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Abstract

These are notes for students. In the cheat-sheet tradition, the focus will be on giving correct and general
enough definitions and statements, rather than on proofs, which are most of the times straightforward or
in any case elementary; they are thus mostly left to the student. This should hopefully insert a grain of
pedagogical virtue in the weird act of a teacher handling cheat-sheets to his own students.
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1 Overview

We work over an arbitrary commutative (ungraded) ring R. In order to compute the symmetric algebra of
an R-dg-module (E•, d), we proceed in two steps: first we forget about the differential d and compute the
symmetric algebra of the graded R-module E•, then we use a further property of this symmetric algebra in
order to deduce from d a graded differential ∂d on the symmetric algebra of E•. The pair consisting of the
symmetric algebra of the graded R-module E• and ∂d will satisfy the universal property of the symmetric
algebra of the dg-module (E•, d).
We also state the straightforward generalizations to the case of dg-modules over a commutative differential
graded R-algebra (= R-cdga).
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2 Adjunctions

Let (C,⊗, ϕ) be a symmetric monoidal R-linear category (ϕ denoting the symmetry morphism) having arbitrary
coproducts, and with ⊗ distributing along coproducts.

Definition 2.1 We define the symmetric monoidal category (grC,⊗gr, grϕ) as follows:

•
grC :=

∏
Z
C = Fun(Zdiscr, C)

•
(Xi)i∈Z ⊗gr (Y j)j∈Z := (⊕p+q=n(Xp ⊗ Y q))n∈Z

•
grϕX,Y : (Xi)i∈Z ⊗gr (Y j)j∈Z −→ (Y j)j∈Z ⊗gr (Xi)i∈Z

is the map in grC whose n-th component (grϕX,Y )n is determined by the maps (grϕX,Y )n;(p,q), for (p+q) =
n, defined by the compositions

(grϕX,Y )n;(p,q) : Xp ⊗ Y q
ϕXp,Y q // Y q ⊗Xp can // ⊕p′+q′=n(Y q′ ⊗Xp′) .

• The coproduct functor ⊕i∈Z : grC −→ C will sometimes be referred to as the underlying C-object functor.

• For any r ∈ Z, there is a r-shift functor (−)(r) : grC −→ grC sending (Xi)i∈Z to (Xi+r)i∈Z and f :
(Xi)i∈Z → (Y i)i∈Z to (−1)rf (in the unique obvious sense).

• For r ∈ Z, X,Y ∈ grC, a map of weight r in grC from X to Y is a morphism X → Y (r) in grC.

Remark 2.2 Our notion of graded object in C, as an object in grC, compares as follows to the usual one,
defined as an object X ∈ C plus a decomposition X = ⊕i∈ZXi. To (Xi)i∈Z ∈ grC, we associate its underlying
C-object together with its tautological decomposition.

Proposition 2.3 Let (C,⊗, ϕ) be as above.

1. The functor
(−)1 : CAlg(grC,⊗gr, grϕ) −→ C

defined as the composition

CAlg(grC,⊗gr, grϕ)
U // grC

(−)1 // C

has a left adjoint that will be denoted by Symgr,C.

2. The coproduct functor ⊕i∈Z : (grC,⊗gr, grϕ) −→ (C,⊗, ϕ) is symmetric monoidal.

Remark 2.4 Note that Symgr,C is actually N-graded, i.e. it factors as

grmodR −→ CAlg(grNC,⊗grN , grNϕ) −→ CAlg(grC,⊗gr, grϕ).

One could have also chosen to work with (grNC,⊗grN , grNϕ) rather than with CAlg(grC,⊗gr, grϕ) from the
beginning.
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Note that, in particular, Symgr,C preserves coproducts, and the coproduct functor induces a functor

(−)int : CAlg(grC,⊗gr, grϕ) −→ CAlg(C,⊗, ϕ).

Here the super-script “int” stands for internal, in the sense that we are tracing out (i.e. summing up on) all
the “external weights”: e.g. C might be itself “graded”, by some “internal weights”, as it will be the case in
our main C of interest (C = grmodR, see below).

Corollary 2.5 The functor (Symgr,C)
int : C −→ CAlg(C,⊗, ϕ) is left adjoint to the forgetful functor.

Remark 2.6 Both Proposition 2.3 and Corollary 2.5 are quite classical when C = modR (endowed with its clas-
sical monoidal structure and its classical obviously-no-signs-switch symmetry). In this case, CAlg(grC,⊗gr, grϕ)
is the category of strictly commutative (not graded-commutative !) graded R-algebras, since grϕ is again the
no-signs-switch symmetry, and, for M an R-module, Symgr(M) is the commutative algebra S•(M), equipped
with its canonical N-grading, while (Symgr(M))int is S(M), i.e. S•(M) without its grading. One can check
that M 7→ S•(M) is left adjoint to the functor sending a strictly commutative graded R-algebra to its weight
1 part, while M 7→ S(M) is left adjoint to the forgetful functor sending a(n ungraded) commutative R-algebra
A to its underlying R-module.

