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Abstract

In [A.M. Vinogradov, Some homological systems associated with the differential calculus in commutative

algebras, Russian Math. Surveys 34 (6) (1979) 250-255] for any commutative K-algebra A, K being a
commutative ring, any sequence o of posmve integers and any differentially closed (see Section j) subcategory

D of A — Mod, higher analogues dR of the standard de Rham complex dR? = dRD 1,.) and Spencer
complexes were defined. In this paper a detailed exposition of all related functors of d1fferent1a1 calculus over
general commutative algebras is given for the first time together with some useful working techniques.

In the second part of the paper, these techniques are then applied to prove that all complexes dR(? are quasi-
isomorphic under a smoothness assumption on the differentially closed subcategory D. This extends to arbitrary
smooth categories of modules the quasi-isomorphism theorem for smooth manifolds and “regular” dR, complexes
proved in [G. Vezzosi, A.M. Vinogradov, Infinitesimal Stokes’ formula for higher-order de Rham complexes, Acta
Appl. Math. 49 (3) (1997) 311-329]. ~
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1. Introduction

If K is any commutative ring, given a commutative K -algebra A, a differentially closed category D
of A-modules (see Section 3) and a sequence o = (01, 03, ...) of positive integers, one can associate
to these data some new natural complexes, the most important of which are higher analogues of the
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standard de Rham and Spencer complexes (see [17]), denoted further on by dR, and Sp,, respectively.
If M is a smooth manifold, A = C*°(M) is the algebra of smooth functions on M, D is the category
of “geometric” A-modules (see Section 3) and o = (1, 1, ...), then these complexes coincide with the
standard differential geometrical partners. It is in particular remarkable that higher order analogues of the
de Rham differential are higher order differential operators which are natural in the category of smooth
manifolds. This is a new class of natural differential operators which could hardly been discovered and
studied with the traditional differential geometric methods (see, e.g., [8]).

These higher order differential complexes being natural, they deserve by themselves to be investigated.
Their specific role is revealed by the fact that they are, in a sense, natural prolongations of the
corresponding classical complexes and, moreover, were looked for and found exactly in this perspective.
In the formal theory of partial differential equations and in many parts of differential geometry (and
implicitly also in algebraic geometry) the prolongation procedure plays a fundamental role. While
Gauss’ “Theorema Egregium” is a direct consequence of the Gauss—Peterson—-Codazzi derivation (i.e.,
prolongation) formulas, the complexity of problems, say, in modern differential geometry requires a
structural organization of the procedure of taking consecutive derivations of initial data of the problem.
For instance, Cartan’s exterior forms’ methods (see, e.g., [3] for a modern treatment) and Spencer’s
cohomology approach to formal integrability of partial differential equations (see [6,12]) are to be
mentioned as milestones for progress in that direction. The formal integrability problem for Euler—
Lagrange equations arising from degenerate actions, which still resists a mathematically satisfactory
solution in spite of long time efforts (see, for instance, [4,5]) gives a very instructive example of the
situation where the lack of such an organization prevents the solution. One of the hopes we relate with
higher order analogues of the de Rham complex is to put forward a solution of this and similar problems
by combining them with the C-spectral sequence techniques [18].

The aforementioned and any other possible applications of these new complexes require sufficiently
elaborated techniques to work with higher differential forms and with many related objects as well.
In this paper we continue this kind of foundational work started in [14] by paying more attention to
the related cohomological features. This allows us, in particular, to prove (Theorem 5.1) in a general
smooth algebraic setting, that higher de Rham complexes are quasi-isomorphic to the standard one. This
generalizes much our previous quasi-isomorphism result in [14] which dealed with “regular” de Rham
complexes on smooth manifolds and confirms the intuitive idea that higher de Rham complexes are in
fact, not only formally, prolongations of the standard one and suggests that this result should remain true
when only “mild” singularities occur.

Recently A. Verbovetsky [13] announced an interesting connection between higher de Rham
complexes and the compatibility complexes techniques in formal integrability theory of partial
differential equations, which gives new insights on Theorem 5.1.

The paper is essentially divided in two parts; in the first one (Sections 2—4) we develop the necessary
elements of the theory of differential calculus on a commutative K -algebra A and in the second (Section 5
and Appendix A) we prove the smooth rigidity theorem for higher order de Rham cohomologies.

More precisely, Section 2 recalls the definitions of differential operators and higher derivations in the
category A — Mod of A-modules.

Section 3 introduces the notion of a differentially closed subcategory D of A — Mod and studies
representative objects in D (e.g., jets, higher differential forms etc.) for basic differential functors. The
category D = A —Modg,, of geometric modules over the algebra A = C*°(M), M being a differentiable
manifold, gives an example of a differentially closed subcategory which is of fundamental importance
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for differential geometry (recall that a C*°(M)-module P is geometric if [, ., ms P = 0, m, being the
ideal of functions vanishing at x). We also introduce the notion of smoothness of a differentially closed
category which reduces to the known algebraic geometrical notion if D = A — Mod.

In Section 4 higher de Rham complexes dR,, and dR,, associated with a given differentially closed
category are defined and studied. In the case 0 =(1,1,...) and D =A —Mod or D = A — Modge,r, We
obtain the usual algebraic Kihler-de Rham or smooth de Rham complexes, respectively.

In Section 5 we prove (Theorem J5.1) that if D is a smooth differentially closed subcategory of
modules over a characteristic zero K-algebra A, then all the higher de Rham complexes are quasi
isomorphic. The idea of the proof is to show that for any k the kernel of the natural epimorphism
dR,....op+1,1,...1) = AR, 1.1y 18 acyclic; this is done by exhibiting an explicit acyclic resolution
via the so-called holonomy complexes (Definition 5.4). Finally, Appendix A contains the definition of
the maps building the above resolution which was too long to be included in Section 5 without losing the
logical path of the proof of Theorem 5.1.

Notations and conventions

K: a commutative ring with unit;

A: a commutative K -algebra with unit;
R — Mod: the category of R-modules for a commutative ring R;

DIFF 4: the category whose objects are the A-modules and the morphisms are differential operators
(Section 1) between them;

A — BiMod: the category of A-bimodules, whose objects are understood as ordered couples (P, P™)
of A-modules and whose morphisms are the usual morphisms of bimodules. Note that P and P coincide
as K-modules;

K (A —Mod) (resp. K (K —Mod), resp. K (DIFF,)): the category of complexes in A — Mod (resp.
K — Mod, resp. DIFF,);

If D is a full subcategory of A — Mod, [D, D] will denote the category of functors D — D; a functor
T :D — D will be said strictly representable in D if it exists T € Ob(D) and a functorial isomorphism
T ~ Homy(t, ) in [D, D]. '

A — BiModyp (resp. K (DIFF 4 p)) will be the subcategory of A — BiMod whose objects are couples
of objects in D (resp. the subcategory of K (DIFF,) whose objects are complexes of objects in D).

A sequence T) — T, — T3 of functors 7;: D — D, i = 1, 2, 3 (and functorial morphisms) D being an
abelian subcategory of A — Mod, is said exact in [D, D] if it is exact in D when applied to any object
of D.

Let N = linNi be the set of infinite sequences of positive integers. If o € N} (or o € NY°) then

o(r)=(o1,...,0;) forr <n (orany r € N;). We denote by 1 the element (1,...,1,1,...,1,...) e NT.

2. Absolute and relative functors

We recall here in a slightly different way the necessary definitions from [9,16,17] (see also [10]).
If P and Q are A-modules and a € A we define:

8y : Homg (P, Q) — Homg (P, Q), D {5,1(15 :p> @(ap) — acb(p)}, pEeP
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(where we use juxtaposition to indicate both A-module multiplications in P and Q). For each a € A,
d4 1s a homomorphism of K-modules, and commutativity of A implies that §,, o 8,, = 84, 0 8,,, for any
ar; ) € A.

Definition 2.1. A K-differential operator (a DO for short) of order < s from an A-module P to an
A-module Q is an element A € Homg (P, Q) such that:

[84 084y 0-+-08,,1(4) =0, V{ag,ay,...,a,} C A.

We will write synthetically &, . 4, for 8,508, 0+ 048,,.
The set Diff (P, Q) of differential operators of order < k from P to Q is endowed naturally with two
different A-module structures:

(1) (Diff(P, Q), t) = Diffi (P, Q) (left),

1:A x Diff (P, Q) = Diff (P, Q):(a, A) > t(a, A): p+> aA(p),
(i) (Diff, (P, Q), ) =Diff{ (P, Q) (right),

t: A x Diff (P, Q) — Diff,(P, Q) : (a, A) — 1% (a, A): p—~ A(ap).

We will often write, to be concise, t(a, A) = aA and t(a, A) = atA. It is easy to see that
(Diff (P, Q), (z, t*)) = (Diffy (P, Q), Diff; (P, Q)) iDiff,(f)(P, Q) is an A-bimodule.

