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On the Chow ring of the classifying stack
of PGL3,C

By Gabriele Vezzosi at Bologna

Abstract. We compute generators for the Chow ring of the classifying space of
PGL; ¢ as defined by Totaro. We also find enough relations after inverting 3. We show that
this ring is not generated by Chern classes (this is the first example of this kind among
classical groups) and prove that Totaro’s refined cycle class map to a quotient of complex
cobordism of BPGLs, ¢ is surjective.

1. Introduction

Equivariant intersection theory is similar to Borel’s equivariant cohomology. The
common basic idea is simple. Let X be an algebraic scheme over a field k and let G be an
algebraic group acting on X. Since invariant cycles are often too few to get a full-fledged
intersection theory (e.g. to have a ring structure in smooth cases) we decide to enlarge this
class to include invariant cycles not only on X but on X x ¥V where V is any linear repre-
_ sentation of G. If k = C, equivariant cohomology can be defined along these lines and this
definition agrees with the usual one given using the classifying space of G.

In particular, we get a non trivial equivariant intersection theory A% = A(pt) on
pt = Speck which can be interpreted naturally as an intersection theory on the classifying
stack of the group in the same way as equivariant cohomology of a point is naturally
viewed as cohomology of the classifying space of the group.

Equivariant intersection theory (in the sense sketched above) was first defined by
Totaro in [25] for X = Spec k and then extended to general X by Edidin and Graham in [4].
Totaro himself ([25]) and Pandharipande ([18], [19]) computed A} in many interesting
cases, for example G = GL,, SL, (these two cases are trivial), O(n), SO(2n + 1) and SO(4).

Moreover, Totaro ([24], [25]) was able to define a remarkable refining of the classical
cycle map from the Chow ring to the cohomology ring. In particular, he proved that for
any complex algebraic group G, the equivariant version of the cycle class map

dlg : A% — H*(BG, Z),
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factors as

A% -, MU*(BG) @y Z— H*(BG, 2)

where MU*(BG) is the complex cobordism of the classifying space of G,
MU*(pt) = MU* = Z[x1,%2,X3, . . 4]

where degx; = —2i and Z is viewed as an MU*-module via the map sending each x; to
zero. He conjectured that, if MU*(BG) ®yy- Z is concentrated in even degrees, then clg is
an isomorphism.

The case G = PGL, is of particular interest. One reason is its connection with Brauer-
Severi varieties, whose Chow groups are quite mysterious (see [11] and [12] for some results
on codimension 2 cycles). Also, many parameter spaces of interest are quotients of free
actions of PGL,, so the calculation of Apg, would be a necessary first step to determine
the Chow ring of some of these spaces.

Unfortunately, the ring 435, for general # seems extremely difficult to compute. It is
a general principle that among all families of classical groups the series PGL,, is often the
hardest to study. Thus, for example, while the cohomology and the complex cobordism
ring of most classical groups have been determined, very little is known about the torsion
part in the cohomology of the classifying space of PGL, for n > 4. Of course, given how
much harder than cohomology the Chow ring usually is, this is not encouraging. On the
other hand, the cohomology with Z/3 coefficients of the classifying space of PGLj, as well
as its Brown-Peterson cohomology (relative to the prime 3) have been computed by Kono,
Mimura and Shimada ([13]) and by Kono and Yagita ([14]). -

. ’i’he ting Apg;, was first computed by Pandharipande ([18]) through the isomorphism
PGL; ~ SO(3). Pandharipande’s method does not seem to extend to PGL;.

In this paper we study Ap; . Our approach is completely different. The idea is that
the adjoint representation sl, of PGL, can be stratified, using Jordan canonical form, in
such a way that the equivariant Chow ring of each stratum is amenable to study. This
determines completely Apg;, ((27]) and works fairly well for n = 3 yielding generators of
Apy,- In principle this method could give generators fér Apgy, for any n, but the calcu-
lations become extremely involved as n grows. Moreover, as usual, the stratification
method is not very good for finding the relations. In the case n = 3, using also a recent
general result by Totaro (Th. 2.1), we find some of the relations in section 5, but unfortu-
nately we are not able to prove that our relations are $ufficient.

We also prove some properties of the cycle map and of Totaro’s refined cycle map. In
particular, we are able to prove that Apgy,, unlike A3, , is not generated by Chern classes
of representations, a result conjectured by Totaro in [25]. We have two proofs of this fact,
one (Th. 4.2), relying on results of [25], [13], [14], carries more informations on the cycle
and refined cycle maps while the other (Appendix) is self-contained not depending on
cohomological arguments.

Most of the results in this paper constitute the core of [27].
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Now we state the main results of this work in greater detail.
It is already clear “rationally”, that Chern classes of the adjoint representation alone

do not generate Ajg; .. So, if E is the standard representation of GLs, we also consider
Sym>E, the PGL;-representation defined by

[9] - (01 - 02 - v3) = detg™" (gv1 - gv2 - gv3).
We prove the following (Theorem 4.6):

Theorem 1.1. There exist elements p and x with degp = 4 and degy = 6, such that
Apcy, is generated by

{4 = 2¢5(sl3) — c2(SymE), c3(Sym>E), p, x, ¢s(sks), c3(sls) }.

The question of determining all the relations between this generators is hard. In this
direction, we can prove the following (Th. 5.1):

Proposition 1.2.  The generators above satisfy
3p = 3x = 3Cg(S13) = 0,

P* = c(sls),
3(27¢s(sks) — c3(Sym®E)* — 42%) = 0.

Moreover, if R* denotes the graded ring

Z[A, c3(Sym’E), p, 1, cs(sls), cs (s1s)]
R
where R is the ideal generated by the relations in Prop. 1.2 and degp =4, degy = 6, we
have (Theorem 5.3)
Theorem 1.3. The composition
R*— A}, —» MU*(BPGL3) @y Z

is surjective and its kernel is 3-torsion.

Note that this also proves that R* E] ~ Apgr, E] We also prove that while p is

nonzero in cohomology, x is zero in cohomology. Thus, by Remark 5.2, we also have
cl(y) = 0. Note that if one was able to prove that y # 0 then Totaro’s conjecture would be
false. However, despite many efforts, we still do not know whether y is zero or not.

By a result of Kono and Yagita ([13]), Totaro’s conjecture predicts that ¢l is actually
an isomorphism. We are able to show that the generator p of Theorem 1.1 is not in the
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Chern subring” of Apy, thus proving the following consequence of Totaro’s conjecture
(Theorem 4.2):

Theorem 1.4. Apg; . is not generated by Chern classes.
This same result is proved in the Appendix without using cohomology computations.

Conventions and notations. The word “scheme” will most of the time mean “alge-
braic scheme over a field k. In section 1, where we try to give some of the results in greater
generality, we will allow a different base scheme S and the finiteness conditions needed will

be properly specified.

We freely use the functorial point of view for schemes and group schemes (e.g. [2]) to
be able to express maps, actions etc. as sending “elements to elements”.

If 5 is a section of a vector bundle, we denote by Z(s) its zero schéme.

Algebraic groups over a field k will always be linear. If G is an algebraic group over a
field k, T (or simply 7 if no confusion is possible) denotes a maximal torus of G and T its
character group.

If ¢ : G — H is a morphism of algebraic groups over a field k and V' is a representa-
tion of H, we denote by ¥, or V(g the obvious associated G-representation.

If E denotes the standard GLs-representation, Sym>E becomes a PGLj-representa-
tion via

lg] - (v1 - v2 - v3) = detg~" (g1 - gv2 - gus).

Acknowledgments. I wish to thank my thesis advisor Angelo Vistoli for his friend-
ship, patience and constant attention to this work.

1 also wish to thank Burt Totaro for generous advice and for many illuminating dis-
cussions we had in Cambridge. Among other things, he also explained to me the argument
in Remark 5.2 and allowed me to include his still unpublished result Theorem 2.1. I hope
this paper shows all its debts to his deep and original work.

2. Basic notations ang results

In this section we mainly fix notations and collect some miscellaneous results on
equivariant Chow groups we will need in the sequel; most of them (with one possible
exception) are elementary or well known but we simply could not find proper references in
the literature. For intersection theory the standard reference is [6] while for equivariant
intersection theory we refer to [4] and [25].

1 Le. in the subring generated by Chern classes of representations.
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2.1. Equivariant intersection theory and Totaro’s refined cycle map. Let G be an
algebraic group over a field k and X a smooth? G-scheme. Edidin and Graham ([4]), fol-
lowing an idea of Totaro ([25]), defined a G-equivariant version, A%(X), of the Chow ring
A*(X). We will simply write 4 for AZ(Speck). As a rule, if we do not mention explicitly
the base field k, we are assuming k = C.

We say that a pair (U, V), consisting of a k-representation ¥ of G and an open subset
U of ¥ on which G acts freely, is a good pair (or simply a pair) relative to G if the codi-
mension of V\U has sufficiently high codimension (see [4], 2.2, Definition-Proposition 1).

All the basic properties and constructions (Chern classes, localization sequence,
proper pushforwards, Gysin maps, vector and projective bundle theorems, projection for-
{nu]a, self intersection formula, cycle class map, operational Chow groups etc.) of ordinary
intersection theory ([6]) have their equivariant counterparts. Moreover, there are additional

constructions one can do in the equivariant setting which simply do not exist in the ordi-
nary case, for example those related to morphisms of algebraic groups. If

9p:G— G
is a morphism of algebraic groups and X a G'-scheme (which we suppose smooth just
in orde1: to state each result for Chow rings), then X is a G-scheme via ¢ and if (U, V)
(respectively, (U’, V")) is a good pair relative to G (resp., relative to G'), we let G act on
VxV'as
g-(0,0)=(g9-v,7(g)-v'), geGuoeV,v' eV
and the projection
XxUxU —-XxU
induces a flat map
(X xUxU)/G— (X xU")/G.
Its pullback induces a restriction ring morphism
Ag(X) — AG(X)
denoted_ by ¢y (or by resg,' x if @ is injective). Note that the same construction made in the
top?loglcal case, defines the functoriality in G of the equivariant cohomology ring
Hi(X;Z).

Another construction which appears only in the equivariant setting is the following
transfer construction for Chow groups; we will frequently use it. Let 7

rEEL e

) We restrict our attention to smooth schemes for simplicity.
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be an exact sequence of algebraic groups over a field k, with F finite. If X is an a.lgeb‘raic
smooth G-scheme then p, : X x F — X is proper G-equivariant and there is an equivariant
push-forward

Pro s AS(X x F) — AS(X).

If (U, V) is a good pair for G, we have:

) (XxF)xUz((XxF)xU)/F

G H

XxU Xix U
- (G5 e) o532

hence A%(X x F) ~ A}(X) and p,, induces a transfer morphism of graded groups

@ tsff7 y : A (X) — 45(X),
which is natural in X with respect to pullbacks.

Observe that the pullback A%(X) — A}(X) has actually values in the F-invariant
subring of 45 (X) ([25])

resly : A5(X) — (45 ()"
In exactly the same way as for group cohomology (e.g. [1], Prop. 9.5), we have
tsf y o resg y = (#F)
(by projection formula) and, since H is normal in G,
3) (resf y o tsrg,x)u,q,(x))’ = (#F)-
If we do not restrict to (A (X ))F, we get

) resg yotsfg 4 (&) = 3 fié
SfeF

for any ¢ in A% (X).

