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Existence of vector bundles and global resolutions

for singular surfaces

Stefan Schröer and Gabriele Vezzosi

Abstract

We prove two results about vector bundles on singular algebraic surfaces. First, on proper
surfaces there are vector bundles of rank two with arbitrarily large second Chern number
and fixed determinant. Second, on separated normal surfaces any coherent sheaf is the
quotient of a vector bundle. As a consequence, for such surfaces the Quillen K-theory of
vector bundles coincides with the Waldhausen K-theory of perfect complexes. Examples
show that, on non-separated schemes, usually many coherent sheaves are not quotients of
vector bundles.

Introduction

Let Y be a scheme. We pose the following question: Does there exist a non-trivial locally free
OY -module of finite rank? Many fundamental problems in algebraic geometry are related to this.
We mention a few: In the theory of moduli spaces, one wants to know whether certain moduli spaces
of semistable vector bundles with given Chern numbers are non-empty. In K-theory, one seeks to
replace coherent sheaves by complexes of locally free sheaves, or perfect complexes by bounded
complexes of locally free sheaves. In the theory of Brauer groups, a fundamental problem is to find
a locally free sheaf admitting an Azumaya algebra structure with given cohomology class.

There is a good chance of tackling such problems if Y admits an ample invertible sheaf, or
more generally an ample family of invertible sheaves [Gro71, Exposé II]. Very few things, however,
seem to be known in general. For example, it is open whether or not a proper algebraic scheme has
non-trivial vector bundles at all.

The goal of this paper is to attack the problem for the simplest family of schemes where few
results are known, namely algebraic surfaces with singularities over an arbitrary ground field. Our
first main result (Theorem 1.1) is that a proper algebraic surface admits rank two vector bundles
with arbitrary preassigned determinant and arbitrarily large second Chern number. The second
main result (Theorem 2.1) is that, on normal separated algebraic surfaces, any coherent sheaf is
the quotient of a locally free sheaf. In other words, any coherent sheaf admits a global resolution
with locally free sheaves. Examples show that this fails for trivial reasons without the separated-
ness assumption (Proposition 4.2). Using Theorem 2.1 we infer that on normal separated surfaces
Quillen’s K-theory of vector bundles coincides with the Waldhausen K-theory of perfect complexes
(Theorem 3.3).

The situation for algebraic surfaces with singularities is similar to the case of non-algebraic
smooth compact complex surfaces. Schuster [Sch82] extended the existence of global resolution for
a smooth algebraic surface to smooth compact complex surfaces. For non-algebraic smooth compact
complex surfaces, Bănică and Le Potier [BLP87] proved that Chern numbers for torsion free sheaves
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satisfy certain inequalities. For rank two vector bundles, this reduces to 2c2 � c2
1, so the second

Chern number is bounded from below if the determinant is fixed.
This analogy breaks down in higher dimensions. Burt Totaro pointed out to us recent results of

Claire Voisin: Among other things, she proved that ideal sheaves of closed points on general complex
tori of dimension � 3 are not quotients of locally free sheaves [Voi01, Corollary 2].

1. Existence of vector bundles

Throughout this paper we work over a fixed (but arbitrary) ground field k. In this section, Y denotes
a proper surface. The word surface means a k-scheme of finite type whose irreducible components are
two-dimensional. We pose the following question: ‘Given an invertible OY -module L and an integer
c2 ∈ Z, does there exist a locally free OY -module F of rank two with determinant det(F) � L and
second Chern number c2(F) = c2?’

Schwarzenberger proved such a result for smooth surfaces over algebraically closed ground fields
[Sch61, Theorem 8]. Beyond this, however, little seems to be known. It might easily happen that
Pic(Y ) = 0 for normal surfaces (see [Sch99, § 3]), and it is a priori unclear whether or not there
are any non-trivial vector bundles on arbitrary singular surfaces (though, by [Sch01, Theorem 4.1],
any proper normal surface has non-trivial vector bundles of square rank).

To start with, let us briefly recall the notions of S1-ization and S2-ization since we will use
them quite often. Given (a surface) Y , its S1-ization is the closed subscheme Y ′ ⊂ Y having the
same underlying topological space as Y and whose defining ideal is the ideal I ⊂ OY of sections
whose support has dimension �1. The S2-ization f : X → Y of Y is defined as follows: For any
y ∈ Y , the stalk f∗(OX)y is the intersection of all local rings OY ′,x for all points x ∈ Spec(OY,y) of
codimension one, the intersection taking place in the ring of total fractions for OY ′,y. According to
[Gro65, Proposition 5.11.1], the S2-ization f : X → Y is a finite birational morphism. Note that Y ′

and X satisfy Serre’s condition (S1) and (S2), respectively.
Next, it is perhaps a good idea to define for our situation what we mean by the second Chern

number c2(F) ∈ Z for a given locally free OY -module F of rank r � 0. The following naive approach
suits us well. Let f : X → Y be the S2-ization. To define c2(F), set E = f∗(F) and L = det(E).
The Riemann–Roch equation

χ(E) = 1
2L · (L − ωX) − c2(E) + rχ(OX) (1)

defines an integer c2(E), and we set c2(F) = c2(E). Here ωX is the dualizing sheaf, which exists
because X is Cohen–Macaulay.

