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Introduction

These notes were written to meet the requests of some students who pointed out that the expo-
sition of the role of the cotangent complex in the Postnikov towers for simplicial commutative
algebras in [HAG-II] was too terse and needed some kind of unzipping.
We took also the opportunity to enlarge a little bit the context, by introducing square-zero ex-
tensions and their relation with infinitesimal extensions (i.e. those coming from derivations).
The idea is that infinitesimal extensions are captured by the cotangent complex, that square-
zero extensions are special infinitesimal extensions, and that the Postnikov tower of a simplicial
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commutative algebra is built out of square-zero extensions. We conclude the notes with two
applications: we give connectivity estimates for the cotangent complex and we show how ob-
structions can be seen as deformations over simplicial rings.
All the material is well-known to experts but details might be useful to people meeting these
topics for the first time. A similar path, in a broader and less elementary context, might be
found in [HA, §8.3, §8.4].

Acknowledgments. It is a pleasure for both of us to thank all the participants to the Sémi-
naire “Autour de la Géométrie Algébrique Dérivée 2013-2014” that took place at Paris 7 (Sophie
Germain): Pieter Belmans, Brice Le Grignou, Valerio Melani, Marco Robalo, Yohann Ségalat,
Pietro Vertechi. And to acknowledge the work done during the seminar (partially recorded at
http://www.math.jussieu.fr/∼vezzosi/seminar/), and all the interesting questions raised, some
of which were the motivation for the present notes.

Notational remarks. We denote by sAlgk the model category of simplicial commutative
k-algebras. All tensor products, unless differently stated, are implicitly derived.

1 Infinitesimal extensions

Infinitesimal extensions are defined by derived derivations:

Definition 1.1. Let A → B be a cofibrant A-algebra, M be a simplicial B-module and d ∈
π0(MapA/sAlgk/B

(B,B ⊕M [1])) be a derived derivation from B to M [1], represented by a map
d : B → B ⊕M [1] in A/sAlgk/B. If we denote by ϕd : LB/A → M [1] the map of B-modules
corresponding to d, the infinitesimal extension ψd : B⊕dM → B of B by M along d is the map
in Ho(A/sAlgk/B) defined by the following homotopy cartesian diagram in A/sAlgk

B ⊕dM

ψd

��

// B

0

��
B

d
// B ⊕M [1]

where 0 denotes the section corresponding to the trivial derived derivation 0: LB/A →M [1].

The appearance of M (instead of any shift of it) in the notation B⊕dM calls for an explanation.

Proposition 1.2. If ψd : B ⊕dM → B is an infinitesimal extension of B by M along d, then
the homotopy fiber of ψd at 0 is isomorphic to M in Ho(B-Mod).

Proof. Proposition A.5 shows that

hofibψd ≃ hofib(0: B → B ⊕M [1])

(where the fibres are taken over 0). In order to explicitly compute hofib(0) we observe that the
square

B
0 //

��

B ⊕M [1]

p

��
0 //M [1]

2

http://www.math.jussieu.fr/~vezzosi/seminar/


is homotopy cartesian: in fact, p is a fibration (being surjective) and every object is fibrant, so
that the statement follows from Corollary A.3 and from the fact that the previous diagram is
obviously a strict pullback. As consequence, the outer rectangle in

hofib 0 //

��

0

��
B

��

0 // B ⊕M [1]

��
0 //M [1]

is a homotopy pullback, so that

hofibψd ≃ hofib 0 ≃ Ω(M [1])

Now, M [1] =M ⊗A A[S
1] is the suspension of M and ΩΣ(M) ≃M by Corollary B.9.

2 Square-zero extensions

Definition 2.1. Let n ≥ 0. Let A ∈ sAlgk, B1 a cofibrant A-algebra, and I ⊆ πn(B1) a sub-
π0(B1)-module. A morphism of cofibrant A-algebras ϕ : B1 → B0 in A/sAlgk is a A-square-zero
extension by I[n] if the following conditions are met

1. B0 and B1 are n-truncated;

2. ϕ is an (n− 1)-equivalence of A-algebras;

3. For any n-truncated A-algebra E, the following diagram is homotopy cartesian

MapA/sAlgk
(B0, E)

��

Map(ϕ,E) // MapA/sAlgk
(B1, E)

��
[B1, E]0,I // [B1, E]

where [B1, E] denotes the set of homotopy classes of maps B1 → E, and [B1, E]0,I the
subset of [B1, E] consisting of those [f ] such that πn(f) is zero on I;

4. The canonical map πn(B1)→ πn(B0) is surjective with kernel I, i.e. πn(B1)/I ≃ πn(B0);

5. if n = 0 then I2 = 0 (classical case).

Remark 2.2. 1. Equivalently, we can define [B1, E]0,I as the following (homotopy) pullback
in sSet:

[B1, E]0,I //

��

[B1, E]

��
Homπ0(A)-Mod(πn(B1)/I, πn(E)) can

// Homπ0(A)-Mod(πn(B1), πn(E))

In fact, inspection reveals that the above diagram is a strict pullback. It is a homotopy
pullback because every object there is discrete, hence fibrant and, as consequence, the maps
are fibrations.
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2. For n = 0, and A = k we get back the classical definition of square-zero extension of
commutative k-algebras.

3. If B1 → B0 is an A−square-zero extension by I[n], then I is canonically a π0(B0)-module.
This follows from π0(B0) ≃ π0(B1), if n > 0, and is classical if n = 0 (since I2 = 0).

Lemma 2.3. If ϕ : B1 → B0 is a square-zero extension by I[n] in A/sAlgk, then hofibϕ is a
K(I, n)-space.

Proof. We have by definition a fibre sequence

hofibϕ→ B1
ϕ
−→ B0

in A-Mod (and therefore a fibre sequence of pointed simplicial sets). The long exact sequence
of homotopy groups shows then that

πm(hofibϕ) = 0

if m > n or m < n− 1. Moreover, for m = n− 1 we have

πn(B1) ։ πn(B0)→ πn−1(hofibϕ)→ πn−1(B1)
∼
→ πn−1(B0)

so that πn−1(hofibϕ) = 0. Finally, we have a short exact sequence

0→ πn(hofibϕ)→ πn(B1)→ πn(B0)→ 0

so that axiom 4. readily implies that

πn(hofibϕ) ≃ I

completing the proof.

Proposition 2.4. Let n ≥ 0, A ∈ sAlgk, ϕ : B1 → B0 and ϕ′ : B1 → B′
0 in A/sAlgk two

A-square-zero extensions by I[n] (I ⊆ πn(B1) a fixed sub-π0(B1)-module). Then there is an
isomorphism B0 ≃ B

′
0 in Ho(B1/sAlgk).

Proof. The mapping space axiom 3. tells us that the simplicial sets MapA/sAlgk
(B0, E) and

MapA/sAlgk
(B′

0, E) are isomorphic in Ho(sSet), for any n-truncated E ∈ A/sAlgk. In particular,
by taking E = B′

0, we get a map u : B0 → B′
0. Denote as (A/sAlgk)≤n the left Bousfield local-

ization of A/sAlgk with respect to the single map S := Sn+1 ⊗A[T ]→ A[T ], and denote the left
Quillen adjoint by τ≤n : A/sAlgk → (A/sAlgk)≤n. The fibrant objects in (A/sAlgk)≤n are the
S-local objects, i.e. n-truncated simplicial A-algebras. The homotopy category of (A/sAlgk)≤n
is identified as the full subcategory of Ho(A/sAlgk) consisting of n-truncated objects. Now, the
mapping space axiom (3) implies that, for any S-local object E ∈ sAlgk, the map

u∗ : MapA/sAlgk
(B0, E)→ MapA/sAlgk

(B′
0, E)

is an isomorphism in Ho(sSet), i.e. ([Hi], Prop. 3.5.3) u : B0 → B′
0 is an S-local equivalence. But

both B0 and B′
0 are S-local objects (being n-truncated), so we conclude that in fact u is a weak

equivalence in A/sAlgk (an S-local equivalence between S-local objects is a weak equivalence:
S-local Whitehead Theorem [Hi, Thm. 3.2.13]). How do we climb up to an equivalence of
B1/sAlgk? Simply observe that the isomorphism MapA/sAlgk

(B0, E) ≃ MapA/sAlgk
(B′

0, E) (in
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Ho(sSet)), from which we deduced the map u, in fact commutes (up to homotopy) with the
maps

MapA/sAlgk
(B0, E)

Map(ϕ,E) // MapA/sAlgk
(B1, E)

MapA/sAlgk
(B′

0, E)
Map(ϕ′,E) // MapA/sAlgk

(B1, E)

Therefore, we may choose u : B0 → B′
0 as a map in Ho(B1/sAlgk).