Remark 2.2. Since for any ap € A and p € P, §,,(4) =0 < A(app) = apA(p), Diffy(P, Q) and
Homy (P, Q) are identified as A-(bi)modules: Hom (P, Q) ~ Diffy(P, Q) =~ Diffa'(P, 0).

For any k < [, we have an induced monomorphism of A-bimodules:
Diff (P, Q) < Diff (P, 0), k<U; :
the direct limit of the system in A — BiMod:
Diff P (P, Q) < Diff P(P, Q) = ... < Diff (P (P, @) <> ---
is denoted by Diff ) (P, Q) = (Diff(P, Q), Diff (P, 0)).
To a given A-module P we can associate the following thrée functors
Diff, : Q > Diff, (P, Q),
Diff{" : Q ~> Diff{ (P, Q),
Diff (" : 0 > Diff P (P, Q).
Let us put Diff{" (A, Q) = Diff ("’ Q. By Remark 2.2, Diff; = Diffy = Ids_noa. To simplify
notations we will write Diff  instead of Diff} o .- o Diff .

+On

Definition 2.3. For any s, ¢ > 0, define an A-module homomorphism
C,,:(P): Diff} (Diff; P) — Diff},, P,
Ci(P)(A):ar—> A(a)(1), A€ Diff:’(Diff;"P).

Then P > C;,(P) defines a morphism Diff |, — Diff ., of functors called the composition or “gluing”
morphism.
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Note that D) (Q) = {A € Diffy Q | A(1) =0} is an A-submodule of Diff; Q but not of Diff Q! The
functor D) : Q + Dy (Q) allows to form the following short exact sequence:

0— D(k) j) Diff; EI; IdA_Moa — O 2.1)
of functors A — Mod — A — Mod, where iy is the canonical inclusion and pj is defined by:
pr(Q):Diffy @ - 0: A A(1),

for any A-module Q. The functor monomorphism Ids_moea = Diff , < Diff; splits (1), so that Diff, =
Dy @ Ida-moa. Note that D(;)(Q) is nothing but the A-module of all Q-valued K -linear derivations on

A, denoted in the literature usually by Der,,x (Q) (see for example [2]).

Let Q be an A-module and P, P* be the left and right A-modules corresponding to an A-bimodule
P = (P, P*). Let’s denote by Diff§(Q, P*) (resp. Df,(P™)) the A-module which coincides with
Diff,(Q, P*) (resp. Dgy(P ™)) as a K-module and whose A-module structure is inherited by that of P':
(mult. by a in Diff}(Q, PH)) (@*A)(g) =aA(q),
(mult. by @ in D}(PY))  (a*8)(q) =ad(a),

where both aA(g) and aé(g) denote the multiplication by a in P. The correspondence
DY) : PP > (Dgy(P), Dyy(P))

defines an endofunctor of A — BiMod in the obvious way.

If Q=A we write Diffj(P*) for Diff3(A, P*). Obviously, DZk)(P+) is an A-submodule of
Diff §(P™). :

Let us consider the following ordered “special” triples of A-modules:

(PyEA)
with P™ = (P, P*) being an A-bimodule and Q an A-submodule of P. The corresponding morphisms
are those of underlying A-bimodules “respecting” the distinguished submodules, i.e.:

f:(P, P*)— (P, P*) such that f(Q) C Q.

Example 2.1. (i) If P is an A-module and s < k, then (Diffy P, Diff }(’LP; D(5)(P)) is a special triple, for
each s < k. :
(i) If P = (P, P*) is an A- bimodule, then we have the following special triples:
(Diff} P*, Diff } P*; D, (PT)),
(Diffk P, Diff P; D(k)(P)),
(Diff, P*, Diff P*; Dy (P1)).

; I.These A-module structures are well defined due to the fact that (P, PT) =P (1) is a bimodule. Obviously one can give
similar definitions with P+ replaced by P.
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We associate to any such triple (P™; Q) the following K -modules:
Diffi(Q C P*) = {A eDiffy P* | im(4) C 0},
Dy (Q C P*)={AeDy(P*)|im(4) C 0}.
The A-module structure of Diff§(P*) (resp., of Diff; (P*) or of D, (P*)) induces an A-module

structure on Diff; (Q C P™) (resp., on Diff,‘f(Q C P%), resp. on D) (Q C P™)) that will be denoted
by Diff$(Q C PT) (resp. Diff{ (Q C P*) or Dyy(Q C P1)). Therefore we have natural inclusions of
A-modules

Diff$(@ ¢ P") c Difig(Ph),

Diff} (Q ¢ P*) c Diff} (P*),

D (Q € P) C DYy (P,
and a special triple (Diff§(Q c P*), Diff{(Q Cc P*), Dw(Q C P™")). The following result is
straightforward

Lemma 2.4. If P™ is a sub-bimodule of P and Q C P, then we have:

D (Q C P*)=Dy(Q C PY),

Diff; (@ C P*) =Diff} (@ C P*),

Diffst0 ¢ PH=TRKN 0 C PY).

We define now some absolute functors we will need in the following (see Definition 2.8 for their

“relative” version).
Definition 2.5. For k > 0 and (P"); Q) a special triple, define the special triple

Pw(P™; ) = (Diff(Q C P*), Difff(Q C P*); Dgy(Q C PH)).
P00

----- on)

...............

.....

..........

Dioy.....00(P) = Doy (Digs. e3¢ B) C DiffS . (P)).
Furthermore,
B gn)(P)HD:al)(Difsz ‘‘‘‘‘ aﬂ(P))L»Diff;l(Difsz ..... =P

,,,,,,,,,,
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Definition 2.6. Let 0 = (01, 03,...0,,...) € NZ and o (n) = (o4, ..., 0,). Then the functors Dyny: A -
Mod — A — Mod are defined by induction:
Do (1) =D(o))s

.....

o (P) CDIff} (P)).
Ifo=(,...1,1,...) we also write D, for D).
For any o € NI° and n € N, we have an exact sequence of endofunctors of A — Mod:

Ia (n) Tlo (n)

0— DU(") Tl Dc.r(n—l) ODiffEr:_) o D(01,~~,Un—2,0n~1+0n)’ 2.2)

where I, () is the natural inclusion and 7, ,) is the composition (see Definition 2.3)

: : ot Do) 1) .
D; 1y o Diff ;Y <> D3, _,, o Diff ) oDiff} 202 "n12'ps o Diff

On—1+0n*

Remark 2.7. Let 0 = (01, 07, ...,0,) € N.. We have a canonical split exact short exact sequence of
endofunctors of A — Mod

.....

0 DU ld 'Po 1//0 D(o'2
\p_/

where [, is the canonical inclusion, ¥, is given by (P is an A-module) v, (P)(A) = A(1) and p, by
po(P)(A) = A — A().
Hence P; >~ Dy,,...s,) ® D, .

.....

Now we define the relative (i.e., relative to an arbitrary A-module P) functors.

Definition 2.8. If k > 0 and P is an A-module, define P [ P] to be the functor assigning to a special
triple (Q, Q™; S) the A-bimodule

(Diff3(P,'S c 0*), Diff{ (P, S  Q1)).

HBom)=(0,...,0,) € N”, n > 1, define the functor P 5[ P] as the composition

,,,,,

As in the absolute case (Definition 2.5), we call P3P (zesp. Ej(n>[P]) the underlying left (resp.
right) A-module of PPl

By Lemma 2.4, we have i P;L(n)) = (P;[A], PS[A]). Moreover, P ,»[P] is (controvariantly)
functorial in P and we have

Lemma 2.9. If0 — P, o P, 5 Py — 0is exact (resp. split exact) in A — Mod, then

0~ 25 [P1 5 Po P15 P2 Py,

v f\/
0= Pl P15 P IP1S P IP]
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are exact (resp.
O Pa(n)[P3] _> ,P(.;(n)[PZJ _) P;(n)[Pl] i O

i o (n)[P3]—>P (n)[Pz]—> PfnP1—0

are exact).
Proof. Straightforward, by induction onn. 0O
If P is an A-module, there are exact sequences of functors A — Mod — A — Mod

0— P.(n)[P] s P.(n 1)[P] o lef(+) 9o (n) (Ul o-n_z,Un—1+‘7”)[P]’ (2,3)

where the monomorphism is the natural inclusion while g, (,) is induced by the “gluing” morphism with
respect to the pair of indexes (0,_1, 0,,), i.€.:

Ploon ) [PYoDIEEHQ) 5 AP goy(A) =B € PY,. . . o trel PHD),
(o (A@N@D) )2 = (. (AP @) .. ) (an-D) (D),
where p € P and ay, ..., a,_, € A. We have analogous exact sequences:

go(n)

0= P70 [P] == DNl (P, )0 Pg;z P € g B o Lot DR g R 2.4)

where go(n): A > A with A( p) = A(p)(1), p € P (ie., we “glue” with respect to the first two indexes);
the upper boldface dot in Diff (P, -) denotes the A-module structure induced by P
The following definition w1ll allow us to be concise in the next section:

.....