We now state our first main result.

Theorem 1.1. Let Y be a proper surface. Then for each invertible OY -module L and each integer
c2 � 0, there is a locally free OY -module F of rank two satisfying det(F) � L and c2(F) � c2.

The proof requires some preparation, in the form of three propositions. Suppose we have a proper
birational morphism f : X → Y . The union of all integral curves mapped to a point is called the
exceptional curve E ⊂ X. The union of all integral curves given by the codimension one points
x ∈ X for which OY,f(x) → OX,x is finite but not bijective is called the ramification curve. The
following tells us that in constructing vector bundles, we may pass to certain auxiliary surfaces.

Proposition 1.2. Let f : X → Y be a proper birational morphism with empty ramification curve.
Suppose the exceptional curve E ⊂ X supports an effective Cartier divisor D ⊂ X with OE(−D)
ample. Then for each r � 0, there is an n � 1 such that the functor F �→ f∗(F) induces a surjection
from the set of isomorphism classes of locally free OY -modules of rank r to the set of isomorphism
classes of locally free OX -modules of rank r whose restriction to nD is trivial.
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Proof. First consider the special case that f : X → Y is finite. Then the exceptional curve E ⊂ X
is empty, and OY → f∗(OX) is bijective outside finitely many closed points. Fix a locally free
OX -module E of rank r. For each y ∈ Y , the preimage f−1(SpecOY,y) is a semilocal scheme, on
which E becomes trivial. Consequently, there is an affine open covering Vi ⊂ Y such that E becomes
trivial on the preimages Ui = f−1(Vi). Set V = (Vi) and U = (Ui). Passing to a refinement of
V, we may assume that each Vi contains at most one point y ∈ Y where OY → f∗(OX) is not
bijective. Then Ui ∩ Uj = Vi ∩ Vj for i �= j, hence the canonical map on alternating cocycles
Z1(V,GLr,Y ) → Z1(U,GLr,X) is bijective. It follows that the functor F �→ f∗(F) is surjective on
isomorphism classes.

Now let f : X → Y be arbitrary. Applying the preceding special case to the Stein factorization
Spec(f∗OX) → Y , we may replace Y by Spec(f∗OX) and assume that OY → f∗(OX) is bijective. By
the Theorem on Formal Functions [Gro61, Theorem 4.1.5], the functor F �→ f∗(F) is an equivalence
between the categories of locally free OY -modules F of rank r and the category of locally free OX -
modules E of rank r whose restriction to the formal completion X = X/E is trivial. The same
argument as in [Sch01, Lemma 2.2] shows that there is an integer n � 1 such that E is trivial on X

if and only if it is trivial on nD, and the result follows.

Note that [Sch01, Lemma 2.2] is stated for resolutions of singularities of normal surfaces, but
the proof holds literally true in our situation. That result also involves a family B of locally free
OE-modules that is bounded up to tensoring with line bundles; here we apply the result with the
trivial family B = {OE}.

Remark 1.3. If OY → f∗(OX) is bijective, the preceding arguments show that the functor F �→
f∗(F) yields a bijection between the set of isomorphism classes of locally free OY -modules of rank
r and the set of isomorphism classes of locally free OX -modules of rank r whose restriction to nD
is trivial.

Passing to such auxiliary surfaces X does not change second Chern numbers:

Proposition 1.4. Let f : X → Y be a proper birational morphism, R ⊂ X its ramification curve,
F a locally free OY -module of finite rank, and E = f∗(F) its pullback. If F is trivial on f(R), then
c2(F) = c2(E).

Proof. Making base change with the S1-ization of Y and replacing X by its S2-ization, we may
assume that Y has no embedded components and that X is Cohen–Macaulay. If f : X → Y is finite,
it must factor over the S2-ization of Y . If OY → f∗(OX ) is bijective, then Y already satisfy Serre’s
condition (S2). Using Stein factorization, we therefore may assume that Y is Cohen–Macaulay.

The trace map f∗(ωX) → ωY is bijective outside the union of f(R) and an additional finite
subset. Since M = det(F) is trivial on this set, the projection formula gives M·ωY = f∗(M) ·ωX .
Furthermore, we have χ(F) − χ(E) = rχ(OY ) − rχ(OX), because F is trivial on f(R). Now the
Riemann–Roch formula (1) immediately implies c2(F) = c2(E).

Now we come to the construction of auxiliary surfaces.

Proposition 1.5. Let Y be a proper surface. Then there is a projective birational morphism
f : X → Y with empty ramification curve such that the following hold:

i) there is a Cartier divisor D ⊂ X supported by the exceptional curve E ⊂ X with OE(−D)
ample;

ii) there is an irreducible Cartier divisor C ⊂ X contained in the Cohen–Macaulay locus of X
and having no component in common with E ⊂ X.
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Proof. Choose a codimension one point y ∈ Y not contained in Ass(OY ) so that Yred is normal near
y ∈ Yred. There is a regular element s ∈ mY,y such that OY,y/(s) is zero-dimensional. Let B ⊂ Y be
the schematic image of the canonical morphism SpecOY,y/(s) → Y . Then B ⊂ Y is an irreducible
curve and Cartier outside finitely many closed points.