We will be mainly interested in the special case where (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry),
i.e.

•
(Ei)i∈Z ⊗gr (F j)j∈Z := (⊕p+q=n(Ep ⊗R F q))n∈Z

• ϕ(xi ⊗ yj) := (−1)ijyj ⊗ xi, for wt(xi) = i, wt(yj) = j.

In this situation, Proposition 2.3 gives us the left adjoint functor

Symgr := Symgr, grmodR
: grmodR −→ CAlg(gr(grmodR),⊗gr, grϕ)

to the A 7→ (A)1 functor, and Corollary 2.5 provides us the left adjoint functor

(Symgr)
int = ⊕n≥0Sym

n
gr : grmodR −→ CAlg(grmodR,⊗gr, ϕ = Koszul symmetry)

to the forgetful functor.
Note that CAlg(grmodR,⊗gr, ϕ = Koszul symmetry) is the usual category of Z-graded-commutativeR-algebras,
hence, if E• is a Z-graded R-module, then (Symgr(E

•))int is a Z-graded-commutative R-algebra. Moreover,
Symgr is fully faithful, and, equivalently, the unit map

E• −→ Sym1
gr(E

•) := (Symgr(E
•))1

is an isomorphism in grmodR.

3 Bigradings and formulae

In our case of interest, i.e. (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry), we have equivalences of categories

grC '
∏
Z

∏
Z

modR '
∏
Z×Z

modR.
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Elements in the first Z factor in Z × Z are called external weights, while elements in the second Z are called
internal weights: they form bi-weights (i, j) ∈ Z × Z. Direct summation over external weights gives the
underlying graded module functor.
In particular, any A ∈ CAlg(grC,⊗gr, grϕ) has bi-weighted components (Ai,j)(i,j)∈Z×Z, where i is the external
weight, and j the internal weight. The algebra product in A is bi-weighted, i.e. satisfies

Ai,j ·Ah,k ⊆ Ai+h,j+k

and the graded-commutativity property reads as

ai,j · a′h,k = (−1)jka′h,k · ai,j for ai,j ∈ Ai,j , a′h,k ∈ Ah,k.

Note that the external grading is immaterial in the graded commutativity constraint.
Moreover, we have Aint = (⊕i∈ZAi,j)j∈Z, and this formula together with the above commutativity constraint
give another proof of the fact that Aint is indeed a graded-commutative R-algebra. For the same reason, A0,•

is a graded-commutative R-algebra, as well.
If E• ∈ C = grmodR, we have

Symgr(E
•) =

(
Symn

gr(E
•) := (Symgr(E

•))n,•
)
n∈N

where each Symn
gr(E

•) ∈ grmodR (its weight-grading is given by the internal weight) is given by

Symn
gr(E

•) =
(
Symn,m

gr (E•) := (Symgr(E
•))n,m

)
m∈Z

where Symn,m
gr (E•) ∈ modR is defined as

⊕
{

(p,q)∈NZodd×NZeven |
∑
i∈Zodd

ipi+
∑
j∈Zeven jqj=m,

∑
i∈Zodd

pi+
∑
j∈Zeven qj=n

}
 ⊗
i∈Zodd

∧pi(Ei)
⊗

j∈Zeven

Sqj (Ej)


Remark 3.1 According to the convention that a graded object in C is a direct sum of its components (in our
language this graded object is the underlying C object), a more common way of writing the previous formula
is the following

Symn
gr(E

•) =
⊕
p+q=n

⊕
∑
i∈Zodd

pi=p,
∑
j∈Zeven qj=q

⊗
i∈Zodd

∧pi(Ei)
⊗

j∈Zeven

Sqj (Ej) ∈ grmodR.

However, according to our definition of grC as
∏

Z C, the formula before this remark is definitely more correct
(and it gives explicitly the internal grading).

The multiplication in Symgr(E
•) is given by a family (µn,m,n′,m′)(n,m,n′,m′)∈N×Z×N×Z of maps of R-modules

µn,m,n′,m′ : Symn,m
gr (E•)⊗R Symn′,m′

gr (E•) −→ Symn+n′,m+m′
gr (E•)

while its commutativity constraint is expressed by the following family, indexed by (n,m, n′,m′) ∈ N×Z×N×Z,
of commutative diagrams of R-modules

Symn,m
gr (E•)⊗R Symn′,m′

gr (E•)
σ //

µn,m,n′,m′

��

Symn′,m′
gr (E•)⊗R Symn,m

gr (E•)

µn′,m′,n,m
��

Symn+n′,m+m′
gr (E•)

(−1)mm
′

// Symn+n′,m+m′
gr (E•)

where σ is the usual no-sign-switch symmetry in the symmetric monoidal category modR.
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4 Graded derivations

Definition 4.1 Let (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry), A ∈ CAlg(grC,⊗gr, grϕ), and M ∈
ModA(grC,⊗gr, grϕ). A graded derivation of weight r ∈ Z of A into M is a map ∂ : A→ M of R-modules of
bi-weight (0, r), i.e. a family of maps of R-modules(

∂i,j : Ai,j −→M i,j+r
)

(i,j)∈Z×Z

satisfying the following internal-weighted Leibniz rule

∂(ai,j · a′h,k) = ∂(ai,j)a′h,k + (−1)rjai,j∂(a′h,k)

where on the r.h.s. we used mere juxtaposition for the A-module structure on M .