Remark 2.1. For a general action of G on X, the quotient [X/G] exists only as an
Artin stack® ([15]). Edidin and Graham ([4], 5.3, Prop. 16, 17) showed that if # is a quo-
tient Artin stack # =~ [X/G], then the corresponding equivariant Chow groups do not
depend on the presentation chosen for the quotient, enabling one to define A5(X) to be the
(integral) Chow group of the stack #. If moreover & is smooth, there is a ring structure on
this Chow group and this applies to the classifying stack 2G of any algebraic group G

3 Not necessarily separated.

Vezzosi, Chow ring of the classifying stack of PGL3 ¢ 7
([15]), viewed as the quotient [pt/G],
AL = A*(BG).

Theorem 2.1 (Gottlieb; Totaro). Let G be an algebraic group over C, T a maximal
torus of G and Ng(T) its normalizer in G. The restriction maps

(3 AG = AXy(ry»
(6) H*(BG,Z) — H*(BNg(T),Z)
are injective.
Proof. (6) is proved in [7]. We sketch the proof of (5) from [26]. If f: Y — Bisa

smooth proper morphism of relative dimension r between smooth, separated schemes of
finite type over k, let us consider the following “modified” pushforward

f3(@) = fo 0 (cr(T7) - o) € 47(S)

for any o € A/(B), where J; denotes the relative tangent bundle; by projection formula, we
have

@] Sy o =x(F)
where y(F) denotes the Euler characteristic of “the fiber” of f (equal to the degree of the
top Chern class of its tangent bundle). Now, let g : X — B be a smooth morphism between

smooth schemes over a field k£ which admits a smooth relative compactification

X <
N

by —

having divisors with normal crossing {D;},_; _, as complement (smooth over B). If
Dy = D;n D,
Dy = D; n D; N Dy, etc., the previous construction yields modified pushforwards
fo: @) - a3, P Q4'(D) - 4°(B), e DA (DY)~ A(B)....
i
satisfying (7). If x € A*(X), lift it to some X € A*(X) and set
04() = /3 () = S ) + TS o) =+ ;

(alternating sum) which is an element in 4 *'(B). This can be shown to be independent on the
choice of the lifting and (7) holds for g by well-known properties of the Euler characteristic.
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To prove (5), apply this construction to any approximation of the G/Ng(7T)-torsor
BNg(T) — BG

recalling that x(G/Ng(T)) = 1. Note that this proof works over any algebraically closed
fieldk. O

In [25], Totaro proved the remarkable fact that, if G is a complex algebraic group, the
cycle map

clag : A% — H*(BG, Z)
factors as
®) A3 2%, MU*(BG) @+ Z 25 H*(BG, 2),

where MU*(BG) is the complex cobordism ring of BG ([23]) and clg; is the natural
morphism (since

MU* = MU*(pt) = Z[x1,x2, . .., Xn, - . ]

with deg x; = —2i, here Z is viewed as an MU*-module via the map sending each generator
x; to zero). We call clgg Totaro’s refined cycle map for G. The kernel and cokernel of clggs
clge and clgg are torsion.

In [25], Totaro conjectures that if G is a complex algebraic group such that
MU*(BG), localized at some prime p, is concentrated in even degrees, then the p-
localization of clpg should be an isomorphism. As a consequence of this conjecture, Apcr,
should not be generated by Chern classes since, by [14], MU*(BPGLs) is concentrated in
even degrees but not generated by Chern classes. This consequence of Totaro’s conjecture
will be proved in section 4 (see also the Appendix for a different proof).

Remark 2.2. Voevodsky ([28], [29]) defined an algebraic cobordism for an algebraic
scheme over an arbitrary field k, so it would be interesting to investigate if there exists
a generalization of Totaro’s refined cycle map with values in (a quotient of) algebraic
cobordism, for any algebraic group G over k. As M. Levine suggested to me, one may
also ask more generally if Totaro’s refined cycle map extends to a map from the entire
motivic cohomology to algebraic cobordism.

2.2. Miscellaneous results.

Proposition 2.2. Let k be algebraically closed. The pullback

Ape1,, ®Q— 4y, ®Q
is an isomorphism.

Proof. By [5], Th. 1 (c),

4;@Q~sym,(H" @ Q= (A" ®Q

5 -
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for any connected reductive algebraic group G with maximal torus 7 and Weyl group W
and Sym,(7)” ® Q is the same for a group G and a quotient of G by a finite central
subgroup. [

Remark 2.3. Let S be a locally noetherian base scheme. Since Aut(P3) ~ PGL,1,s
as group-functors, for any S ([2] or [17], p. 20-21), the category of Brauer-Severi schemes
([16], p. 134) of relative dimension » over X for the étale (or fppf) topology is equivalent to
that of PGL,-torsors over X for the same topology and this equivalence actually extends
to a l-isomorphism of %, s with the classifying stack Z(PGL,.1,s), where 4%, s denotes
the stack over S whose fibre category over X/S is the category of Brauer-Severi schemes of
relative dimension » over X. Under this 1-isomorphism trivial® Brauer-Severi schemes
correspond to PGL,;-torsors induced by GL,-torsors.

Proposition 2.3. Let k be algebraically closed. Then ker(dpg, , — Agy,,) is n-
torsion.

Proof. By Prop. 2.2, our kernel is torsion and so it is enough to prove that
ker(p* :AI:‘GLM = A(‘}L,.,k)
is annihilated by », AEL,., £ being torsion free.
By [25], Th. 1.3 or [5], Th. 1, for any reductive algebraic group G, A can be identi-

fied with the ring €, of characteristic classes for (étale) G-torsors over smooth, separated
schemes of finite type over k. Via this identification p* translates to

P":%ieL,, — CoL,.

E P
FHp‘(F):(l)n—»F(l)
X p 4

where Pz — X is the PGL, s-torsor associated to P(E) — X, E — X being the vector
bundle associated to the GL, x-torsor E — X and slightly abusing notation in the argu-
ment of F

p'F=0& F(P(E) - X) =0, VE — X vector bundle of rk 7.
Now we use the 1-isomorphism of stacks Z(PGL x) ~ #%-1,k (Remark 2.3). If
f:P>X
is a PGL,, x-torsor and f: P — X the associated Brauer-Severi scheme, the base change of f

via f is a PGL, y-torsor induced by a GL, x-torsor. Since y(P}~") = n, formula (7) in the
proof of Theorem 2.1 yields

4 Le. of the form P(E) — X for some vector bundle E over X.
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(1) erre(§) -rofr(1)) -

(by projection formula) if p*F =0. [
Corollary 2.4. Aggy,, has only n-torsion.

We conclude this section collecting some elementary results on equivariant Chow
groups we will use in the sequel.

Proposition 2.5. 4, =~ Z[1]/(ne).
Proof. From Kummer exact sequence
Vol it AN el
for any N > 0 we get a Gy, x-torsor

AP0} | AP0} _
e G,k k

whose associated line bundle is just wp:V(_n). By [8], Remark p. 4-35, we get

A.(Aﬁ“\m}) o AR
Hon e (c1(Gpn(-m)))

which implies the assert for N > 0. [

Proposition 2.6. If G is a unipotent algebraic group over a field k of characteristic
zero, then AL ~ 7.

Proof. Since G is unipotent it has a central composition series
G=GD>GD>G> - PG=1

such that Gi/Giy1 ~ Gar ([2], IV, §2, 2.5 (vii)). We proceed by induction on the length n of
the composition series.

If n=1, G~Ggy; if Uis a G-free open subset of a G-representation such that
n:U— U/G is a (fppf or étale) G-torsor then = is a Zariski G-torsor (G, x being special,
[21]) and in particular a Zariski affine bundle with fiber A} so that z* is an isomorphism
(8, p. 4-35).

Suppose the assert true for any unipotent group whose centrél composition series has
length <n. If G is unipotent with a central decomposition series

G=GD>GP>GD - DGu=1
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then G is unipotent ([2], IV, §2, 2.3) and we have a short exact sequence
126G = G- G/G~Ggi — 1.

Therefore, if U is a G-free open subset of a G-representation which has a G-torsor quotient
U— U/G,

U/G, — U/G

isa G/Gi = G, ;-torsor. As in case n = 1, the pullback is an isomorphism 4§ ~ 4, and
we conclude since Gy has a central decomposition series of length n. [

Proposition 2.7. Let
©) 12H—>G2G,—1
o

be a split exact sequence of algebraic groups over a field k of characteristic zero, with H
unipotent. Then the pullback

pidg, = Ag
is an isomorphism.

Proof. Let U be a G-free open subset of a G-representation with complement of
sufficiently high codimension and with a G-torsor quotient U — U/G. Then

U/H - U/G

is a Gp,-torsor which corresponds to some line bundle L over U/G and by [8], Remark
p. 4-35,

A*(U/G)
A*(U/H) ~ —+—=.

(U/H) o@D
Since A ~ Z, by Proposition (2.6), A is then generated by ¢;(L). But the pullback
Zlu) ~ Ag, , — Ag sends u to c;(L), therefore p* is surjective. Injectivity follows from the
hypothesis that (9) is split. [J

Proposition 2.8. If G is an algebraic group over k, then Ay, , ~ AL ® Ag_,.

Proof.  Straightforward using (AY*1\{0}, AM*!) as a good pair for Gk, N » 0,
and [6], Example 8.3.7. [

Proposition 2.9. Let G be an algebraic group over k. If H is a closed algebraic sub-
group of G, then there is a canonical isomorphism AL(G/H) ~ Ay

Proof. Straightforward. [
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Proposition 2.10. Let G be an algebraic group over a field k and X a smooth G-
scheme. If U = A}, is an open subscheme with the trivial G-action, the pull-back

pry : Ag(X) ~ A5(U x X)
is an isomorphism.
Proof. Since G acts trivially on U, we can reduce to the case of trivial G. By [6],
Prop. 1.9, the pull back via A} x X — X is surjective and so is prj by the localization exact
sequence ([6], Prop. 1.8).

If & is infinite then pr, has always a section so that pr; is injective. If & is finite, let
p e U be a closed point with 7 = [k(p) : k]. From the commutative diagram -

UxX

A

pXX—Tb X

and projection formula we get that ker(pr3) is r-torsion. Now observe that we can always
find two closed points p and p’ in U with residue fields of relatively prime degrees r and r’
over k, so that ker(pr;) is indeed zero. [

Proposition 2.11. Let G,H be algebraic groups having commuting actions on a
smooth scheme X and suppose G acts freely. Then there is a canonical isomorphism

Ay(X/G) = Ageu(X)-

Proof. If (U, V) is a good pair for H, with codim(¥\U) > i, we have

A(X/G) =~ A*‘((U x %)/H)

~A((Ux X)/Gx H) ~ AL, y(X x U),
by [4], Prop. 8. By the localization sequence,
AGn(X x U) = 4G, (X x V)
for i < codim(¥\U) and we conlude since for any G x H-representation E, we have a
pullback ring isomorphism 4, ,(X) ~ A%, x(X x E). O
3. Generators for Apg;,

From now on, our base field will be C.

By Prop. 2.2, we have
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Aper, ® Q> 45, ® Q = Q[ea(E), c3(E)]
(E = standard representation of SL3) and an easy computation shows that c3(E) is not in
the image of the subring of A3, ® Q generated by the Chern classes of sl;. Therefore the
Chern classes of the adjoint representation will certainly not suffice to generate Apgr,-

In this section we find generators of A3,  (Prop. 3.12) by stratifying the adjoint
representation sl3 using Jordan canonical forms.