We now make a sequence of blow-ups Y4 → · · · → Y1 → Y whose centers are infinitesimal near
to B and have zero-dimensional image on B. We shall denote by Bi ⊂ Yi the strict transform of B.
First, we blow up the intersections B ∩ {y}, where y ranges over the non-generic associated points
y ∈ Ass(OX). Then the strict transform B1 ⊂ Y1 becomes disjoint from embedded components.
Next, let H1 ⊂ Y1 be the branch locus for the normalization map Y nor

1 → Y red
1 , and Y2 → Y1 be the

blow-up with center H1 ∩ B1. Write R2 ⊂ Y2 for the exceptional curve of Y2 → Y1, and H2 for
the strict transform of H1.

To define the next blow-up, we first choose an open subset U2 ⊂ Y red
2 containing the support

of B2 and disjoint from H2, so that R2 ∪ B2 contains the singular locus of U2. Let r : U3 → U2

be a resolution of singularities. Then there is an effective Cartier divisor R3 ⊂ U3 supported by
r−1(Sing(U2)) such that −R3 is relatively ample with respect to r. Consequently, r∗OU3(−nR3) ⊂
r∗OU3 is contained in OU2 for n 	 0, and it then follows as in the proof of [Gro61, Proposition 2.3.5]
that r : U3 → U2 is the blow-up of some center Z2 ⊂ Sing(U2). Now let Y3 → Y2 be the blow-up of
the schematic closure Z2 ⊂ Y2. By construction, the strict transform B4 ⊂ Y4 is supported by the
regular locus of Y red

4 .
Let g : Y ′ → Y be the composite morphism for the preceding sequence of blow-ups. According

to [Ray71, Lemma 5.1.4], this is a blow-up of a zero-dimensional closed subscheme Z ⊂ Y supported
by B. The preimage D′ = g−1(Z) is an effective Cartier divisor supported on the exceptional curve,
whose ideal is isomorphic to OY ′(1). In other words, it is ample on the exceptional curve.

Let B′ ⊂ Y ′ be the strict transform of B. Let h : X → Y ′ be the blow-up of B′. This is a
homeomorphism, because B′ ∩ Y ′

red ⊂ Y ′
red is already a Cartier divisor. Consequently, the effective

Cartier divisor C = h−1(B′) has no irreducible component in common with the exceptional curve
E ⊂ X for the composition f : X → Y . Replacing X in some open neighborhood of C by its
S2-ization, we may also assume that C lies in the Cohen–Macaulay locus. Since h is finite, the
Cartier divisor D = h−1(D′) has OE(−D) ample.

Proof of Theorem 1.1. First choose a proper birational morphism f : X → Y and Cartier divisors
C ⊂ X and D ⊂ X as in Proposition 1.5. Then choose an integer n � 1 as in Proposition 1.2 so that
any locally free OX -module of rank two that is trivial on nD comes from a locally free OY -module
of rank two.

In light of Proposition 1.4, we have to solve the following problem: Given an invertible OX-
module L that is the preimage of an invertible OY -module, find a locally free OX -module E of
rank two whose restriction to nD is trivial, so that det(E) � L and c2(E) 	 0. The idea is to start
with E0 = L ⊕ OX and apply two elementary transformations (see [Mar82]) that cancel each other
on nD. Note that det(E0) = L and c2(E0) = 0.

To proceed, choose an ample effective Cartier divisor A ⊂ C and an integer t > 0 so that
H1(C,LC((t − 1)A)) = 0. Let s1 : LC → LC(tA) be the map induced by tA. The exact sequence

H0(C,LC(tA)) −→ H0(A,LA(tA)) −→ H1(C,LC ((t − 1)A))

shows that some map s2 : OC → LC(tA) has no zeros on A. This gives a surjection s : E0|C →
LC(tA). In turn, the exact sequence

0 −→ E1 −→ E0 −→ LC(tA) −→ 0 (2)

defines a coherent OX -module E1 of rank two, which is locally free because the stalks of LC(tA)
have projective dimension one. In other words, E1 is an elementary transformation of E0.
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Taking determinants on X−A, we compute det(E1) = L(−C). This works because X satisfies Serre’s
condition (S2) near A. Restricting the exact sequence (2) to nD, we obtain an exact sequence

Tor1(OnD,OC(tA)) −→ E1|nD −→ E0|nD −→ OC∩nD −→ 0. (3)

The map on the left vanishes: On the one hand, Tor1(OnD,OC(tA)) is supported on C ∩ D. On
the other hand, E1|nD has no torsion sections near C ∩D, because D is Cartier and C is contained
in the S2-locus of X. We conclude that the restriction E1|nD remains an elementary transformation
of E0|nD.