Remark 4.2 If 2 is invertible in R, then any graded derivation ∂ : A → M vanishes on R (i.e. along the
canonical bi-weight (0, 0) map R → A). If 2 is not invertible in R, the reader should add this condition to
Definition 4.1.

Note that the external degree is immaterial both in the bi-weight of a graded derivation and in its weighted
Leibniz rule. As a consequence, we have the following result

Proposition 4.3 Let (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry). If A ∈ CAlg(grC,⊗gr, grϕ), M ∈
ModA(grC,⊗gr, grϕ), and ∂ : A → M is graded derivation of weight r ∈ Z as in Definition 4.1, then ∂int :
Aint −→ M int is a graded derivation of weight r of the Z-graded-commutative R-algebra Aint into the graded
Aint-module M int, in the usual sense of the literature.

Remark 4.4 Note that if ∂ : A→ A is a graded self-derivation such that ∂◦∂ = 0, then An,• is a R-dg-module,
for any n ∈ Z, and moreover Aint is a graded-commutative differential R-algebra (R-cdga).

The following result will allow us to induce a differential on the symmetric algebra of a dg-module.

Proposition 4.5 Let E• be a graded R-module, A ∈ CAlg(grC,⊗gr, grϕ), and suppose that A is a module over
Symgr(E

•) (i.e. A ∈ ModSymgr(E•)(grC,⊗
gr, grϕ) ). Then, for any map u : E• −→ (A)1 of weight r ∈ Z between

graded R-modules, there is a unique graded derivation ∂u : Symgr(E
•) −→ A of weight r, as in Definition 4.1,

such that ∂u restricts to u on (−)1. 1

Proof. Since Symgr(E
•) is generated by its external weight 1 part (' E•), we just use the given module

structure of A over Symgr(E
•) and the formulae defining graded derivations of weight r (Definition 4.1), to

construct the extension ∂d. Uniqueness is left to the reader (use that, in the appropriate sense, Symgr(E
•) is

freely generated by E• in external weight 1). 2

5 Symmetric algebra of a dg-module

Let (E•, d) ∈ dgmodR. By viewing the differential d as an endomorphism of weight 1 of E• ∈ grmodR, Propo-
sition 4.5, with A = Symgr(E

•), gives us a graded self-derivation ∂d : Symgr(E
•) −→ Symgr(E

•) of weight
1. Since d2 = 0, again Proposition 4.5 tells us that ∂d ◦ ∂d = 0: we say that ∂d is a graded differential on
Symgr(E

•) ∈ CAlg(grC,⊗gr, grϕ) (here (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry)). Let’s look at the

1Recall that the unit of adjunction gives a functorial isomorphism Sym1
gr(E

•) ' E• in grmodR, for any graded R-module E•,
and that a graded derivation has external weight 0, so it maps the external weight 1 part to the external weight 1 part.
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pair (Symgr(E
•), ∂d). By Remark 4.4, we have that:

(i) for any n ∈ N, the pair (Symn
gr(E

•), ∂nd ) is a R-dg-module ;

(ii) the pair (Symgr(E
•)int, ∂int

d ) = (⊕n∈NSymn
gr(E

•),⊕n∈N∂nd ) is aR-cdga, that will be denoted as Symdg(E
•, d)int.

Let (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry), and (Cdg,⊗dg, ϕdg) = (dgmodR,⊗dg,Koszul symmetry)
(these are the usual symmetric monoidal structures, nothing fancier). Note that, in particular, CAlg(Cdg,⊗dg, ϕdg)
is the category cdgaR of graded-commutative differential R-algebras (R-cdga’s).
Recall that by Proposition 2.3 (2), the coproduct functor ⊕i∈Z : (grCdg,⊗grdg, grϕdg) −→ (Cdg,⊗dg, ϕdg) is
symmetric monoidal, so that it induces a functor

(−)int : CAlg(grCdg,⊗grdg, grϕdg) −→ CAlg(Cdg,⊗dg, ϕdg) = cdgaR

This is notationally consistent with (ii) above, and yields (ii) without using explicit formulae.
It is also easy to verify that Symdg(E

•, d) := (Symgr(E
•), ∂d) ∈ CAlg(grCdg,⊗grdg, grϕdg).

