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Outline

m based on joint works with D.Calaque, B.Toén, G.Vezzosi,
M.Vaquié

m shifted Poisson geometry

m non-degenerate Poisson <= symplectic
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Shifted Poisson structures

Shifted Poisson structures

Definition:

(a) An n-shifted Poisson structure on X is a morphism of
graded dg Lie algebras 7 : C[—1](2) — Pol(X,n+ 1)[n + 1].

(b) 7 is non-degenerate if the associated element in cohomology
o0 induces a quasi-isomorphism 77'6 :LxSTx[—n].

—

7 : C(2) — Pol(X, n+1)[n+ 2] gives rise to an
element mp € H™"(X, o (Tx)), where

Sym, Tx, if n is odd
/\éXTX, if nis even.

o (Tx) := {
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Shifted Poisson structures

Shifted Poisson structures

Definition:

(a) An n-shifted Poisson structure on X is a morphism of
graded dg Lie algebras 7 : C[—1](2) — Pol(X,n+ 1)[n + 1].

(b) 7 is non-degenerate if the associated element in cohomology
mo induces a quasi-isomorphism 77'6 :LxSTx[—n].

Notation:
m Poiss(X, n) = Mapggies (C[—1](2), Pol(X, n + 1)[n + 1])
will denote the space of n-shifted Poisson structures.

m Poiss(X, n)"! < Poiss(X, n) will denote the space of
non-degenerate n-shifted Poisson structures
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Shifted Poisson structures

The equivalence theorem

To quantize all the interesting shifted symplectic structures on
moduli spaces we need two comparison results. The first allows us
to pass from symplectic to Poisson structures:

Theorem: [CPTVV] Let X be a derived Artin stack locally of
finite presentation. Then there exists a natural map of spaces

o : Poiss(X, n)"d — Sympl(X, n)

which is a weak homotopy equivalence.

Remark: A version of this theorem for Deligne-Mumford derived
stacks was recently proven by J. Pridham by a different method.
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Ideas and constructions

From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence

Poiss(X, n)" = Sympl(X, n).
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Ideas and constructions

From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence

Poiss(X, n)" = Sympl(X, n).

m To simplify the exposition will assume that X is a derived
scheme which is locally of finite presentation.

m Such a derived scheme X can be represented by a pair
(toX,Ox)
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Ideas and constructions

From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence
Poiss(X, n)" = Sympl(X, n).

m To simplify the exposition will assume that X is a derived
scheme which is locally of finite presentation.

m Such a derived scheme X can be represented by a pair

(toX, Ox)
algebraic -
sheaf o
space
i cdga~’
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Ideas and constructions

P,.1-structures

Definition: A [P, q-structure on a derived scheme X is a pair
(0%, a), where

m O) is a sheaf of strict P, 1-algebras on toX;
<0

m o : Oy — Ox is a quasi-isomorphism of sheaves of cdga

Define a map of spaces

Ppi1(X)™ —— Sympl(X, n)
M
A%(X, n)
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Ideas and constructions

Construction at the level of points (i)

Let (O, @) € Ppy1(X), and let L) and T’ be the tangent and

cotangent complexes of 0.

We have a sheaf of graded dgliec algebras
Pol'(X,n)[n+ 1] = ((Sym T [—n — 1]) [n+ 1], [e,e], d)

on the Zariski site of X. By Melani's theorem the strict
P,11-structure on X is encoded in a dgLieg—map

7 : C[-1](2) — Pol'(X, n)[n + 1].

7 is an actual map of dglief, not just a map in the
homotopy category.