Definition 2.10. For any n > 0 and any o € N, the functors (in [A —Meod, A —Mod]) P;, D; are called
the relevant absolute functors while, if P is an A -module, the functors P2[P], are called the relevant
functors relative to the A-module P.

3. Absolute and relative representative objects

In this section we consider (strict) representative objects of the functors introduced in the previous
section. We obtain, as particular cases, the standard modules of Kéhler differential forms of Algebraic
Geometry and the de Rham forms of Differential Geometry. We emphasize that in our approach all these
(and not only those of degree one) are obtained as representative objects of suitable functors. One of the
major advantages of this approach is to allow natural generalizations.

Let D be a full subcategory of A — Mod. We denote by A — BiModp the subcategory of A — BiMod
whose objects are couples of objects of D; a special triple (P, P™; Q) (i.e., a triple of A-modules such
that (P, PT) is an A-bimodule and Q is a submodule of P) with P, P* and Q belonging to D will be
called a special triple in D (Section 1).

Definition 3.1. A full abelian subcategory D of A —Mod is said to be differentially closed if the following
properties are satisfied:
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(a) each functor defined in the previous section, when restricted to D (or A — BiModp, or to special
triples in D) has values in D (or in A — BiModyp, or in special triples in D);

(b)if T : A—Mod — A — Mod is a relevant absolute functor or a relevant relative functor, relative to
an object of D, then Tjp: D — D is strictly representable in D;

(c) A € Ob(D);

(d) D is closed under tensor products (over A);

(e) D is closed under taking subobjects (i.e., if P € Q in A — Mod and Q is in D then P is in D).

Condition (a) is needed to have an ambient category which is “closed” with respect to functorial
differential calculus; as it will be clear in the following, since among the functors of Section 1 there
are also compositions of relevant “elementary” ones, we would like that representative objects of
these nonelementary functors® (for example D¢, o Diff ,(+)), if existing, could be expressed in terms of
representative objects of the relevant “elementary” ones (D) and Diff, in the example). Condition (d)
makes it possible.

D being abelian and satisfying (b), exactness of sequences of strictly representable functors yields
exactness of the “dual” sequences of representative objects in D. Condition (e) is related to the existence
of canonical generators for some representative objects and will become clear in the sequel. Note also
that (e) implies that if f is a morphism in D, im(f) (resp. ker(f)) is the same when considered in D or
in A — Mod.

Let us recall some elementary facts about bimodules, mainly to fix our notations.

I PH) — (P PHican Ahimadule a2 A and » = P wa weita ap for tha multiplication in P and
a™ p for the multiplication in P*. If Q is an A-module we denote by:

(D) P*®} QO the A-module obtained from the abelian group P* ® 4 Q with multiplication by elements
of A defined as

a*(p®q)=(ap)®q, acA, pePt, qeQ

(note that a®*(p ® q) # p ® aq). Then P ®f;) 0 =(P*Q®% 0, PT ®4 Q) is an A-bimodule;
(Il) Hom%,(Q, P*) the A-module obtained from the abelian group Hom 4 (Q, P*) with multiplication
by elements of A defined as:

[a*fl(p)=a-(f(p)), a€A, peP, fecHoma(Q,P").

Denote by Homf;)(Q, P*) = (Hom*%(Q, P*), Hom,(Q, P*)) the corresponding A-bimodule;
(@11)) HomX(P, Q) the A-module obtained from the abelian group Hom, (P, Q) with multiplication by
elements of A:

[a* f1(p) = f(a"p).
Then
Hom(" (P, Q) = (Hom,(P, Q), Hom; (P, Q))

is an A-bimodule.
In a similar way we can define the A-modules P @7 Q, Hom} (P, Q) and Hom$ (P, Q).

2 Relevant or not.
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Example 3.1. If P and Q are A-modules, we have an isomorphism in [A — Mod, A — Mod]
Diff (-, Q) >~ Hom', (-, Difff Q).
We leave to the reader the verification of the following result:

Lemma 3.2. Let R and P be A-modules and (Q, Q™) an A-bimodule. Then we have a canonical
isomorphism in A — BiMod:

Homg') (R,HomX(Q, P)) &Homf:)(Q"’ ®% R, P).

Proposition 3.3. Let P be an A-module and k € N,.. Then Diffi (P, -): A — Mod — A — Mod is strictly
representable by the so-called k-jet module J*(P).

Proof. See [10,p.12]. O

In other words, there exists a universal DO ji(P): P — J* (P), of order < k (usually denoted simply
by Jji), such that for any DO A: P — Q of order < k, there is a unique A-homomorphism 4 and a
commutative diagram

P py

AN
0
The A-module J¥(P) is generated by {jx(p) | p € P}. Moreover, J*(P) has a bimodule structure
J’(‘ ) (P) = (J¥(P), Ji(P)) which can be described in the following, purely functorial, way. Suppose
D C A — Mod is a subcategory such that YP Ob(D) the functor Diff, (P, -) when restricted to D has
values in D and is strictly representable in D (e.g., D = A — Mod by Proposition 3.2). Let J"D(P) be
the corresponding representative object, i.e., Hom, (J%(P), -) = Diff (P, -), isomorphism of functors
D—D.If j,? P J’%,(P) corresponds to the identity morphism of J’I‘)(P), we can define, for each
a € A, the DO

at:P— J5(P):pr> jP(ap).

The corresponding A-endomorphism of J’;D is still denoted by a™ and gives the required second A-module
structure J’{) . on the abelian group J’{). <

Using the bimodule J’(c +) and Proposition 3.3, we get an isomorphism of functors A — Mod —
A —Mod

Diff;" > Hom} (J¥, -). 3.1)

If P, Q are A-modules, then:
Hom, (J'j_ ®% P, Q) ’_\:HomZ(P, HomX(Jk, Q))

by Lemma 3.2; therefore Hom$, (P, Hom; (J°, Q)) ~ Hom, (P, Diff | Q) and, by (3.1) and Example 3.1,
we finally get Hom} (P, Diff ¥ Q) ~ Diff (P, Q). Since representative objects of the same functor are
canonically isomorphic, we have proved:




4
7.

1388

b

honical
o
sirictly

fructure
BIPPOSE

G. Vezzosi, A.M. Vinogradov / Differential Geometry and its Applications 19 (2003) 29-59

Lemma 3.4. There are canonical isomorphisms in [A — Mod, A — Mod]:
FO~FE e 0,
0] =) &4 ().

We are now able to prove a basic result

Lemma 3.5. @) If t e N°, n>0,¢ >0 and D () is strictly representable in A — Mod by A*™™, then

D}, o Diff &) s strictly representable in A — Mod by J' (A*™).

(b) If s,t >0, then
P, o Diff (") = Diff* o Diff " : A — Mod — A — Mod

is strictly representable by J' (J°).
(©) Ifs,t >0and P is an A-module, then

Pgy[P1 o Diff ¥ = Diff (P, Diff P (-)) : A — Mod — A — Mod
is strictly representable by J' (J*(P)).
(d) If P; ,y is strictly representable by Hol° ™, then

Ps

( © Diff;" : A — Mod — A — Mod

is strictly representable by J*(Hol’ ™).
(©) iy s an A-module and Fg [ I ] 1S SIricIly representable by Hol” “7| F |, then

Psw[P1oDiff{”: A — Mod — A — Mod
is strictly representable by J*(Hol° ™[P])).
Proof. The proofs are very similar. We prove only (b) and (d).
(b) :
Diff{ (Diff P) ~ Hom, (¥, Diff;" P) ~ Hom$, (¥, Hom?; (¥', P));
by (3.1) this is isomorphic to Homy (J. ®* J*, P) and, finally by Proposition 3.4, to Hom4(J' (J¥), P).
(d
>y (Diff " (P)) = Hom, (Hol” ™, Diff;" P) ~ Hom, (Hol’ ™, Hom} (J*, P))
=~ Hom (J5 ®* Hol’™, P) ~ Hom, (J*(Hol°™), P). O
Note that if D, is representable for any o € N, n > 0, then P? is representable for any o € ",
n > 0, by Remark 2.7.
Remark 3.6. Note that for any A-module P we have:
Diff (Diff " (Diff }, P)) = Hom, (J' (J*), Diff;: P)
=~ Hom(J'(J*), Hom’; (I, P)) ~ Hom}; 7 @4 T (), P)
=~ Homy (J" (J' (J%)), P).
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In this case J” (J' (J*)) represents the functor P +> Diff § (Diff ;"(Diff *P)), but not strictly.