Let B1 → B0 be a square-zero extension by I[n]. We saw in Lemma 2.3 and in Proposition
2.4 that the sub-π0(B0)-module controls every information about the extension; in particular, the
homotopy fiber is determined and there are no two different square-zero extensions associated
to the same sub-π0(B0)-module. We are going now to show that every sub-π0(B0)-module
determines a square-zero extension:

Proposition 2.5. Let n ≥ 0. Given a cofibrant and n-truncated B1 ∈ A/sAlgk, and a sub-
π0(B1)-module I ⊆ πn(B1) (such that I2 = 0 if n = 0), there exists a square zero extension
B1 → B0 by I[n]. Moreover any other such extension B1 → B′

0 is isomorphic to B1 → B0 in
Ho(B1/sAlgk).

Proof. The uniqueness statement is Proposition 2.4, so that we are left to prove the existence.
The idea of the proof is to construct B0 as “B1/I” (i.e. to kill I inside B1) and then to take
the n-truncation as an A-algebra. To begin with, let us consider I as an A-module (via A →
π0(A)→ π0(B1)); the category A-Mod being monoidal model we have a canonical identification

HomHo(A-Mod)(I, πn(B1)) ≃ HomHo(A-Mod)(I[n], B1)

so that the inclusion I ⊆ πn(B1) induces a map of A-modules I[n] → B1 (because in A-Mod

every object is fibrant, hence maps in the homotopy category can be represented in A-Mod).
At this point, we obtain by adjuntion an induced map of A-algebras

SymA(I[n])→ B1

Define a new object B̃0 via the following pushout square in A/sAlgk:

SymA(I[n])

��

0 // A

��

B1
// B̃0

where the map 0 is induced by the zero map of A-modules I[n] → A. Finally, introduce B0 :=

τ≤nB̃0. B0 comes equipped with a canonical map

ϕ : B1 → B̃0 → τ≤nB̃0 = B0

We claim that ϕ is the square-zero extension by I[n] we were looking for. Let us check that the
conditions of Definition 2.1:

1. B1 is n-truncated by hypothesis, while B0 is n-truncated by construction;
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2. in order to show that ϕ is an (n − 1)-equivalence of A-algebras, and that the canonical
map πn(B0) → πn(B1) induces an isomorphism πn(B1)/I ≃ πn(B0), we use the spectral
sequence of [Q, Theorem II.6.b]. Set first of all R∗ := π∗(SymA(I[n])), so that the spectral
sequence reads off as:

E2
pq = TorR∗

p (π∗B1, π∗A)q ⇒ πp+q(B̃0)

Let C•∗ → π∗B1 be a flat resolution of π∗B1 as a graded∗ R∗-module, so that

TorR∗
p (π∗B1, π∗A)q = Hp((C•∗ ⊗R∗ π∗A)q)

Let us compute the degree q part of C•∗ ⊗R∗ π∗A:

(C•∗ ⊗R∗ π∗A)q = {xij ⊗ yk | xij ∈ Cij, yk ∈ πkA, j + k = q}

for q ≤ n.

• If q < n, then k < n and there are elements ỹk ∈ Rk ≃ πkA mapping to yk, so that

{xij⊗yk | xij ∈ Cij , yk ∈ πkA, j+k = q} = {ỹkxij⊗1 | xij ∈ Cij , ỹk ∈ Rk, j+k = q}

and therefore
(C•∗ ⊗R∗ π∗A)q ≃ C•q, for 0 ≤ q < n

• If q = n, for j > 0 (hence k < n) we still have

xij ⊗ yk = ỹkxi,0 ⊗ 1

while for j = 0, since Rn ≃ πn(A)⊕ I, we get instead

xi0 ⊗ yn = (yn, 0) · xi,0 ⊗ 1 = (yn, ξ) · xi0 ⊗ 1

for any ξ ∈ I (and xi0 ∈ Ci0, yn ∈ πnA). Therefore

(C•∗ ⊗R∗ π∗A)n ≃ C•n/I · C•0,

where I · C•0 := {(0, ξ) · x•0 | ξ ∈ I ⊂ Rn, x•0 ∈ C•0}.

Therefore

TorR∗
p (π∗B1, π∗A)q =

{
Hp(C•q) = δp0 · πqB1 if 0 ≤ q < n

Hp(C•n/I · C•0) if q = n

Let us compute H0(C•n/I · C•0). Introduce first of all the ideal

J := I ⊕
⊕

q>n

Rq

so that, given any graded R∗-module M∗ we have

Mn/I ·M0 ≃ (M∗/J ·M∗)n ≃ (M∗ ⊗R∗ R∗/J)n

and now observe that we are given an exact sequence

C1,∗ → C0,∗ → π∗(B1)→ 0
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Tensoring with R∗/J preserves the right exactness, and taking the degree n part is obviously
an exact functor, so that we obtain an exact sequence

C1,n/I · C1,0 → C0,n/I · C0,0 → πn(C)/I → 0

which readily implies that
H0(C•n/I · C•0) ≃ πn(B1)/I

so the E2 page of our homological spectral sequence is first quadrant and drawing it we
obtain:

q = n πn(B1)/I

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

• • • • •

q = n− 1 πn−1(B1)/I

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

0 0 0 0 0

q = n− 2 πn−2(B1)/I

**❚❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

❚❚
❚❚

0 0 0 0 0

...

...

q = 0 π0(B1)/I 0 0 0 0 0

p = 0 p = 1 p = 2 p = 3 p = 4 . . .

Thus E∞
pq = E2

pq for 0 ≤ p+ q ≤ n, so that

πi(B̃1) =

{
πi(B1) if 0 ≤ i < n

πn(B1)/I if i = n

3. For any A-algebra E, the following diagram consists of homotopy cartesian squares

MapA/sAlgk
(B̃0, E)

��

Map(ϕ,E) // MapA/sAlgk
(B1, E)

��
MapA/sAlgk

(A,E) //

��

MapA/sAlgk
(SymA(I[n]), E)

��
[A,E] ≃ [τ≤nA⊕ I[n], E]0, I[n]

// [τ≤nA⊕ I[n], E] ≃ [A⊕ I[n], E]

7



(for the top square we use the homotopy pushout definition of B̃0 and the fact that

MapA/sAlgk
(B̃0, E) ≃ MapA/sAlgk

(B0 := τ≤nB̃0, E) since E is n-truncated; for the bot-
tom square we use that τ≤n(SymA(I[n])) ≃ τ≤n(A⊕ I[n]) ≃ τ≤n(A)⊕ I[n], and again the
hypothesis that E is n-truncated). To conclude it just remains to remark that the diagram
of sets

[B1, E]0,I

��

// [B1, E]

��
[A,E] // [A⊕ I[n], E]

is cartesian.

The following result will be useful later

Lemma 2.6. Let n ≥ 0, and ϕ : B1 → B0 in A/sAlgk a square-zero extension by I[n] (I ⊆

πn(B1) a fixed sub-π0(B1)-module). Let B̃1 be defined by the following pushout square in A/sAlgk

SymA(I[n])

��

0 // A

��

B1
// B̃0

where the map 0 is induced by the zero map of (π0A hence) A-modules I[n]→ A. Then

• there is a canonical isomorphism B0 ≃ τ≤nB̃0 in Ho(B1/sAlgk);

• there is a canonical isomorphism B̃0 ⊗B1
B0 ≃ SymB0

I[n+ 1] in Ho(B0/sAlgk).