Next, consider the invertible OC -module N1 = Ext1(LC(tA),OX ). Dualizing the exact sequence
(2), we obtain an exact sequence

0 −→ E∨
0 −→ E∨

1 −→ N1 −→ 0.

Its restriction to C gives an exact sequence

0 −→ N2 −→ E∨
1 |C −→ N1 −→ 0 (4)

for some invertible OC -module N2. Now choose an ample Cartier divisor A′ ⊂ C disjoint from D∩C.
Choose k0 > 0 so that we have H1(C,OC (kA′−nD)) = 0 and H1(C,N1⊗N∨

2 ((k−1)A′−nD)) = 0
for all k � k0. Fix such an integer k � k0, and let s′1 : N1 → N1(kA′) be the canonical map given
by kA′. The exact sequence (4) yields an exact sequence

H0(C,N∨
2 ⊗N1(kA′)) −→ H0(C,OA′ ⊕OC∩nD) −→ H1(N∨

2 ⊗N1((k − 1)A′ − nD)),

showing that some map s′2 : N2 → N1(kA′) has no zeros on A′ and vanishes on C ∩ nD. The exact
sequence

Hom(E∨
1 |C ,N1(kA′ − nD)) → Hom(N2,N1(kA′ − nD)) → Ext1(N1,N1(kA′ − nD))

tells us that there is an extension of the map s′2 : N2 → N1(kA′) to a mapping s′2 : E∨
1 |C → N1(kA′)

vanishing on C ∩nD. Setting s′ = s′1 + s′2, we obtain a surjective mapping s′ : E∨
1 |C → N1(kA′). By

construction, this surjection and the old surjection E∨
1 |C → N1 are isomorphic on C ∩nD. Now the

exact sequence
0 −→ E2 −→ E∨

1 −→ N1(kA′) −→ 0
defines a locally free OX -module E2. Set E = E∨

2 . Taking determinants on X − A′, we obtain
det(E) = L. Using the Riemann–Roch formula (1) on the S2-ization of X, we compute

c2(E) = c2(E1) + C · det(E1) + k deg(A′) + deg(N1),

which becomes arbitrarily large for k 	 0. Finally, restriction to nD gives an exact sequence

0 −→ E∨|nD −→ E∨
1 |nD −→ OC∩nD −→ 0. (5)

By construction, the elementary transformations (3) and (5) are dual to each other, so E|nD � E0|nD

is trivial. Thus E is a locally free OX -module with the desired properties.

Remark 1.6. The preceding proof shows that we may increase c2(F) without changing the deter-
minant by adding the number deg(A′) > 0. If Y is reduced and the ground field k is algebraically
closed, we may choose the Cartier divisor C ⊂ X reduced and the ample Cartier divisor A′ ⊂ C
of degree one. In this case, there is a constant c � 0 such that all numbers c2 � c occur as second
Chern number of locally free OY -modules of rank two with fixed determinant.

Remark 1.7. If M1 and M2 are two invertible OY -modules, the locally free OY -module F =
M1 ⊕M2 has c2(F) = M1 · M2. If the intersection form on Pic(Y ) is non-zero, this immediately
implies that c2 can be arbitrarily positive and negative. Moreover, if the intersection form has a
positive eigenvalue, say M·M > 0, then F = M⊕M∨ satisfies c1(F) = 0 and c2(F) = −M ·M,
so c2 can be arbitrarily negative with c1 fixed.
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Theorem 1.1 is mainly a result about surfaces whose intersection form is trivial. However,
the intersection form is usually trivial for singular surfaces (compare [Sch99] and [Har77, p. 232,
Exercise 5.9]).

Remark 1.8. Bănică and Le Potier [BLP87, Theorem 3.1] proved 2c2(F) � c2
1(F) for locally free

sheaves F of rank two on non-algebraic smooth compact complex surfaces. In light of this, we do
not expect that, on badly singular proper algebraic surfaces, the second Chern numbers for vector
bundles of rank two with fixed determinant might be arbitrarily negative.

2. Existence of global resolutions

Let Y be a separated surface. According to the Nagata Embedding Theorem [Lut93, Theorem 3.2],
we may embed Y into a proper surface, and Theorem 1.1 tells us that there are many locally free
OY -modules. A natural question to ask is this: Given a coherent OY -module M, does there exist
a locally free OY -module F of finite rank, together with a surjection F → M? This holds if Y
admits an ample invertible sheaf, or more generally an ample family of invertible sheaves [Gro71,
Exposé II, Proposition 2.2.3]. Schuster solved the analogous problem for smooth compact complex
surfaces [Sch82], which are not necessarily algebraic. We have the following result.

Theorem 2.1. Let Y be a separated normal surface. Then any coherent OY -module M is the
quotient of a locally free OY -module F of finite rank.

The idea for the proof is to construct a sheaf of 1-syzygies S for M, and then obtain F as
an extension of M by S. Similarly, we obtain the sheaf of 1-syzygies as the extension of an ideal
by a suitable locally free sheaf. The main problem is to choose these sheaves carefully so that the
desired extensions, which always exist locally, also exist globally. We start with some preliminary
reductions. Throughout, Y denotes a normal surface.