Let G be a complex algebraic group. For our purposes a finite G-stratification of a G-
scheme X will be a collection {X;},_, , of disjoint smooth G-invariant subschemes, whose
union is X and such that for each i the natural immersion

JiXioX\U X = X°
k>i

is closed. In particular, X, is a closed subscheme of X, each X; is topologically a locally
closed subspace of X and all the maps

X1=XlL>X2‘—>X3‘—+---HX"_IHX"‘—'X

are open immersions. Any stratification {X;},_, , gives then rise to the following exact
sequences (of graded abelian groups, deg (j;), = codunx:(X )):

(10) As(X) s 45 (x?) i»A&(X;)—»O :
A3(x) L AG(X3> A5(X?) —0,
ASE) 22 X = 0 B A < )8,

Note that if X is smooth, each graded group above is indeed a graded ring. This will be our
case. S

Let

U = {4 e5l3\{0} | 4 has distinct eigenvalues} = sl3\ {0},

%2 0700

Z;y = Aesli\{0}| 4 hasJordanform [ 1 A 0 |,ieC*},
0 0 -2
100

Zy0 = Aesl;\{0} |4 hasJordanform | 0 4 0 |,AeC*},
00 -2
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Zy =Z1, 1Y 2y,

000

Zy,1 = { PGLj-orbitof [ 1 0 0 5
g 10
; 000

Zy0 = { PGLs-orbitof | 1 0 0 2
000

Zy=Zp1VZyy
(note that Z; u Zo = sl3\(U u {0})). Then
(11) {U,Z,,1,2Z1,0, Zo,1, Z0,0,{0}}
is a finite PGL3-stratification of sl3. In this case the first associated exact sequence of (10) is
(12)  Apor, (Z1,0) 22 Apey, (35\(Z1,0 U Zo U {0)) 2 Ay, (V) —0

where iy, : U< sli\(Z1,00Zou{0}) and ji:Zy; < sh\(Z1,00Zou{0}) are the
natural immersions (open and closed, respectively).

To begin with, let us study 4pg;,(U)-

3.1. Generators coming from the open subset U c sl;. Let T be the maximal torus of
PGL; and I'; iNPGL;(T) = 83 X T its normalizer in PGL;. Let S3 — PGL;:0+— g be
the obvious inclusion (which identifies permutations with permutation matrices). I'; acts on

the subscheme Diag), < sl3\{0} of diagonal matrices with distinct eigenvalues, through
S3 = PGL3

(0, 1)) - diag(h1, A2, 43) = g - diag(h1, 42, 43) - ¢~
and we have®):
Proposition 3.1. The compositz;on of natural maps
A3, (U) = 41, (U) — dr,(Diagg,)
is a ring isomorphism.

& PGL:
Proof. Let T act by multiplication on the right of PGL; and Ts be the corre-

PGL; . 4 ile
sponding quotient. S acts on the left of — 2 via o+ [g] = [9o™"], g € PGL3, and on Diagyg,

5 This proposition holds (with the same proof given below) for any PGL,.
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PGL;
5

by left multiplication on P(;’_L3

as above. If we let PGL; act on Diagj x only, there

is a PGL;-equivariant isomorphism

U~ (Diag;,] ¥ PC;L3) /83,
A4 (A, [Q]T]s,
where g~!4g = A (diagonal).

PGL;
T °

Since S5 acts freely on Diagy, x from Proposition 2.11, we get

4 . .y PGl
AmL,(U)zAmL,xs,(D’agd;x T )

Now, if W is a free open subset of a PGL; x Si-representation with complement of suffi-
ciently high codimension, we let I'; act on W via the inclusion

(i7 n) :T3 > PGL; x S3: (a" [I]) s ([Z]E) ‘7)
i being the natural inclusion I's < PGL;. Then the morphisms
PGL;

T é W x Diagg,
PGL; x S5 v TR

W x Diagg, x

¢: [w, A, [g]T]PGLng; s [w hi (g: 1))A]l‘,1
% [W»A]n = [w,A, [”T]PGL;XS;
are mutually inverse and we conclude. []

Lemma 3.2. If T denotes the maximal torus of PGL3 and A S;. is viewed as a subring of
A;GL’ = Z[x1, X2, X3), then the Weyl group-invariant subring (A})™ is generated by

Y2 =52 — 35,
Y3 = 2.5‘% — 95185 + 2753,
%6 =A = (X1 — %)% (%1 — x3) (%2 — x3)2

where s; de the i-th el tary s

tric function on the x;’s and A is the discriminant.

Proof. We have T = Tpgr, = TGL,/Gm, Where Tgr, = (G»,)° and G,, — Ty, di-
agonally. Therefore

A7 =Symy(T) < A7, = Symy(Tor,) = Z[xi, %, %3]
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is the subring of polynomials f(x;, x,x3) such that
S + 8, %2+ t,x3+ 1) = f(x1, %2, %3).
Then
(A3 = {f € Z[x1, %2, %3] | (1 + 1, %2 + 1, %3 + 1) = [ (%1, %2, %3)}
= (Z[s1, 52, 53))™
where S3 permutes the x;’s. Now, if for any polynomial f € Z[x;, x;, x3] we let -

fl=fa+tx+tx+1),

we get
(13) s{ =843t
(14) -Yé =32+ZY11+3I2,
(15) S=n+snt+at+,

and it is then easy to verify that y,,y; and y4 are indeed in (A})S’.
Now, let g € (47) 5 We first claim that there exists ny 2 0 such that
3™ € Z[ys, 73, %6)-

By definition of y, and y;, we have
1 1 inv 1 inv
(45)® H = (Z H [51,32,53]) = (Z H [11,72,}'3]) -

P(s1,72,73) = Po(¥2,¥3) + P12, ¥3)81 + -+ + Prn(v2, 13)sT"

inv .
is in (Z B} [sl,yz,y3]> , using (13) and y} = 7,, ¥} = 73, we easily get, by induction on
m P;=0,Vi21,ie. '

1 1
(3)°[5] = 2[3]

as claimed.

To prove that indeed ¢ € Z[y,, 73, 7], we use induction on 7,.
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Suppose® 3¢ = p(,,73,7s), for some polynomial p. Expanding p in powers of yg,
we get

39 = po(y2, 73) +P1(¥2: ¥3)y6 + -+
and reducing mod 3
0= po(s?,—s}) + o1 (s?, —s3)ys + -+ (mod3).

But 5; and y5 = A are algebraically independent (over Z/3), so p;(s?,—s}) = 0 (mod 3), Vi,
ie.

< plsti=s) = ()’ = (D)) - aulst, ) (mod 3)
then
22, 73) = (73 = )42, —73) + 3122, 73)
for each i. Thus
39 = 3r(y2, 73, %) + (72 = 13)4(2: 13, %6)
with an obvious notation. Straightforward computations yield
(03 —9D) = 303 - 99,

and the case n, =1 is settled. The inductive step follows easily from the fact that we
included a possible dependence of p on yg in the above argument. [J

Remark 3.1. Note that there is a (non canonical) isomorphism
F— (Gm)z;
(1,12, 15] = (01/13, 12/15)
so that 47 =~ Z[x, y], with action of the Weyl group given by

(16) (12x=y, (12)y=x,
(123)x=—-y, (123)y=x-—y.

Under this isomorphism, with the same notations as in Lemma 3.2, we have

a7 1= (x+) - 3xy,
¥ ==9(x+ y)xy +2(x+ »)?
7= (x+)’x2y? —4x*y?.

9 Note that we allow an explicit dependence of p on 4!
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Moreover, there is an isomorphism of 7' with Tg,, the maximal torus of SL;
(18) T — Ty, : [0, 0,85] = (82/13,13/01, 1 /12)
and an induced isomorphism A} ~ A;ﬂ_} = Z[uy,up,u3]/(u1 + uz + u3). The Weyl groups
are isomorphic to S3 in both cases but the isomorphism above on Chow rings is not S3-
equivariant, only A;-equ.lvanant Rather, the action of S3 on 47, g inherited from the Weyl
group action on A7 via this isomorphism, is given by
(12)uy = =y, (12)uy = —uy; (12)u3 = —us,
(123)uy = w3, (12w =1y, (123)u3 = uy.

Corollary 3.3.  The canonical morphism h : Af., — (A})S’ is surjective.

Proof. Let ¢: Apgr, — Af, be the restriction morphism, E the standard repre-
sentation of GL3; and Sym3E be the PGL;-representation:

[9] - (0102 - v3) = (detg™")(gv1 - guz - gv3)-
It is not difficult to verify that
o §(calshs)) = 27,
ho ¢(ca(Sym’E)) = —5py,
ho ¢(c3(Sym’E)) =y,
ho ¢(cs(ss)) = s

and the corollary follows from Lemma 3.2. []

Now consider the subgroup 43 X T < I'3 = S3 X T; there is a transfer morphism
(see (2), Section 2)

tsf = tsf 2, 7(Diagg,) : 4%, .7 (Diagy,) — 4f, (Diag},)
and a restriction morphism: .
res = res’, (Diagy,) : A, (Diagy,) — (4}, r(Diag],))?
Lemma 3.4 (transfer-trick).  res induces an isomorphism
e . 4 NG
347 (Diag} ) — 3(4}%,r(Diagy,))™
with inverse (—tsf).
Proof. By projection formula, tsf o res = 2; so if £ is 3-torsion, we have

tsf o res(&) = —¢&.

It
|
i
t
¥
i
i
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On the other hand, if C; = {1, &}, we have res o tsf(y7) = 7 + 7% so, if 7 is C;-invariant and
3-torsion, we have res o tsf(7) = —# and conclude. []

The isomorphism (18) of Remark 3.1 induces an isomorphism
A3 X T~ A3 X Tgy,
and hence an isomorphism
(19) Ay = A,‘iles,_:'
We will consider the C,-action on 4} ATy, induced by the canonical action on 4}, r via
this isomorphism. As already in Remark 3. 1, we warn the reader that this is not the

canonical action induced by the inclusion 43 X Tsr, < Ngr, (7sL,)-

If A}, = Z[o]/(3)", we still denote by o the image of @ in 4}, 7, via the pullback
induced by the projection 43 X Tgr, — A3. We also recall the isomorphism

A;sL3 ~ Zlur, up, us) [ (ur + up + u3).
Then, if W ~ C? denotes the A3 X Ts1,-representation
(20) (0,(5)) - (%) = (51%6-101) $2X5-1(2)» $3%5-1(3))
we have the following basic result
Proposition 3.5. The ring A jszs'_! is generated by
{a, (W), es(W), 0 = tsf o> (1us)}.
Proof. Throughout the proof we identify A3 X T with A3 X Tgr, (Remark 3.1).