University of Pennsylvania
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Ideas and constructions

Construction at the level of points (ii)

Contraction with 7 gives a map L/ [-1] — T [—1 — n]. Passing
to Sym we get a map

Sym(ILy [~1])[n + 1]~ Sym (T [—1 — n])[n + 1],

which is an equivalence of mixed graded complexes.
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Ideas and constructions

Construction at the level of points (ii)

Contraction with 7 gives a map L/ [-1] — T [—1 — n]. Passing
to Sym we get a map

Sym(ILy [~1])[n + 1]~ Sym (T [—1 — n])[n + 1],

which is an equivalence of mixed graded complexes.

e The mixed structure on the left is dpr while the mixed
structure on the right is [, e].
e The compatibility of (1) with the mixed structures follows
from the strictness of .
e The fact that (f) is an equivalence follows from the
non-degeneracy of 7.
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Ideas and constructions

Construction at the level of points (ii)
Contraction with 7 gives a map L/ [-1] — T [—1 — n]. Passing

to Sym we get a map

Sym(ILy [~1])[n + 1]~ Sym (T [—1 — n])[n + 1],

which is an equivalence of mixed graded complexes.

e The mixed structure on the left is dpr while the mixed
structure on the right is [, e].
e The compatibility of (1) with the mixed structures follows

from the strictness of .
e The fact%hat is an equivalence follows from the
non-degeneracy of 7.

| fails for stacks l
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Ideas and constructions

Construction at the level of points (iii)
Inverting (f) we get a map of mixed graded complexes
C[-1](2) —— Sym(T[~1 — n])[n + 1]

(htor lm_l
Sym(Ly[—1])[n + 1]

which can be viewed as a map

C(2) — Sym(Lx[-1])[n + 2]
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Ideas and constructions

Construction at the level of points (iv)

By the Dold-Kan correspondence we have
A% (X, n) = |(SymgZ L [-1]) [n +2]|,

which in turn can be identified with A?D’CI(X, n) via a.

Conclusion: «((1)~1 o w[1]) is a closed non-degenerate n-shifted
2-form on X. This gives a map

o Pry1(X)" — Sympl(X, n)

at the level of points.

Next: e Extend o to a map of spaces (=ssets).
e Show that ¢ is functorial for étale maps in X'
e Prove that ¢ is an equivalence.
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Ideas and constructions

Map of spaces (i)

Slogan: The construction at the level of points already gives a
map of spaces.
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Ideas and constructions

Map of spaces (i)
Digression: Given a simplicial set M, can talk of locally constant
sheaves (of anything) on M:

m Represent M as a nerve of a 1-category C;
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Ideas and constructions

Map of spaces (i)
Digression: Given a simplicial set M, can talk of locally constant
sheaves (of anything) on M:
m Represent M as a nerve of a 1-category C;
m Suppose A is a category with weak equivalences (e.g. a model
category). Define a locally constant sheaf on M with

values objects in A as a functor F : C — A such that
F(Mor(C)) = Weakeq(A).

University of Pennsylvania
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Ideas and constructions

Map of spaces (i)
Digression: Given a simplicial set M, can talk of locally constant
sheaves (of anything) on M:
m Represent M as a nerve of a 1-category C;
m Suppose A is a category with weak equivalences (e.g. a model
category). Define a locally constant sheaf on M with

values objects in A as a functor F : C — A such that
F(Mor(C)) = Weakeq(A).

Note: ¢ We can use either C or C°P since
Nerve(C) =~ Nerve(C°P).
e For any simplicial set M we can talk about locally constant

sheaves on M of cdga<’, cdgay,’, € — cdgay,’, P, 1-algebras, etc.

University of Pennsylvania
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Ideas and constructions

Map of spaces (ii)

Claim: [CPTVV| There is a universal sheaf 4 — P, 1(X)
of n-shifted Poisson cdgaéo.

m P, 1(X) = Nerve (category of pairs (O, ).

m The locally constant sheaf A is given by the functor

category category of
: sheaves of n-
: of pairs |— 4 — O\
A (] pa) shifted Poisson |’ (Ox; a) Ox-
X

cdga<® on X
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Ideas and constructions

Map of spaces (iii)
Consider now the category

category category 1\ P
C = (of pairs)x of étale

O, opens in
O0) )\
The sheaf A gives rise to a functor

C IEDn+1((c)

(( 3(’&)7 U) — RF(X,O&)

which sends all morphisms in C to étale maps of n-shifted Poisson
cdga<’.
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Ideas and constructions

Map of spaces (iv)

The pointwise construction applied to a diagram of non-degenerate
n-shifted Poisson cdga<® with étale maps yields a diagram of
n-shifted symplectic forms. This gives the desired map of spaces

o : PhYy(X) — Sympl(X, n)

The comparison theorem now follows from the following

Theorem: [CPTVV] ¢ induces an equivalence

P75 1(—) — Sympl(—, n)

of stacks on (derSp)g:.

