Another interesting problem in this regard is the question of compatibility of
quantizations with our standard constructions. A simple instance of this goes as
follows. Suppose Y is an n-shifted symplectic derived stack (with n > 1) and sup-
pose f1 : X1 → Y and f2 : X2 → Y be two morphisms equipped with lagrangian
structures. The derived intersection Z = X1×h

Y X2 carries a natural (n−1)-shifted
symplectic form. We expect that the derived intersection persists in quantizations,
i.e. that absolute quantization of Z is the homotopy fiber product of the relative
quantizations of f1 and f2. More precisely, write π for the non-degenerate shifted
Poisson structure corresponding to the symplectic structure on Y and η for the in-
duced (n−1)-shifted non-degenerate Poisson structure on Z. Let κ2 ∈ π0Cois(f2, π)
be the non-degenerate coisotropic structure relative to π corresponding to the
lagrangian structure on f2, and let κ1 ∈ π0Cois(f1,−π) be the non-degenerate
coisotropic structure relative to −π corresponding to the lagrangian structure on f1.
Then Perf(X2, κ2) is an En−1-algebra over the En-algebra Perf(Y, π). Similarly
Perf(X1, κ1) is an En−1-algebra over the En-algebra Perf(Y,−π) or equivalently
Perf(X1, κ1) is an En−1-algebra over the opposite of the En-algebra Perf(Y, π).
Conjecturally the quantized En−1-monoidal category Perf(Z, η) is reconstructed
from the En−1-monoidal category Perf(X1, κ1)⊗Perf(Y,π) Perf(X2, κ2).

(e) Vistas. We conclude our paper by a short list of few other directions of
investigation, just to stimulate the reader’s interest.

First of all we would like to mention the proposal of [Cal, 4.2.2] for a cate-
gory of lagrangian correspondences Lagrn, based on Thm. 1.15. Roughly speaking
its objects are n-shifted symplectic stacks, and morphisms from X to Y are maps
L → X×Y equipped with lagrangian structures (whereX is considered with the op-
posite of the given symplectic structure). Some truncated versions of this category
were already considered in [Amo-BenB]. The details of a complete construction
of Lagrn as an ∞-category together with its natural symmetric monoidal struc-
ture remain to be written down, but we have no doubts that such a construction
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exists. This will be an important step toward the study of extended TQFT’s (as
in [LuTQFT]) with values in lagrangian correspondences. Building on Remark
2.42, one can imagine an analogous construction by replacing shifted symplectic
stacks with shifted Poisson stacks, and lagrangian correspondences with coisotropic
correspondences. Such a construction is currently being considered by Melani and
Safronov, and it might shed some light on Weinstein’s original proposal [We].

Another promising research program related to the topics treated in this review
is the one being pursued, since a few years, by D. Joyce and various collaborators.
As part of their project, they use shifted symplectic structures to study Donaldson-
Thomas moduli spaces of Calabi-Yau fourfolds, vanishing cycles, and various cate-
gorifications of Donaldson-Thomas invariants (see e.g. [BBDJS,Jo-Sa]).

The geometry of coisotropic structures for shifted Poisson structures is in a
very early stage of development, and a lot of new phenomena need to be properly
explored. Just to give one example, the identity map is always endowed with a
canonical coisotropic structure, and this produces a map from n-shifted Poisson
structures to (n−1)-shifted Poisson structures, which is worth investigating. If not
trivial, this could e.g. connect the n = 2 to the n = 1 examples of quantizations of
BG (c) above. More generally, having a definition of coisotropic structures that is
equivalent to Definition 2.41 but avoids reference to the additivity theorem, would
be very useful, especially in applications. Some important steps in this direction
have been done by P. Safronov [Saf1], and more recently by V. Melani and P.
Safronov [Me-Sa].

Finally, it would be interesting to have a version of Theorem 1.11 with target
Perf and a stratified topological space as a source. A possible way to include
the stratification in our theory is through the use of the MacPherson-Lurie exit
paths ∞-category [LuHA, A.6]. If this can be accomplished, then a corresponding
relative version, as in Remark 1.17, could be relevant for some ideas and conjectures
about moduli spaces of constructible sheaves with singular support in a legendrian
knot (see [STZ]). A promising preliminary step in this direction is the theory of
left and right Calabi-Yau structures on functors developed recently by Toën, and
Brav-Dyckerhoff ([To2, p. 228], [Br-Dy]).
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