Proof. The proof of the first assert is part of the proof of Proposition 2.5. Let us prove the second
part of the statement. We have the following ladder of homotopy pushouts in Ho(A/sAlgk):

SymA(I[n])

��

0 // A

��

B1

��

// B̃0

��

B̃0

��
B0

// B̃0 ⊗B1
B0

Now, by the upper homotopy cocartesian square, the composite SymA(I[n])→ B1 → B̃0 is iso-

morphic (in Ho(A/sAlgk)) to the composite SymA(I[n])
0 // A // B̃0 , so that the following

8



square

SymA(I[n])

0
��

0 // A

��

A

��
B0

// B̃0 ⊗B1
B0

is homotopy cocartesian as well. Therefore, if C is defined by the homotopy pushout

SymA(I[n])

0
��

0 // A

��
A // C

there is an induced homotopy pushout

A //

��

C

��

B0
// B̃0 ⊗B1

B0

Let us compute C. In order to do this, we observe that SymA : A-Mod → A/sAlgk is left
Quillen, hence it commutes with homotopy pushouts; since A ≃ SymA(0), we get that C ≃
SymA(P ), where P is defined by the homotopy pushout (in A-Mod)

I[n] //

��

0

��
0 // P

But, by definition of suspension functor in A-Mod, we have then that P ≃ ΣI[n] = I[n + 1].
Therefore C ≃ SymAI[n + 1].

Now, coming back to the homotopy pushout

A //

��

C

��

B0
// B̃0 ⊗B1

B0

and recalling the base change property of the functor Sym−, we conclude that there is a canonical

isomorphism B̃0 ⊗B1
B0 ≃ SymB0

I[n+ 1] in Ho(A/sAlgk). By tracing back the construction of
this isomorphism, we see that it is indeed an isomorphism in Ho(B0/sAlgk) (since the B0-algebra
structure comes in both cases from the bottom horizontal map of the pushout diagrams).

3 Any square-zero extension is an infinitesimal extension

Theorem 3.1. Let n ≥ 0, A ∈ sAlgk, and u : B1 → B0 in A/sAlgk a square-zero extension by
I[n] (I ⊆ πn(B1) a fixed sub-π0(B1)-module). Then there exists a derived A-derivation du of B0

into I[n+ 1], and an isomorphism B0 ⊕du I[n] ≃ B1 in Ho(A/sAlgk/B0). Moreover, such a du
is uniquely determined as a map in Ho(A/sAlgk/B0).
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Proof. Throughout the proof, recall our standing convention ⊗ ≡ ⊗L. Consider the fiber - cofiber
sequence of A-modules

I[n] // B1
u // B0 .

It induces a fiber - cofiber sequence

B1
u // B0

// I[n + 1] .

The idea is now to apply (−) ⊗B1
B0 to this sequence in order to obtain a split sequence; the

one of the B0-algebra structures on B0 ⊗B1
B0 will induce the zero derivation while the other

one will induce a derivation du such that B1 ≃ B0 ×B0⊕duI[n]
B0. Let us work this idea out.

The sequence of B0-modules

B0 ≃ B1 ⊗B1
B0

u⊗id // B0 ⊗B1
B0

// B0 ⊗B1
I[n+ 1]

is clearly split by the product map B0 ⊗B1
B0 → B0; therefore we get a canonical isomorphism

B0 ⊗B1
B0 ≃ B0 ⊕ (B0 ⊗B1

I[n+ 1])

in the homotopy category of B0-modules.
Let B̃0 := B1 ⊗SymAI[n]

A, and let γ : τ≤nB̃0 → B0 be the isomorphism of B1-algebras produced
by Lemma 2.6. Introduce the morphism

t : B̃0 → τ≤nB̃0
γ
−→ B0

and consider the induced map

θ := id⊗B1
t : B0 ⊗B1

B̃0 −→ B0 ⊗B1
B0

which is a map of B0-algebras, if we endow B0 ⊗B1
B0 with the B0-algebra structure given by

j1 : B0 → B0 ⊗B1
B0, b 7−→ b⊗ 1.

We claim that
τ≤n+1θ : τ≤n+1(B0 ⊗B1

B̃0) −→ τ≤n+1(B0 ⊗B1
B0)

is an isomorphism in Ho(B0/sAlgk). Let us prove this claim.
♦We compute how τ≤n+1θ acts on homotopy groups. Let us first compute πi(B0⊗B1

I[n+1])
by using the spectral sequence ([Q, II §6, Thm. 6.c])

πp(πq(B0)[0]⊗π0B1
I[n+ 1])⇒ πp+q(B0 ⊗B1

I[n+ 1]).

We have

πp(πq(B0)[0]⊗π0B1
I[n + 1]) =

{
πq(B0)⊗π0(B1) I if p = n+ 1

0 if p 6= n+ 1

so the spectral sequence degenerates, and we have for q = 0, p = n+ 1

πn+1(B0 ⊗B1
I[n+ 1]) = π0(B0)⊗π0(B1) I

Now, if n = 0 both B0 and B1 are discrete, B0 ≃ B1/I as B1-algebra and I2 = 0, so that

π0(B0)⊗π0(B1) I ≃ I/I
2 ≃ I

10



If, instead, n > 0, then π0(B1) ≃ π0(B0) and so

π0(B0)⊗π0(B1) I ≃ I

In conclusion we obtain

πi(B0 ⊗B1
I[n+ 1]) =





0 if i < n+ 1

I if i = n+ 1

πq(B)⊗ I if i = n+ 1 + q, q > 0

Since
B0 ⊗B1

B0 ≃ B0 ⊕ (B0 ⊗B1
I[n+ 1]),

we conclude that

πi(B0 ⊗B1
B0) =





πi(B0) if i < n+ 1

πn+1(B0)⊕ I if i = n+ 1

πi(B0)⊕ (πq(B)⊗ I) if i = n+ 1 + q, q > 0

On the other hand, by Lemma 2.6,

B0 ⊗B1
B̃0 ≃ SymB0

I[n+ 1] = B0 ⊕ I[n+ 1]⊕R

where R is (n+ 1)-connected (i.e. its πi’s vanish for i ≤ n+ 1), so that there is an isomorphism

τ≤n+1(B0 ⊗B1
B̃0) ≃ B0 ⊕ I[n+ 1]

in the homotopy category of B0-algebras.
The reader may check that the following diagram is commutative

B0 ⊗B1
B̃0

θ //

''❖❖
❖❖

❖❖
❖❖

❖❖
❖❖

❖
B0 ⊗B1

B0

ww♦♦♦
♦♦
♦♦
♦♦
♦♦
♦

B0 ⊕ I[n + 1]

This concludes our proof of the claim that τ≤n+1θ is an equivalence. ♦

So we have proved that

θ≤n+1 := τ≤n+1θ : τ≤n+1(B0 ⊗B1
B̃0) ≃ B0 ⊕ I[n + 1] −→ τ≤n+1(B0 ⊗B1

B0)

is an isomorphism in Ho(B0/sAlgk), and note that the B0-algebra structure on the lhs is given
by the map ϕ0 corresponding to the zero derivation. Now we can use the other B0-algebra
structure

j2 : B0 → B0 ⊗B1
B0, b 7−→ 1⊗ b,

to produce the derivation we are looking for. Let us define

ϕdu : B0 ≃ τ≤n+1B0

τ≤n+1j2// τ≤n+1(B0 ⊗B1
B0)

θ−1

≤n+1 // B0 ⊕ I[n+ 1]
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and observe that this is indeed a map in Ho(A/sAlgk/B), so it does correspond to a derived
derivation du : B0 → I[n+1] over A. Consider the corresponding infinitesimal extension defined
by the homotopy pushout

B0 ⊕du I[n]

ψdu

��

ψ′

// B0

ϕ0

��
B0 ϕdu

// B0 ⊕ I[n + 1]

and observe that, since the diagram

B1
u // B0

j1 //
j2

// B0 ⊗B1
B0

equalizes, the same is true for the diagram

B1
u // B0

j1 //
j2

// B0 ⊗B1
B0

// τ≤n(B0 ⊗B1
B0) ≃ B0 ⊕ I[n+ 1]

and therefore, by definition of ϕ0 (induced by j1) and ϕdu (induced by j2), the same is true for
the diagram

B1
u // B0

ϕ0 //
ϕdu

// B0 ⊕ I[n+ 1] .

