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Abstract

Following the recent equivariant theory for Chow groups ([EG)),
we prove the statement in the title. This is a new proof of a result
already proved in [Pa]; there is some evidence that our method can be
extended to the case of PGL3 (at least over a field of characteristic

£2,3).
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In this paper the base field will be C but the results hold true over any
field k of characteristic # 2. We freely use the functorial point of view for
schemes and group schemes (e.g. [DG]) to be able to express maps, actions
etc. as sending ”elements to elements”. Throughout we follow the notations
of [Fu] and [EG].

We will prove the following result



Theorem 1 The Chow ring with integer coefficients of the classifying stack
of PGLyc is generated (as a ring) by c, (sly) and cz (sly).

Remark 1 Note that c; (sly) = 0 since det sl, is the trivial PG Ly -representation.
Moreover, slp is an autodual' PG Ly-representation so 2c3 (sly) = 0.

R. Pandharipande [Pa] has proved that actually A*(BPG Lyc) ~ Z [c3, c3] /(2¢3);
his proof makes use of the isomorphism PG Ly ¢ ~ SO3 ¢ therefore seems to
be hardly generalizable to the computation of A* (BPGL3c). The present
method of proof has some chances to carry over to that case.

Perhaps it is also worth mentioning that for any n, the classifying stack

BPG Ly is 1-isomorphic to the stack BS,, of Brauer-Severi schemes of type
P" (i.e. of twisted forms of P" for the étale or fppf topology: [Mi], [DG] or

[St]); therefore theorem1 gives generators for A* (BS;) too.
Proof.  First of all, by self-intersection formula ([Fu], p.103) we have a
ring isomorphism

Apcr,(sly) - A*(BPGL,)
Ctop(sl2) Cc3

Apg, (sl2\ {0}) ~

We will use the stratification method to determine generators for A%, 1, (sl2\ {0}).

Let U be the open subset of sly\ {0} consisting of matrices with distinct
(hence op'posite) eigenvalues and Z be the closed complement. There is a
short exact sequence of graded groups

AFO1 (Z) £ APS™2 (sl,\ {0}) —> AP (U) - 0. 1)

Z is an orbit of PG Ly (of Jordan canonical form (1) g )) hence Apgy,(Z) ~

A*(B(PGLy)z) where (PGLsy)y is "the” stabilizer of Z. (PG L)y is unipo-
tent so its classifying stack has trivial Chow ring

Apcr,(Z) ~ [Z]pgy, - Z  (concentrated in degree zero).

We now claim that ¢ is the zero map. To prove this, we must show that
[Z]pe1, is zero in Apgy, (slo\ {0}). Consider the flat PG Ly equivariant

For any semisimple algebraic group the adjoint representation is self dual because of
the nondegenerateness of the Killing form.



morphism det : sly\ {0} — A (A! as a trivial PG Ly-scheme); det™([{0}]) =
[det™ ({01)] 1y, = [Zlpor, in Apor, (s2\ {03). But [{0}] = 0in Apgy, (AT)
(for example, because {0} is the zero scheme of the invariant section  of the

equivariantly trivial line bundle on A'). So s = 0.

(1) then tells us that Abgy, (sle\ {0}) ~ Apgy, (U). So we are left to find
generators of the ring Apgy, (U).

Any M € U has stabilizer canonically isomorphic to the maximal torus

T={((1) 0)|aeG } G C PGIn.

Considering T acting on the right of PG Ly we have
PGL,

U =~ (Diag;"l,z ) /S

where Diag};, is the subset of sl; consisting of diagonal matrices with distinct
eigenvalues (so Diag}, ~ A'\ {0}) and S, left-acts on Diagj, by permuting

the diagonal entries and on E%Iﬂ as multiplication by o = (1) (1) ) on the
right (¢ = 1). This isomorphism is PG Ly-equivariant with PG L, acting on

the left of (Dz'a,g;‘12 ¥% %Iﬁ) /Sy as

g - [diag(\, ), [¢']] = [diag(X, 1), [9]] -

Since S, acts freely on Diag}, x £ and its action commutes with that of
PGL,, wehave A}, ((Diagslz X M2~) s .5’2) o Aoy oieam (Dz'ag312 X P—Gﬂ).
This is a general fact. Let G, H be algebraic groups having commuting ac-
tions on a scheme X and suppose G acts freely; if (V,0) is a ”good cou-

ple” for (H,i) ie. U is an open subset in the H-representation V with
codim(V\U) > 4, then we have

A (X /G) =~ (definition of equivariant Chow groups)
~ A <(~ g—) 2 H) ~ (the two actions commute)

12

A (((7 X X) 7Gx H) ~ (G x H acts freely and [EG], Prop. 8)
eus Ao, (X X (7) :