Proposition 5.1 1. The functor

(−)1 : CAlg(grCdg,⊗grdg, grϕdg) −→ Cdg
defined as the composition

CAlg(grCdg,⊗grdg, grϕdg)
Udg // grCdg

(−)1 // Cdg

has Symdg(−) as its left adjoint .

2. The functor Symdg(−)int : dgmodR = Cdg −→ CAlg(Cdg,⊗dg, ϕdg) = cdgaR is left adjoint to the forgetful
functor.

Proof. (2) follows from (1) and Corollary 2.5. As usual, let (C,⊗, ϕ) = (grmodR,⊗gr, ϕ = Koszul symmetry).
Proposition 2.3 yields the existence of the left adjoint in (1). In order to identify this left adjoint with
(E•, d) 7→ (Symgr(E

•), ∂d), we first observe that the forgetful functor U : (grCdg,⊗grdg, grϕdg) −→ (grC,⊗gr, grϕ)
(forgetting the differential) is symmetric monoidal, and that the induced forgetful functor

Ualg : CAlg(grCdg,⊗grdg, grϕdg) −→ CAlg(grC,⊗gr, grϕ)

makes the following diagram commute

CAlg(grCdg,⊗grdg, grϕdg)
Ualg //

(−)1

��

CAlg(grC,⊗gr, grϕ)

(−)1

��
Cdg // C

where the horizontal arrows are the forgetful ones. Since we already know that Symgr is left adjoint to (−)1 :
CAlg(gr(C),⊗gr, grϕ) −→ C, we are reduced to prove the following statement: for any (E•, d) ∈ Cdg, (A, ∂A) ∈
CAlg(grCdg,⊗grdg, grϕdg), and any map v : (E•, d) → A1 in Cdg, the unique induced map fv : Symgr(E

•) →
Ualg(A) in CAlg(grC,⊗gr, grϕ) (given by the left adjointness of Symgr) commutes with the graded differentials
∂d and ∂A. To see this, first notice that fv induces a module structure of Ualg(A) over Symgr(E

•). Now, both
fv ◦ ∂d and ∂A ◦ fv are graded derivations Symgr(E

•) → Ualg(A) of weight 1, and fv ◦ ∂d restricts to v ◦ d on
(−)1, while ∂A ◦ f restricts to ∂1

A ◦ v on (−)1. But v is a map of dg-modules, so v ◦ d = ∂1
A ◦ v, thus, by the

uniqueness statement in Proposition 4.5, we indeed have fv ◦ ∂d = ∂A ◦ fv.
2
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6 Examples

Example 6.1 Single even or odd weight (E•, d) := (E(k), d = 0), for E ∈ ModR, i.e. E• consists of just E
sitting in weight (−k). Then

Symn
gr(E(k)) = SnR(E)[nk] , for k even (i.e. SnR(E) sitting in degree/internal weight (−kn) )

and
Symn

gr(E(k)) = ∧nR(E)[nk] , for k odd (i.e. ∧nR (E) sitting in degree/internal weight (−kn) ).

The differentials are all, obviously, zero.

Example 6.2 (E•, d) := ( E−1 d // E0 ).

• Symgr(E
•) external weights and internal weights (denoted by deg):

Sym0
gr(E

•) =
deg 0

R

Sym1
gr(E

•) =

(
deg−1

E−1 ,
deg 0

E0

)

Sym2
gr(E

•) =

(
deg−2

∧2
RE
−1 ,

deg−1

E−1 ⊗R E0 ,
deg 0

S2
R(E0)

)

Sym3
gr(E

•) =

(
deg−3

∧3
RE
−1 ,

deg−2

∧2
RE
−1 ⊗R E0 ,

deg−1

E−1 ⊗R S2
R(E0) ,

deg 0

S3
R(E0)

)
etc.

(Non-zero) differentials:

Sym0
gr(E

•) =
deg 0

R

Sym1
gr(E

•) =

 deg−1

E−1
∂1,−1
d :=d

//
deg 0

E0


Sym2

gr(E
•) =

 deg−2

∧2
RE
−1

∂2,−2
d //

deg−1

E−1 ⊗R E0
∂2,−1
d //

deg 0

S2
R(E0)


where

∂2,−2
d (x ∧ x′) = d(x)⊗ x′ + (−1)−1x⊗ d(x′)

(∗)
= x′ ⊗ d(x)− x⊗ d(x′)

((∗) comes from the Koszul symmetry for E0 ⊗R E−1 ' E−1 ⊗R E0) and

∂2,−1
d (x⊗ y) = d(x)� y.