We conclude these preliminaries with the following elementary result

Lemma 3.7. Let 0 > T & T, - Ts be an exact sequence in [A — Mod, A — Mod], with T, and T3
strictly representable by t, and T3, respectively; then T is also strictly representable by the quotient
72/@V (13), where ¢V : 13 — 1, is the dual-representative of ¢.

Proof. If P is an A-module, the morphism xp : 71 (P) — HomA(ﬁ, P):

A
q+— Xp(Q) : [tZ]Modan(r3) 4 (1)

where 6/1\ =1i(P)(g), is well defined since l/]\ o= <p(P)((/]\) = 0 and is an isomorphism, natural in P. O

The next theorem, collecting some of the results above, asserts that A — Mod is itself differentially
closed (see Definition 3.1).

Theorem 3.8. Let P be an A-module, o € N and k € N. Then:

(i) Diff. (P_.) ic otriothy voprocontahle in A — Mod hv the k-iet module T( PY:
(ii) for each n > O, the functor Dy is strictly representable in A — Mod by the so-called higher de

Rham forms’ module of type o (n), A°®;
(i) Pg(,y and Py,y[P1:A — Mod — A — Mod are strictly representable by the so-called absolute

holonomy module of type o (n), Hol”™ and relative holonomy module of type o (n), Hol° ™[ P].

Proof. (i) is Proposition 3.3.

(ii) The strict representability of Dy(,) in A — Mod may be proved by induction on n. The case
n =1 follows from the exact sequence (2.1), Lemma 3.7 and (i). Now, suppose we have proved
strict represéntability of Dy for each T € N and each k <n — 1. From the exact sequence in
[A —Mod, A — Mod]

0— Do) > Dgy—1y © Diff;rn = D(o(n-2),0n-1+0m) (32)
the last morphism being A A where:

(.- (B@))@)) .. ) @n2))@n1) = (- (A@))@)....) @r-2)) @)D

(i.e., we use the “gluing” morphism of Definition 2.3 with respect to the last two indexes), Lemma 3.5
(a) and Lemma 3.7, we obtain strict representability for Dy ().

(iii) the case of Py, follows, as for (ii), by induction via Lemma 3.5, Lemma 3.7 and by any of the
following two exact sequences in [A — Mod, A —Mod]:

. ° F (+ .
0 e Pa(n) o PO'(”—I) o lefg'n) e P(a(n—Z),an_1+an)’ (3.3)

Coy,0 (Diffj,r
LS (3.4)

) L ]
P(Ul +02,03,...,0n)

0P,
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where:

----------

of Definition 2.3: for (3.3) we “glue” with respect to the last two indexes while in (3.4) we “glue” with
respect to the first two. The case of Py ,\[P] is proved analogously, using (2.3) instead of (3.3) or (2.4)
in place of (3.4). O

Remark 3.9. For any k > 0, we have A® ~ I/I**! where I is the kernel of the ring multiplication
A®k A — A;hence AD ~ Q1 /k 18 just the A-module of Kdhler differentials (relative to K'). Moreover
it is not difficult to show [10, p. 17] that A®D ~ A" = AL A ... A A! (n times) =~ 2} and that for
each k, ! € N, the map A — A induces a monomorphism [A — Mod, A —Mod]:

D1+1y <> D1y © D1y,
whose dual representative A-homomorphism is just the wedge product A: A(A) @4 AL(A) — AFI(A).

If D is a differentially closed subcategory, we will denote the strict representatives in D of the relevant
functors by adding D as a subscript to the symbol used to denote the corresponding representative object
in A — Mod; for example, we write A”D(") for the representative object in D of the functor Dy sy : D — D.

Demaark 2.10. Ao wa did fax J9 — Ha10), wa nan axhikit annthar compatible A-module structure on
Holg1 """ ) Vn>0.Leta € Aandid € P? @ (Hol%71 """ )y correspond to the identity of Holg1 """ on) under

the representability isomorphism. Since Pg,, (Hol%71 """ )y and P;"(n) (Hol%yl """ a")) coincide as sets, we

can consider a*tid (multiplication in ’P;' o (Hol%71 """ o))} as an A-endomorphism of Hol%1 """ %) Tris easy
(01,--,0n)

to verify that this choice defines another A-module structure on Holg1 """ o) denoted by Holp and

and by definition of P, = and Example 3.1

o(n)

Hom*(P, P} ,,(Q)) ~ Pt ) [P1(Poy,...0) (D) = P,....onPIQ). O
Remark 3.12. For any differentiable closed subcategory D € A — Mod it is still true, as in the case
D = A — Mod, that Jk?(P) is generated as an A-module by {jx(p) | p € P}. In fact, let J%,(P)~ denote
the A-submodule of J7,(P) generated by {ji(p) | p € P}; this is still an object of D by Definition 3.1(e).
Now, the composition v

D k 3
rEpms 20

T (P)~
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is the DO of order < k corresponding to v under the isomorphism
Homy (5 (P), ¥p(P)/J5(P)™) ~ Diffy (P, Jp (P)/IH(P)™).

But 7 o jP is zero hence = = 0 and we conclude. Note that this also shows that the canonical morphism
J¥(P) — J5(P) is an A-epimorphism.

If P € Ob(D) and t > s, the monomorphism Diff (P, -) C Diff,(P, -) in [D, D] gives rise to a D-
epimorphism (also an A-epimorphism by Remark 3.12) between representative objects:

m,s(P) 1 Jp(P) — Jp(P)

which fits in the commutative diagram

J(P) T”"‘(P)
H(P)

The rule P - J;,(P) defines in the obvious way a (covariant) functor D — D ([9] or [10]).
The following example shows the importance of the appropriate choice of the differentially closed

subcategory of A — Mod in determining the “geometrical effectiveness” and size of the representative
objects of the relevant functors.

Example 3.2. Let M be a smooth real manifold (which we assume Haussdorf and with a countable basis),
K =R and A = C®(M;R). Then [19] A°™ is in general neither projective nor of finite type over A:
in particular, when 0 = (1,...,1,...), it does not coincide with the A-module of differential n-forms
on the manifold M. To obtain these “geometrical” objects we must choose an appropriate subcategory
of A — Mod: in our approach, choosing a “geometry” is equivalent to select a differentially closed
subcategory D. For finite dimensional (real) differential geometry we may choose D = A — Modgeom,
the full subcategory of geometric A-modules, i.e., of A-modules P such that ﬂx ey Ie P = (0), I, being
the maximal ideal of smooth functions on M vanishing at x € M.

Note that A — Mod,eom 2 A — Mod,, ¢, , the full subcategory of projective A-modules of finite type,
since A itself is a geometric A-module; however, A — Mod,, ¢, is not differentially closed because
it is not abelian (and does not satisfy (e)). Another reason that makes us prefer working with the bigger
A —Modgn is its better functoriality with respect to change of algebras induced by pull backs of smooth
mappings of manifolds.> A — Mod,.on is differentially closed due to the fact that the “geometrization”
functor

(- )geom :A—Mod — A — MOdgeom
P
mxeM IX P
sends representative objects in A — Mod to representative objects in A — Modgeor, for all the relevant

functors [10]. “Geometrical” objects are obtained as representative objects; for example A{;::", with

PHPgeomi

3 If f:M — N is a smooth map and P is a geometric C°°(M)-module then P is still geometric when viewed as a C°°(N)-
module via the pull back f*:C(N) — C%(M). Projectivity is not preserved, instead.
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(1,...,1) e N, is isomorphic to I"( /\k T*M), the module of sections of the kth exterior pPower of the
cotangent bundle of M, i.e., the module of k-differential forms on M.

It is possible to encode the “smoothness” of the geometry we want to describe, completely in the
choice of the differentially closed subcategory:

Definition 3.13. A differentially closed subcategory D of A —Mod is called smooth if A%) is a projective
A-module of finite type.

Example 3.3. (i) If A is a smooth K-algebra, in the usual sense of commutative algebra, then D =
A — Mod is smooth (e.g., [7, IL.8]).

(ii) If M is a smooth manifold and A = C*® (M;R) then A — Modgeo, is smooth while A — Mod is
not.

It can be proved (as in the proof of Theorem 3.8) that if D is smooth then all the representative objects
of relevant functors are indeed projective and of finite type as A-modules. However, we want to stress
that since representative objects may be constructed also in non-smooth cases, our approach works also in
describing singular and even infinite dimensional geometrical situations. However, to resort with useful
objects one has to make in each situation an adequate choice of D.

The following proposition will be useful in the next sections:

Proposition 3.14. Let D be smooth. Then

(i) AZ = (0)forn>0;
Gi) If P € Ob(D), Hnl,lD"[P] = (0) forn >0

Proof. By Lemma 3.11 and Remark 2.7, (ii) follows from (i). Remark 3.9 together with the fact that A})
is of finite type proves (i). O

4. Higher de Rham complexes

In this section we use the functors introduced in Section 2 and their representative objects (Section 3)
to build higher order analogs of the de Rham complex. Their cohomology will be studied in Section 5.