So, we have an induced map
α : B1 → B0 ⊕du I[n]

in Ho(A/sAlgk/B0) (where B0 ⊕du I[n] is considered as an algebra over B0 via the map ψdu).
We are left to prove that α is an isomorphism. In order to do this, we will show that, in the

following commutative diagram whose lines are fiber sequences, the map β is a weak equivalence:

hofib(u) //

β

��

B1

α

��

u // B0

hofib(ψdu)
//

��

B0 ⊕du I[n]
ψdu //

ψ′

��

B0

ϕdu

��
hofib(ϕ0)

ϕ0 // B0
// B0 ⊕ I[n+ 1]

Proposition A.5 implies that the morphism

hofib(ψdu)→ hofib(ϕ0)

is a weak equivalence. Using the 2-out-of-3 property, it is sufficient to check that the composition

hofib(u)→ hofib(ψdu)→ hofib(ϕ0)

is a weak equivalence. The definition of α implies ψ′ ◦ α = u; moreover hofib(u) and hofib(ϕ0)
are (separately) isomorphic to I[n]. As consequence, it is sufficient to show that the left square
in the following diagram

I[n]
γ // B1

u

��

u // B0

ϕdu

��
I[n]

δ // B0
ϕ0 // B0 ⊕ I[n+ 1]

12



commutes in the homotopy category, where γ and δ denote the canonical morphisms

γ : I[n] ≃ hofib(u)→ B1, δ : I[n] ≃ hofib(ϕ0)→ B0

Recall from Proposition 1.2 that the morphism δ is obtained from the diagram

I[n]

0

%%

&&

δ

&&
B0

//

ϕ0

��

0

��
B0 ⊕ I[n+ 1] // I[n+ 1]

so that ϕ0◦δ ≃ 0 ≃ ϕ0◦u◦γ. Since ϕ0 is a section of the canonical projection B0⊕I[n+1]→ B0,
it is in particular a split mono; as consequence, its image in the homotopy category is a (split)
mono as well. We therefore get δ ≃ 0 ≃ u ◦ γ, completing the proof.

4 Application to Postnikov towers

Proposition 4.1. Let n ≥ 1, and C ∈ sAlgk. Then the n-th stage pn : C≤n → C≤n−1 of the
Postnikov tower is a A = k-square-zero extension by πn(C)[n].

Proof. Let us check that the conditions of Definition 2.1 are met for n ≥ 1 and I = πnC = πnC≤n.

1. Obviously C≤n and C≤n−1 are n-truncated;

2. By definition of Postnikov tower, pn is an (n− 1)-equivalence of simplicial k-algebras;

3. Using Remark 2.2.1 we are reduced to show that for any n-truncated k-algebra E the
following diagram is homotopy cartesian:

MapsAlgk
(C≤n−1, E)

��

Map(pn,E) // MapsAlgk
(C≤n, E)

��
0 // Homk−Mod(πnC, πnE)

The idea is to kill πn in C≤n in order to obtain a better description of C≤n−1. In order to
do so, consider the following homotopy pushout in sAlgk:

Symk(πn(C)[n])
a //

b
��

C≤n

��
k // D

where a is induced by the identity map πnC → πnC and b is induced by the zero map
πnC → k via the canonical identifications

HomsAlgk
(Symk(πn(C)[n]), E) ∼= Homk-Mod(πn(C)⊗k k[S

n], E)
∼= Homk-Mod(πn(C),Map(k[Sn], E)
∼= Homk-Mod(πn(C), π0Map(k[Sn], E)) (use Lemma B.1)
∼= Homk-Mod(πn(C), πn(E))

13



Assume for the moment that τ≤nD ≃ C≤n−1 in Ho(C≤n/sAlgk); in this case, for any
n-truncated object E in sAlgk, we get

MapsAlgk
(C≤n−1, E) ≃ MapsAlgk

(τ≤nD,E) ≃MapsAlgk
(D,E)

≃ MapsAlgk
(C≤n, E)×hMapsAlgk

(Symk(πn(C)[n]),E) MapsAlgk
(k,E)

but
MapsAlgk

(k,E) ≃ ∗

and

MapsAlgk
(Symk(πn(C)[n]), E) ≃ Mapk−Mod(πn(C)[n], E) ≃ Mapk−Mod(πnC, πnE)

Since πn(C) and πn(E) are discrete, it follows that Mapk-Mod(πnC, πnE) is discrete as
well, so that there is a weak equivalence:

Mapk-Mod(πnC, πnE) ≃ π0Mapk-Mod(πnC, πnE) = Homk-Mod(πnC, πnE)

completing the proof of this step.

4. The canonical map πn(C≤n)/I = 0→ πn(C≤n−1) = 0 is obviously an isomorphism.

Thus, we are left to show that there is a weak equivalence τ≤nD ≃ C≤n−1 in C≤n/sAlgk. To
prove this, we will be using the spectral sequence of [Q, Theorem II.6.b]. To begin with, set

R∗ := π∗(Symk(πn(C)[n]))

so that the spectral sequence reads

E2
p,q = TorR∗

p (π∗(C≤n), π∗(k))q ⇒ πp+q(D)

Choose a flat resolution C•∗ → π∗(C≤n) as R∗-module so that

TorR∗
p (π∗(C≤n), π∗(k))q = Hp((C•∗ ⊗R∗ π∗k)q)

Introduce the ideal
I :=

⊕

n≥1

Rn

Since

Rq =





k if q = 0

0 if 0 < q < n

πn(C) if q = n

it follows that
π∗k ≃ k ≃ R∗/I

and therefore
C•∗ ⊗R∗ k ≃ C•∗/IC•∗

In particular, being I a graded ideal, we get

(C•∗ ⊗R∗ k)q ≃ C•q/J
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where
J :=

⊕

i+j=q

IiC•j

As consequence we see that

C•q ⊗R∗ k =

{
C•q if q < n

C•q/πn(C) if q = n

Finally, this enables us to compute the second layer of the spectral sequence:

TorR∗
p (π∗(C≤n), k)q =

{
Hp(C•q) = δp0 · πqC≤n if 0 ≤ q < n

Hp(C•n/πn(C≤n)C•0) if q = n

In order to compute H0(C•n/πn(C≤n)C•0), we observe that by construction of C•∗, the sequence
of R∗-modules

C1∗ → C0∗ → π∗(C≤n)→ 0

is exact. Now, the functor − ⊗R∗ R∗/I is right exact and the operation of taking the degree n
of an R∗-modules defines obviously an exact functor

R∗-Mod→ R0-Mod

Applying these two functors to the previous exact sequence yields the new sequence

C1n/πn(C≤n)C1,0 → C0n/πn(C≤n)C0,0 → πn(C≤n)/πn(C)→ 0

which is still exact; in this way we obtain:

H0(C•n/πn(C≤n)C•0) ≃ πn(C≤n)/πn(C) = 0

We finally get

πq(D) =

{
πq(C≤n) if q < n

0 if q = n

Moreover, the map C≤n → D induces on the level of πq the map

H0(C•q → C•q ⊗R∗ k)

which is the identity if q < n. This shows that C≤n → D is an (n− 1)-equivalence.
At this point, consider the diagram

Symk(πn(C)[n])
a //

b
��

C≤n

�� pn

��

k //

ϕ ..

D

$$
C≤n−1
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In order to prove the existence of the dotted map, we have to show that pn ◦ a = ϕ ◦ b; by the
universal property of the symmetric algebra, this is equivalent to show that the following square
commutes:

πn(C)
id //

��

πn(C≤n)

��
πn(k) // πn(C≤n−1)

and since n ≥ 1 πn(k) = πn(C≤n−1) = 0, so that the last statement is trivially true.
The two-out-of-three property now shows that D → C≤n−1 is an (n − 1)-equivalence; since

applying πn we get πn(D) = πn(C≤n−1) = 0, it follows that the induced map

τ≤nD → C≤n−1

is an n-equivalence, hence an equivalence in C≤n/sAlgk by the local Whitehead theorem.

At this point we easily recover the important [HAG-II, Lemma 2.2.1.1]:

Corollary 4.2. Let A ∈ sAlgk be a simplicial algebra. For every n ≥ 1 there exists a unique
(derived) derivation

dn ∈ π0MapsAlgk/A≤n−1
(A≤n−1, A≤n−1 ⊕ πn(A)[n + 1])

such that the associated infinitesimal extension

A≤n−1 ⊕dn πn(A)[n]→ A≤n−1

is isomorphic in Ho(sAlgk/An−1) to

A≤n → A≤n−1

Proof. Proposition 4.1 implies that A≤n → A≤n−1 is a square-zero extension, so that the result
follows at once from Theorem 3.1.