Proposition 2.2. Let M be a coherent OY -module. Then there are finitely many effective Weil
divisors D1, . . . ,Dj ⊂ Y and a surjection

⊕j
i=1 OY (−Di) → M so that the induced maps

⊕j
i=1 OY

(−tDi) → M remain surjective for all t � 1.

Proof. Since M is coherent, it suffices to see that each germ sy ∈ My, y ∈ Y , lies in the image of a
map OY (−D) → M for some effective Weil divisor D ⊂ Y not containing y. Choose a representative
sV ∈ Γ(V,M) on some affine open subset V ⊂ Y . Since Y is separated, the reduced complement
D = Y − U is an effective Weil divisor, say with ideal I = OY (−D) [Gro67, Corollary 21.12.7].
According to [GD70, Proposition 6.9.17], we may extend sV : OV → MV to a map s : Im → M for
certain m � 1. Now choose some n � 1 so that nD contains Spec(OY /Im). Then OY (−nD) ⊂ Im,
and the composition OY (−nD) → M is the desired map.

Next we reduce to the case that our ground field k is infinite.

Proposition 2.3. Let k ⊂ ks be a separable closure, and Y s = Y ⊗ ks the induced normal surface.
If all coherent OY s-modules are quotients of locally free OY s-modules of finite rank, then the same
holds for all coherent OY -modules.

Proof. Let M be a coherent OY -module. Fix a germ sy ∈ My, y ∈ Y . As in the proof of Propo-
sition 2.2, there is an effective Weil divisor D ⊂ Y not containing y and a map OY (−D) → M so
that the stalk sy lies in the image. According to [Gro66, Theorem 8.5.2], there is a finite separable
field extension k ⊂ k′ so that on the normal surface Y ′ = Y ⊗ k′, there is a locally free OY ′-module
F ′ and a surjection F ′ → OY ′(−D′), where D′ = D ⊗ k′ is the induced Weil divisor. Dualizing, we
obtain an injection f∗(OY (D)) ⊂ F ′∨ which is a direct summand near f−1(y), where f : Y ′ → Y
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denotes the canonical projection. This injection corresponds to an injective map OY (D) → f∗(F ′∨),
which is a direct summand near y. Setting F = f∗(F ′∨)∨, we obtain a map F → OY (−D) which
is surjective near y. The image of the composite map F → M contains the germ sy, and we infer
that M is the quotient of a locally free OY -module of finite rank.

The following fact from commutative algebra will be useful.

Proposition 2.4. Let I and N be coherent OY -modules. If N is reflexive, then the canonical map
Hom(I∨∨,N ) → Hom(I,N ) is bijective.

Proof. This is a local problem, so let us assume that Y = Spec(A) is affine. Set I = Γ(Y,I) and
N = Γ(Y,N ). According to [Har94, Proposition 1.7], there is an exact sequence 0 → N → L → L′

for certain free A-modules L and L′. This gives an a commutative diagram with exact rows:

0 �� Hom(I∨∨, N) ��

��

Hom(I∨∨, L) ��

��

Hom(I∨∨, L′)

��
0 �� Hom(I,N) �� Hom(I, L) �� Hom(I, L′)

By the 5-Lemma, it suffices to treat the case N = A. Then our map in question becomes the
canonical map (I∨∨)∨ → I∨. By [Har94, Corollary 1.6], both (I∨∨)∨ and I∨ are reflexive. At each
prime ideal p ⊂ A of height one, the module Ip is the direct sum of a free module and a torsion
module. Hence our map is bijective in codimension one, and [Har94, Theorem 1.12] implies that it
is bijective everywhere.

Let us recall the notion of syzygies. Let M be a coherent OY -module. A coherent OY -module
S is called a sheaf of 1-syzygies for M if, for any point y ∈ Y , there is an integer m � 0 and an
exact sequence 0 → Sy → O⊕m

Y,y → My → 0. Our strategy to construct a surjection F → M from
a locally free sheaf F of finite rank is first to prove the existence of a suitable sheaf of 1-syzygies
S, and then to prove the existence of an extension 0 → S → F → M → 0 globalizing the local
extensions. We now have all means to carry out this plan.

We are now in a position to return to the proof of Theorem 2.1.

Proof of Theorem 2.1. By the Nagata Embedding Theorem [Lut93, Theorem 3.2], we may embed
Y into a proper surface, because Y is separated. Moreover, any coherent sheaf on Y is the restriction
of a coherent sheaf on the compactification by [GD70, Corollary 6.9.11]. So let us assume that Y is
proper. By Proposition 2.3, we may also assume that the ground field k is separably closed, hence
infinite.

Let M be a coherent OY -module. We seek a locally free OY -module F of finite rank, together
with a surjection F → M. In light of Proposition 2.2, we may assume that M = OY (−D) for some
effective Weil divisor D ⊂ Y . Moreover, we may replace D by some high multiple and assume that
KY − 2D is not linearly equivalent to an effective Weil divisor.