Tony Pantev
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Ideas and constructions

The equivalence theorem (i)

n = 0: a Py is an ordinary Poisson structure, and X is underived
and smooth. In this case the map is simply the usual inversion of
Poisson structures.

n < 0: To show that the map of stacks P74, (—) — Sympl(—, n) is
an equivalence, we must show that it is fully faithful and
essentially surjective.
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Ideas and constructions

The equivalence theorem (ii)

Essential surjectivity: Can be checked locally since these are
stacks.

Use the Darboux lemma of Brav-Bussi-Joyce: up to a
quasi-isomorphism a pair (A € cdga<’,w € Sympl(A, n)) is
equivalent to a pair (74,&) where @ is strictly closed and strictly
non-degenerate. In particular @1 is a strict n-shifted Poisson
structure on A.

University of Pennsylvania
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Ideas and constructions

The equivalence theorem (ii)

Full faithfulness: have to compute o on mapping spaces.

Have to show: for any two non-degenerate P, 1 structures on X,
o will identify the stack of paths between these structures (which
is a stack over X) with the stack of paths between the
corresponding n-shifted symplectic forms.
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Ideas and constructions

The case of loops (i)

Fix (O%,«) with 7 - a strict n + 1 structure on O%. Consider the
completed (product) total complexes of forms and polyvector fields
on O%. Contraction with 7 gives a natural map

(Sym™ (L [~1D[n + 1], d + dpr)

lﬂb

(Symn(’]I‘/X[—l —n])[n+1],d + [, e])

which is a filtered quasi-isomorphism of complexes which respects
the stupid filtrations.

Tony Pantev University of Pennsylvania

Shifted quantization



Ideas and constructions

The case of loops (ii)

In particular we have a quasi-iso

SymM>2(Lk [~ 1])[n + 1]—==Sym™>2(T [~1 — n])[n + 1]

But

stack of loops in DoldK
(Pn+1(X) based) <= (Symn’>2(’]l")<[—1 —n)[n+1],d+ [71,0]>

at
and

stack of loops
in Sympl(X, n) | DL (Sym”’>2(L’><[—1])[" +1],d + dDR) -
based at o ()
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Ideas and constructions

The case of loops (iii)

In particular the map &, that o induces on the loop stacks and 7
are maps between the same complexes but going in opposite
directions:

/\
Sym™=2(LA [—1])[n + 1] Sym™=2(T4 [~1 — n])[n + 1]
\_/

b

By the construction of o the composition 7’ 0 5, = id and thus o

is fully faithful on loops.
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Ideas and constructions

The case of paths (i)

We must show that every homotopy class of paths between o (1)
and o () in Sympl(X, n) can be lifted to a path between 7; and
T in P,H_l(X).

To simplify the discussion suppose m; and 7, are two n-shifted
Poisson structures that give rise to the same shifted symplectic
structure w = o(m) = o(m2).
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Ideas and constructions

The case of paths (ii)

As we saw, G, gives a quasi-iso of complexes which is in fact a
quasi-iso of dg Lie algebras

(Sym™=2(T4 [~1 — n])[n + 1],d + [m1, e], [e, ¢])

(Sym™=2(Ly [—1])[n + 1], d + dpr,0)

This follows, since o, is the derivative at 7 of the map of
functors o, and a map of functors induces a dg Lie map on tangent
complexes.
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Ideas and constructions

The case of paths (iii)

o(m2) is a cocycle in the de Rham complex so 5 (o(m2)) is a
cocycle in the complex (Sym™>2(T4[~1 — n])[n + 1], d + [r1, e]).

If we replace X by a formal neighborhood of a point in X and use
the fact that the de Rham cohomology of a formal neighborhood is
contractible, we can find a vector field £ in ']I“;< so that

dé + [m1,€] = 65, (o(m2)).

Since o(mp) = o(m1) = w we get that Lieg(w) = 0 is locally
Hamiltonian.

