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Amnon Neeman has noticed a serious error in the proof of [Ve-Vi–2, Theo-
rem 3.2]: the argument given does not yield a uniquely defined specializa-
tion map SpY , so that in particular compatibility with pullbacks does not
hold. This is due to the elementary fact, overlooked in [Ve-Vi–2], that if one
has a fiber sequence of spectra

E ��
f

E ′ ��
g

E ′′ ,

then a map h : E ′ → E such that h ◦ f is homotopic to zero, does induce
a map of spectra p : E ′′ → E, but this map is not unique, as it can be
modified by using any map E[1] → E (by adding to any given p the
composite E ′′ → E[1] → E). Of course if the nullhomotopy h ◦ f ∼ 0
is specified then this singles out a unique map p : E ′′ → E; but it is
not clear to the authors how to choose a homotopy; thus, they are unable
to define a specialization map in the generality claimed in the statement
of [Ve-Vi–2, Theorem 3.2]. Despite their inability, the authors are firmly
convinced that Theorem 3.2 holds, that is, that there exists a canonical
specialization homomorphism, compatible with pullbacks.

Fortunately, it is still possible to define the specialization homomor-
phisms for higher K-theory in a generality that is sufficient for the rest of
the paper: thus, all the results in Sects. 4, 5, 6 and 7, including the two
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main theorems, still hold unchanged. Also, Sect. 2 which is independent of
Sect. 3 where specializations were defined, remains unchanged.

In what follows we will work in the same setup as in the paper, to
which we refer for the unexplained notation. If Y is a closed subscheme of
a scheme X over a fixed base S, we denote by M0

Y X → P
1
S the deformation

to the normal bundle, as in [Ful, Chapter 5], and in the paper. We denote by
∞ the closed subscheme of P1

S that is the image of the section at infinity
S → P

1
S; the inverse image of ∞ in M0

Y X is the normal bundle NY X.
Assume that X is a regular noetherian algebraic space with the action

of a diagonalizable group G, Z a G-invariant regular Cartier divisor with
trivial normal bundle, i : Z ↪→ X and j : X \ Z ⊆ X the embeddings. The
composition

K∗(Z, G)
i∗−→ K∗(X, G)

i∗−→ K∗(Z, G)

is 0: if we assume that j∗ : K∗(X, G) → K∗(X \ Z, G) is surjective, then
we have an exact sequence

0 → K∗(Z, G)
i∗−→ K∗(X, G)

j∗−→ K∗(X \ Z, G) → 0;
hence the homomorphism i∗ : K∗(X, G) → K∗(Z, G) factors through
K∗(X \ Z, G), inducing a specialization ring homomorphism

SpX
Z : K∗(X \ Z, G) → K∗(Z, G).

If we restrict to K0, then surjectivity holds, and this is already in [SGA6,
X-Appendice, 7.10].

Recall that Xs is the regular subscheme of X where the stabilizers have
fixed dimension s, and that we have set Ms

def= M0
Xs

X≤s → P
1. Consider the

closed embedding Ns ⊆ Ms, whose complement is X≤s × A1. Looking at
the composition

X≤s × A1 ↪→ Ms → X≤s × P1 → X≤s

we see that the pullback K∗(Ms, G) → K∗(X≤s, G) along the embedding
X≤s = X≤s × {0} ↪→ X≤s × A1 ↪→ Ms is surjective. Consider now the
open embedding X≤t ⊆ X≤s (for s ≥ t): the pullback K∗(X≤s, G) →
K∗(X≤t, G) is also surjective, by K-rigidity (see [Ve-Vi–2, Sect. 4], par-
ticularly Definition 4.1, Propositions 4.3 and 4.6). From the commutative
diagram

K∗(Ms, G) �� ��

��

K∗(X≤s, G)

��
��

K∗(Ms,≤t, G) �� K∗(X≤t, G)
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we conclude that the restriction K∗(Ms,≤t, G) → K∗(X≤t, G) is surjective,
so we have an exact sequence

0 → K∗(Ns,≤t, G) → K∗(Ms,≤t, G) → K∗(X≤t, G) → 0.

This allows to define specialization maps

Sp≤t
X,s

def= SpMs,≤t
Ns,≤t

: K∗(X≤t, G) → K∗(Ns,≤t, G).

To define Spt
X,s consider the commutative diagram with exact rows

0 �� K∗(Xt, G) ��

��
�

�

�
K∗(X≤t, G) ��

��

Sp≤t
X,s

K∗(X≤t−1), G

��

Sp≤t−1
X,s

�� 0

0 �� K∗(Ns,t, G) �� K∗(Ns,≤t, G) �� K∗(Ns,≤t−1, G) �� 0

(the commutativity of the second square follows easily from functoriality
of pullbacks).

Definition 1. The specialization homomorphism

Spt
X,s : K∗(Xt, G) → K∗(Ns,t, G)

is the unique dotted arrow that fits in the diagram above.

These coincide with the usual specialization homomorphisms for K0.
This is clear for the Sp≤t

X.s. For Spt
X,s it follows from the fact the cartesian

diagram

Ns,t ��

��

Ms,t

��

Ns,≤t �� Ms,≤t

is Tor-independent (because both rows are regular embeddings of codimen-
sion 1), and from the following Lemma.