Az X T, acts on P(W) with a dense orbit U = D, (x;x;x3) with stabilizer isomorphic to
Az X py. If j, : Yo — P(W) denotes the (closed) orbit of [1,0,0] € P(W) and
J

=P(W\UUY, £ P(W)\Ya,

the orbit of [1,1,0] € P(W), then {U, Y}, Y>} is a finite A3 X T ,-stratification of P(W)
and the exact sequences (10) are

(i),
(@1 Ag, = Aypry (V) 25 Ayr, (POV\T2)
i* * +
s AA;KTSL, (U) £ AA;xp, b 07
() B ian
(22) Ars,_ == AA,xTSL (¥2) e AA,KTSL (P(W)) g AA,»(TSlq (lp( W)\ Yl) —0,

7 We use that A3 = y5, which is true over any algebraically closed field of characteristic # 3. Note that in
characteristic 3, it is no longer true that A = Z[o]/(3a).
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where we used Prop. 2.9 together with the fact that ¥; (resp. Y2, U) has stabilizer iso-
morphic to Gy, (resp. Tsi,, 43 X p3). By [6], Th. 3.3 (b), we have (c;(W) =

Aty POW)) = Ay py [€1/(6 + (W) + o3(W))
where £ = ¢1 (Op(w)(1)). Moreover, the Kiinneth morphism
Ay ® 45 = Z[0]/(30) @ Z[B1/(3F) — Ay
is an isomorphism (e.g. [25], §6). It is not difficult to show that
)=-4 i"(0)=a Jji(¢)=-u
(where A&, = Z[u] and with the usual abuse of notation, we write £ for ij(¢) and « for its
pullback to 4% o T, (P(W)\Y2)). So we can conclude the analysis of (21), by computing
(1).(1) = [11]. Y; is the zero scheme of the A3 X T -invariant regular section
X1X2X3 € I‘((D(3), P( W)\ Yz),
hence ([6], p. 61), [¥1] = 3¢ so that Ay, (P(W)\Y2) is generated by {a,£}.
Now let us turn our attention to (22). It is easy to verify that, with the usual abuse of
notation, i; () = « and i;(#) = £, so we are left to find generators of 4 ATy, (12) = Arg,

asan Ay .z (P(W))-module.

First of all, we have j;(¢) = u;®. Therefore, by projection formula and the relation
u; +uy + u3 = 0, we see that A;.SL] o~ A,:;XTSL,(YZ) is generated by

@) {1,45|n > 0}
asan Ay ..z, (P(W))-module. But
—'(ulz + "% + uluz)

J3(c2(W)) = wyuz + wpus + wsuy =

so that, by mductlon onn, (j,),(45),n > 1, belongs to the submodule generatcd by (j,).(1)
and (j,), () (e

which in its turn depends essentially on the choice of a pot
pe Y2 ={[1,0,0],[0,1,0],[0,0,1]}.

The choice we are making here is p = [1,0,0].
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W))) + G2), (73 (=£2) — (2). (j3(2) - w2)
— ¢ (o). (w2)

= (), (73 (=eal
=—c(W)- (j2).(1) = £2- (Jo).(1)

(j2).(3)

and similarly for higher powers of ;). Thus, the ideal
im(jy), € 4%, ury, (P(W))

is actually generated by (j,),(1) and (j,), (42).

Let us first compute (j,),(1) using a transfer argument (Section 2). Consider the
A3 X Tgp-equivariant commutative diagram

Y2 —» P(W) X A3

where

hZ([l:():O]) = ([1,0, 0]) 1)1 hZ([Oa 1’0]) = ([01 I)Ojsa): hz([010, 1]) = ([01 0, 1]"72)

with ¢ = (123). Using the canonical isomorphism

Ay, (POW) x 43) = A7(P(W))

we see that
A3XT
@4)  (2).(1) = (pry), o (), (1) = tsfy L2 (POM) ({11, 0,013
But [1,0,0] = Z(x2) n Z(x3), where the sections x;, i = 2,3 are Ts,-semi-invariant ([3],
Exposé VIg, p. 406) so that if we consider the T -equivariant line bundles L; — SpecC
associated to the representations
Ox=1tx, i=2,3,

we have induced Tgi-invariant regular sections X; € I'(P(W),0(1) ® p*(LY))* with,
obviously, Z(X;) = Z(x;). Then

—w)(¢ — us) = £ + Luy + wpu3

(29) [{[1,0,01}} = (¢

in A3, (P(W)). Since £ = res o2, (P(W))(¢) and the diagram

9 Note that p*(L)) is trivial but not Ts-equivariantly trivial.
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A;'SLJ A;'sx.,, (P( W))
A3 Tg A3xTg

o, “’1 lmfrsl, * (pm)

AZ;KT;._, T A;;x T, (P( W))

is commutative, we have

(26) e (P(W))(£?) = 322,
@27 stz (P(W)) (6w) = ¢ - 7o ().
A3y X Ty,

Now we claim tszSh (u;) =0, i=1,2,3. In fact, let  : Ai;xm,, — A3 be the projec-

tion and p: A3 — 4} 1, s its right inverse. Since ; in (22) is an isomorphism in degree 1
3 Tsi,

and 43 . T, (P(W)\ Y2) is generated by o and 7, tsf’ ;SL’ (4;) = nym* o for some integer n;
(in fact
T A3 T
res, Ty, © tSfrsi: Bw) =w+u+uy=0

thus tsf ;:: T8 () is 3-torsion). Since

A3 < T,

+ = raed3% 7oL, A3 X Ta1,
p* otsf. Ty, & =TSy otsfry " =0,

we get
np*n*(a) =ma =0
in A}, and the claim follows.

Since (j,),(12) has degree 3, from (22) and the computations we have just done (in
particular (24), (25), (26) and (27)), we know that the ring Ay, (P(W)) is generated up
to degree 2 (included) by

{a, ¢, tsf;::rs’“’ (upu3)}.
We will show that:
Claim. A}, (P(W)) is generated up to degree 2 (included) by
{o,2,c2(W)}.«
Proof of Claim. ~We write
Nre, = fes:,s:m, (),
forany 7€ Ay .oz, (P(w)).
Observe that

Ty A3 X T,
resA;b(Tm,’ o tSfT;,_’ (upu3) = upuz + usuy + ujuy = CZ(W)lTsL,’
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therefore tsf’ ;:: tay (uau3) — c2(W) = ¢, for some 3-torsion element!?
£ & Ay, (POV).
Since the group Aith’ (P(W)) is generated by
{02,6%,at, tsf 7, "™ (ws) = (W) + &}
we have
(28) c2(W) = A(ca(W) + &) + Ba® + C£ + Dot
Restricting to Tsy,, we get

(W), = Aes(W)yp, +CL%

1Tty
but from
Ary, (P(W) = A7 [0)/ (8> + L1 (W)ppy, + W)z +c3(Wigy,, ),

we see that (W), and £? are algebraically independent, so we must have 4 = 1, C = 0.
Thus (28) yields ¢ = Ba? +Daf and this concludes the proof of Claim. []
Vo

So, the other/possible generators of AZSKTSLJ (P(W)) in degree >2 can only come
from (j,), (u2). Using the same arguments as in the computation of (j,), (1) above, we get

() () = tsf 7o ™ (P(W) (¢ — ) (¢ — u3)).

A3x T,

(1) = 0 Vi, the only new generator is tsfz, (W3u3).

: AT
But, since we know ‘that tsfy’ @

Ty

To summarize, we have proved so far that A} ... (P( W)) is generated by
(o 6,2(W), tsf7 ™ (1us) ).
Since
Ay, 1 (5(W)) = Ay, (WNOD) = Ay er, (POW))/(2),
we conclude that AZ;sz,_, is generated by
{w (W), a(W), sz, ™ w). O
Recall (19) and the isomorphism

et . . WG
3Af, (Dlagslg) = 3(AA3><T(Dlags13)) B

A3 % Ty Ts
19 In fact tsfr; " ores,2p, =3.
s

ot
[
}
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from Lemma 3.4. If C; = {1, ¢}, we denote by W* the 43 X Ts1,-Tepresentation obtained
from W twisting the action by &. Let us also define the element

A3 X Tsiy

(29)  x=(2stpy " (Gus) +3es(W))” +4ca (W) +27c3(W)* € A, r,,

A3X Ty,

and denote tsf7, (u3us) simply by 6.
Lemma 3.6. (i) In A}, . we have
3y =30u=0af = o’ +ac(W) = 0.
(i) The kernel of the restriction map h' : A .7 — A}, . r(Diagy) is the ideal («2).
(iii) In A%, 1, we have
(W) =ca(W), o(W)=—c(W),
0 =0+3c3(W), x=yx

(iv) Let
A3x Ty o 2 .
q(c2(W),c3(W), tsfr (13u3)) € 344ty
be a poly ial in the arg s indicated. Then there exists a polynomial
e 43X T
i =(ca(W), es(W), tsf 7y (1Bus))
such that q = xg.

Proof. (i) Since

A3 X T
(2tsfre = (1Bus) + 3c3(W))I2TSL3 = A(w, u2,u3),
2(W)iry, = s2(t1, 12, 13),

(W), = 53(u1,102,13)

in A7, = A} (where A is the discriminant and s; the i-th elementary symmetric function),
it is well known that Y= 0. Therefore 3y = 0. a is 3-torsion by definition and

A3 X T
a-tsfzy 2 (us) = 0

by projection formula. Finally observe that

A3 T
(ca(W) — tsf7. * (u1t3)) 7, =0

and therefore (Proposition 3.5) there exist 4, B € Z such that

A3x Ty,

Cz(W) - tSfTsx., (uluz) = Ao? + BL’z( W)
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is a 3-torsion element in ATy, - Restricting to Tsp, we get B = 0 while restricting to 43
we get 4 = —1 mod 3. Multiplying by «, we get

o>+ ac(W)=0
by projection formula.
(ii) A straightforward computation yields
c)(Diagy,) = —* € A} ,op-
Consider then the two localization sequences:
(B0) Ay " A3 r(Dingy,) & A3 pcp —> Al (Dinga, \{(0) —0,
(1) A = Afr(2) = A3 cp(Dingy, \{0}) — 7 (Dingl,) —0
(where we used the obvious A3 X T-equivariant isomorphism Z ~ 43 x C*); (30) shows
that o? e ker#’ and the reverse inclusion will be established if we show that the push-
forward j, is zero.
Consider the projectivization P(Diagy,) =~ P' of Diagy,. We have a cartesian
diagram
zik Diagg, \ {0}
T
z' 7» P(Diagy,)
where
Z' = {[1,1,[-2,1],1,~2)} ~ 45
A3 X T-equivariantly. Since
Jeop*=m'oj,

and p* is obviously an isomorphism, it is enough to show that

Ay wrll
@) im() § kert') = 0) < 22
by the projective bundle theorem.

To compute j, we translate it into a transfer map. Consider the 43 X T-equivariant
commutative diagram
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z' 2 4 x P(Diagy,)
\ lprz
P(Diagy,)
where (o = (123) € 43)
p([1,1]) = (1,[1, 1)),

A[=2,1]) = (o,[-2,1)),

p([1,-2)) = (%, [1,-2)).
Since

A}y r(4s x P(Diagy,)) ~ A7 (P(Diagy,)),
we have
J4(&) = pra, 0p,(&) = tsE T (P(Diag,)) (¢ - {1, 1))
for any ¢ € A7 ~ A}, 7(Z"), where {[1,1]} is a T-invariant cycle on P(Diagy,).
Now, {[1,1]} is the zero scheme of the T-invariant regular section
(x1 = x2) e T (P(Diagy,), 0(1)),
therefore
[{[1,11}] = e1(0(1)) = ¢' € 47 (P(Diagy,))
and, obviously,
res .7 (P(Diagg,))(¢) = ¢'.
By projection formula, we then get
J(6) = 4T (P(Dingy)) €-£) = £ < (0
for any { € A7 ~ A}, r(Z’), which proves (32).
(iii) By Prop. 3.5, there are integers 4, B such that

c2(W*) = Ad® + Bey(W).

Restricting this to 7, we get B = 1 and applying the involution (-)* we obtain 4 = 0 mod 3.