Let D be a differentially closed subcategory of A — Mod. The dual representative of the
monomorphism in [D, D]:

. cec (+
D(U(n),k) o Do(n) ODlﬂ"](C ), O'(n) e N" ; k e N+,
is a D-epimorphism:
k (A0() (o(n),k),
Jp(4p") = Ap™;

'D T
define (5 n).k) to be the composition

PUCES A PLC WRPCLI) @.1)
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Obviously, d(?(n), p isaDO of order < k.
Definition 4.1. If o € N%°, the sequence in DIFF 4

gy Bl ) a7
0= A SHARY 550 AP 5 P ATE 4.2)

is called higher de Rham sequence of type o of the K -algebra A and is denoted by dRaD (A) or simply
by de; each df(k), k > 0, is called higher de Rham differential and is a DO of order < o.

Remark 4.2. When o = 1 € N, the corresponding de Rham sequence is called ordinary. In this case

dRa)——_—dRD:0—>A—d>A1D—‘—i>A%—+----i>A’{7—>--- 4.3)

and each differential is a DO of order < 1.

Each d? in (4.2) is in fact a differential according to the following:

Proposition 4.3. Vo € N the higher'de Rham sequence de is a complex.
Proof. Let n > 0 and consider the diagram defining two consecutive higher de Rham differentials:

=741 (n+1) ) (n+2)
o(n o(n+ o (n+ o(n+
A Mg s

51 2

J%H_] (AUD(n)) J%+2 (AUD(H+1))

(
AT

Since dGD(n+2) o aD(n+1) = 713 0 jo,,, © W1 © Jo,, i8 2 DO of order < k + [, there exists a unique A-

homomorphism
. YOn421+0nt1 [ 40(n) o(n+2)
CaTni2°d 51 I (45") = 4p
which makes the following diagram commutative:

o (n) 9o (n+2)°ds (n+2)Ag(n+2)

Ap

: %o (142)°% (n+2)
© Jopiatontl

J%+2+Un+1 (A%("))

It is not difficult to check that QuP 0dP is just the dual representative of the composition:
on on

e (+ . e ()
Do (n+2) <> D} i) © lefgni2 — D,y o Diff 5.} 4o,

which is immediately checked to be zero; therefore ¢;o =0 and d(?(n 42 © Z)(n 4y =0 as

O

D
n+2)°% (n+1)
well.
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Remark 4.4. (i) Let D = A — Mod. By induction on n we can prove (using for n =1 the explicit
description of AV given in Section 2) that formula (4.2) implies that A°® is generated by the set

{dg(n) (alda(n_l)(az = .da—(l)(an) e )) l @i, iy 8y € A}

In fact, J7*(A”"~D) is known to be generated over A by the elements Jo, (@), @ € A°®~D and
Jon(A°D) > A°® s an epimorphism. This result still holds for A%(") with d replaced by dP,
D € A — Mod being any differentiable closed subcategory: the proof is analogous to the argument used
in Remark 3.12(a). This also shows that the canonical morphisms A°® — A‘l’)(") are A-epimorphisms.

(i) In the “ordinary” case (oy,...,0,) = (1,...,1) = 1(n), the A-module structure of HOI%,_'_
(Remark 3.10) can be expressed via the isomorphism (Remark 2.7)

asa*t(p, w) = (ap,aw + (dg)a) A p).

(iii) If D = A — Mod, dR; coincides with the usual algebraic de Rham complex of the K-algebra A
([1] and [2]).

(iv) If K =R, M is a smooth manifold, A = C®°(M;R) and D is the category of geometric A-
modules (see Section 2) then dR? is the geometric de Rham complex on M. It turns out that any natural
differential operator occurring in differential geometry can be recovered functorially using our approach:
see [14] for the case of the Lie derivative and the corresponding homotopy formula.

If 0,7 e N® with 0 >t (ie., 0; > 1;, Vi > 1), then for each n > 0 we have a monomorphism
D:(n) <> Doy in [D, D]; this induces a D-epimorphism on representatives A%" — AL™, Vn > 0.
By Remark 4.4, this is also an A-epimorphism. All these epimorphisms commute with higher de Rham
differentials and therefore define a morphism of complexes

dR? — dR? 4.4)
(if ¢ > 7). So we can consider the (A-epimorphic) inverse system {de}(r eNny and give the following:
Definition 4.5. The infinitely prolonged (or, simply, infinite) de Rham complex of the K -algebra A, is the
complex in K (K — Mod)

dR7 (4) =lim,en2dRZ (A),

dOO dOOOO
dRZ(4): 0> A AT pS00 ..y g, 4.5)

where A% = {iLno(n)eNiAUD(") ,Vn>0.

Remark 4.6 (Two descriptions of DO’s between strict representative objects). We work in a fixed
differentially closed subcategory D of A — Mod and all representative objects will be in D.

Let Fy and F, be representative objects of differential functors F; and 7>, respectively. As seen in
the previous section there are many instances of differential functors 7 having a so to say “associated
functor” F? with domain A — BiModyp such that F1 (Diff ,(f) ) is strictly representable by J*(F;): the
easiest examples are F; = D, ,) or Diff;. Now, let

A:Fi—> F 4.6)
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be a DO of order < k. Then, there exists a unique A-homomorphism ([9]: jet-associated to A)
fa: 3 (F)—> F 4.7

which represents A by duality: A = fa o ji(F). Since J¥(F,) is the representative object of 77 (Diff ,(c+)),
f4 defines a unique morphism in [D, D]:

f4: 5~ F(Diff;"), (4.8)
called generator morphism of A.

Formulas (4.7) and (4.8) give two different descriptions of a DO between representative objects.
Formula (4.8) allows one to identify it with a functorial morphism which, as a rule, may be established in
a straightforward way and can then be used to define the corresponding natural DO (4.6). The following
examples show this procedure at work in two canonical cases; we assume for simplicity D = A — Mod.

(i) Higher de Rham differential dy ).
If 75 =Dy, Fi =Dy -1y, k = 0, and we take for (4.8) the natural inclusion

Dy (n) = D;(n_l)(Difff,?),

then d, () : A7~V — A7®™ is the corresponding DO (4.6).

(ii) “Absolute” jet-operator jy.

In this almost tautological case, F; = Hom4 (A, -) = Diffg and 7, = Diff, = Hom (A, -) (Diff ](€+)); if
we take (4.8) to be the identity

1d: Diff, — Hom, (A, ) (Diff ;") = Diff,,
then (4.6) is just ji: A — J~.

5. Smooth rigidity of higher de Rham cohomology

In this section we prove the main result of this paper, i.e., that in the smooth case the higher-order
de Rham cohomologies coincide with the ordinary (i.e., lowest order) one. Essentially this amounts to a
fairly infuitive assert: raising the order of the natural DOs involved in the dR -complexes does not change
the cohomological information, provided the situation in which we are working is smooth.

In this section (and in Appendix A), A is a K-algebra of zero characteristic, containing K as a
subring and D a differentially closed smooth subcategory of A — Mod. As in the previous section, all
representative objects, unless otherwise stated, will be considered in D.

Smoothness of D implies that for any k, I > 0, the gluing morphism in [D, D]

; : 6
Diff$ o Diff " &' Diff;
is surjective, i.e., that any DO can be expressed as composition of lower order ones. This can be seen as

follows. Let us fix k and proceed by induction on . The case [ = 0 is trivial since Diff o = idp. To prove
the inductive step let us consider the commutative diagram

Cr,l+1

Diff$ o Diff {7} == Diff ;4111

|

Diff} o Diff | ——> Diff 41

i1




E (4.7)
Diff e ¥

(4.8)
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(where the vertical arrows are natural inclusions) and suppose Cy; is epic. Passing to the corresponding
diagram of representative objects and completing it with kernels, we get a commutative diagram [10,
p- 52] with exact columns

0 0

Sk+l+1(A1) e Sl+1(A1) ®Jk

Jk+l +1 chinl

JH—I(Jk)

Jk+l T) Jl (Jk)

0 0

where S” denotes the rth symmetric power and C*' is the dual-representative of C; ;. By duality it is
enough to prove that C**1 is monic. By induction hypothesis C*! is monic so we are reduced to showing
that p is monic. It is not difficult to prove (e.g., again by induction on /) that p is just the composition

Sk+l+1(A1) e | Sl+1(Al) ® Sk(AI) £ Sl+1(A1) o J,
where a:w; - Wi = ) (04 - w,,) ® (0, ---wj,) where the sum is extended to all partitions
(Gryevnsize), Groeoos i) of {1,...,k + 1 + 1} of (ordered) length (I + 1,k) and B = idgit141) ® i
with

i:sf(AY) > J

the inclusion of the kernel of J* — J*~! [10, p.- 52]. A is of zero characteristic hence « is well defined
and monic; A! is projective hence B is monic too. Thus p is monic and we conclude.
As a consequence Vn > 1, we have the following short exact sequence in [D, D]:

o DU(”) St D;(n—l) 0 lefc(:,_) = D(ol,...,orn_g,tr,,_1+an) -0 G.D

(the new fact is that the last arrow of the sequence is epic since it is induced by the gluing morphism).
The nth cohomology K-module of the complex

dR,:0 — Adi(;) AT L dy 40w d"ﬂ;l) ATEHD
is denoted by:
n o Ko@) _ pngp
im(do(n)) :

Since H! only depends on o (n + 1), we will write also H} .y in place of H}.