Therefore on a formal neighborhood of a point we have & = 7°(df)
for some function f. Thus the formal automorphism given by &
fixes 71 which implies w1 = 7> and gives the desired path.
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Ideas and constructions

Formal geometry (i)

Question: Why working formally at a point is relevant to our
original question?

Let X be a derived scheme; the natural map X — Xpg realizes X
as a family of formal derived schemes over Xpg.

The previous argument actually help us prove the following formal
equivalence theorem:

Theorem: [CPTVV| Let X be a derived DM stack locally of finite
presentation. Then there exists a natural equivalence of stacks:

Poiss(X/Xpr, )" — Sympl(X/Xpr, n).
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Ideas and constructions

Formal geometry (ii)

Key remark: The moduli stacks of Poisson and symplectic
structures on X /C are isomorphic to the moduli stacks of Poisson
and symplectic structures on X/Xprg.
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Ideas and constructions

Formal geometry (ii)

Key remark: The moduli stacks of Poisson and symplectic
structures on X /C are isomorphic to the moduli stacks of Poisson
and symplectic structures on X/Xpg. Follows form the fact that
the map Xpr — SpecC is étale.

University of Pennsylvania
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Ideas and constructions

Formal geometry (ii)

Key remark: The moduli stacks of Poisson and symplectic
structures on X /C are isomorphic to the moduli stacks of Poisson
and symplectic structures on X/Xpg. Follows form the fact that
the map Xpr — SpecC is étale.

The key remark reduces the global equivalence theorem to the
formal equivalence theorem. The latter identifies two stacks over
Xpr so we can prove it locally over Xpg.

University of Pennsylvania
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Ideas and constructions

Formal geometry (iii)

Need to show that for any A € cdga<® and any formal stack
Z — S = RSpec(A) such that Zy = Seq We have an
isomorphism

Poiss(Z/S, n)"=Sympl(Z/S, n)

of stacks over S.
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Ideas and constructions

Formal geometry (iii)

Need to show that for any A € cdga<® and any formal stack
Z — S = RSpec(A) such that Zy = Seq We have an
isomorphism

Poiss(Z/S, n)"=Sympl(Z/S, n)

of stacks over S.

Note: This is easier since Z — S is given by algebra data.
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Ideas and constructions

Formal geometry (iii)

Need to show that for any A € cdga<® and any formal stack
Z — S = RSpec(A) such that Zy = Seq We have an

isomorphism
Poiss(Z/S, n)"=Sympl(Z/S, n)

of stacks over S.

Note: This is easier since Z — S is given by algebra data.
More precisely: the map Z — S gives rise to a sheaf Dz of mixed
graded cdga on S (= a mixed graded cdga linear over A), where

_ [the relative de Rham complex of S — Z
2= \ with a mixed structure given by dpg
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Ideas and constructions

Formal geometry (iv)

Remark:

m Expect that Z — D7 gives an isomorphism of the stack
parametrizing Z — S with Z € dforStc, Zieq = Sreq With the
stack of A-linear mixed graded cdga.

m We prove that there is a symmetric monoidal equivalence
Lperf(Z) and € — perf(DD).

m We prove that shifted forms, closed forms, and Poisson
structures on Z/S are the same as shifted forms, closed forms,
and Poisson structures on Dz/S.

Tony Pantev University of Pennsylvania

Shifted quantization



Ideas and constructions

Formal geometry (v)

Thus the formal comparison theorem reduces to showing that
Poiss(Dz/S, )" — Sympl(Dz/S, n)
is an equivalence.

Step 1: Prove this for a reduced A. In this case Z — S has a
section S = Z,eq — Z which gives an augmentation for the mixed
graded cdga Dz/A.
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Ideas and constructions

Formal geometry (vi)

The exact triangle for the relative cotangent complexes of the
maps S — Z — S gives an identification

Ls/z =Lgzs[1]s.

Thus
Dy = Symn(LZ/s)\s-

Since S is reduced we have that Z — S is of finite type and so
Lz/s is perfect.

Dualization converts the mixed structure on D7 into a dglie
structure on Tz/s, which is easily seen to be the usual bracket.
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Ideas and constructions

Formal geometry (vii)

Thus the problem reduces to comparing nd Poisson brackets and
forms on the dg Lie (Tz/s, [e,¢]).