Again by Prop. 3.5, there are integers 4, B, C, D such that

c3(W*) = Ao® + Bacy(W) + Ces(W) + DO
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in A} - Restricting to T, we get

Zuy, uy, u3]
C + Duyupus + D(udus + 2wy + b)) =0e A}, =0 23 .
(C + Duupus + D(uyus + uzuy + ujuz) et

but u2us + uduy + uu, and uyupus are linearly independent, hence C = —1, D = 0. Now
apply the involution () to get

Aa® + Boacy(W) =0.
Since (Remark 3.1)
o = —mf;;: 5 (utus),
an easy computation yields
(0 — 02 + 363(W))|TSL, =)
Therefore (Proposition 3.5 and (i) of this lemma) there exist 4, B, C € Z such that
60— 0° + 3c3(W) = da® + Bes(W) + C8

is 3-torsion. Then, restricting to Tsg, and observing that c3(W),r and G are linearly in-
dependent, we get B = C = 0; restricting now to A3, we obtain A = 0 mod 3 (since

) A3 X< T
resglry, otsfr, 0 =0).
The C,-invariance of y is a consequence of the transformation rules of c;( W), c3(W) and 6.

(iv) Since g is 3-torsion, we may suppose 2 inverted. We have 9|75, = 0 because A7,
is torsion-free. It is not difficult to verify that

2
(2017, +3e3(W)yry, )™ + dea(W)ipy +27e3(W)i, =0
Then it is enough to prove that the ideal .# of relations between

{ea( W)m,,, ) ES(W)|TSL, s elTs,_,}

1
in A;'sl., [——] is generated by just this one.

2
3 1
Now, Oz, = _563(W)|TSL; + 56, where 6 = (u — u)(u2 — u3)(uy — u3), so we have
to show that

S = (0 +4a(Wip,, +2Te3(W)ir,,,)-

Letpe z[%] [X, Y, Z] with
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plea( W)z 3(Wiry,, ,0)=0

in A;s'_’ [%] . We have

(33) p(X,Y,Z) = py(X,Y)+ Zp,(X, Y) mod(Z* + 4X> +27Y?).

1 "
If we let C, = {1,¢} act on A;s|3 [E] permuting #; and u,, we get

(@P)ry,) = x(W)yry,»
(@M)ry,) = es(W)pr,,»
8=-5
and then
P* = p(e(W)ygy, 65(W)yzy,,,—0) =0

in Az, B‘] (note that u; + uy + u3 is C-invariant). From (33) we get

1’0’(02("1")”,;,_J ’ CB(W)mL,) +p (CZ(W)|TS,_’ , L‘;(W)mh’)é =0,
170(172(W);rSLJ 2&3(W)rg,) = Pr(ca(W)ipy €3(W)ip )0 =0

so (6 +0)
oWy s(W)iry, ) = oWy, es(W)yry, ) = 0.
But CZ(W)|TSL3 and c;(W)le’ are algebraically independent, thus
P(X,Y)=p1(X,Y)=0

as polynomials, as desired. []

Therefore both 4’ (xc3(W)) and A'(x) can be identified (via Lemma 3.4) with their
transfers, which are elements of 34y~ (Diagy, ).

Propesition 3.7. The natural morphism
[+ 47, (Diagg,) — (47(Diag},))™ = (47)™
is surjective with kernel (b (ac3(W)),h'(x)), where
h': A} wr — A r(Diagg,)

is the pullback.
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ik oA

A} (Diagy) 2 (47 (Diagy,))

Proof. Commutativity of

S3

together with Lemma 3.3, prove that f is surjective. Moreover A’(xc3(W)) and h'(y) are
3-torsion so ker f 2 (h'(ac3(W)),h’(x)) since A3 is torsion-free. So we are left to prove
the reverse inclusion.
4 e g . x\\C
Claim. ker f = 1At (Diag,) =~ 3(4},r(Diagy,)) ™.
Proof of Claim. A is torsion-free, so ker f 2 34y, (Diagy, ). The pullback
n: Apgy, — (47)
factors as
 Myiao* ) Ls (4% (T S: -
Aicr, = Ajc,(U) = 47, (Diagy,) - (47(Diag},))” = (47)%

and from Prop. 2.3, we get ker = 343, ; so ker(f o p) = 343G, and we conclude since p
is surjective. [J

Now, let & e; (A;}KT(Diags‘la))C’. Omitting to write 4’(-) everywhere and denoting
tsf7°™7 (udus) by 6, we must have

E=a-p(c(W),c3(W)) + x- q(ca(W), e3(W), 6)

for some polynomials p and g, since & is 3-torsion (we used Prop. 3.5 and Lemma 3.6 (i),
(ii), (iv)). But ¢ is also Cy-invariant, so if C; = {1, ¢}, we have:

=-2=—(¢+&) =a-(p'-p)+1 (-g+19))
(Lemma 3.6 (iii)). By Lemma 3.6 (iii), we have
a-pt=a-p(c(W),—c3(W))
and we can write a(p — p¢) as a polynomial of the form
acs(W) -p' (c2(W), cx(W)?)
for some polynomial p’. By the Claim above, we conclude that ker f < (ac3(W),x). O

Let us summarize the situation so far. We are studying the first step (12) of the
stratification of sl;. So we started studying 435, (U). We have an isomorphism

Apgr, (U) = 4r, (Diagy,)

Y
74

3
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(Prop. 3.1) and an exact sequence (Prop. 3.7):
* > * f * 3 * S *
0 — (ac3(W),x) — A}, (Diag} ) = (AT(Dlag!h)) P = (AT)S’ — 0.

To be precise, acs(W) and y belong to 4} .. but we denote by the same symbols the
elements

(tsf 2 p(Diag},) o B') (aes(W)),
(tsf 32 p(Diagy,) o 1) (1)
in Ay, (Diagg, ), where
tsf, r(Diagy,) : A%, r(Diag],) — A7, (Diagj,)
is the transfer morphism and
h' A — Ay r(Diagy,)

is the obvious pullback. Moreover, by the proof of Lemma 3.3 and with the same nota-
tions, the elements

{2¢2(sl3) — c2(Sym*E), c3(Sym’E), c6(§13)} < Apgr,
project to the three generators (Lemma 3.2) of (47) 55 through the composition
Apor, — Apar,(U) = A, (Dings,) > (47 (Diagy,)™ = (47) .
If we lift the elements
(tsf 3w r(Diagy,) o ') (acs(W)),
(tsf 3 7(Diagl,) o 1) (2) € Af, (Diagy,),

respectively to elements p, x € 43y, via the surjective pullback

Apor, — Apor, (U) = 4y, (Diagy,),

we find the following 5 generators of Apg;, coming from the open subscheme U c sl3
(through the first step (12) of the stratification of sl3)

(34) {2¢5(sls) = c2(Sym®E), c3(Sym®E), p, 1, ¢s(sz) },
with degp = 4 and degy = 6.

In the following subsection we will determine the other generators of 4pg;, coming
from the complement sl;\ U, starting from Z; ;.

3.2. Generators coming from the complement of U — sl;. Consider again the first
step of the stratification (11):
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< Uy B e
(35)  Apor,(Z11) 5 Ay, (s5\ (210U Zo U {0})) — Ay, (U)—0

where (jy,;), has degree 1, equal to the codimension of Z; ; in sls.

Lemma 3.8. If A€ Z,, let g€ PGL3 be such that
200
g ldg= (1 A 0 );
0 0 -2

A= (4[g])

then, the rule

defines a PGLs-equivariant isomorphism Z; ; — A'\{0} x &, where Uy is the full
: U; x Gy

J

unipotent subgroup of GL, and PGLs acts trivially on A'\{0}.

Proof. Everything is a straightforward verification left to the interested reader. We
only note that the stabilizer of
A0 0
14 -0 )
0 0 -22
(under the adjoint action of PGL;) is
o 0
{[g]lg= (ﬂ 0),a,yeGm}
0 ?

which is obviously isomorphic to U x G,,. [J

LS

S R ©

By Corollary 2.7, Prop. 2.8, 2.9 and Lemma 2.10, we have
(36) Apor,(Z1,1) = Ag, = Z[u].
It is not difficult to verify that
le", (2¢a(shs) — c2(Sym’E)) = ?,
where we abused notation writing 2¢5(sl3) — ¢;(Sym>E) for its pullback to
Apor, (s13\(Z1,0 v Zo L {0})).

Moreover

(U1,1.(1) = [Z1,1] = D*([{0}]) = 0

e
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where D : sl;\(Z1,0 U Zo U {0}) — A! is the discriminant; so, by projection formula, the
ideal im(j),;), is generated by (j,1). ().

Let @ﬁ”l be a lift of (jy,1),(4) € 43y, (s\(Z1,0 v Zo U {0})) to A3, The analysis
we made of (35) has the following upshot (recall (34)): Apgy, (sl3\(Z1,0 0 Zo U {0})) is
generated by (the images via Ajgy, — Apcy, (sb\(Z1,0 v Zo U {0})) of)

(37 {262(shs) — &2(Sym’E), 00, ¢3(Sym*E), p, x, cs(shy) }-

Now let us proceed one step further in the analysis of stratification (11); the second
exact sequence of (10) is:

(38) Apor,(Z1.0) L2 dpr, (6\(Zo U {0})

2, Aoy, (sL\(Z1,0 0 Zo U {0})) — 0

where (jy o), has degree 3, equal to the codimension of Z,o in sl;. We omit the straight-
forward proof of the following:

Lemma 3.9. If A € Zi,0, let g € PGL3 be such that
A0 O
g '4g= ( 0% 0 ) i
00 -24

A (4,[g])

Then, the rule

PGL;
GL,

defines a PGL3-equivariant isomorphism Zy,0 — A'\{0} x , where GL, injects as

GL, 0
0.1

Then, by Prop. 2.9 and Lemma 2.10, we have'"

and PGL; acts trivially on A'\{0}.

(39) Apgry(Z1,0) = AGy, = Zh, A
Lemma 3.10. (jy ), is 3-torsion.

Proof. If & e Apgr,(Z10), let feAIKGL3 be a lift of (j;),(¢) via the surjective
pullback

1 ); = ¢; (standard representation).
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71,0 Ao, — Ao, (3\2Zo © {0}).
It is enough to prove that é is 3-torsion i.e. that
& eker(4ior, — (47)%),
since by [4], Prop. 6, the rational pullback
A3, ®Q— (47)% ®Q
is an isomorphism and 43, has only 3-torsion by Cor. 2.4.
Now, observe that
(1,0).(8) € ker(dpay, (s15\Zo U {0}) — 43, (s1:\ 21,0V Zo v {0}))
by the obvious localization sequence and therefore
€ e ker(4pgr, — Apar,(V)),
by (35). To conclude, we note that A5g;, — (47) 5 factors as
s, — A, (U) = 43, (Diagy,) — (43)%. O
Proposition 3.11.  The ideal im(j, o), is generated by
{01,004 (1)s Gr,0)s (1), Gr,0)4 (32), G,0), (), Ui 0)4 (o), (i o), (14)}-

Proof. Identifying A3y, (Z1,0) with Ag;, = Z[A1, 4] via (39) and writing (')IGLz for
J1,0» One can easily verify that ~»

(40) (A= 2¢5(sls) — c2(Sym*E)) = 230 =1,

(41) cs(sha) gL, = 143 + 443 = t6.
Therefore

(42) 2 =15+ 142,

and if 3 denotes the ideal generated by
{0100 (1); G,0)s (A1), (n,0). (B2), (n,0).(43), Un,o).(lnl;), U1,0). (1A},
we have
43) (h0.A) €3, ¥mz0,

by an easy induction on m, using projection formula.
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Now, consider the general monomial A{A}". If n = 2r, we have
(44) AT = (2 + 30)' 43" = 2" (mod3)
and then
U107 33") = 2 - (jy,0). (45",
by Lemma 3.10 and projection formula; thus
(jl,o):(llzr}‘;l) €3, Vmrz0,
by (43). If n = 2r + 1, (44), (42) and projection formula easily reduce the assert
Uro (™45 €3, Vmrz0
to the assert
(Ur0.(14]) eI, Vmz=0,
which is easily proved by induction on m.
Since the monomials A{4;" generate Ag; , as a Z-module, we conclude that
I =im(j,p),- O
Therefore, if we denote by @(3) (respectively, 0542,, 9%, 0(6) G), o (s)) a lift of
(J1,0).(1) (respectively, of (jy o), (ll)» (11 0)s(42), (1,0).(A142), (71, o) e5) U, o). (Ad)) to
APGL;’ from (37) and (38) we get that APGL) (s5\(Zo L {0})) is genemted by (the images via
ApL, = Apar, (s15\(Z2o v {0})) of )
43) {2c2(sks) — c2(Sym’E), O, c3(Sym*E),

0%, 0,0, 0%, 7,05, c(sl3), ©(7), 0} ).