Note that in the situation of Remark 4.4(iv), H »(n+1) 18 the nth de Rham cohomology R-vector space
of the smooth manifold M.

The rest of this section will be devoted to proving the following result:
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Theorem 5.1 (“Smooth” rigidity of higher de Rham cohomologies). If D is a smooth subcategory of
A — Mod, then, for each t,0 € N with t > o, the canonical D-epimorphism (4.4):

dR,; — dR,
is a quasi-isomorphism; so:

H'~H" Vn3>0. , (5.2)

Corollary 5.2. (i) If M is a smooth manifold, A=C®(M;R) and D = C®(M; R) — Modgeom, then the
higher de Rham cohomologies coincide with the standard de Rham cohomology of M.

(i) If K is a field of zero characteristic and A is a smooth K-algebra, then the higher de Rham
cohomologies coincide with the standard algebraic one.

Note that the previous corollary is false, in general, for a singular manifold or a non-regular K-

algebra A.
The strategy of the proof of Theorem 5.1 is the following.
Keeping n > 0 fixed, we prove the thesis by reducing, step by step, each entry of o (n + 1) to 1, starting

from 0,1, i.., we prove the chain of isomorphisms
~ ~ n ~ ~ ~ n
Hy —‘H(’:r(n),l)—H(a(n—l),l,l)_""—H("al,l ,,,,, 1y = Higs (-3)

o

where HJp stands for Hfj ), a,....,He N’fl (the nth ordinary de Rham cohomology).

The first step in the chaﬁﬁ (5.3) is obtained via the following:*

Lemma 5.3. Let n € N, If o, T € N are such that o (n) =t(n), then:
@ kerd, (n+1) = ker dr(n+1);
(i) im(dy (n+1)) = im(dr(n+1)) (where ~ means K — Mod-isomorphism).

Proof. (ii) follows trivially from (i). Let o € N7 and k > 1. Consider the short exact sequence: :

. ; i
0— D ik-1,1) <> D(U’k_l) o D1ff§+) — D,y = 0

whose dual-representative:

s A(a,k)L\;Jl(A(o,k—l))__) AG@k=LD _s 0 (5.4)

is likewise exact (in D). We embed the latter in the commutative diagram:
2V
O Ao e U AT -1y A1 1) e

d(o.k) b

g ol iy A (R T)
A d(o,k-1) A

Now, if @ € A° is such that di k—1)(@) = 0, then j1(d@x-1)(@)) = 0 and, by commutativity,
(@Y o dr) (@) = 0. But iV is a monomorphism, so kerd -1y & kerd(, ), Vk > 1. Since the inverse
inclusion is obvious, (i) is proved. O

4 This lemma has been proved, independently, also by Yu. Torkhov.
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To prove the “kth step” of chain (5.3), it is enough to show that:

n AL TR
Hi -1),00+1, 1,0 Dppt == Hioe-1),001,0 D

where we write (p), if p € N/,.
To prove (5.5) we construct an auxiliary complex.
Let P be an object in D and t € N3°. As shown at the beginning of this section, smoothness’ of D

implies that Vn > 0 the “relative” sequence (2.3)

0— Ppoy[P1—> Pl [P1oDiff ) — Pe o 0 o [P1—>0 (5.6)
is exact also in the last term; hence, its dual representative:

0 — Hol *@-2:%-1+%)[ P] — J* (Hol"*~[P]) — Hol'™[P] — 0 (5.7)

is exact also in the first term. Furthermore, when P varies in Ob(D), (5.7) gives rise to a short exact
sequence in [D, D]. We will refer to Hol*™[P] as the Hol-object of type t(n) of the A-module P; we
have

J= (Hol* "~V P]) 5.8)

T(n) ~
Hol™[P] HolC=2 5 i+w[p]

as A-modules. This allows us to give the following:

Proposition 5.4. Let P € Ob(D) and t € N. We define the sequence in DIFF 4 p:

Hol*[P]:0 — Hol’[P] = P *22 gorrW[p1=J2(P) - ---
- Hol'®[P] =20, Ho[**+D[P] ...,
where, for each n > 0,
8z(nany[P1:Hol*™[P] — Hol'"*V[P]

is defined to be the DO whose description (4.8) of Remark 4.6 is the canonical inclusion

Prwiny[P1 = PrlPlo Diff ® .

Tnt1’

equivalently, 8. (n+1)[P] is the composition.

Jo+1 (Hol" ™[ P])

Jtgpq HOFP[P])
———
Hol(f(n—l),1n+rn+1) [P]

~ Hol*™*V[P]

Jon (Holr(n) [P]) Pr(n+1)(P)

Hol*™[P]
'_vity, , 0
‘?rse where p.(n+1)(P) is the canonical quotient projection. Hol*[P] is a complex in DIFF 4 p, called Hol"-
complex of P; moreover, Hol*[ P] is natural in P and defines a functor Hol" : D — K (DIFF 4 p).°

3 We recall that K (DIFF A, D) denotes the category of complexes of differential operators formed by objectsin D.: =
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Proof. As always, it is better to work with functors (i.é., differential operators) than with representative
objects. In the notations of Remark 4.6, we have that @O 6 coincides with the composition:

P+l P]
(p5r<n+1)

T+l

\
ProlPlo Diff
} o¥o (DI )
. . -+
Pra-nlPlo Dt 5,41 Dty i)
@) P‘:(ﬂ—l)[P](Crn’Tn+l)
P‘:(n—l)[P] o Difffn+]+'fn

where the first two arrows are monomorphisms and the last is the “gluing” morphism with respect to the
indices (T,, To+1). This composition is zero. In fact, if Q € Ob(D) and A € [P}, H)[P]](Q), then the

image A of A via this composition, is defined by:
(A(p))(@) .. (an-1) = ((A())(aD)... (an-1))(D),
and is zero because (A(p))(a1) ... (ar—1) € D,,,,(Q), for eachpeP,ay,...,ap1€A. O
Now we show that if 7 € N is regular, then, for any object P in D, Hol[P] is acyclic. In order to

do this, we will exhibit (functorially in P) a trivializing homotopy.
Define:

pg(P) :P;(_l)[P] =0— P;(o)[P] = Hom(P, -),

which are morphisms in [D, DJ; then define, by induction on n, Cran+) (P) = leuany(P) — ey (P),
where

ety (P) Pl P12 Pl [P1 o Dift§" < P2, [P]o Diff )

Tnt1’

()

iff +
Be(P): Py [P] > Py [P1o Diff () 2008 o 1p] 0 Diff P s Py [P] o Diff (1)

With this definition, @;u4+1)(P) : Py, [P1— Py, [P] o Diff &31’ but it is easy to resolve the inductive
definition in the following one:

[0+ (PY QA () (@) ... (@n) = a, A(P) (@) .. - (@n-1)

1 n—1

+ 31 AP) @) .- @dis) - - (@)

k=1

| + (=1)"A(@p)(@) ... (an) (5.10)

(QeO0b(D),peP,ay,...,.apcAand A€ ’P;(n)[P](Q)). This shows that actually
‘pr(n+1)(P):P;(n)[P] v P;(n+1)[P]~

|
|
|
F 1 6 We write shortly 8. (k) instead of 8 )[P], for any k > 0.
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Therefore, we get a family {¢ () (P) :P;(n_l)[P] = Py [Plins0 of morphisms in [D, D]. Of course,
formula (5.10) can equally be taken as the definition of the family {¢:()(P)},>0 but the inductive
definition can be “dualized”, to representative objects, to give the following (keeping the notations of
Proposition 5.4):

¢?(P):Hol'O[P]= P — Hol'“V[P] =0,

o V(P):Hol'V(P) = J*(P) - Hol'©[P] = P (natural projection),

gDr(n-H)(P) :Holr(n—l—l) [P]— Holr(n)[P],
where ¢+ (P) is the only D-morphism corresponding to the DO of order < 7,41

Ar(ny = idyopempp) — 8y (P) © @™ (P) : HoI*™[P] — Hol" ™[ P].
As before, but dually,’ this definition gives apparently a D-morphism:

¢ D (P) : J+1 (Hol'™[P]) — Hol"™[P]

(t being regular) but formula (5.10) shows that actually ker(¢*®+(P)) 2 Hol® =D =#+=+U[ P], 5o that,
by formula (5.8), $*®*+V(P) induces, by passing to the quotient, the morphism ¢*"*+"(P) we wanted.
Now we have a family of D-morphisms {¢*® (P) : Hol'™[P] — Hol’(”—l)[P]}@O dual to {@; () (P):

PPl = Py [Pllnxo.