Lemma 1. If

X ′ ��
f ′

��

φ

Y ′

��

ψ

X ��
f

Y
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is a Tor-independent cartesian square of regular algebraic spaces with an
action of G, where f is a closed embedding. Then the diagram

K∗(X, G) ��
f∗

��

φ∗

K∗(Y, G)

��

ψ∗

K∗(X ′, G) ��
f ′∗ K∗(Y ′, G)

commutes.

The proof that starts at the bottom of p. 11 of [Ve-Vi–2] is general
enough.

Now we have to check compatibility of specializations.

Lemma 2. Denote by i the inclusion of Xt in X≤t and by i ′ that of Ns,t in
Ns,≤t . Then the diagram

K∗(X≤t, G) ��i∗

��

Sp≤t
X,s

K∗(Xt, G)

��

Spt
X,s

K∗(Ns,≤t, G) ��i′∗ K∗(Ns,t, G)

commutes.

Proof. By the definition of Spt
X,s, we need to check that

K∗(X≤t, G) ��i∗

��

Sp≤t
X,s

K∗(Xt, G) ��
i∗

��

Spt
X,s

K∗(X≤t, G)

��

Sp≤t
X,s

K∗(Ns,≤t, G) ��i′∗ K∗(Ns,t, G) ��
i′∗ K∗(Ns,≤t, G)

commutes. By the projection formula (see [Ve-Vi, Proposition A.5]) we see
that the group homomorphisms i∗i∗ and i ′∗i ′∗ are multiplications by

[i∗OXt ] ∈ K∗(X≤t, G) and [i∗ONs,t ] ∈ K∗(Ns,≤t, G)

respectively: so we have to prove that the diagram

K∗(X≤t, G) ��
·[i∗OXt ]

��

Sp≤t
X,s

K∗(X≤t, G)

��

Sp≤t
X,s

K∗(Ns,≤t, G) ��
·[i∗ONs,t ]

K∗(Ns,≤t, G)

commutes. Since Sp≤t
X,s is a ring homomorphism, this is equivalent to saying

that

Sp≤t
X,s[i∗OXt ] = [i∗ONs,t ] ∈ K0(Ns,≤t, G).
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But [i∗OXt ] is the restriction of [i∗OMs,t ] ∈ K0(Ms,≤t, G), so we have to
show that the restriction of [i∗OMs,t ] to Ns,≤t is [i∗ONs,t ]; and this follows
immediately from the fact that the square

Ns,t ��

��

Ms,t

��

Ns,≤t �� Ms,≤t

is cartesian and Tor-independent, by Lemma 1. ��
With this definition, and the compatibility property proved above, ev-

erything goes through in Sects. 4, 5 and 6. For the theory of Sect. 7 to work,
we need to define specialization maps

K∗(X(τ), G) → K∗(N(τ)
s , G)

when τ is a diagonalizable subgroup scheme of G and s is an integer with
s ≥ dim τ (see the bottom of p. 39).The cartesian diagram of embeddings

Xτ
s

��

��

Xτ

��

Xs
�� X

yields an embedding of G-spaces NXτ
s
Xτ ↪→ Ns; since τ acts trivially on

NXτ
s
Xτ we get an embedding NXτ

s
Xτ ↪→ Nτ

s .

Lemma 3. The embedding NXτ
s
Xτ ↪→ Nτ

s is an isomorphism.

Proof. Consider the natural closed embedding of deformations to the nor-
mal bundle

M0
Xτ

s
Xτ ↪→ (Ms)

τ;

generically, that is, over A1, they coincide. On the other hand it follows
from Proposition 3.6 in the paper that the inverse image of A1 in (Ms)

τ is
scheme-theoretically dense in (Ms)

τ , and this shows that this embedding is
an isomorphism. Since the fibers over ∞ of M0

Xτ
s
Xτ and (Ms)

τ are NXτ
s
Xτ

and Nτ
s respectively, this concludes the proof. ��

Now set t = dim τ , so that X(τ) def= Xτ
t . Then we get a specialization map

Spτ
X,s

def= Spt
Xτ ,s : K∗

(
Xτ

t , G
) = K∗(X(τ), G) → K∗

((
Nτ

s

)
t
, G

)

= K∗
(
N(τ)

s , G
)
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that is exactly what we want. This allows to define the specialization map

Spτ
X,σ : K∗

(
Xτ

t , G
) → K∗

(
N(τ)

σ , G
)

for any pair of dual cyclic subgroups σ and τ , with τ ≺ σ , as on p. 41
of the paper, by composing Spt

Xτ ,s with the restriction homomorphism
K∗(N(τ)

s , G) → K∗(N(τ)
σ , G). Note that X(τ) = Xτ≤t , N(τ)

s = (Nτ
s )≤t , and

Spτ
X,s can also be identified with Sp≤t

Xτ ,s; therefore Spτ
X,s and Spτ

X,σ are ring
homomorphisms.

Further corrections. Here we correct a few typos that we have noticed
since the publication of the article.

In the statement of Proposition 1.1, “scheme” should be replaced by
“algebraic space”.

The are several typos in the diagrams on p. 42:

(1)
∏

Sps−1
X,s should be replaced by Sps−1

X,s ,
(2) Spτ

X,s by
∏

Spτ
X,s,

(3) N(τ) by N(τ)
s and

(4) K∗(N(τ)
σ , G) by K∗(N(τ)

σ , G)τ

Finally, in the statement of Lemma 4.9, “linearly independent elements”
should read “pairwise linearly independent elements” (we owe this also to
Amnon Neeman).

Acknowledgements. We are very much in debt with Amnon Neeman who read our paper
carefully and kindly pointed out the problem to us.
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