By the equivariant version of the fundamental exact sequence ([Fu], Prop.
1.8) for Chow groups, we have

i (X X 17) ~ Abn (X X 17)

for i — codim(V\U) < 0; for any G' x H-representation E we have a ring
isomorphism A%,y (X) =~ A&,y (X X E), so we conclude that

Al (X/G) = Agun (X)) -

Lemma 2 Let Ty ~ Sy x T be the normalizer in PG Ly of the mazimal torus
T — Q@,,; T, left-acte on Diag, by (o,t)-diag (A, u) = diag (u, A) (i.e. T acts

trivially). There is a canonical ring isomorphism Apgr,xs, (Dia,g;‘12 X f%z) ]
¥, (Diags,)-

Proof. Let Up be a free open subset of a representation Vp of PGLs X Sy
with complement of sufficiently high codimension. Since

1T ->Ty3—5—1

is exact, we have

Diagh, x 22 x Uy (Diagp, X PGLa x Uy e
PGL; x S, i PGL, e
Diagy, x Up Diag, % Up
~ — s Sy ~ L .

where T acts on Up via T — PGLy; — PGLy X S2 and 'y via 'y —
P GL2 X Sz. O

IfQ = Hx N and X is a G-scheme, then H acts on the stack [X/N]| hence
on the Chow ring A% (X); this can also be seen concretely on approximations
(for details see the forthcoming [V]).

In our case G = I'; and we have A} (Dz'ag;‘h) ~ A* (BT) since T' acts
trivially on Diagj;, which is open in Al

Lemma 3 There is a canonical ring isomorphism A, (Dz‘ag;h) ~ A* (BT)™.



Assuming the lemma for a moment we can conclude the proof of Theorem
1. In fact Sp acts on A* (BT) ~ Z[t] as o -t = —t and (as it will be shown in
the proof of the lemma) ¢y - —¢? via the isomorphism?

A*PGLQ (U) = A;z (Diag:lz) ~ A (BT)Sz ;

therefore ¢, is a generator of the ring A}, (U) =~ Apar, (slb\ {0}) as we
wanted.

Proof.  (of Lemma 3)
The (split) exact sequence
15T 5Ty -5 8 —1
indiicas ninll haal- et Tl ot P
* y £ 3 f * > * 8 * > *
Ar, (Dzagslg) — A (Dza’gslz) Ce Ar (Dmgs12)
A" (BT3) -5 A* (BT)* — A* (BT)
A* (BS,) -b A* (BT).

Consider the commutative diagram

s.
Ar, (Diag;"h) L AT (Dia!):lz) )
g T Tiso
A* (BT,) L, A (Bny™ (2)
a

At (BS;) < A*(BS,)
where g is induced via pull-back by the (I'y-equivariant) structural morphism
Diagg, — SpecC. Note that g is surjective because Diagy, is open in A,
Since the diagram,

A3, (Diagy,) —

Ay, (Diag,)

T g1
A;z (Diag:lz) Ar (BF2)
T ‘ LT
A* (BS,) < A*(BS)

2We often denote by the same letter a Chern class and any of its pull-backs. In this
case cz denotes both the second Chern class of sly in A* (BPGL3) and its pull-back to

Apar, (U).



(where Aj, (Diag:12) — Af, (Dz'ag;‘h> is induced by 'y —» Sy and AY, (Dz’ag:h) —
A" (BS,) by Diagl, — SpecC) is commutative and Diagy, / S is isomor-
phic to an open subset of Ay (by the Symmetric Functions’ Theorem), we
have that gol is zero in positive degrees. Moreover f is obviously an isomor-
phism in degree zero because Diag}, is irreducible. An easy diagram chasing
on (2) shows then that f is an isomorphism if:

(a) h is surjective and

(b) (ker h)" is generated by the image of [ 0.

To prove (a) consider the I'y-representation V = C? with (o,1) - (z,y) =
(ty,t 'z) and denote by Ay, A its Chern classes in A* (BI;). B : T Ty,
the induced T-representation V{,) has weights (1,—1) so ¢y (V(L)) = —t2in
A* (BT) ~ Z[t]. Therefore h()s) = —t* and since S, acts on A" (BT) as
0 -t = —t, h is surjective. So (a) is proved.