Proposition 5.5. For each object P in D and for each regular T € NT, (™™ (P)}n>0 is a trivializing
homotopy for Hol" (P). Furthermore, {9 ™ (P)},>0 is natural in P.

Proof. We must show that the sum L + R of the two compositions:

Pry(PYDIffF) | S = :
) B0 % per L, [P1o Diff ) <> Py, [P] o Diff &

Tntl’

L: P}, [P1<> Py, yy[Plo Diff ¢*

. LN 3 :
R:PrmlP] — PrwsnlPl1= PrylPlo Diff (V)

Tn+1

equals idp;(n)[ p) (which is then homotopic to the zero map) or, equivalently, that the diagram:

FlolP] e Pr(PoBiE(H)
id U
P* [P]oDiff " 5.11
ith) 0 (5.11)

is commutative. For Q € Ob(D) and A € P;,,[ P1(Q), we have by (5.10):
L(A)(p)(a1)---(an)

n—2
= [a;f_lA(p)(al) (@) + Y (D" AP @) . (@as11) - (@)

s=1

+ (=1 'a@p)@)... (an—l):| @)

7 Subfunctors of strictly representable functors correspond to quotient objects of the representatives.
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n—1
== (1" AP)@) . .- @s8541) .. @) + +H(=D)"" A(@p)@) ... (@)
s==1
while
n—1

R(A)(p)(@1) ... (an) = anA(p)(a1) ... (an-1) + Z(—l)"_kA(P)(al) o (k1) - - (@n)

k=1
+(=1)"A(a1p)(@2) - - - (@)
so that (L + R)(A)(p)(ai)...(a,) = a,A(p)(a1) .. .(an—1), ie., (L + R)(A) coincides with the image
of A via the inclusion

Prw[PI(Q) = Py, [P1 o Diff(P(Q) < Py, [P1oDiffS) (). O

We now use acyclicity of the Holl—complex, 1=(1,...,1,1,...,1,...) € N, to prove the “kth step”,
i.e., formula (5.5). Let 0 = (01, ...,0r + 1) eN’_‘H (o, D=(61,....0e+1,1,1,..., 1, ... ) eNT and

K(k)

(0,1) = ker(dR(avl) i dR(Gl,...,Ok,l,l,...,l,...))'

For each (u)s = (1, ..., s) ENS, 1 <7 <5, 7,5 € Ny, we put:

(PRt hC TS S 3 (7T r—1,..., e
K(M)_v e ker(A(N-l Hroesbhs) _y o A Bt W )).

To prove the “kth step” it is enough to show acyclicity of K%’g - We claim that there exists a resolution

of KEQI) of the form:

171 - (k) Yi[—k+] (k)
-+ — Hol [K(Uly---,0h+l+1)][_k s HOII[K(cn ..... U'k+l)][_k S ST
Vo[- (k+2)] Yy [—k+1]
P H kY k-1 HP[KE L]k 5 Ky =0 (5.12)

where if r € N, (-)[r] denotes, as usual, the r-shift both for complexes and morphisms of complexes.
We postpone in Appendix A the definition of the maps of complexes

g 1 (k) 1 (k)
¥ : Hol [K(al,.“,ok+1+1)] — Hol [K(c71 ..... ak—H)][l]’ leNy,

3 1 (k) (k)
p :Hol [K(U1 ,,,,, . +1>][—k]—> K1)

and the proof that (5.12) is actually a resolution.
Assuming the existence of resolution (5.12), the acyclicity of KEQI) is then an immediate consequence

of acyclicity of Hol'-complexes together with the following elementary fact

Lemma 5.6. Let C', P;, i > 0, be cochain complexes in A — Mod and

coe>»P.>P == P>C -0

be a resolution of C'. Suppose that Vi > 1, Pik = (0) Vk < 0 (so that C* = (0) Vk < 0 t0o). If each P; is
acyclic then so is C'. ‘
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Proof. It follows from the hypotheses that C" is isomorphic in the derived category D*(A — Mod) to
the total complex associated to the double complex induced by

i Prao P e oo P
which is acyclic. O
Corollary 5.7. Let D € A — Mod be a differentially closed smooth subcategory. If we define the stable

infinite de Rham complex to be

dR, = l(il_nk>ode
(wherek = (k,...,k,...,k,...)) then the canonical morphism dRitO — dRy is a quasi-isomorphism.

Proof. We use the following facts:
(i) the index category of the inverse system which defines dR is countable;
(ii) the canonical D-morphisms dRy — dRy, k' > k, in the inverse system are epimorphisms.
If we denote by l(an,IC the first right derived functor of l(iink, (1) and (ii) imply, via standard spectral

. sequence’s arguments (e.g., [11, Corollary 1.1, p. 535]), that there is a short exact sequence
0 — limy_o[H""'(dRk)] — H" (dRS) — limy..o[ H" (dRy)] — 0.

| By Theorem 5.1, the term on the right is isomorphic to HJ,, so we are left to prove that
| limo[H""' (dRy)] = (0). But lim}_, is right exact and

H' '@R)=H 'S HI = H', Vn>1,

b by Theorem 5.1, therefore it will be enough to prove the vanishing of lim;_, for the constant inverse
| system

n—1 id n—1 id n—1
--~—>H‘{R = H;. > Hjp —---

But this is an easy consequence of the following description (due to Eilenberg) of lim}_, for constant
| systems.

If we define
. n—1 n=1, 3
Do: [ Hiz' - T B2 s odien, 1 lopir—at i3
keN, KeN,

ithen coker(Dy) = lim,;o[H;EI]. Let (wi)i>0 € erN+ H;;l and define (@)~ as @y = Z;‘;ll wy; then

Dy((@1)i>0) = (@41 — B0 = (@)eso-

i [herefore Dy is surjective and we conclude. [

;Corollary 5.8. Let D C A — Mod be a differentially closed smooth subcategory such that Yo € NS

B, € N, such that A°©) = (0) for any r > n,. Then the canonical morphism (Definition 4.5) dRo, —>
Rg is a quasi-isomorphism Yo € N
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Proof. Under our hypotheses

N.=| |{keN? |k ()= (k,....k) €N}, Vn e Ny}
k€N+

is cofinal in the index category of the system {dR,}; hence dRy =~ lim;.odRk and the thesis follows
from Corollary 5.7. O
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Appendix A

This appendix is devoted to defining the maps in the sequence (5.12) and to showing that (5.12) is
exact. There are two kinds of maps of complexes to be defined:

2N 4 e $ R (k) (k)
P=(P : Hol [K(al ..... ok+1)]—’K(oI ..... Jk+1,1,...,1)n)n20’

it g 5 1[ g (k) 1[ - (k)
i = (¥ )n>0.Hol [K(m ..... ak+l+l)] — Hol [K(cr1 ..... ak+z)][1]'
Let us first define p. We will define a functorial morphism

(k)
o1l l)n_>P;n_k[K(Gl ..... 0k+1)]

and show that the sequence

.....

: 0 ®)
0 Dioy,.eooitsadln > Doyt i1l = Phoi[Kior.oontn)

is exact so that the dual representative of @ will pass to the quotient defining our surjective p.
Define @ to be the following composition:

~ e sep+
D(01,~~~vf’k+1y1 ----- Dp — D(al ok+1,1)k+1 (Dln—k~1 = lefln_k_l)

.....

SHow (AT WL D cDilly

11

cepe £ T +1) ser+
—)lefl(A Lize O 7D1n—k—1CD1ff1n—k—-1)

. (01,--,0%+1) ,Pl."“k[j] ° (k)
P A el el

.....

where

)
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Then, @ o © coincides with the following composition:

~ D e
D(Ul,...,ﬂk,l ----- Dn — D(ol Ok Di+1 (Dln—k—l - Diff )

----- 1n—k—l
d(o1.....0%,
:Hom.A (A(O’1 ,,,,, Uk,l)’ Dln_k_l c Diffi:_k—l) Od(gy )
= DHf{Afr - D DIty - )
P1,_ 7] Byl
s B n— 0T o +1 n—k ° (k) ¥
e Pl.n—k [A(Ul Gk)] Pln—k [A(Ul - )] Pln—k [K(tﬁ ----- Uk+1)]’

but 7 o j =0 hence im(®P) C ker(®). We prove the reverse inclusion.
Let P be an object in D and

e Homy (AT WD, . (PICDilfff . (P))=DBg, anind)

be such that @ (h) =h ody,, .. 0 +1,1) © J = 0; we claim that & € im(®). Now

0> KE)_pi > 4070 5 om0

But h € im(®) iff h o j =0 so it is enough to show that im(d,,... o+1,1)| g
(o1

K((;) ..... ort1,1) OVer A (since both 4 and j’ are A-homomorphisms). We know that im(ji: Q — J'(Q))

generates J'(Q) over A for any object Q in D (Section 2). Moreover, the 3x3 lemma gives us an exact?
commutative diagram

) generates
+)

0 0 0

0 3 K(k) 3 JI(K(k)

(©1,-.-,0k+2) (014 0

(01,..,0k+1,1)

00— A©1,.00k+2) __._>J1 (A(Ul ,,,,, Uk+l)) —— A©1nok 1) —- ()

00— A©L-0k+) —— JL(A @1 Uk))—>A(01,.~,Uk,1)—>O

0 0 0
(where we used the fact that the functor J*(-) is exact if D is smooth: this follows from Lemma 3.4 since
J¢ is projective); but di, . 5 11.1) IK((lo So t o ji (by definition of d), hence im(d,. ..o, +1,1) |K<(k) +1))
O oo O seeny /3

(k)

generates K« ., 1 over A and we have finished.