Remark 4.3. In other words, Corollary 4.2 says that for every simplicial algebra A, the n-th
stage A≤n of its Postnikov decomposition is completely controlled by the (n−1)-th stage A≤n−1,
the homotopy group πn(A) and an element of kn ∈ [LA≤n−1

, πn(A)[n+1]] via the condition that
the following is a homotopy pullback diagram:

A≤n

pn

��

pn // A≤n−1

0

��
A≤n−1

kn // A≤n−1 ⊕ πn(A)[n + 1]

Such derived derivation kn is called the n-th Postnikov invariant of A.
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5 Connectivity estimates

Definition 5.1. Let n ∈ N. A simplicial module M is said to be n-connective if πiM = 0 for
every 0 ≤ i < n. A map of simplicial modules f : M → N is said to be n-connected if hofib(f)
is n-connective.

Proposition 5.2. Let A be a simplicial k-algebra and let M a m-connective A-module.

1. if N is a n-connective A-module, then M ⊗A N is (m+ n)-connective;

2. if f : A → B is a morphism of simplicial k-algebras such that π0(f) is an isomorphism,
then the map ϕ : M →M ⊗A B is a m-equivalence of simplicial A-modules.

Proof. We use the spectral sequence of [Q, II §6, Thm 6.b]. Write

R∗ := π∗(A)

so that the spectral sequence reads off as

TorR∗
p (π∗M,π∗N)q ⇒ πp+q(M ⊗A N)

We begin with the first statement. Choose a flat resolution C•∗ → π∗M and observe that we can
in fact choose Ci,j = 0 for j < m (just use the free resolutions given by the shifts of R∗). Then

TorR∗
p (π∗M,π∗N)q = Hp((C•∗ ⊗R∗ π∗N)q)

and
(C•∗ ⊗R∗ π∗N)q =

⊕

i+j=q

C•i ⊗R∗ πjN

Now, if q ≤ m+ n− 1 we have that necessarily i < m or j < n, so that

(C•∗ ⊗R∗ π∗N)q = 0

so that the spectral sequence degenerates yielding

πp(M ⊗A N) = 0

if p ≤ m+ n− 1.
We now turn to the second statement. Taking N = B and n = 0 we see that M ⊗A B is

m-connected, so that the map ϕ : M → M ⊗A B is forcily an (m − 1)-equivalence. We are left
to compute πm(ϕ). However, the same computations as above show that E2

0,m = E∞
0,m; since

π0(A) ≃ π0(B) it follows

(C•∗ ⊗R∗ π∗B)m = C•,m ⊗π0(A) π0B ≃ C•,m

which implies
πm(M ⊗A B) ≃ H0(C•,m ⊗R∗ π0B) ≃ H0(C•,m) ≃ πmM

Finally, we recall that the map πm(ϕ) : πmM → πm(M ⊗A B) can be computed as the 0-th
homology of the canonical map

C•,m → C•,m ⊗R∗ π0B

completing the proof.
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Corollary 5.3. Assume that k is of characteristic 0. Let A ∈ sAlgk and M ∈ A-Mod. If M
is n-connective (n > 0), then Symp

A(M) is (pn)-connective.

Proof. We may suppose that M is cofibrant, so that the derived tensor product and derived
symmetric powers are the usual underived ones. Since k is of characteristic 0, the canonical map
r : M⊗Ap → Symp

A(M) has a right inverse (the antisymmetrization map) i : Symp
A(M)→M⊗Ap

(i.e. r ◦ i is the identity of Symp
A(M)).

Now since M is n-connective, it follows from Prop. 5.2, that M⊗Ap is pn-connective. But
the composite

πi(Sym
p
A(M))

πi(i) // πi(M
⊗Ap)

πi(r) // πi(Sym
p
A(M))

is the identity, and therefore πi(Sym
p
A(M)) = 0 whenever πi(M

⊗Ap) = 0. Hence Symp
A(M) has

the same connectivity as M⊗Ap.

The proof of the following theorem is precisely the translation of the one given in [HA,
Theorem 8.4.3.12]. However, the exposition given there is crystal-clear and we could not to
improve it; as a consequence, we limit ourselves to sketch the outline of the proof.

Theorem 5.4. Let f : A → B be a morphism in sAlgk and Cf := hocofib(f) ∈ A-Mod its
homotopy cofiber. Then there exists a canonical map α : Cf ⊗A B → Lf in Ho(B −Mod), and
we have that α is (2n + 2)-connected if f is n-connected (n ∈ N).

Proof. Let L(f) : LA → LB be the canonical map induced by f , so that

Lf ≃ hocofib(L(f))

We have a canonical map
η : LB → Lf

corresponding to a derived derivation

dη : B → B ⊕ Lf

Observe that η ◦ L(f) is nullhomotopic; denote by ϕA0 the derivation associated to the null
morphism LA → Lf ; the equivalence of simplicial sets

MapA-Mod(LA,Lf ) ≃ MapsAlgk/A
(A,A⊕ Lf )

implies that the associated derivations, dL(f)◦η and ϕA0 lie in the same path component, i.e. they
are homotopic. Using the notations of Remark B.11 and Lemma B.13 we obtain

s(f, idLf
) ◦ dη◦L(f) = dη ◦ f, ϕB0 ◦ f = s(f, idLf

) ◦ ϕA0

where ϕB0 denotes the derivation associated to the null map LB → Lf . It follows now

dη ◦ f = s(f, idLf
) ◦ dη◦L(f) ≃ s(f, idLf

) ◦ ϕA0 = ϕB0 ◦ f

Let at this point ψη : B
η → B be the induced infinitesimal extension, defined by the homotopy

pullback

Bη ψ′

//

ψη

��

B

ϕB
0

��
B

dη
// B ⊕ Lf
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Since A is cofibrant over k, Corollary A.4 can be used to deduce the existence of a map f ′ : A→
Bη such that

f ′ ◦ ψη ≃ f

We obtain in this way a canonical map of A-modules

hocofib(f)→ hocofib(ψη)

which corresponds, under adjunction, to a canonical map

αf : hocofib(f)⊗A B → hocofib(ψη) ≃ hofib(ψη)[1] ≃ Lf

where the last isomorphism is due to Proposition 1.2. We are therefore left to show that αf is
(2n + 2)-connected 1.

The proof proceeds now in several steps. The strategy is to describe the map f as a finite
composition

f = fn+1 ◦ φn+1 ◦ . . . ◦ φ1

in such a way that αfn+1
and αφi are (2n+2)-connected for every i (plus some other conditions),

and then deduce the property from stability properties of the connectivity of construction asso-
ciating αf to f . Having outlined the strategy, we prefer to begin with these stability properties:

1. assume that h = gf ; if both f and g are (n − 1)-connected and moreover both αf and αg
are (2n + 2)-connected, then αh is (2n + 2)-connected. This is (almost) straightforward
after that one gives an appropriate estimate for the map M ⊗A N →M ⊗B N , which can
be found in [HA, Lemma 8.4.3.16], but which can also be obtained by the usual spectral
sequence of [Q, II §6, Thm 6.b] by carefully choosing flat resolutions;

2. assume that

A
f //

��

B

��
A′

f ′ // B′

is a pushout square. If αf is (2n + 2)-connected then αf ′ is (2n + 2)-connected. In fact,
the naturality of the construction of αf shows that we have a commutative diagram

hocofib(f)⊗A B

��

αf // Lf

��
hocofib(f ′)⊗A′ B′

αf ′ // Lf ′

and now we have isomorphisms (cfr. [HAG-II, Proposition 1.2.1.6.(2)] for the first one):

Lf ′ ≃ Lf ⊗B B
′, hocofib(f)⊗A B ⊗B B

′ ≃ hocofib(f)⊗A B
′

Moreover, the dual of Proposition A.5 implies hocofib(f) ≃ hocofib(f ′); under this isomor-
phism we obtain

hocofib(f)⊗A B
′ ≃ hocofib(f ′)⊗A′ B′

1The map αf can be constructed also using a small generalization of the beginning of the proof of Theorem

3.1. We leave the details to the interested reader.
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Since the functor −⊗A′ B′ preserves cofiber sequences, it preserves fiber sequences as well,
yielding

hofib(αf ′) ≃ hofib(αf )⊗B B
′

It is sufficient to apply now Proposition 5.2.(1) to deduce that if hofib(αf ) is (2n + 2)-
connected then the same holds true for hofib(αf ′);

3. for every n-connected k-module M , the map f : Symk(M) → k induced by the null map
M → k is (2n+2)-connected. To prove this one first observe that there is a fiber sequence

M → 0→ Lk/Symk(M)

(this is essentially the formal computation that can be found in [HA, Proposition 8.4.3.14]),
so that the codomain of αf is M [1]. Next, we observe that

hofib(f) ≃
⊕

i≥1

Symi(M)

so that
hocofib(f) ≃ hofib(f)[1] ≃

⊕

i≥1

Symi(M [1])

Finally, one checks directly that the composition

M [1] ≃ Sym1(M [1])[−1] →
⊕

i≥1

Symi(M [1])[−1]
αf
−→M [1]

is homotopic to the identity. This implies that

hofib(αf ) ≃
⊕

i≥2

Symi(M [1])

Since M [1] is (n+ 1)-connected, the result follows now from Corollary 5.3;

4. if f is (2n+2)-connected, then αf is (2n+2)-connected. Indeed, it is sufficient to observe
that both B⊗A hocofib(f) and Lf are (2n+2)-connective (the first thanks to Proposition
5.2.(1) and the second thanks to general properties of the cotangent complex - see for
example [HA, Lemma 8.4.3.17]).