Choose an integer r � 2 so that we have for each y ∈ Sing(Y ) a surjection O⊕r+2
Y,y → OY,y(−D).

The exact sequence
0 −→ Sy −→ O⊕r+2

Y,y −→ OY,y(−D) −→ 0 (6)
defines OY,y-modules Sy of rank r + 1. Our first task is to extend these local modules to a coherent
OY -module S that is locally free on the regular locus. Then S would be a sheaf of 1-syzygies for
M = OY (−D).

According to [EG85, Theorem 2.14], for each y ∈ Sing(Y ) there is an ideal Iy ⊂ OY,y and an
exact sequence

0 −→ O⊕r
Y,y −→ Sy −→ Iy −→ 0. (7)
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Taking determinants on Spec(OY,y)−{y}, we see that Iy is isomorphic to OY,y(D) outside y. Hence
there are isomorphisms I∨∨

y → OY,y(D), and the cokernel Ty for the composite map Iy → I∨∨
y →

OY,y(D) is supported by y ∈ Spec(OY,y). Then T = ⊕Ty is a skyscraper sheaf supported by Sing(Y ),
and we have a global surjection OY (D) → T . Its kernel I ⊂ OY (D) is a coherent fractional OY -ideal
extending the given local OY,y-modules Iy.

Suppose we have a locally free OY -module H of rank r. Then Ext1(I,H) is a coherent OY -module
supported on Sing(Y ). Choose trivializations Hy � O⊕r

Y,y. Then the local extensions (7) correspond
to a section e ∈ H0(Y, Ext1(I,H)). The spectral sequence Hp(Y, Extq(I,H)) ⇒ Extp+q(I,H) gives
an exact sequence

Ext1(I,H) −→ H0(Y, Ext1(I,H)) −→ H2(Y,Hom(I,H)).

We want to choose the locally free OY -module H so that the term on the right vanishes. For then
the section e ∈ H0(Y, Ext1(I,H)) comes from a global extension 0 → H → S → I → 0, and we
have constructed a sheaf of 1-syzygies S for M. The canonical map Hom(OY (D),H) → Hom(I,H)
is bijective by Proposition 2.4. Serre duality gives H2(Y,Hom(OY (D),H)) � H0(Y,H∨⊗ωY (D))∨.
So we seek a locally free OY -module H of rank r without non-zero maps H → ωY (D).

To achieve this, let f : X → Y be a resolution of singularities, and E ⊂ X the exceptional curve.
According to Remark 1.3, there is an integer n � 1 such that the locally free OY -modules of rank r
correspond to the locally free OX -modules of rank r with trivial restriction to nE. Choose a Weil
divisor C on X with OX(C) � f∗(ωY (D))∨∨.

Being regular, the proper surface X is projective [Har70, Theorem 4.2]. Choose a very ample
invertible OX-module L satisfying both H2(X,L(KX − C)) = 0 and H1(X,L⊗r(−nE)) = 0.
Consider the locally free OX -module E0 = L⊕r of rank r. Then Hom(E0,OX(C)) = 0. The restric-
tion E0|nE is globally generated. Set Γ = H0(nE, E0|nE). The canonical surjection Γ⊗OnE → E0|nE

yields a morphism ϕ : nE → Grassr(Γ) into the Grassmannian of r-dimensional quotients. Choose a
generic r-dimensional subvector space Γ′ ⊂ Γ. Here we use that our ground field is infinite. For each
integer k � 0, let Gk ⊂ Grassr(Γ) be the subscheme of surjections Γ → Γ′′ such that the composition
Γ′ → Γ′′ has rank � k. Note that Gr−1 is a reduced Cartier divisor, and that Gr−2 has codimension
four (see [ACG85, Section II.2]).

By the dimensional part of Kleiman’s Transversality Theorem [Kle74, Theorem 2], the map
ϕ : nE → Grassr(Γ) is disjoint to Gr−2 and passes through Gr−1 in finitely many points. The
upshot of this is that the quotient of the canonical map Γ′ ⊗OnE → E0|nE is an invertible sheaf on
some Cartier divisor A ⊂ nE. Consequently, we have constructed an exact sequence

0 −→ O⊕r
nE −→ E0|nE −→ OA −→ 0,

and L⊗r
nE � OnE(A). The exact sequence

H0(X,L⊗r) −→ H0(nE,L⊗r
nE) −→ H1(X,L⊗r(−nE))

shows that A = H ∩ nE for some divisor H ⊂ X with L⊗r � OX(H). The exact sequence

H0(H, E∨
0 ⊗N ) −→ H0(A, E∨

0 ⊗NA) −→ H1(H, E∨
0 ⊗N (−A))

tells us that the surjection E0|nE → OA extends to a surjection E0 → N for any sufficiently ample
invertible OH-module N . Then the kernel E ⊂ E0 is a locally free OX -module of rank r that is
trivial on nE, hence H = f∗(E) is locally free of rank r as well.