Sym3
gr(E

•) =

 deg−3

∧3
RE
−1

∂3,−3
d //

deg−2

∧2
RE
−1 ⊗R E0

∂3,−2
d //

deg−1

E−1 ⊗R S2
R(E0)

∂3,−1
d //

deg 0

S3
R(E0)


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where

∂3,−3
d (x ∧ x′ ∧ x′′) = d(x)⊗ (x′ ∧ x′′) + (−1)−1x ∧ ∂2,−2

d (x′ ∧ x′′) (∗)
= (x′ ∧ x′′)⊗ d(x)− x ∧ ∂2,−2

d (x′ ∧ x′′)

((∗) comes from the Koszul symmetry for ∧2
RE
−1 ⊗R E0 ' E0 ⊗R ∧2

RE
−1),

∂3,−2
d ((x ∧ x′)⊗ y) = x′ ⊗ (d(x)� y) + (−1)−1x⊗ (d(x′)� y),

and
∂3,−1
d (x⊗ (y � y′)) = d(x)� y � y′.

etc.

• Symint
gr (E•) internal weights denoted by deg:

deg 0 : S(E0)

deg − 1 : E−1 ⊗R S(E0)

deg − 2 : ∧2
R(E−1)⊗R S(E0)

deg − 3 : ∧3
R(E−1)⊗R S(E0)

etc.

Remark 6.3 Suppose that (E•, d) := ( E−1 = E
d=ϕ // E0 = R ) with E free of rank r over R. Then it is easy

to check that Symm
gr(E

•, d) = Symn
dg(E

•, d) for any m ≥ n. Moreover, for any m ≥ n, Symm
dg(E

•, d) = Kos(ϕ :
E → R), the Koszul complex associated to ϕ : E → R. Since Symm

gr(E
•) stabilizes for m ≥ n, the algebra

product rule
Symm,i

dg (E•, d)⊗R Symm,j
dg (E•, d) −→ Sym2m,i+j

dg (E•, d) = Symm,i+j
dg (E•, d)

defines a cdga structure on Symm
dg(E

•, d), for any m ≥ n. This coincides with the usual cdga structure on
Kos(ϕ : E → R).

Example 6.4 (E•, d) := ( E1 d // E2 ).

• Symgr(E
•) external weights and internal weights (denoted by deg):

Sym0
gr(E

•) =
deg 0

R

Sym1
gr(E

•) =

(
deg1

E1 ,
deg 2

E2

)

Sym2
gr(E

•) =

(
deg2

∧2
RE

1 ,
deg3

E1 ⊗R E2 ,
deg 4

S2
R(E2)

)

Sym3
gr(E

•) =

(
deg3

∧3
RE

1 ,
deg4

∧2
RE

1 ⊗R E2 ,
deg5

E1 ⊗R S2
R(E2) ,

deg 6

S3
R(E2)

)
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etc.

(Non-zero) differentials:

Sym0
gr(E

•) =
deg 0

R

Sym1
gr(E

•) =

 deg1

E1
∂1,1d :=d

//
deg 2

E2


Sym2

gr(E
•) =

 deg2

∧2
RE

1
∂2,2d //

deg3

E1 ⊗R E2
∂2,3d //

deg 4

S2
R(E2)


where

∂2,2
d (x ∧ x′) = d(x)⊗ x′ + (−1)−1x⊗ d(x′)

(∗)
= x′ ⊗ d(x)− x⊗ d(x′)

((∗) comes from the Koszul symmetry for E1 ⊗R E2 ' E2 ⊗R E1) and

∂2,3
d (x⊗ y) = d(x)� y.

Sym3
gr(E

•) =

 deg3

∧3
RE

1
∂3,3d //

deg4

∧2
RE

1 ⊗R E2
∂3,4d //

deg5

E1 ⊗R S2
R(E2)

∂3,5d //
deg 6

S3
R(E2)


where

∂3,3
d (x ∧ x′ ∧ x′′) = d(x)⊗ (x′ ∧ x′′) + (−1)1x ∧ ∂2,2

d (x′ ∧ x′′) (∗)
= (x′ ∧ x′′)⊗ d(x)− x ∧ ∂2,2

d (x′ ∧ x′′)

((∗) comes from the Koszul symmetry for ∧2
RE

1 ⊗R E2 ' E2 ⊗R ∧2
RE

1),

∂3,2
d ((x ∧ x′)⊗ y) = x′ ⊗ (d(x)� y) + (−1)1x⊗ (d(x′)� y),

and
∂3,1
d (x⊗ (y � y′)) = d(x)� y � y′.

etc.