If we show that:

(by) A1 "comes” from A* (BS,) and
(ba) A1, A2 generate A* (Bl;) as a ring,

then (b) follows.
(by) is easy. Take W = C? the Sp-representation with o - (m,0) =y, %)
If 7 : Ty - Sy we have an induced I'y-representation W ) and by definition

lan(W))=a (W(,r)). But

1 (Wemy) = €1 (det W) = 1 (det V) = e (V) = M

since det Wiy ~ det V as I'y-representations. (b;) is proved.
(by) is less straightforward. Consider the induced action of Tyon P (V) ~
P!: by the equivariant projective bundle theorem ([EG] 3.3)

5 (P(V)) = A" (BT2) [ / (€ + Ml + )
where £ = ¢; (O(1)) € A}, (P (V). To obtain (by) it is then enough to show

that Af, (P (V)) is generated by £, A; and As.
There are two I's-orbits in P (V)

U = {[z,y] | #0, y #0} <> P(V)

open

7 ={0,1] =0, [1,0] =00} & P(V)

closed



with stabilizers I'pp ~ Sy X g (= stabilizer of [1,1]), Iy z = T. Therefore
we have an exact sequence of graded groups

Al (Z) 25 AT (P (V) 5 AR (U) - 0 (3)
and ring isomorphisms
A (Z)~ A*(BT)~2ft], A, (U)=A (B (Sg X pg)) -
By [To] p.19, we have a Kiinneth isomorphism

Zldo . Z[f]
Qz
a) - (20)
where a = ¢, (E) (resp. 3 = ¢; (W)) with E = C with ps-action € -z = €z
(tesp. witlh W as abuve).
Since the following diagram is commutative (3 : P (V) — SpecC)

A* (B (S2 % p2)) = A" (Bpa) @z A" (BSy) =~ v

8 P(V) 5 A, (U) > A" (Bu) @z A* (BS)
v 1 T1®id
A*(BTy) «— A*(BSy)

and we saw that [ (¢; (W)) = ¢; (V), we have i* (A;) = 8. Moreover i* (O(1))
is isomorphic to the pull-back via U’ — SpecC of the I'y-representation £ (S2
acting trivially) viewed as a [';-equivariant vector bundle on SpecC. Then
t* (£) = a.

Now let’s find generators for the ideal® im(j.) C Ap, (P(V)). By pro-
jection formula, the ideal im(j.) is generated by the image via j. of any set
of generators of Al? (Z') as an A}, (P (V))-module. Commutativity of the
(Tp-equivariant) diagram

7. iy P (V)

Z .
SpecC

shows that j*oy* = ¢*; so @* (0)-& = £-;4* (0), 0 € A* (BTy), & € A (7)),
where the product in Lh.s. is the ring product in A}, (Z') while on the r.h.s.

3im(j.) is an ideal by projection formula.

7



the product is in the A}, (P (V))-module A}? (Z'). It is easy to check that
©* (Ay) = —t2, therefore {1,t} generates AL2 (Z') as an Ay, (P (V))-module
and the ideal im(j,) is generated by j.(1) and j.(t). Let’s compute these two
push-forwards.
We have*
4, (Z = {0,00)) 3 1 = [ ay)]

where zy € T' (P (V) , O(2)) is T'y-invariant and regular; hence ([Fu] Example
3.2.16, p.61) 7. (1) = c1(O(2)) = 2¢.
To compute 7, (t) consider the following, general, transfer construction for
Chow groups®. Let
1-H-5G@—F-1

be an exact sequence of algebraic groups over a field k with F’ finite. If X is
an algebraic smooth G-scheme then p; : X X F' — X is proper G-equivariant
and there is an equivariant push-forward

p1et AS (X x F) — A (X).

If U is an open subset in a G-representation, with complement of sufficiently
high codimension then we have

XxF)xU  ((XxF)xU ..
—_5__"(__ﬁ—_>/F‘ )
X xU X xU
~ ( i XF)/FQ i

hence A (X x F) ~ A} (X) and py. induces a transfer morphism
tSfX : Ail (X) b Af (X) .

Remark 2 Note that if E — X is a G-equivariant vector bundle and Ey)

the induced H -equivariant vector bundle, Ey)yv = (E(¢) x U ) /H corresponds
to (piE)y = (PiE x U) /G via the isomorphism (4).

4Z(s) denotes the zero-scheme of a section s.
5] learned it from Angelo Vistoli; it is completely similar to the well-known construction
for ordinary group cohomology.




If f: X —Y is a flat G-equivariant morphism then there is a commuta-
tive diagram
* f* *
A5(¥) — A (X)
tsfy 1 Ttsfx (5)
a4y () L4 0
(but transfers are not ring morphisms).
Let us return to our proof. The relevance of transfer to us is in that

3o (t) = tsfpw) (t - [{0}]), where tsfpv) AT (P(V)) — AD2 (P(V)). In fact,

by commutativity of the I's-equivariant diagram

7' ={0,00} <>  P(V)x S

N / ;m
P(V)

where 6(0) = (0,1) and §(c0) = (00,0), we have ji = p1. 0 .. But
8. (1 = [{0,00}]) = [{0}] € Ap, (P(V) X 52),

and projection formula then yields j.(t) = tsfp(v) (t - [{0}]) (note that {0}
is a T-invariant subscheme of P(V)).