As a second step, we will need to produce a suitable factorization of the morphism f : A → B.
Let M = hofib(f). Then we have a natural map Symk(M) → A induced by the universal
property of the symmetric algebra, which enables us to form the homotopy pushout square

Symk(M)

��

ψ1 // k

��
A

φ1 // A1

where ψ1 is the map corresponding to the null morphism M → k. This induces a morphism
f ′ : A′ → B such that f1 ◦ φ1 ≃ f ; the 2-out-of-3 property of (local) weak equivalences readily
implies that φ1 is an (n− 1)-equivalence. Then we claim that f1 is (n+1)-connected. In fact, if

I :=
⊕

i≥1

Symi(M)
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denotes the homotopy fiber of ψ, we obtain (using the fact that A⊗Symk(M) − preserves cofiber
sequences and hence fiber sequences) the following morphism of fiber sequences:

A⊗Symk(M) I

g

��

// A // A′

f1
��

M // A // B

which implies hocofib(f1) ≃ hocofib(g)[1]. Observe now that the composition

M ≃ Sym1
k(M)→ I → A⊗Symk(M) I

is a section of g. It follows therefore that hofib(g) ≃ hocofib(g)[−1] is a direct summand of
A ⊗Symk(M) I. We therefore see that it is sufficient to show that this tensor product is n-
connected. However, this follows at once from Proposition 5.2.(1) and Corollary 5.3.
We are finally ready to prove that αf is always (2n + 2)-connected. Using the second step we
can write f as a composition

f = fn+1 ◦ φn+1 ◦ . . . ◦ φ1

where fn+1 is (2n + 2)-connected. Using 4. and recalling that each of the maps φi is (n − 1)-
connected, we can use 1. to reduce ourselves to prove that αφi is (2n+2)-connected for every i.
However, this follows from 2. and 3.

Corollary 5.5. Let f : A→ B be a map in sAlgk, and n ∈ N.

1. If f is n-connected, then Lf is (n+ 1)-connective.

2. If Lf is (n+ 1)-connective and π0(f) is an isomorphism, then f is n-connected.

Proof. The first part is an immediate consequence of Theorem 5.4. In fact, using the notations of
that theorem, if f is n-connected, then Cf = hofib(f)[1] is (n+1)-connective and α : Cf ⊗AB →
Lf is (2n+2)-connected; moreover, Proposition 5.2.(1) implies that Cf ⊗AB is at least (n+1)-
connective; the long exact sequence associated to a cofiber sequence implies then that Lf is
n-connective.

Conversely, assume that π0(f) is an isomorphism. We will show that if f is not n-connected,
then Lf is not (n+1)-connective. We can assume that n is minimal with respect to this property,
so that f is (n − 1)-connected and πnCf 6= 0. Observe that A → B → Cf is a fiber - cofiber
sequence, and therefore π0(B) → π0(Cf ) is surjective. If π0(f) is an isomorphism, we obtain
π0(Cf ) = 0, so that n ≥ 1.

Since Cf is n-connected, the map

α : Cf ⊗A B → Lf

is (2n)-connected. Since 2n > n, it follows that

πn(Cf ⊗A B)→ πnLf

is an isomorphism. Moreover, since π0(A) ≃ π0(B) we can apply Proposition 5.2.(2) to conclude
that the map

πnCf → πn(Cf ⊗A B)

is an isomorphism as well. It follows that

πnLf ≃ πnCf 6= 0

completing the proof.
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Remark 5.6. 1. Note that the proof of Corollary 5.5 (1), shows a bit more than what is in
the statement. In the fiber sequence

Cf ⊗A B
α // Lf // hocofib(α),

we know that hocofib(α) is (2n + 3)-connective and that Cf ⊗A B is (n + 1)-connective.
Therefore we may also identify the first a priori non-zero homotopy group of Lf :

πn+1(Cf ⊗A B) ≃ πn+1(Lf )

(since 2n + 3 > n+ 2 for n ≥ 0). More generally, we have that the i-th homotopy groups
of Cf ⊗A B and Lf are isomorphic for any i < 2n + 2 (the interest of this remark grows
linearly with n).

2. It follows from the previous corollary that the relative cotangent complex Lπ0(A)/A is 1-
connective (i.e. πiLπ0(A)/A = 0 for i = 0, 1). So the same is true for Lt(X)/X where X is a
Deligne-Mumford derived stack and t(X) its truncation.

Corollary 5.7. For a morphism f : A→ B in sAlgk the following properties are equivalent

1. f is a weak equivalence

2. π0(f) : π0(A)→ π0(B) is an isomorphism, and Lf ≃ 0.

Proof. (1)⇒ (2) is obvious. From Corollary 5.5, we get that f is n-connected for any n ≥ 0, i.e.
it is a weak equivalence. So (2)⇒ (1).

6 An exercise in derived deformation theory

We want to explain how derived deformation theory fills the gaps in classical deformation theory,
by working out an explicit example of a very ‘classical’ deformation problem: the infinitesimal
deformations of a proper smooth scheme over k = C.

Since we work in characteristic zero, the reader might, in this §, switch from sAlgk to cdga
≤0
C

,
if he wishes to.

Let us recall that the object of study of classical (formal) deformation theory are reduced
functors

F : ArtC → Grpd →֒ sSet

(i.e. F (C) is weakly contractible). Here, ArtC denote the category of artinian C-algebras with
residue field isomorphic to C. For example, if F : AlgC → Grpd is a classical moduli problem
and ξ ∈ F (C) is a point, we can obtain a formal reduced functor by forming the homotopy
pullback

F̂ξ := F ×F (C) ξ

and then restricting it to ArtC; this is called the formal completion of F at ξ.
A classically well known moduli functor is given by

F : AlgC → Grpd

sending a C-algebra R into the groupoid of proper smooth morphisms

Y → Spec(R)
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and isomorphisms between them. In this case, if we fix a proper smooth scheme

ξ : X0 → Spec(C)

the corresponding homotopy base change F̂ξ is exactly the usual functor DefX0
. The following

properties are well known:

1. F̂ξ(C[t]/t
n+1) is the groupoid of n-th order infinitesimal deformations of ξ;

2. if ξ1 ∈ F̂ξ(C[ε]) is a first order deformation of ξ, then AutF̂ξ(C[ε])
(ξ1) ≃ H

0(X0, TX0
);

3. π0(F̂ξ(C[ε])) ≃ H
1(X0, TX0

);

4. if ξ1 is a first order deformation there exists an obstruction obs(ξ1) ∈ H
2(X0, TX0

) such
that obs(ξ1) = 0 if and only if ξ1 extends to a second order deformation.

The first three properties are really satisfactory, but not the fourth one. It raises two questions
:

1. how to interpret geometrically the entire H2(X0, TX0
) ?

2. how to identify intrinsically the space of all obstructions2 inside H2(X0, TX0
) ?

Derived deformation theory gives a more general perspective on the subject, and answers both
questions. It allows a natural interpretation of H2(X0, TX0

) as the group of derived deformations
i.e. (isomorphism classes of) deformations over a specific non-classical ring, and it identifies,
consequently, the obstructions space in a very natural way. Let’s work these answers out.