Let us proceed one step further in the analysis of stratification (11); the third exact
sequence of (10), in our case is:
Goads s B2
(46)  Apor, (Zn,1) 5 iy, (sh\(Zoo U {01) 5 Ao, (35\(Zo U {01)) —0

where ( Jo,1), has degree 2, equal to the codimension of Z, ; in sl3. Zy,; is a PGL3-orbit with

stabilizer
1209
[t (4 $)sec)
VA s

which is unipotent and then, by Prop. 2.6, we have Apor, (Zo,1) = Z. If we denote by 9(2)1 a
lift of (jo,1),(1) = [Zo,1] € 43y, (s13\(Zo,0 v {0})) via the surjective pullback -
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ApGr, — 4par, (s55\(Zo,0 v {0})),

from (46) and (45) we get that Afc; (sls\(Zo,0 U {0})) is generated by (the images via
Apgr, = Ao, (13\(Zo,0 U {0})) of )

@7 {265(sh) — &2(Sym*E), ©F), 80, 3 (Sym*E),
o), 5, 04,00, 1,0(%, cs(s1s), 6]}, 6}
We have come to the second-last step of stratification (11):
48) Ao, (Zoo) B iy, (56\(0)) =2 iy, (8\(Zoo U 01) —0

where (jo.o). has degree 4, equal to the codimension of Zg o in sl3. Z, ¢ is a PGL3-orbit with

stabilizer
100
{[9]19=(¢ é 0),u,ﬂ,yeC,56Gm}
T et i

which is a split extension of G,, by the full unipotent group U; = GL3. By Cor. 2.7 we get
an isomorphism Apg;  (Zo,0) ~ 4g, = Z[u]. Since

Jo,0(2e2(sls) — e2(Sym’E)) = o2,
APGL,(ZO 0) is generated by {(Jo 0).(1), (Jo 0).(w)} as an 4 L, (s13\{0})-module (by pro-
jection formula) and if we denote by © ‘()42, (respectively, @’ 0) a lift of (jo,0).(1) (respec-

tively, of (jo,0). () to Apgy,, We get that Apcr, (s5\{0}) is generated by (the images via
Apgr, — APGL,(SIJ\{O}) of)

“9)  {20(h) - a(Sym’E),0f, 6f), ¢(Sym’E),
(0.7, 010, 051, ©(%, 8,1, €%, cs(s1), 6, O }.

The last step of (10) for stratification (11) is immediate because

Apor,(5\{0}) = 451,/ (es(st3))

by self-intersection formula ([6], p. 103).

Therefore we conclude our analysis of the stratification (11) with the following result:
Proposition 3.12.  Apg,, is generated by
(50)  {2ex(shs) — ca(Sym’E), O}, O}, c3(Sym’E),

{0,011, 051, 8%, 81, 7, O3, co(ss), €7, {7, cs(sh)},

where deg o = 2, deg o = 2, degp =4, degy = 6, deg ®("') = m and deg ®(' =r.
0,1 1,1 1,0 0,0
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We will make this result more precise in the following section by getting rid of all the
© generators.
4. Apgy, is not generated by Chern classes. Elimination of some generators

In this section we first prove that Apq;  is not generated by Chern classes and then
that all its ® generators are zero.

Lemma 4.1. Writing Hj, , for H'(BPGLs, Z), we have:

Hi, =2 Hig, =0
Hig, =0 Hi, ~2/3
Hi, =1 Higy, =0
Hi, ~2 oy, =0

(51) H ~201Z/3 Hiy, =0
Yy ~Z Hil;, ~2/3
HZ ~101Z HEy =0
HYY ~Z HY ~2/3
Hi% ~202012/3

Proof. It is a routine computation using the Universal Coefficients’ Formula for
cohomology (e.g. [22]), once one knows the following facts:

1. H*(BPGL3, Q) ~ H*(BSL3, Q) = Q[c2(E), c3(E)], E being the standard repre-
sentation of SL;;

2. H*(BPGL3, Z) has only 3-torsion;
3. there is a ring isomorphism
H*(BPGL3,Z/3) =~ Z/3[y, g, 12l ® A(y3, ¥7)/ (23, Y27, Y2V + ¥397)
where deg y; = i.
1. follows immediately from the Leray spectral sequence
H?(BPGL3, HY(Bus, Z)) = HP*Y(BSLs;,Z);

2. is proved in [14], p. 790 and 3. was computed in [13]. O

Theorem 4.2. Apg;, is not generated by Chern classes; more precisely, p is not a
polynomial in Chern classes.
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Proof. We proceed in 4 steps:
(I) First we show that cl(p) is nonzero in H®(BPGL3, Z),,,, where
ol: Ajg, — H*(BPGL3,Z)

is the cycle class map and p is one of the generators of 43, (see Prop. 3.12);

(II) then we use a spectral sequence argument to show that

im(H®(BPGLs, Z) — H®(BSLs, Z))

has index at least 9 in H3(BSL3,Z) ~ Z;

(III) next, we use the fact that ¢,(sl;)? — 3602 via

H%(BPGL;3,Z) ~Z®Z/3 — H(BSL3,Z) ~Z - o
to conclude that
H¥(BPGL3, Z(3)) > Z3) - c2(shs)* © Z/3 - cl(p)

(where we have written « in place of j,(«), with j, : H*(BPGL3,Z) — H*(BPGL3,Z3))
induced by the localization j : Z — Z3) and o; = ¢; (standard repr. of SL3));

(IV) finally we show that cl(p) € H3(BPGL3,Z) is not in the Chern subring of
H*(BPGL;, Z) (implying that p itself is not in the Chern subring of Apory)-

(I) We freely use Remark 3.1. Recall that p is a lift to 43y, of
ey . Tyian* *
(“Cl(W));Dix&;; €3(4%,wr(Diag],))” ~ 345, (Diagy,) = 34peL, (U),
with ac3(W) € 34}, - To prove (I) it is then enough to show that
Cl(“CJ(W))miag;, +0 in HABS,(T(Diag:l], 2).
If A3 x pu3 — A3 X T, we will get this by showing
(52) CI("“-'3(W))u)iag;3 +0 in HAS:X/&; (Diag:h, z)

(writing again cl(ac;(W)) for its restriction to Hj,,, ). Let us consider the localization
exact sequences for cohomology, corresponding to Diagy, > Diagy,\{0} o Diagy,

(=) : ;
(53) H:;xy, _“‘ H};Xﬂg(Dmgﬂg’ Z) 'L’ Hj;xh (Dlagslg\{o}v Z):

(54) Hy ~Hj,, (Z,2)—> HS,,, (Diagy\{0},2) - Hj,,, (Diag},,7)
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where i : Z = (Diagy,\{0})\Diagy, — Diagy,\{0} and we used that Z ~ 43 x C*, 43 X T- By Lemma 4.1, its (first quadrant) E,-term'? is:
equivariantly. If C, ,, (respectively, C;m' 4,) denotes the y;-representation given by multi-
plication by the character y = exp(i27/3) (respectively, the 43-permutation representation),

we have W ~C, ,, X szn, 4, @8 A3 X p-representations. Then, if we let

at | 0| % | atyy | oty | O f afys | @¥ | atxgatys

H,, = Z[B)/(3), Hj = Z[o)/(30),

oo o 0 o [of o 0 0 oo
the Chern roots of W are {f + o, — o, f} and @@ | 0] a2 | ady; | Py | 0] aPys | @28 | oPxs, 0y
0|0 0 0 0 0 -0 0 0 00
cl(aes(W)) = (B> — e?)af e Hj]xﬂg.
o | 0| afy | ay; | a2y, | O [ oys | a&; a?xg, a?pg
Now we claim 7, = 0 in (54). In fact, consider the pullback E of C,,,, to Diagy,\{0} and & 0ojo| o 0 0o (0] o 0 0 ofo
view E as an 43 X ys-equivariant vector bundle on Diagy, \ {0}, with 43 acting trivially on 5 P
E. Obviously, i*(c;(E)) = B. But we also have i,(1) = 0 since g ol e o | & i ids
0o|o| o 0 o [of o 0 0 ofo
_ p-1
Z =D ({0}), z|o| o |mz3|yzs3|o| vz | 0 | mz@wz3|o|z
where
where from the second row up, the coefficients are in Z/3.
D : Diagy \{0} — A!
e : One of the edge maps is
(55) (l],}.z,/l;) Lad (}.] el Az)(ﬂ; e l;)(lz o2 }.3)

H%(BPGL;,Z) = EX® — E%° = FPH%(BSL;, Z) — H(BSL;,2)

is the square root of the discriminant (which is 43 X p;-equivariant!). By projection for-

mula, i, = 0 and ¢ is injective. so we have to show that F®H3(BSL;, Z) has index at least 9 in

So, we are left to show that p((8> — «?)af) = p(af*) + 0 in (53). Now observe that HY(BSLs,Z) ~Z- 3.
Hz’x,u; ~ (Hj3 ®H;3)Z" First of all, note that d(3)(a) = +y; since
E3" = F*H*(BSL;,Z) — H*(BSL3,Z) =0
by Kiinneth formula, since © (BSLs, Z) — H*(BSL3, Z)

® To rf(Hﬂ,, H2)=0 and both a and y; are 3-torsion; we choose y, to have the plus sign. Therefore

=2n+1
i di3)(@?ys) = 2y} + od3)(y3) =0
(either p or g being odd in every summand). So since y? is 3-torsion in H®(BPGL3, Z) ~ Z, hence is zero.
Hjy = 2/3C, @, 08,0’ B, Then

Hj i = 2/3¢0%, 0B, % EP=Ef'=E}=FE3~17/3

a4 din(-(a?)) b plat®) 40 and we have the first 3 factors of the desired index. Finally we have
an im(-(—a?)) ie. p(y ; :

(II) Consider the Leray spectral sequence %) (2 4) = 207334 + aZdB) () =0

qu = HP (BPGLg, H%Bus, Z)) = H?*1(BSL;, Z). 12) We write only the parts we’ll need.
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since y;y, € H'(BPGL3, Z) = 0; then
EP—EF—EP=E¥~7/3
yielding the other 3 factors in the index of FSH®(BSL;, Z) in H®(BSL;,Z) ~ Z - o3.
(III) As already observed, we have e(sls)? 36a3 via the pull back (use (I))
$:Z®cl(p)-(Z/3) ~ H}(BPGL;,Z) —» H}(BSL3,Z) ~Z - o2

whose kernel is 3-torsion; combining this with (II), we get that the image of ¢ has exactly
index 9. Therefore

HE(BPGLs, Z(3) ~ Zg3) - j, (ca(sls)?) @ (2/3) - j. (cl(p)),

where j, : H*(BPGL3,Z) — H*(BPGL3, Z(3)) is the morphism induced by the localization
JiZ—> Z.