For this:

m Use Costello-Gwilliam formal Darboux lemma to identify nd
forms with invariant pairings and nd Poisson structures with
invariant copairings on the dglie (Tz/s, [e, o]).

m Pass to the minimal model of the dglLie where the pairings
and copairings become strict and are manifestly the same.

Minimal models do not necessarily exist over A so we have
to localize and check automorphisms over the localizations.
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Ideas and constructions

Formal geometry (viii)

Step 2: If S is not reduced, then Z — S is locally of almost finite
presentation and so Lz,s will not be perfect. In this case we can
not dualize and use the dglie argument.

Instead: extend the formal equivalence statement to derived or
nilpotent thickenings by using deformation theory.

Strategy:

m Use Postnikov induction to decompose S,eq — S into a
sequence of square zero extensions;

m Analyze the map of stacks Poiss(—, n)"¢ — Sympl(—, n). By
Step 1 this map is an iso over the reduction, so we only need
to show that the map is an iso on tangent complexes and that
both sides have obstruction theories (explicit calculation).
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Odds and ends
@00

P4 1-structures

P, 1-structures (i)

Defining P,,;1-structure is straightforward for derived
schemes or derived Deligne-Mumford stacks but is somewhat
subtle for derived Artin stacks.
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Odds and ends
@00

P4 1-structures

P, 1-structures (i)

Given A e cdgaéo, the space of P, 1-structures on A is the
mapping space

Pn+1(A) = MapngpC (]P)n-i-h EndEl (A)) .

The comparison between n-shifted Poisson structures and
P, 1-structures in the affine case is provided by Melani's theorem:

Theorem: [Melani| For any A € cdgaéo, there is a natural map
of spaces
w : Poiss(A, n) — P,11(A),

which is a weak equivalence if L4 is perfect.

Back I
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Odds and ends
(o] le}

P4 1-structures

P, 1-structures (ii)

m Melani's proof works in greater generality, and specifically in
the relative situation (i.e. for families of algebras), for graded,
or mixed graded families of algebras, etc.

m The statement is functorial: both Poiss(—, n) and Ppy1(—)
are stacks on the small étale site of derived schemes, and
Melani’s construction gives an equivalence of spaces

Poiss(X, n) = Pp11(X)

for any X which is a derived DM stack which is locally of
finite type.
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Odds and ends
ooe

P4 1-structures

P, 1-structures (iii)

This reasoning does not work for derived Artin stacks. Descent
problem: we can not pull back shifted Poisson structures or

P, 1-structures by smooth maps. So we need to properly
understand the definition of P,11(X) when X is a derived Artin
stack.

We use relative formal geometry (relative geometry of X over Xyg)
to define P,41(X) and to define the map

w: Poiss(X, n) — Pni1(X)

in complete generality.
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Odds and ends
L ]

Technicalities

Technical subtlety
Ox is locally f.p. but O% will not be locally f.p. as a cdga.
In fact, since (93( is chosen to be cofibrant as a P, 1-algebra, it will
not be locally f.p. as a cdga but will only be weakly locally f.p..

This only guarantees that T’ and L/ are weakly perfect, i.e. are
complexes of Ox-modules of possibly infinite rank (the
cohomology sheaves are of course of finite rank). In particular we
can not view a shifted Poisson structure as a map to

(Sym T [—1 — n])[n + 1] but rather as a map to shifted polylinear
map L x --- x Ly — O4.

We deal with this carefully in the paper. To simplify the
exposition, | will pretend here that this issue does not arise.
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Odds and ends
[ ]

Formal neighborhoods

Family of formal neighborhoods
Let X be a derived scheme, X — Xpg the natural map, and S an
usual underived affine scheme.
Suppose S — Xpg is a given morphism. By definition this is the
same as a morphism f : S,¢q — X. The choice of f gives us a

morphism
fxXi:85e—XxS,

where i : 5,4 — S is the natural closed immersion. Now using the
formal groupoid presentation of Xpgr we can compute the fiber of
X over § — Xpg to get

the formal completion of Seq
X — re
XXor 5 <inside X xS >
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