Define
F : sAlgC → sSet

sending a simplicial algebra A to the nerve of the category of proper smooth maps of derived
schemes

Y → RSpec(A)

and equivalences between them. It is clear that F is a derived enhancement of F , and it can be
shown that it preserves homotopy pullbacks. Introduce the full subcategory sArtC of sAlgC of
simplicial C-algebras A such that π0(A) ∈ ArtC; if we fix

ξ ∈ F (C) = F (C)

then we can, as above, form the derived completion of F at ξ by taking the homotopy pullback:

F̂ ξ := F ×hF (C) ξ

The following proposition answers to Question 1 above, by saying that the entire H2(X0, TX0
)

can be interpreted as a space of derived deformations.

Proposition 6.1. π0(F̂ ξ(C⊕ C[1])) ≃ H2(X0, TX0
).

2It can happen that every obstruction is trivial and H2(X0, TX0
) 6= 0. An example is given by a smooth

projective surface X0 ⊆ P
3
C of degree ≥ 6.
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Proof. First of all, F has a cotangent complex at ξ in the sense of [HAG-II, Definition 1.4.1.5]
and it can be shown that

TF,ξ ≃ RΓ(TX0
[1])

Using [HAG-II, Proposition 1.4.1.6] we obtain

LF,ξ ≃ T
∗
F,ξ ≃ RΓ(X0,LX0

[−1])

Therefore

π0(DerF (ξ;C[1])) ≃ π0(RHomC(LF ,ξ,C[1]))

≃ Ext0(LF,ξ,C[1])

= Ext1(LF,ξ,C)

= Ext0(LF,ξ[−1],C)

= TF,ξ[1] ≃ RΓ(X0,TX0
[2])

since X0 is smooth, we obtain TX0
≃ TX0

, so that

RΓ(X0,TX0
[2]) ≃ H2(X0, TX0

)

In conclusion

π0(F̂ ξ(C ⊕ C[1])) ≃ π0(hofib(F (C⊕ C[1])→ F (C), ξ))

≃ π0(DerF (ξ;C[1])) ≃ H
2(X0, TX0

)

Now that we have a derived deformation interpretation of H2(X0, TX0
) at hand, we can

proceed by answering Question 2 above. We begin by the following

Lemma 6.2. Let

I // A′
f // A

be a square zero extension of (augmented) artinian C-algebras (i.e. I2 = 0). Then there exist a
derivation d : A→ A⊕ I[1] and a homotopy cartesian diagram

A′ //

��

A

π◦d
��

C // C⊕ I[1]

where π : A⊕ I[1]→ C⊕ I[1] is the natural map induced by the augmentation A→ C.

Proof. Use Theorem 3.1 to deduce the existence of a derivation d : A→ A⊕ I[1] such that

A′ //

��

A

ϕ0

��
A

d // A⊕ I[1]
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is a homotopy pullback. We are left to show that

A

ϕ0

�� ��

// C

��
A⊕ I[1] // C⊕ I[1]

is a homotopy pullback. However, the map A⊕I[1]→ C⊕I[1] is a fibration, hence it is sufficient
to show that it is a pullback, and this is straightforward verification.

If in particular we take the square-zero extension A′ = C[s]/(s3)→ A = C[s]/(s2), we obtain
a homotopy pullback

C[s]/(s3) //

��

C[s]/(s2)

��
C // C⊕ C[1]

Using the fact that F̂ ξ is reduced and preserves pullbacks, we obtain a fiber sequence of pointed
simplicial sets

F̂ ξ(C[s]/(s
3))→ F̂ ξ(C[s]/(s

2))→ F̂ ξ(C⊕ C[1])

Then, Proposition 6.1 allows then to write the long exact sequence:

π0(F̂ ξ(C[s]/(s
3)))→ π0(F̂ ξ(C[s]/(s

2)))→ π0(F̂ ξ(C⊕ C[1])) ≃ H2(X0, TX0
)

of pointed sets (note that the middle and the rightmost ones are vector spaces). As a consequence,
we see that a first order deformation extends to a second order deformation if and only if its
image in H2(X0, TX0

) vanishes. In other words, the space Obs of all obstructions is given by the
image of the obstruction map

obs : π0(F̂ ξ(C[s]/(s
2)))→ π0(F̂ ξ(C⊕ C[1])) ≃ H2(X0, TX0

).

We have therefore answered Question 2, too.

Exercise. Extend the previous arguments to higher order infinitesimal deformations and ob-
structions.

A Homotopical nonsense

A.1 Homotopy pullbacks

The first technique we want to recall is how to compute homotopy pullbacks in a general model
category. Recall first of all the following result:

Proposition A.1. Let M be a right proper model category. If we have a diagram

X
g // Z Y

hoo

where at least one of g and h is a fibration, then the pullback X×ZY is naturally weakly equivalent
to the homotopy pullback.

Proof. See [Hi, Corollary 13.3.8].
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We can obtain a similar result for general model categories adding the hypothesis that every
object X, Y and Z is fibrant. To see this, recall first of all the following proposition:

Proposition A.2. Let M be a model category and let

A

��

u // X

p

��
B

w // Y

be a pullback. If p is a fibration and w is a weak equivalence between fibrant objects, then u is a
weak equivalence.

Proof. There is a simple argument due to Reedy (cfr. [Hi, Proposition 13.1.2]), but there is also
a more elaborate proof that avoid any lifting argument and therefore can be carried out in the
more general context of categories of fibrant objects (see [GJ, Proposition II.8.5]).

Corollary A.3. Let M be a model category. Suppose given a pullback diagram

A //

��

B

p

��
C // D

where B, C and D are fibrant objects and p is a fibration. Then the square is a homotopy
pullback.

Proof. The same proof of Proposition A.1 applies, because the only needed fact is the stability of
weak equivalences under pullback by fibrations, and this is guaranteed by Proposition A.2.

We conclude describing the “universal homotopy mapping property” of the pullback that
everyone could imagine (but for which we don’t have any written reference):

Corollary A.4. Let M be a model category and let

A

f ′

��

g′ // B

f
��

C g
// D

be a homotopy pullback in M. If X is a cofibrant object and α : X → B, β : X → C are morphisms
such that f ◦ α ≃ g ◦ β, then there is a map γ : X → A in the homotopy category of M such that
g′ ◦ γ ≃ α and f ′ ◦ γ ≃ β.

Proof. We can assume B,C and D to be fibrant and the maps f and g to be fibrations. In this
case, use the cofibrancy of X to choose a cylinder object

X ⊔X
(i0,i1)// Cyl(X)

w // X
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for X and a homotopy H : Cyl(X)→ D such that

X

i0
��

f◦α

��
Cyl(X)

H // D

X

i1

OO

g◦β

CC

commutes. The liftings in the diagrams

X
β //

i1
��

C

g

��
Cyl(X)

K1

;;

H
// D

, X
α //

i0
��

B

f

��
Cyl(X)

K2

;;

H
// D

exist because i0 and i1 are trivial cofibrations, while f and g are fibrations by assumption. In
particular we get

f ◦K2 = H = g ◦K1

which produces a unique map δ : X × I → A. Set

γ := δ ◦ i0

We therefore have
g′ ◦ γ = g′ ◦ δ ◦ i0 = K2 ◦ i0 = α

and
f ′ ◦ γ = f ′ ◦ δ ◦ i0 = K1 ◦ i0 ≃ K1 ◦ i1 = β

The uniqueness up to homotopy of γ is easily seen with a similar construction.

A.2 Homotopy fibres

Proposition A.5. Let M be a pointed model category and let

A
α //

f
��

B

g

��
C

β // D

be a given homotopy pullback. Then hofib f ≃ hofib g.

Proof. We can compute an explicit model for the homotopy pullback by replacing B, C and D
by fibrant objects and the maps g and β by fibrations. This means that we can assume from the
beginning that g and β are fibrations between fibrant objects. Then f is a fibration as well and
hofib f is defined to be the homotopy pullback

hofib f //

��

A

f

��
∗ // C
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Since C, ∗ and A are fibrant and f is a fibration it follows from Corollary A.3 that the (strict)
pullback of the maps ∗ → C ← A is an explicit model for the homotopy fiber. It follows that
the outer rectangle in

hofib f //

��

A

f

��

// B

g

��
∗ // C // D

is a pullback, hence (for the same reason as above) a homotopy pullback, showing that

hofib f ≃ hofib g

B Homotopy of Simplicial rings

B.1 Simplicial algebras

Throughout this section we will denote by k a fixed field and we will denote by sAlgk the
category of simplicial objects in Algk. The canonical adjunction

Symk : sSet ⇆ sAlgk : U

where U is the obvious forgetful functor satisfies the hypothesis of the transfer principle, so that
we can endow sAlgk with a model structure where

1. a map f : A→ B is a weak equivalence or a fibration if and only if the map U(f) is so;

2. a map f : A→ B is a cofibration if and only if it has the left lifting property with respect
to every trivial fibration.