Now, {0} = Z (x) but z € T (P (V),O(1)) is not a T-invariant section®;
however it is semi-invariant ([SGA3] Exposé VIg, p. 406) with character
x T = Gy — Gy, : s — 8. Therefore if L,-1 denote the 1-dimensional
T-representation induced by the character x ! and p: P (V) — SpecC,

t=z®1el(P(V),01) ®p*Ly-1)

is a T-invariant regular section (note that p*L, -1 is trivial though not equiv-
ariantly trivial) and obviously Z (9:) = Z (z). Since ¢; (Ly-1) = —¢1(Ly) =
—t € A* (BT) ~ Z[t], we get

{0}] = [z (?c)] =1 (0() @ p' L) = 1 (O(1)) —er (L) = £~

6The coaction (see [GIT]) of I'(T,07) = C [s, s onT (P (V) ,O(1)) is in fact given
byz—z®s,y—y@s L




in AT (P(V))~Z ][] / (& —12)". So

ju(t) = tsfoqw (t - [{O})) = tsfeq) (= ). (6)

We now use property (5); hence we preliminarily compute the images of
1,t,t% via

tsfye : Ay (pt = SpecC) = A* (BT) ~ Z[t] — Ap, (pt) = A (BTy) .-

By projection formula

tsfpe (1 = [pt]) = p1e ([S2]) = p1s (P (1)) = 2

since p is finite of degree 2. To compute tsfy (t) we note that the inclusion
S, <5 Ty induces a pull-back v* : A* (BTy) — A” (BS,) which is an isomor-
phism in degree 1. In fact, by [EG] Th. 1, we have natural isomorphisms

A'(BTg) =~ Pic™ (pt)= {1-dim.] I‘epre?entations of P2},

iso
__ {1- dim.I representations of Sp}

Al (BS,) =~ Pic™(pt) =

180

and v* is defined at the level of representations by [L] — [L(U)]. Since mov =
idg,, v* is surjective in all degrees and it is enough to prove its injectivity in
degree 1: this follows immediately from the elementary observation that any
representation I'y — G L, factors through 7 : Iy — Ss.

Now, if U is an open subset in a I'p-representation, with complement of
sufficiently high codimension, we have a cartesian diagram

~UxS; ¥ UxS U
U=~=g e, T

!

¢l O ¢l

U 4

U U
S | DY

where ¢ is proper and 1 is flat. Hence ([Fu], Prop.1.7)

P 0@, (t) = ¥ otsfu (t) = @, 0¥ (t)

"We denote by the same symbol £ the Chern class of O (1) both in A, (P(V)) and in
A% (P(V)) since they correspond under pull-back.
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but ™ (t) € A} (U) = 0 s0 9* otsfy (t) = v* otsfp (t) = 0 and tsfy (t) =0,
v* being an isomorphism in degree 1.
tsfyt (t*) can be computed using Remark 2 and projection formula

tofp (£ = =2 (Vi) = —p1e (2 (B1V)) = ~2ha
Now we can come back to formula (6) and use property (5) to get

Ju(t) = tsfew,) (t - [{0}]) = tsfp) (tf - t2) = tsfpv) (t€) + 2As.

Again by Remark 2 and projection formula we get

tsfew) (t€) = c1 (O (1)) - tsfew) (t)
which is zero by property (5) because tsfy (t) = 0. Therefore we conclude
that 7.(t) = 2.
Referring back to (3) we summarize our computations as
Je(1) = 26, ju(t) =2
£ 0 = () =5
By (3) this in particular implies that Ay, (P (V')) is generated by £, A; and
Ag i.e. that (bg) holds. So the proof of lemma 3 is complete.
We conclude by showing, as promised, that c, — —t2 via the isomorphism

* * & * * s
Aper, (U) ~ Ay, (Dzagsh) ~ A* (BT)™*.
To begin with, we observe that the following diagram is commutative

Apcr, (\{0}) — Apgr, (U) = A4y, (Diag;“h)
T b

A" (BPGLlg) — AT (Bly) — A (B

and that the bottom row composition h o u is induced via pull-back by the
inclusion 3 : T < PG Ly. Choosing the usual basis

(o-(s 8 ) =0 0) =35}

of sly, an easy computation shows that (slz)(x) ~ Cp) @ C) ® C(-1) as
T-representations (where Cy,) denotes the 1-dimensional representation of

weight w). Hence h o u(c2) = c2 ((512)(,,)) = —t? as stated. Oom

11
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