8 Smoothness of D enters here.
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Now let’s turn to the definition of

= (v :Hol [K((g,...,ak+l+1)] — Hol""*! [K((Z,? ..... 0k+l)])n20'
First of all
%0 =0: (Holl [K(k) Uk+l+1)])0 =(0)— (Hol1 [K((Q ,,,,, ak-}—l)])l =J! (K((g

@1t R R A TR L O ia O Y T (O (Tk-l-l)) t

Forn>0
7 ovrralif e ®) . 1, (k)
Wl :Hol [K(al ..... ak+l+1)] Hol ™! [K(Ul ~~~~~ Uk"‘l)]

will be defined as the dual representative of a functorial morphism

I.pe (k) ° (k)
wn d Pl,,+1 [K(o'l ..... ak+l)] =z Pln [K(al ,,,,, crk+l+1)]‘

From the exact sequence

o ’
(resp.0—> K((g ..... ak+l—|—l)L> A(Ul ----- ox+I+1) _1; A(crl,...,ak-H)_> 0)

of functors D — D
. (01,.em0x+H-1)7 _& o F (0 +D)1 " . k)
05 Pl [A O1,ee Ok ] oy ’p1n+1 [A(m Ok ] el Pln+1 [K(al zrk+l)] —0

=S ) oG Saeuie CAMFERIE SRLgR |\ -~ 1 GRS TN R S

.....

with ¢ = Pl.n+1 [p]l and n = ’13’1"1+1 [i] (resp. &' = Pl‘n+1[p’] andn’ = an+1 [i’]). To define xp,’, it will be then
enough to define

— Diff} (Hol®[A€t-**)], Dy, | C Diffy )
~ fp(-l)[Jl (A(ol,...,ak+l))](D1n_l c Diffit,_l)




s
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Now we show that ¥/} o & = 0.
Note that using the identifications

and
o (71 (k) . ~ D® (k)
Hom, (J (K(Ul,...,ak+l+1))’ Dy, C lefi:—l) =P, [K(al ..... ak+l+1)])
B (resp. n’ ) is given by

(resp. by

Homz (Jl (A(Ul’.."0k+l+1))’ Dln—l C lef—l:_l) 0&;) Homz (Jl (K((:f ..... Uk+l+1))’ Dln—l L lefi‘:,_l))

With a similar analysis we see that ¢, viewed as a morphism

06N gy oI (A )
Jl (JI(A(UI ..... ak+l)))
(LD ( A©@1,e0s0%+D)) A
=, HOI (A 1 k ) S JZ(A(UI ..... C'k‘H))
is the quotient map of J' (J' (p)) : J (J' (A€1-at1=Dy) 5 JL(JL(ACL 44D,

Therefore 1/7,’1 o g, viewed as a morphism
. \ e . o (1l (k) s
Hom}, (Hol"V(A©t—oH=D) D, c Diff] ) — Hom}(J'(K¢,,. . ot141)s Play C Diff{ )

is given by

JI(JI(A(ol ,,,,, O’k-‘rl)))
g JZ(A(O'lx---:Uk‘H))

is the natural projection. (Recall from Section 4 that §(; 1)(A“t*D) is given by the composition
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But [J'(J'(p))] o & coincides with

Jl (Jl (A(Ul,..,,ok+l)))

JI(JI(A(01 ..... 0k+l)))_M>J1(J1(A((71 ..... Uk‘H—l))) §(o. 0 H-1) JZ(A(al ,,,,, ak+l))

.....

0 0 0

¥ (k) Sl (k)
0 K(ol ..... or+l+1) J (K(al ..... O’k+l)) (o1,...,0+1,1) 0

0—— A1 Uk+l+1)__S_>J1(A(Ul ,,,,, Uk'H)).—>A(01,...,Gk+l,l)____>0

00— A©@1moH) .____>J1 (A(Gl,--~,0k+l—1)) —> A0t =L ——()

0 0 0
which finally shows that J!'(p) o s 0’ = 0 and hence ¥} o & =0.
Therefore
| k) o [ (®)
¥ Pl [K Gty ak+l)] = Py, [K(crl ..... ak+z+1)]

is well defined as well as its dual representative

Y :Hol" [k

1, (k)
(o1 0k+l+1)] — Hol +1[K

(01,»-y0'k+1)]

as we wanted.
Just as in the case of p, an easy application of the 3x3 lemma proves that im(w,lljrll) = ker(x//,’,).
It is immediate to verify that p and y; so defined are maps of complexes; therefore (5.12) is a resolution

(k) :
of K(a1 ,,,,, opt1,1) 38 desired.
References

[1] N. Bourbaki, Eléments de Mathématique: Algebre Ch. III, Hermann, Paris, 1971, pp. 133-138.

[2] N. Bourbaki, Eléments de Mathématique: Algebre Ch. X (Algeébre Homologique), Masson, Paris, 1980, pp. 43—46.

[3] R.L. Bryant, S.S. Chern, R.B. Gardner, H.L. Goldschmidt, P.A. Griffiths, Exterior Differential Systems, in: MSRI
Publications, Vol. 18, Springer-Verlag, New York, 1991.

[4] P.A.M. Dirac, Lectures on Quantum Mechanics, in: Belfer Graduate School of Science Monograph Series, Vol. 2, 1964.

[5] D-M. Gitman, LV. Tyutin, The structure of gauge theories in the Lagrangian and Hamiltonian formalisms, in: Quantum
Field Theory and Quantum Statistics, in: Essays Hon. 60th Birthday E.S. Fradkin, Vol. 1, 1987, pp. 143-164.




G. Vezzosi, A.M. Vinogradov / Differential Geometry and its Applications 19 (2003) 29-59 59

[6] H. Goldschmidt, Prolongements d’equations differentielles lineaires I, IT, Ann. Sci. Ecole Normale Sup. 1 (1968) 417444,
617-625;
H. Goldschmidt, Prolongements d’equations differentielles lineaires III, Ann. Sci. Ecole Normale Sup. 7 (1974) 5-27.
[7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin, 1977.
[8] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Interscience, 1969.
[9] LS. Krasil’shchik, Calculus over commutative algebras: a concise user guide, Acta Appl. Math. 49 (3) (1997) 235-248.
[10] LS. Krasil’shchik, V.V. Lychagin, A.M. Vinogradov, Geometry of Jet Spaces and Nonlinear Partial Differential Equations,
Gordon and Breach, 1986.
[11] S. Lubkin, Cohomology of Completions, North-Holland, Amsterdam, 1980.
[12] D.C. Spencer, Overdetermined systems of linear partial differential equations, Bull. AMS 75 (1969) 172-239.
[13] A. Verbovetsky, On the cohomology of the compatibility complex, Uspekhi Mat. Nauk 53 (1) (1998) 213-214 (Russian);
English translation: Russian Math. Surveys 53 (1) (1998) 225-226.
[14] G. Vezzosi, A.M. Vinogradov, Infinitesimal Stokes’ formula for higher-order de Rham complexes, Acta Appl. Math. 49 (3)
(1997) 311-329.
[15] G. Vezzosi, A.M. Vinogradov, On higher order de Rham complexes, Preprints di Matematica n.19, Scuola Normale
Superiore, Pisa, June 1998.
[16] A.M. Vinogradov, The logic algebra for the theory of linear differential operators, Sov. Math. Dokl. 13 (1972) 1058-1062.
[17] A.M. Vinogradov, Some homological systems associated with the differential calculus in commutative algebras, Russian
Math. Surveys 34 (6) (1979) 250-255.
[18] A.M. Vinogradov, Introduction to secondary calculus, Cont. Math. 219 (1999) 241-272.
[19] M.M. Vinogradov, On Spencer and de Rham algebraic cohomology, Sov. Math. Dokl. 19 (1978).