(IV) By [14], Cor. 4.7, we know that
H*(BPGL3,Z/3) ~ (Z/3) - 3 @ (Z/3) - y3,

and that the second generator yg is not in the Chern subring of H*(BPGL3,Z/3). By the
Bockstein exact sequence, the natural map

(@), : HY(BPGLs, Z3)) — H}(BPGL3,Z/3)
is surjective since H°(BPGLs, Z3)) = 0. Therefore there exists an element
& =aj,(c2(sh)?) + Bj. (cl(p)) € H*(BPGLs, Z(3))
such that (j(3)),(£) = yg. In parti\cﬁ]ar, cl(p) cannot be in the Chern subring of
H*(BPGL3;,Z). [

Remark 4.1. For a different prbof of Theorem 4.2, which does not depend on Kono-
Yagita’s results on H*(BPGL3,Z/3) (and in fact does not depend on cohomology at all),
see the Appendix. A

Lemma 4.3. @)ﬂ i GS?)I, G)f%,, 9%, G)g?z,, 9%, @gzj, @)E%, 6% and @g% are 3-torsion.

Proof. All the ®’s are supported on the complement of U and so they all go to zero
via Apg;, — A7, since this map factors through A, — 4pgy, (U). But, by [4], Prop. 6,
the rational pullback

46, ®Q—~ (4)¥ ®Q

is an isomorphism, so the @’s are torsion and hence 3-torsion by Cor. 2.4. [J
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Remark 4.2. Note that cl(y) = 0 since y is torsion while H'2(BPGLs3, Z) is torsion
free by Lemma 4.1.

Lemma 4.4. @% and 6(()?2) are in the kernel of the cycle map
ol: A3y, — H*(BPGL3, 2).
Proof. By part (I) of the proof of Th. 4.2, cl(p) generates the 3-torsion of
H%(BPGL;,2)

and moreover cl(p),y * 0in Hf;,(U,Z), where U < sy is the open subscheme of matrices

with distinct eigenvalues. Since ('D% and 93?2, are both 3-torsion in Ajg , we must have

cl(©{%) = 4-cl(p),
cl(®f) = B-cl(p).

But @% and 9872, have supports in the complement of U, so A =B=0. [
Remark 4.3. Note that also the generator (9% can be chosen in such a way that
cef) =o.
In fact cg(sl;) #+ 0 in H'®(BPGL3, Z) by [14], Lemma 3.18 and
H'S(BPGL3,2) ~Z@®Z&®Z/3
(Lemma. 4.1), therefore
cl(@) = Aes(sls).
Now observe that
cs(s13)janzyuop = O
while ©F is a lift of (j, o), (1143) where
71,01 Z1,0 = s\ Zo L {0};
thus we can choose a lift @% such that 4 = 0.
Proposition 4.5. The elements
(o, 6¢},08%, 018, 6%, 6,0, 0%, 6%, o)

are all zero in Apgy,.
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Proof. We first prove that
2 2, 3 4 4 5 5 7
9 ofi=of=of, e, =el% -0} =6 =0} 0
Consider the commutative diagram

Ajq,, —— H*(BPGLs,2)

l l

4, — H'(BDZ)

where the vertical arrows are injective by Theorem 2.1. We know that
2 2; 3 4 4 5 5 i
o, o7, o e, efi e ef e

are 3-torsion and zero in cohomology (Lemmas 4.3, 4.1 and 4.4), so (56) will be proved if
we show that

301 : 31415-3 deay: 3H‘(BF3,Z)

is injective up to degree 5 and in degree 7. But, by the usual transfer-trick, the restriction
induces isomorphisms

347, = Alwr)@, 3H'(BTs,Z) ~ (3H*(B(4s % T),Z))%
and it will be (more than) enough to show that
cl: Ay 7 — H (B(43 X T),2)

is injective up to degree 5 and in degree 7.

Recall (Prop. 3.5) that A% . ;- is generated by

(57) {0, c2(W), c3(W), 0 = tsf22=T (ulus)}
where W is the representation defined in (20) and we identify A7 with

Ay, = Zw,ug,us] /(w1 + wy + u3);

moreover (see Lemma 3.6), we have .

(58) 3u=0,00=0, o®+ac(W)=0,

3[(26+ 3¢3(W))* + dea(W)? + 27e3(W)?] = 0.

For the duration of this proof, we will denote c;(W) and ¢3(W) simply by ¢, and c3;
moreover, if £ € 47,7, we will write & for cl(&).

As shown in the proof of Th. 4.2, we have
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H™(B(43 x ), Z) = (H*(B43,2) ® (B, 2))™

and
(9) AP Nty = T P ypyeyy = BE ~ &)
where
- -~ 2l g _Zg
H (BAS)Z) = (&) 5 il (B”:!:Z) =7 (3ﬁ)

In the following computations we will freely use that the cycle class map respects Chern
classes, restrictions and transfers and that

cl: A7 — H*(BT,Z)
is an isomorphism.
If £ e kerclm A}, . 7, we have
&= Aa _aud Ai=0

for some A € Z; restricting this to 43 (in cohomology) we then get 4 = 0 mod 3, hence
&=0. ;

If ¢ ekercln 4 .., we have
¢ =Ad®+ Bc;, A#F+B5;=0

for some A, B € Z; restricting to T, we get B = 0 then, restricting to 43, we get 4 = 0 mod 3.
Therefore, & = 0.

If £ e kercln A}, .7, We have
&= 4a’ + Bes + C6,
A& + B+ CH=0

for some 4, B, C € Z; restricting to T, we get B= C =0 since & r and @11 are linearly
independent in H*(BT, Z). Restricting then to A3, we get 4 = 0 mod 3, hence ¢ = 0.

If { ekercln 4 .., we have
& = Ao* + Bacs + Cc2,
Aa* + Bics + Ce3” =0

for some 4, B, C € Z; restricting to T, we get C = 0. Restricting then to A3 x uj, from (59)
we get B= A4 =0 mod 3, hence & = 0.
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If & e kercl n A3 .7, We have
& = Ao’ + Ba’cs + Ceacs,
A& + B#*5 + C56 =0

for some 4, B, C € Z,; restricting to T, we get C = 0. Restricting then to 43 x y3, from (59)
we get B= A =0 mod 3, hence £ = 0.

Finally, if & e kercl n 4] ., we have
&= Ao’ + Ba*c; + Ccles + Dc2 + Eac?,
A&’ + B3'5 + €56 + D50 + Eacz? = 0
for some 4, B, C, D, E € Z; restricting to T, we get C = D = 0 since &7 # 0 and (c_glr,5|r)
are linearly independent in the domain H*(BT, Z). Restricting then to A3 x s, from (59)
we get A = B= E = 0 mod 3, hence ¢ = 0. This concludes the proof of (56).
Now we prove the remaining relations
(60) oy =0 =0.
First observe that 9(6 and ®(82, are 3-torsion and zero in cohomology (with @)( chosen as
in Remark 4.3). Smce they are lifts of elements having supports in the complement of
U < sl, their restrictions to Ay, are in the kernel of
Ar, — Ar(Diagy,) ~ Apgy,(U)
and in particular: %
{00} 4y 19Oty w 7} S Ker(9 2 A cr = A e r(Diagy,)).
By Lemma 3.6 (ii) and (57), (58), we must have
04, w r = @*(Aa’ + Bucs + Cc}),
G%W w1 = @*(Da’ + Ec3 + Fc} + Go’cs)
for some 4, ..., E € Z. Using again (58), we get
@%Ma T = A'a5 + BiPes,
G%M, w1 =D'a® + F? + Ga’cs

for some A’,B, D', F, G € Z. Again denoting cl(é) by Eforfe A%, x> We have

=69, ., o, w7 = A'8 + B,

8
0= 95 g)IA;xT

=D'#%+ F&* + G’
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in H*(B(4; X T),Z). Restricting these relations to A3 x y3, by (59) we obtain:
A'=B=0mod3,
D'=F=G=0mod3
1
(61) 9%43 wr =0 Oyt =0
in A}, 7. But the restriction map induces an isomorphism
347, = (A wr)
and then, we also get
95%|r, we Gg%;r, =0
in Af,. By Theorem 2.1 we finally get (60). [
Thus we can summarize the main result obtained so far in the following:
Theorem 4.6.  With the notation of (50), Apg, , is generated by
(62) {2¢2(shs) — e2(Sym’E), e3(Sym’E), p, x, cs(sls), cs(shs) }
where degp = 4, degy = 6.
Remark 4.4. We point out that
2ey(shs) — co(Sym’E), c3(Sym®E), ce(sls), cs(sls)

are nonzero (by checking their images in 4g;; or in cohomology) and we will show in the
next section that p + 0. Unfortunately, we do not know whether y is zero or not.

Note also that the generators p and , defined originally as lifts from the open subset
U (therefore not unique a priori) are indeed uniquely defined since they have degrees <8
and cg(sl3) is the only generator coming from the complement of U.
5. Other relations and results on the cycle maps
With the notations established in the preceding sections we have:
Proposition 5.1.  The following relations hold among the generators of A} ,:
p=3x= 3&3(513) =0,
3(27¢s(sls) — c3(Sym’E)* — 42%) = 0,
P=clsl).
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Proof.  The pullback ¢ : 435, — A7 factors through the composition
7 Ajgr, — Apg, (U) = Af,(Diagy,) — A7 (Diagj,)™ = (47)%,

and, by definition of y and p, #(x) = n(p) = 0. Since ([4], Prop. 6) the rational pullback gq
is an isomorphism, y and p are torsion and then 3-torsion by Cor. 2.4.

Since sls = E® EV —1, as SLj-representations (E being the standard representa-
tion), cg(sls) is in the kernel of 43, — 4§, so it is 3-torsion (Prop. 2.3).

A long but straightforward computation'® shows that
27cq(sls) — c3(Sym*E)* — 42° € ker(dpgy, — A%,)

so that this element is 3-torsion (again by Prop. 2.3).

By definition of p and Lemma 3.6, we have

(63) Pyt = acs(W) + Ao’
for some 4 € Z/3. Since :

s, = (45r) %,
by Lemma 3.6 (ii), p? belongs to the kernel of
o1, — Apcy, (U) = 47, (Diagy,).

Therefore, since by Proposition 4.5 all the generators of Apgy, coming from the comple-
ment of U are zero except for cg(sl;), we have

(64) p* = Beg(sls)

for some Be Z/3.
Let us determine 4 and B. Since cs(sl3),,, = 0, from (63) and (64), we get A =0 i.e.
(65) Plagxr = ac3(W).

.

Straightforward computations show that

€a(13) 4y, = 2B (B — 02)?,

(W )iy, = BB ~ %)

'3 The basic fact here is that ce(sls) restricts to minus the discriminant, 403 + 2703, in Ay, = Zog, a3,
where ¢; = ¢;(E).
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in A =4y, ® A, =Z[o]/(3) ® Z[f]/(3f) and then (64) and (65) prove that
B=13

We define the graded ring

_ ZA,e5(Sym’E), p, x, cs(shs), es(s3)]
- R

R*
where
372 3
RN = (3/), 31, 363(513), 3(27(.‘6(513) S L‘3(Sym E) —4) ),p = 63(813))

and degp =4, degy = 6.