• Symint
gr (E•) internal weights denoted by deg:

deg 0 : R

deg 1 : E1

deg 2 : ∧2
R(E1)⊕ E2

deg 3 : ∧3
R(E1)⊕ (E1 ⊗R E2)

deg 4 : ∧4
R(E1)⊕ (∧2

RE
1 ⊗R E2)⊕ S2

R(E2)

etc.
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Remark 6.5 Koszul complex via 2-periodization. Consider a map ϕ : E → R of R-modules. This fits into the
case above with E• := (E1 = E,E2 = R), and d := ϕ. We are going to briefly describe an alternative way of
recovering the Koszul complex Kos(ϕ : E → R) via a “2-periodization” of Symdg(E

•), with no hypothesis on
the R-module E (compare with Remark 6.3, where we needed E to be free of finite rank).
First of all, notice that

Symdg(
wt2
R ) ' Symgr(

wt2
R ) ≡ Symgr(R(−2)) ' R[u]

where u has bi-weight (1, 2), and that Symdg(E
•) is a module over R[u]. Now consider, the localization R[u, u−1]:

this is now a (Z×Z)-graded commutative algebra (while R[u] is only (N×Z)-graded), where u−1 has bi-weight
(−1,−2); as usual, we endow both R[u], and R[u, u−1] with trivial differential.
The reader is invited to verify that we have an isomorphism of dg-R-modules2

(Symdg(E
•)⊗R[u] R[u, u−1])wtn ' Kos(ϕ : E → R)[−2n] ∀n ∈ Z

where we view Kos(ϕ : E → R) as a dg-R-module in degrees (−∞, 0]. In particular, we get

H i((Symdg(E
•)⊗R[u] R[u, u−1])int) =

{
Hev(Kos(ϕ : E → R)), i even

Hodd(Kos(ϕ : E → R)), i odd
(1)

where Hev := ⊕n evenH
n, and Hodd := ⊕n oddH

n.
Note that, as it is always the case, the weight 0 part (Symdg(E

•)⊗R[u] R[u, u−1])wt 0 is in fact a cdga, and it is
easy to check that the above dg-R-modules isomorphism

(Symdg(E
•)⊗R[u] R[u, u−1])wt 0 ' Kos(ϕ : E → R)

is in fact an isomorphism of (negatively graded) R-cdga’s.

Exercise 6.6 Verify that cohomology commutes with filtered colimits by computing formula (1). More pre-
cisely, prove that one may apply the statement “cohomology commutes with filtered colimits” to compute
the cohomology of (Symdg(E

•)⊗R[u] R[u, u−1])int in terms of the cohomology of Symdg(E
•), then compute the

cohomology of (Symdg(E
•) ⊗R[u] R[u, u−1])int using this statement, and finally compare this computation to

formula (1).

Exercise 6.7 Compute theR-dg-modules Symn
dg(E

•, d), for n ≤ 4, in the case (E•, d) := ( E−1 d−1 // E0 d0 // E1 ).

7 Comparison with Σ-coinvariants

Let (C,⊗, ϕ) be a symmetric monoidal R-linear category (ϕ denoting the symmetry morphism) having arbitrary
coproducts, with ⊗ distributing along coproducts. For an arbitrary X ∈ C, consider the following action of Σn

on X⊗n. Any σ ∈ Σn can be decomposed as a product of adjacent transpositions (recall: such a decomposition
exists but is not unique in general); for τ(i, i+ 1) the adjacent transposition exchanging i and (i+ 1), we define
τ(i, i+ 1)X ∈ AutC(X⊗n) as the following composition

X⊗n = X ⊗ · · · ⊗
i
X ⊗

i+1
X ⊗ · · · ⊗X

id⊗ϕX,X⊗id
// X ⊗ · · · ⊗

i
X ⊗

i+1
X ⊗ · · · ⊗X = X⊗n .

Showing that the induced action of Σn on X⊗n is well defined (i.e. that it is independent of the decomposition
of an arbitrary σ ∈ Σn into a product of adjacent transposition) is long and boring but possible3.

2Since R[u, u−1] is Z×Z-graded, we have that Symdg(E
•)⊗R[u] R[u, u−1] is also Z×Z-graded rather than N×Z-graded, so the

external weight is Z. Also recall that for M,N graded modules over a graded-commutative algebra A, the weight n-part of M⊗AN
is given by the quotient of ⊕p+q=nMp⊗A0 Nq by the submodule generated by elements of the form (ma⊗A0 n−m⊗A0 an), where
m ∈Mα, n ∈ Nβ , and a ∈ An−α−β are arbitrary (in particular, we do not require α+ β = n).

3Using the description of symmetric monoidal categories as special Γ-categories, this Σn-action appears more naturally. However,
if the focus is on being able to compute this action, this alternative approach is not that helpful.
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Definition 7.1 If C has finite colimits, se define

(X⊗n)Σn := colim(u(X,n) : BΣn → C)

the Σn-coinvariants object of X⊗n. Here the functor u(X,n) sends the unique object of BΣn to X⊗n, and
σ ∈ Σn to the automorphism σX of X⊗n defined above.