We have a natural inclusion i : Algk → sAlgk which defines a reflective subcategory. In fact
one has the following:

Lemma B.1. The functor π0 : sAlgk → Algk is left adjoint to the inclusion functor i.

Proof. Let A be any simplicial k-algebra and consider the k-algebra π0(A). We clearly have a
morphism

ηA : A→ π0(A)

defined by sending an n-simplex a ∈ An into the path component of any of its vertices. The
compatibility with the sum and the product is a natural consequence of the fact that the face
maps of A are compatible with the algebra structure (i.e. dn : An → An−1 is a morphism of
k-algebras).

If B is any discrete k-algebra and ϕ : A → B is any morphism we immediately obtain a
morphism of k-algebras

π0(ϕ) : π0(A)→ π0(B) = B

which moreover satisfies π0(ϕ) ◦ ηA = ϕ. The uniqueness of π0(ϕ) is clear, hence it follows
that π0 ⊣ i by the standard characterization of the adjuctions via the universal property of the
unit.
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B.2 Modules over simplicial rings

Let A ∈ sAlgk be a fixed simplicial k-algebra. The category of (simplicial) A-modules, denoted
A-Mod inherits a model structure from sAlgk using the classical result that can be found in
[SS]. This category is naturally endowed with a forgetful functor

A-Mod→ sSet

which is right adjoint to
A[−] : sSet→ A-Mod

Definition B.2. Let A be a simplicial k-algebra. For every A-module M and any positive
integer n ≥ 0 set

M [n] :=M ⊗A A[S
n]

where Sn is a simplicial model for the n-sphere.

If M is an A-module, we can define its homotopy groups simply using the forgetful functor
to sSet. With this definition one immediately obtains the following lemma:

Lemma B.3. For any A-module M it holds

πn(N) ≃ π0MapA-Mod(A[S
n], N)

Proof. One has to observe that setting M ⊗ K := M ⊗A A[K] for any A-module M and any
simplicial set K define a tensor over sSet which is in fact part of a simplicial model structure
over A-Mod (see for example [Q, Chapter II.4]). It follows that

MapA-Mod(A[S
n], N) ≃ MapsSet(S

n, N)

and now the thesis follows by definition of πn(N).

Since A-Mod is a pointed model category, it follows that we can define a suspension and a
loop functor. More precisely, we consider the following definition:

Definition B.4. Let M be an A-module. The suspension of M is defined to be the homotopy
pushout

M //

��

0

��
0 // Σ(M)

We define the loop functor in a similar way:

Definition B.5. Let M be an A-module. The loop of M is defined to be the homotopy pullback

Ω(M) //

��

0

��
0 //M

With these definitions, we can prove that A-Mod is “almost stable”, in the sense that Σ is not
an equivalence, but ΩΣ(M) ≃ M for any simplicial module M . The result is essentially due to
Quillen, see [Q, Proposition II.6.1]. We will need a preliminary result on the form of cofibrations
of A-Mod.
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Definition B.6. A map f : M → N in A-Mod is said to be free if there are subsets Cq ⊂ Nq

for each q ∈ N such that:

1. η∗Cp ⊆ Cq whenever η : q→ p is a surjective monotone map;

2. for every q ∈ N the map (fq, gq) : Mq ⊕A[Cq]→ Nq is an isomorphism, where gq : A[Cq]→
Nq is the map induced by the inclusion Cq ⊆ Nq.

Remark B.7. A free morphism f : M → N in A-Mod is always degreewise injective. In fact,
Mq → ⊕A[Cq] is injective, so that fq : Mq → Nq is injective for each q ∈ N.

Proposition B.8. A morphism f : M → N in A-Mod is a cofibration if and only if it is a
retract of a free map. In particular, every cofibration in A-Mod is degreewise injective.

Proof. See [Q, Remark 4, page II.4.11] for a proof that every free map is a cofibration. The small
object argument can be used to show that every map f admits a factorization as f = pi, where
p is a trivial fibration and i is a free map. It follows that if f is a cofibration, then it is a retract
of a free map. The second statement follows at once, since the retract of an injective map is still
an injective map.

Corollary B.9. Let A be a simplicial k-algebra. Then for any A-module M there is a weak
equivalence ΩΣ(M) ≃M .

Proof. We have to show that if the square

M //

��

0

��
0 // N

is a homotopy pushout, then it is also a homotopy pullback. First of all, we can suppose without
loss of generality that M is a cofibrant object; next, we can replace the map M → 0 with a
cofibration j : M → D where D is weakly equivalent to 0. The dual of Corollary A.3 shows that
the pushout

M

��

j // D

p
��

0 // N ′

is an explicit model for the suspension of M . In other words, we have

Σ(M) ≃ N ′ := coker(j)

Now, N ′ and D are fibrant objects and p : D → N ′ is a surjective map, hence it is a fibration. It
follows again from Corollary A.3 that ker(p) is an explicit model for Ω(N ′). Since Proposition
B.8 implies that j is injective, we see that

M ≃ ker(j) ≃ ΩΣ(M)

completing the proof.
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B.3 Derived derivations and cotangent complex

Recall the following definition of derived derivation:

Definition B.10. Let A be a simplicial k-algebra and let B be an A-algebra. An A-derivation
of B with values in a B-module M is a section of B ⊕M → B, where B ⊕M is defined by
performing the classical square-zero extension degreewise.

Remark B.11. Fix two simplicial k-algebras A and C. The previous definition gives rise to a
bifunctor

s : A/sAlgk/B ×B-Mod→ A/sAlgk/B

defined by
s : (A→ C → B,M) 7→ C ⊕M

where M is thought as C-module by forgetting along the given map C → B.
We have also another functor

π : A/sAlgk/B ×B-Mod→ A/sAlgk/B

defined simply by
π : (A→ C → B,M) 7→ A→ C → B

Finally, we have a natural transformation p : s→ π which assigns to the pair (C,M) inA/sAlgk/B×
B-Mod the natural projection

C ⊕M → C

We will denote by abuse of notation this map pC (instead of pC,M ). These are easy checks left
to the reader.

The set of A-derivations of B into M is naturally endowed with a k-module structure, which
allows to define a functor

DerA(B,−) : B-Mod→ k-Mod

We can see this functor as the π0 of another, much more interesting functor

DerA(B,−) : B-Mod→ A-Mod

defined by
DerA(B,M) := MapA/sAlgk/B

(B,B ⊕M)

Lemma B.12. The functor DerA(B,−) is representable by a simplicial B-module LB/A. In
particular, it is a left Quillen functor.

Proof. Let Q(B) be a cofibrant replacement for B in the model category A/sAlgk. Define

LB/A := Ω1
Q(B)/A ⊗Q(B) B

where the construction of Ω1
Q(B)/A is meant to be performed degreewise. It can be checked that

LB/A is the desired representative (see for example [HAG-II, Chapter I.1]).
The second part of the statement follows from the fact that MapB(LB/A,−) is right adjoint

to − ⊗B LB/A and the fact that MapB(LB/A,−) respects fibrations and trivial fibrations (since
it is defined as the internal hom of sSet).
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Lemma B.13. Let f : A → B be a morphism of C-algebras and let g : M → N be a morphism
of B-module. Any commutative triangle of A-modules

LA/C

L(f)

��

u //M

g

��
LB/C v

// N

gives rise to a commutative diagram of C-algebras as follows:

A
du //

f
��

A⊕M

s(f,g)

��
B

dv // B ⊕N

where s(f, g) denotes the bifunctor of Remark B.11 and du, dv are the C-derivation induced by
the universal property of the cotangent complexes LA/C and LB/C .

Proof. Using the notations of Remark B.11, we see that du is a section of pA, and moreover
naturality yields

f ◦ pA = pB ◦ s(f, g)

Since pA is an epimorphism, we conclude that the equality

s(f, g) ◦ du = dv ◦ f

holds if and only if
s(f, g) ◦ du ◦ pA = dv ◦ f ◦ pA

and now this follows from the already stated properties.
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