This is our candidate for A3, . What we do know is that the canonical morphism

T R* — Apgy,

is surjective (Th. 4.6).

Remark 5.1. Note that it is immediately clear that g : R* ® Q — Apgr, ® Q is an
isomorphism. In fact

o Qc3(Sym’E), co(sls)]
Fan- (27co(shs) — 5 (Sym’E)” — 42%)

= Q[4, ¢;(Sym*E))].

Moreover, A — 3a, and c3 (SymaE) — 2703 via
AEGL, T A§L3 = Z[oa, 03]

which is rationally an isomorphism (Prop. 2.2). We will prove in Proposition 5.2 (ii) that
more is true: R* and 43, are isomorphic after inverting 3.

We will now establish some properties of the cycle map
cl: Apgy, — H*(BPGL3,Z)
and of Totaro’s refined cycle map
cl: ApgL, — MU*(BPGLs) ®yy- Z.

Remark 5.2. 1In[14] Kono and Yagita proved that in the Atiyah-Hirzebruch spectral
sequence for Brown-Peterson cohomology at the prime 3 ([30])

EZ? = H?(BPGL;,BP?) = BP”*¢(BPGL)
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the E-term is generated as a BP*-module by the top row i.e. by
im(BP*(BPGL;) — H*(BPGLs, Z3)).
As a consequence, the natural map
cl : MU*(BPGL3) @,y Z — H*(BPGL3, Z)

is injective.

We have the following result'®:

Proposition 5.2. (i) cl and cl are injective after inverting 3.

(ii) 7 is an isomorphism after inverting 3.

Progf (i) Apgr, has only 3-torsion and kercl is torsion (Section 2). Therefore
cl = cl o cl is injective after inverting 3 and the same is true for cl.

(i) It is enough to prove that for any prime p # 3, the composition!?
R")p) S (4p6L)(p) M, H*(BPGLs, Z())
is injective. Leray spectral sequence with Z(,)-coefficients:
E}* = H? (BPGLs, H(Byy, Z ;) = H*4(BSLs, Z,,))

collapses at the Ep-term since H*(Bus,Z(,)) = Z,), concentrated in degree zero, thus
yielding an “edge” isomorphism (coinciding with the pullback):

(a(p) : H.(BPGLJ, Z(P)) x>~ H'(BSL;, Z(p)) = Z(P)[az, l!g].
Now, consider the commutative diagram

dm

(e, A, 2l e (ApgL,) ) —— H*(BPGL3, Z(,)

(66) L0 l ; J,'“"

(A§L,)(p) s H‘(BSL;,Z(,))

sy, ()

and observe that for p + 3,

4 A stronger version of (i) will be proved in Theorem 5.3.
1% (-);;) denotes localization at the prime p.
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Z(p) [l, c3 (Sym3E), 05(513)]

ek 3
(@7es(sly) — cr(SymPE) — 47%) Z(p)[4, c3(Sym’E)).

(R =
Since, as we already computed, ¢ o 7(4) = 3%, ¢ o 7(c3 (Sym3E)) = 273, commutativity of
(66) concludes the proof. [
The stronger result we can prove about cl is the following

Theorem 5.3. Totaro’s refined cycle class map
cl: Ajgr, — MU*(BPGL3) @y Z

is surjective (and has 3-torsion kernel).

Proof. kerclis 3-torsion since it is torsion and Apg; , has only 3-torsion. So we are
left to prove surjectivity of cl. To do this, we first prove that dis surjective (thus an iso-
morphism by Prop. 5.2 (i)) after inverting 3 and then that cl is surjective when localized at
the prime 3.

clpgy, is an isomorphism after inverting 3 since H* (BPGL3, z [;:I) is torsion free
([24])*®. So it is enough to prove that clpgr, is surjective when 3 is inverted. Now, in the
commutative diagram

1] clecy, [j] I
ul] =

o

K . [1
A, [5] s [} B, [5]

¢' is an isomorphism since the corresponding Leray spectral sequence
EJ? = H?(BPGL3, HY(By;, Z)) = HP*9(BSL3,Z

collapses after inverﬁng 3, and clg;, is an isomorphism even without inverting 3. On the
other hand, g is injective because @ : 4p;, — 4¢, has 3-torsion kernel and is surjective
since

1) We briefly sketch the argument. Since the differentials in the Atiyah-Hirzebruch spectral sequence
= H?(BPGLs, MU?) = MUP*1(BPGL;)

are always torsion, they must be 0 if 3 is inverted since there is only 3-torsion (recall that MU* is torsion-free).
Therefore F}? collapses when 3 is inverted.
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]
62(513) = 6!22,
3 D
¢(Sym’E) — 15a3,

¢3(Sym’E) 2 27as.

Therefore clpgy, [%] is an isomorphism too.

So it remains to prove that the localization at the prime 3

(ClpoL,) 3y : (AbLs) 3 — MU*(BPGL3) ®yu- Zg3)
is surjective. By [20], '

MU*(BPGL3) ®uu- Z3) ~ BP*(BPGL;) @ pp+Z3)
where BP*(X) denotes the Brown-Peterson cohomology of X localized at the prime 3 and

BP* = BP*(pt) = Z3)[v1,- -, Uy - - ] = Z3)
(degv; = —2(3" — 1)) sends each v; to zero (see also [30]). Kono and Yagita computed
BP*(BPGLs) in [14], Th. 4.9, as a BP*-module; it is a quotient of the following BP*-
module
(BP*Z3)[[72]]77 @ BP* @ BP*Z3)[[7]175) ® Z3)[[712]
and, if
r : BP*(BPGL3) —» H*(BPGL, Z(3)) = H*(BPGLs, Z/3)

(where s is the natural map of generalized cohomology theories and j, is induced by
J: Zy — Z/3), r has kernel BP<° - BP*(BPGL3) and

r(37) = 3 = ca(sls),

r(Vs) = ¥s,

r(¥12) = y12 = co(shs),
yg € H¥(BPGL3,Z/3) being the same as in part (IV) of the proof of Th. 4.2. So we only

need to show that j is in the image of (clpgr,) (3)- By part (IV) of the proof of Th. 4.2, yg is
in the image of

Joo (cleory)s) : (Apgr,) s — H(BPGL3,Z/3),

and this concludes the proof since r has kernel BP<C - BP*(BPGL;). [
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Remark 5.3.  We wish to point out that we do not know whether ker cl is zero or not.
Moreover, since cl(y) = 0 and ¢l is injective (Remark 5.2), we also have cl(y) = 0. There-

fore, if Totaro’s conjecture was true (i.e cl was an isomorphism) we should have y = 0; but,
again, we are not able to prove whether y = 0 or not.

6. Appendix. A cohomology-independent proof that Apgy, is not generated
by Chern classes i

Here we give an alternative proof of Theorem 4.2 which is independent of Kono-
Mimura-Shimada’s results on the Z/3-cohomology of BPGL; and deals only with Chow
rings with no reference to cohomology. However, for the same reason, the following proof
does not yield any direct information on the cycle or refined cycle map.

The notations are those of the previous sections.

Proposition 6.1.  The representation ring of PGLs; is generated by

{sls, Sym’E, Sym®E V}.
Proof. The exact sequence
1 — u3 —SL; — PGL3 — 1
induces an exact sequence of character groups
0— Tror, =T — Tor, 2+ Z/3 50
where T, =222~ 1} diagonally) and 7 : [n;, n2,m3] — [n1 + 1z + n3]. Then
Z[T) — Z[fs-;,] = Z[x1, X2, x3]/ (x122%3 — 1)
is the subring generated by monomials x]'x}2x}* with 7, + n, + n3 = 0 mod 3. Therefore
s L Lt
R(PGL3) = (R(T))™ = (Z[T])® — R(SLs) = (Z[TsL,))® = Z[sy, 2]

(where s; is the i-th elementary symmetric function on the x,’s) is the subring generated by
{313,-§1sz, 53}. Then to prove the proposition it is enough to compute sls, Sym’E and
Sym E" in terms of s; and s, in R(SL;).

If Eis the standard representation and 1 the trivial one dimensional representation of

SL3, we have
E=x1+x+x3=43,
EY =x7' 4+ x5t + x5 =200 + x1%3 + x%5 =8,
Sb=EQE'—-1=s15,—1;
S0 j
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SymaE = S? —2s1:9 + 1, Sym’E" = Sg — 25157+ 1
and we conclude. [J

Corollary 6.2. The Chern subring Agy, vy, of ApcL,, generated by Chern classes of
representations, is generated by {ci(sls), ¢;(Sym’E)}, 20"

Theorem 6.3. p is not in the Chern subring of Apgy,.
Proof. By Prop. 6.1,
R(PGL3) = Z[sl;, Sym*E, Sym’E"]

and since sl (respectively, Sym3E) is isomorphic to the regular A3 X us-representation
minus the trivial one (respectively, plus the trivial one), we have

(67) Ci(S13) gy = G(SYM’E) gy =0, 5,7 =1,2,3,4.
Now recall (Section 3) that p is a lift to 43, of
¥ (oes(W)) € A}, r(Diagg,)
where
v AZ,xT = A;;xT(Diag:l;)
is the (surjective) pullback. So, the image of p under the restriction
Apgr, = Agyxr
is of the form acs3(W) + ¢, for some ¢ € ker(y)).
Now, let us suppose p is in the Chern subring A, pgy,- BY (67), we have
acs(W)+Eeker(p: Afwr — Adixy)-
From the commutative diagram

* *
AA,KT AA;xyg

| il

iyrer(Dingsy) —— A, (Dings,)

we get

V' (ac3(W)) = 0.

Therefore, if we show that acy(W) is not in the kernel of y', we will have proved that p
cannot be in the Chern subring of A3y, To do this, let us consider the two localization
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sequences’ "

i (-1 i , .
(68) Ajyxu ——— A, (Diagy,) —2— A3, (Diagy,\{0}) ——0,

69 A}, = A3, (2) — 43, (Diagy,\{0})
—1— 43,,,,(Diag) ) ———0
where we used that
Z~A3xC*,
A3 X T-equivariantly. Since (Section 3),
W ~Cy X Cgem,A;

as A3 x py-representations (where C, ,, is the u3-representation of character y = exp(i2z/3)

and Cgem’ 4, 18 the A3-permutation representation), its Chern roots are
{B+op—ap}
and then
(70) 0s(W) i, = (B2 = %)alp.

By (70) and (68), it is enough to prove that j, = 0.

Let us consider the pl'lllback E of Cy,, to X = Diagy \{0} as an 43 x uy-equivariant
vector b}u}dle, with A3 acting trivially on C, ,, and 43 x y; acting as usual on X (i.e. 3
acting trivially and 43 by permutations). We have

J*(e(B) = ci(E), = 5.

But we also have j,(1) = 0, since

z=D"'({o})
where
D:X— Al,
(71) (A1, 42,43) = (A1 — A2) (A1 — A3) (A2 — A3)

: : : A 28
? Here Diag,, are the diagonal matrices in sl; and we identify 4}, ., =~ 4}, ® 4;, with

Z[ o Z[f]

ERETN
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is the square root of the discriminant (which is 43 x ps-equivariant). So j, =0 and we
conclude. [
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