If C = grmodR, and X = E• ∈ grmodR, then

((E•)⊗grn)Σn ' (E•)⊗grn/N

where N is the graded submodule of (E•)⊗grn generated by {x− σx |σ ∈ Σn, x ∈ (E•)⊗grn}.
If C = dgmodR, and X = (E•, d) ∈ dgmodR, then

((E•, d)⊗dgn)Σn ' (E•, d)⊗dgn/N ′

where N ′ is the dg-submodule of (E•, d)⊗dgn generated by {x− σx |σ ∈ Σn, x ∈ (E•)⊗dgn}.

Proposition 7.2 • For E• ∈ grmodR, we have a canonical isomorphism

Symgr(E
•) ' (((E•)⊗

grn)Σn)n∈N

in CAlg(gr(grmodR),⊗grgr, grϕ = gr(Koszul symmetry)). This isomorphism is functorial in E•.

• For (E•, d) ∈ dgmodR, we have a canonical isomorphism

Symdg(E
•, d) ' (((E•, d)⊗

dgn)Σn)n∈N

CAlg(gr(dgmodR),⊗grdg, grϕdg)). This isomorphism is functorial in (E•, d).

8 Another approach

Let R[ε] = R ⊕Rε the graded-commutative R-algebra where ε sits in weight 1, and ε2 = 0. Then, there is an
equivalence of categories

grmodR[ε] ' dgmodR

where multiplication by ε gives the differential. This equivalence becomes a symmetric monoidal equivalence

α : (grmodR[ε],⊗εR, ϕε) ' (dgmodR,⊗,Koszul symmetry)

where

• for E,F ∈ grmodR[ε], their tensor product E ⊗εR F is given by their graded tensor product E ⊗grR F over
R (which is canonically a R[ε] ⊗grR R[ε]-module), with the R[ε]-graded module structure induced by the
canonical comultiplication map ∆ : R[ε] −→ R[ε]⊗grR R[ε] sending ε to ε⊗ 1 + 1⊗ ε.

• the symmetry ϕε is the usual Koszul symmetry on E ⊗grR F .

The symmetric monoidal equivalence

α : (grmodR[ε],⊗εR, ϕε) ' (dgmodR,⊗,Koszul symmetry)

induces an equivalence
CAlg(α) : CAlg(grmodR[ε],⊗εR, ϕε) ' cdgaR.
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Proposition 8.1 The forgetful functor

CAlg(grmodR[ε],⊗εR, ϕε) −→ grmodR[ε]

admits a left adjoint denoted by Symε
R, and the following diagram commutes

grmodR[ε]

SymεR
��

α // dgmodR

((Symgr)
int, ∂?)

��
CAlg(grmodR[ε],⊗εR, ϕε) CAlg(α)

// cdgaR

Proof. The existence of the left adjoint follows from the adjoint functor theorem. For the commutativity of
the square, first observe that the square

grmodR[ε] dgmodR
α−1

oo

CAlg(grmodR[ε],⊗εR, ϕε)

U

OO

cdgaR
CAlg(α−1)
oo

U ′

OO

(where U and U ′ denote the obvious forgetful functors) commutes by definition of CAlg(α). In other words,
the square

grmodR[ε]
α // dgmodR

CAlg(grmodR[ε],⊗εR, ϕε)

U

OO

CAlg(α)
// cdgaR

U ′

OO

is horizontally right-adjointable. But this is equivalent to it being vertically left-adjointable, which is exactly
the commutativity of the square in the statement. 2

Remark 8.2 The weakness of this approach lies in the fact that, without further analysis, the only concrete
way of computing Symε

R(E•) seems to be via the commutativity of the square in Prop. 8.1, and the computations
shown in the previous section for ((Symgr(E

•))int, ∂dE ). I would be curious if some student could refute this
weakness by making this approach more constructive and useful.

9 Graded modules over a graded-commutative algebra

We quickly treat here the case of graded modules over a graded-commutative R-algebras: this is not so different
from the case of graded R-modules that we have already described in details.

Let A ∈ CAlg(grmodR,⊗gr, ϕ = Koszul symmetry), i.e. a graded-commutative R-algebra. The category
ModA(grmodR,⊗gr, ϕ) of graded-modules over A has a symmetric monoidal structure that we will denote as
(CA,⊗A,gr, ϕA). By applying Proposition 2.3 and Corollary 2.5 to (CA,⊗A,gr, ϕA), we get

Proposition 9.1 1. The functor

(−)1 : CAlg(grCA,⊗grA,gr, grϕA) −→ CA
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defined as the composition

CAlg(grCA,⊗grA,gr, grϕA)
forget // grCA

(−)1 // CA

has a left adjoint denoted by SymA,gr(−).

2. The coproduct functor ⊕i∈Z : (grCA,⊗grA,gr, grϕA) −→ (CA,⊗A,gr, ϕA) is symmetric monoidal. The
induced functor on commutative algebras objects is denoted by

(−)int : CAlg(grCA,⊗grA,gr, grϕA) −→ CAlg(CA,⊗A,gr, ϕA).