Suppose there is a non-zero map H → ωY (D). Then there is also a non-zero map E → OX(C).
To rule this out, consider the exact sequence

Hom(E0,OX(C)) −→ Hom(E ,OX(C)) −→ Ext1(N ,OX(C)).
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The term on the right sits in an exact sequence

H1(X,Hom(N ,OX(C))) −→ Ext1(N ,OX(C)) −→ H0(Y, Ext1(N ,OX (C))).

We have Hom(N ,OX(C)) = 0 and Ext1(N ,OX (C)) � N∨(C + H), which has no global sections if
N is sufficiently ample. In other words, we may choose N so that Hom(H, ωY (D)) = 0. In turn, the
desired global extension

0 −→ H −→ S −→ I −→ 0
exists, and S is a sheaf of 1-syzygies for M = OY (−D).

Now we are almost done. The coherent OY -module Ext1(M,S) is a skyscraper sheaf supported
by Sing(Y ). The local extensions from (6) define a global section e′ ∈ H0(X, Ext1(M,S)). As above,
we have an exact sequence

Ext1(M,S) −→ H0(Y, Ext1(M,S)) −→ H2(Y,Hom(M,S)).

We claim that the term on the right vanishes. Indeed, the canonical mapping S → S ′ into the bidual
S ′ = S∨∨ is bijective outside Sing(Y ), so the induced map H2(Y,Hom(M,S)) → H2(Y,Hom(M,
S ′)) is bijective as well. Serre duality tells us that H2(Y,Hom(M,S ′)) � Hom(S ′, ωY (−D))∨.
The exact sequence

0 −→ H −→ S ′ −→ OY (D) −→ 0
gives an exact sequence

Hom(OY (D), ωY (−D)) −→ Hom(S ′, ωY (−D)) −→ Hom(H, ωY (−D)).

The term on the right vanishes, because Hom(H, ωY (−D)) = 0 by construction of H. The term on
the left vanishes as well, because we have chosen the Weil divisor D ⊂ Y from the very beginning
so that H0(Y, ωY (−2D)) = 0. Summing up, the section e′ ∈ H0(Y, Ext1(M,S)) comes from a global
extension

0 −→ S −→ F −→ M −→ 0,
where F is the desired locally free OY -module of rank r + 2.

The following application of Theorem 2.1 will be useful later.

Corollary 2.5. Let Y be a normal separated surface. Then the following hold:

i) any quasicoherent OY -module is a quotient of a locally free OY -module of the form
⊕

λ∈L Fλ

with each Fλ locally free of finite rank and L possibly infinite;

ii) if M → M′ is a surjection of quasicoherent OY -modules with M′ coherent, then there exists
a locally free OY -module of finite rank F and a homomorphism F → M such that the com-
position F → M′ remains surjective.

Proof.

i) For each coherent submodule Mλ ⊂ M of a given quasicoherent OY -module M, choose a
surjection Fλ → Mλ from a locally free sheaf of finite rank. The induced map

⊕
λ∈L Fλ → M

is surjective, because M is the union of the Mλ by [GD70, Corollary 6.9.9].
ii) Choose a surjection

⊕
λ∈L Fλ → M as in (i). Since M′ is coherent and Y is quasicompact,

there is a finite subset L′ ⊂ L such that F =
⊕

λ∈L′ Fλ surjects onto M′.

3. Applications to K-groups

In this section we collect some more or less obvious applications of Theorem 2.1. Throughout, Y
denotes a normal separated surface. We start with the following proposition.
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Proposition 3.1. Let M be a coherent OY -module whose stalks have finite projective dimension.
Then there is an exact sequence 0 → F2 → F1 → F0 → M → 0 where F0,F1,F2 are locally free
OY -modules of finite rank.

Proof. By the Auslander–Buchsbaum Formula [Eis95, Theorem 19.9], the stalks of M have projec-
tive dimension pd(My) � depth(OY,y) � 2. According to Theorem 2.1, we have an exact sequence
F1 → F0 → M → 0 with F0 and F1 locally free of finite rank. Then the stalks of the kernel F2 for
F1 → F0 have projective dimension � 0, hence F2 is locally free.

We come to K-theory. Let Wperf(Y ) be the additive category of perfect complexes of quasi-
coherent OY -modules, and Wnaive(Y ) be the additive category of bounded complexes of locally free
OY -modules. We obtain the corresponding derived categories Dperf(Y ) and Dnaive(Y ) by inverting
the quasi-isomorphisms.

Proposition 3.2. The natural inclusion Wnaive(Y ) ⊂ Wperf(Y ) induces an equivalence of triangu-
lated categories Dnaive(Y ) � Dperf(Y ).

Proof. We shall apply Illusie’s result [Gro71, Exposé II, Proposition 1.2(c)]. In accordance with
Illusie’s notation, let S be the Zariski site of Y , S := Y , C be the fibered category (over S) of
quasicoherent O-modules, and C0 the fibered subcategory of locally free O-modules of finite rank.
Illusie’s result has four assumptions, which take the following form.