3. The functor
SymA,gr(−)int : grmodA = CA −→ CAlg(CA,⊗A,gr, ϕA) = grcalgA

is left adjoint to the forgetful functor.

Note that B ∈ CAlg(grCA,⊗grA,gr, grϕA) has bi-weights Bi,j , where i is called the external weight, and j the
internal one. We have

• The A-module structure of B is given by maps An ⊗R Bi,j → Bi,n+j (with properties).

• The behaviour of the algebra multiplication · on B with respect to its bi-weights is given by Bi,j ·Bh,k ⊆
Bi+h,j+k and is linear with respect to the previous A-module structure.

• For M ∈ ModB(grCA,⊗grA,gr, grϕA), a graded derivation of weight r ∈ Z from B to M , is a map ∂ : B →M

of bi-weight (0, r) in grCA, such that ∂(bi,j · b′h,k) = ∂(bi,j)b′h,k + (−1)jrbi,j∂(b′h,k) where on the r.h.s. we
used mere juxtaposition for the B-module structure on M .

• The unit of adjunction gives an isomorphism E• ' Sym1
A,gr(E

•) := (SymA,gr(E
•))1 in grCA.

• Let E• ∈ grCA be a graded A-module, B ∈ CAlg(grCA,⊗grA,gr, grϕA), and suppose that B is a module

over SymA,gr(E
•) (i.e. B ∈ ModSymA,gr(E•)(grCA,⊗

gr
A,gr, grϕA)). Then, for any map u : E• −→ (B)1 of

weight r ∈ Z in grCA, there is a unique graded derivation ∂u : SymA,gr(E
•) −→ B of weight r, as above,

such that ∂u restricts to u on (−)1.

10 dg-modules over a cdga

We quickly treat here the case of dg-modules over a cdga over R: this is not so different from the case of
dg-modules over R that we have already described in details (Section 5).

Let A := (A, dA) ∈ cdgaR = CAlg(dgmodR,⊗dg, ϕdg = Koszul symmetry). The category

dgmodA := ModA(dgmodR,⊗dg, ϕdg)

of A-dg-modules has a symmetric monoidal structure that we will denote by (MA,⊗A,dg, ϕA). We will put

cdgaA := CAlg(MA,⊗A,dg, ϕA).

By applying Proposition 2.3 and Corollary 2.5 to (C,⊗, ϕ) = (MA,⊗A,gr, ϕA) we get
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Proposition 10.1 1. The functor

(−)1 : CAlg(grMA,⊗grA,dg, grϕA) −→MA

defined as the composition

CAlg(grMA,⊗grA,dg, grϕA)
forget // grMA

(−)1 //MA

has a left adjoint denoted by SymA,dg(−).

2. The coproduct functor ⊕i∈Z : (grMA,⊗grA,dg, grϕA) −→ (MA,⊗A,gr, ϕA) is symmetric monoidal. The
induced functor on commutative algebras objects is denoted by

(−)int : CAlg(grMA,⊗grA,dg, grϕA) −→ CAlg(MA,⊗A, ϕA).

3. The functor
SymA,dg(−)int : dgmodA =MA −→ CAlg(MA,⊗A,gr, ϕA) = cdgaA

is left adjoint to the forgetful functor.

Let (E•, d) ∈ dgmodA. By viewing the differential d as an endomorphism of weight 1 of E• ∈ grmodA, the
extension property listed in the previous Section, applied to B = SymA,gr(E

•), gives us a graded self-derivation
∂d : SymA,gr(E

•) −→ SymA,gr(E
•) of weight 1. Since d2 = 0, the same property tells us that ∂d ◦ ∂d = 0:

we say that ∂d is a graded differential on SymA,gr(E
•) ∈ CAlg(grCA,⊗grA,gr, grϕA). Let’s look at the pair

(SymA,gr(E
•), ∂d):

(i) for any n ∈ N, the pair (Symn
A,gr(E

•) := (SymA,gr(E
•))n, ∂

n
d ) is a A-dg-module

(ii) the pair (Symgr(E
•)int, ∂int

d ) = (⊕n∈NSymn
gr(E

•),⊕n∈N∂nd ) is a A-cdga, that will be denoted as SymA,dg(E
•, d)int.

(iii) it is easy to verify that the pair (SymA,gr(E
•), ∂d) is an object in CAlg(grMA,⊗grA,dg, grϕA).

Proposition 10.2 1. For any (E•, d) ∈MA, there is a canonical isomorphism

SymA,dg(E
•, d) ' (SymA,gr(E

•), ∂d)

in CAlg(grMA,⊗grA,dg, grϕA), functorial in (E•, d).

2. For any (E•, d) ∈MA, there is a canonical isomorphism

Symint
A,dg(E

•, d) ' (Symint
A,gr(E

•), (∂d)
int)

in cdgaA = CAlg(MA,⊗A,dg, ϕA), functorial in (E•, d).
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