First, the kernel of a surjection between locally free sheaves of finite rank is locally free of finite
rank (‘C0 est localement stable par noyau d’epimorphisme’), which is clearly true. Second, any
surjection from a quasicoherent sheaf to a locally free sheaf of finite rank admits locally a section
(‘C0 est localement relevable’), which is also true. Third, if M → M′ is a surjection of quasicoherent
sheaves on Y , with M′ locally free of finite rank, there is a map from a locally free sheaf of finite rank
F → M such that F → M′ is surjective (‘C0Y est quasi-relevable’), which holds by Corollary 2.5.
Fourth, any coherent sheaf on Y is the quotient of a locally free sheaf of finite rank (‘tout objet de
CY qui est de C0-type fini est de C0Y -type fini’), which is Theorem 2.1.

Hence Illusie’s result applies, and tells us that Dnaive(Y ) → Dperf(Y ) is an equivalence of cate-
gories.

The category of perfect complexes Wperf(Y ) carries, in a canonical way, the structure of a
complicial bi-Waldhausen category, as explained in [TT90, § 1]. This additional structure gives rise to
the Waldhausen K-theory spectrum K

perf(Y ) and Waldhausen K-groups Kperf
n (Y ) = πn(Kperf(Y )).

We also have the Quillen K-theory spectrum K
Q(Y ) and Quillen K-groups KQ

n (Y ), defined via the
exact category of locally free OY -modules of finite rank. These two approaches give the same result,
up to homotopy:

Theorem 3.3. The natural map of spectra K
Q(Y ) → K

perf(Y ) is a homotopy equivalence. In

particular, the induced maps of groups KQ
n (Y ) → Kperf

n (Y ) are bijective for all n � 0.

Proof. Let K
naive(Y ) be the Waldhausen K-theory spectrum for the complicial bi-Waldhausen cate-

gory Wnaive(Y ). By [TT90, Proposition 3.10], there is a canonical homotopy equivalence K
Q(Y ) →

K
naive(Y ). This holds for arbitrary schemes. By [TT90, Theorem 1.9.8], together with Proposi-

tion 3.2, the map K
naive(Y ) → K

perf(Y ) is a homotopy equivalence as well.

The group of connected components for K
Q(X) is nothing but the Grothendieck group for the

exact category of vector bundles. Similarly, the group of connected components for K
perf(Y ) equals

the Grothendieck group for the triangulated category of perfect complexes, which is defined in
[Gro71, Exposé IV]. Therefore, we have the following corollary.
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Corollary 3.4. The group Kperf
0 (Y ) is isomorphic to the free abelian group generated by isomor-

phism classes [F ] of locally free OY -modules of finite rank, modulo the relations [F ′] + [F ′′] = [F ]
for any exact sequence 0 → F ′ → F → F ′′ → 0.

Remark 3.5. Note that the proof of Corollary 2.5 works on every noetherian scheme X for which
any coherent OX-module is a quotient of a locally free OX -module of finite rank. Then, the same
argument as in the proof of Proposition 3.2 shows that for such schemes the Waldhausen K-theory
of perfect complexes coincides with the Quillen K-theory of vector bundles.

4. Counterexamples

Here we show that, on non-separated schemes, there are usually many coherent sheaves that are
not quotients of locally free sheaves. Let Z = Spec(A) be an affine normal local noetherian scheme
of dimension at least two, and U ⊂ Z the complement of the closed point. Let Y1, Y2 be two copies
of Z. The cocartesian diagram

U ��

��

Y1

��
Y2

�� Y

defines a non-separated normal noetherian scheme Y , endowed with an affine covering Y = Y1 ∪ Y2

with Y1 ∩ Y2 = U .

Proposition 4.1. Every locally free OY -module of finite rank is trivial.

Proof. Let U be the open affine covering Y = Y1 ∪ Y2. We have Z1(U,GLr) = Γ(U,GLr) = GLr(A)
and C0(U,GLr) =

∏2
i=1 GLr(A). This clearly implies that H1(U,GLr) = 0. Since any locally free

OY -module of finite rank becomes trivial on the local schemes Yi, we also have H1(Y,GLr) = 0.

Proposition 4.2. There are coherent OY -modules that are not quotients of locally free OY -modules
of finite rank.

Proof. Let M be a coherent OY -module. Suppose there is an exact sequence

O⊕r
Y −→ O⊕s

Y −→ M −→ 0.

The map on the left is given by an s × r-matrix with entries in Γ(Y,OY ) = A. This implies
M|Y1 � M|Y2 , where we use the canonical identifications Y1 = Z = Y2. Now choose a coherent
OY -module M so that M|Y1 �� M|Y2 , for example with MU = 0. Then either there is no surjection
O⊕s

Y → M, or there is such a surjection and its kernel M′ does not admit a surjection O⊕r
Y → M′.

The statement now follows from Proposition 4.1.
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BLP87 C. Bănică and J. Le Potier, Sur l’existence des fibrés vectoriels holomorphes sur les surfaces non-
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Sch99 S. Schröer, On non-projective normal surfaces, Manuscr. Math. 100 (1999), 317–321.
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