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Weak and strong quantization (i)

Fundamental statement:

Theorem: [Kontsevich,Yekutiely] Let pX , πq be a smooth Poisson
scheme/C. Then

There exists a formal deformation quantization of pX , πq as
a stack of algebroids. That is, there exists a stack of
algebroids X {Crr~ss with X {~ “ X and infinitesimal π.

The formal deformation quantizations of pX , πq are
classified by Poisson deformations of pX , πq over Crr~ss.
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Weak and strong quantization (ii)

Shifted Poisson structures arise when we study deformations of X
in which we allow only partial non-commutativity in the deformed
structure.
To understand this it is useful to view Kontsevich’s deformation
quantization as a two step process:

(weak quantization): Deform the symmetric monoidal dg
category pLqcohpX q,bq of sheaves on X to a Crr~ss-linear dg
category L.

(strong quantization): Deform the structure sheaf OX to a sheaf
AX of associative Crr~ss algebras.

Remark: If the strong quantization exists, then we can take
L “ AX ´ mod.
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Shifted weak and strong quantization (i)

Fix n P Z.

Conventions:

An n-shifted Poisson bracket on a cdga A is a graded Lie
bracket on A of degree p´nq which is a graded derivation of
the product structure.

Pn will denote the operad controlling n ´ 1-shifted
(unbounded) Poisson cdga.

En will denote the topological operad of little n-dimensional
disks.

Remark: With these conventions Pn is the homology of En for
n ě 2, and in particular the homology of an En algebra is naturally
a pn ´ 1q-shifted Poisson cdga.
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Shifted weak and strong quantization (ii)

Recall: Typically a family of En algebras (for n ě 2) over the
formal disk will specialize to a Pn-algebra at the closed point.
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Shifted weak and strong quantization (ii)

Recall: Typically a family of En algebras (for n ě 2) over the
formal disk will specialize to a Pn-algebra at the closed point.

Caution: One needs conditions on an En-algebra over Cpp~qq to
ensure a Pn-algebra specialization at ~ “ 0. For instance we may
require that the ~ “ 0 specialization is a cdgaď0. More generally:
the deformation space is graded and the deformations that have
pn ´ 1q-shifted Poisson limits are the ones of degree 2.
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Shifted weak and strong quantization (ii)

Recall: Typically a family of En algebras (for n ě 2) over the
formal disk will specialize to a Pn-algebra at the closed point.

Note: The operad En is naturally filtered, and the associated
graded is Pn. The Rees construction applied to this filtration then
gives an operad BDn Ñ A

1 which interpolates between En (= the
fiber of BDn over t ‰ 0) and Pn (= the fiber of BDn at t “ 0.

Using BDn we can now formulate the weak and strong shifted
quantization problem.
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Affine version of the quantization problem

pstrongqn Show that every Pn`1 algebra A{C lifts to a
BDn`1-algebra.

pweakqn Show that for every Pn`1 algebra A{C the category
A ´ mod deforms as a En-monoidal category.

Note: For n ě 1 this follows immediately from the formality of
En`1: choosing a formality isomorphism En`1 – Pn`1 trivializes
BDn over A1 so we can promote Pn`1-algebras to En`1.

In particular: the strong quantization problem has a solution.
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General shifted quantization
Problem: Let pX , ωq be an n-shifted symplectic derived stack.
Construct a canonical, formal 1-parameter quantization of pX , ωq,
where this means:

n ą 0: A deformation of OX over Crr~ss as a sheaf of
En`1 algebras.

n “ 0: A deformation of LperfpX q as a dg category over
Crr~ss.

n ă 0: (red shift trick) A deformation of OX over Crr~2nss
as a sheaf of E1´n-algebras, where |~2n| “ 2n.

Note: The notion of a formal deformation of a dg category/C is
still under development. A good proxy for such a deformation is a
Crus-linear structure with |u| “ 2 (Crus is the E2 Koszul dual of
Crr~ss).
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Red shift trick (i)

complgr
C

- the category Z-graded complexes of C-vector spaces.

b - the usual symmetric monoidal structure on complgr
C

(with no
grading signs in the symmetry of in the external grading and with
the usual grading signs in the symmetry for the homological
grading).

Consider Φ : complgr
C

Ñ complgr
C

given by

pΦpE qqpnq “ E pnqr2ns.

Note: This is a monoidal auto equivalence. In particular if O is
any operad in complgr

C
, then ΦpOq is also a well defined operad in

complgr
C
.
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Red shift trick (ii)

One checks that ΦpPnq “ Pn`2.

Consequences:

Formality of Pn implies formality of Pn˘2.

Φ gives an equivalence between the category of graded Pn

algebras and the category of graded Pn`2 algebras.
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Shifted polyvectors

X - derived stack/C, locally of finite presentation.
n P Z

Consider the global n ` 1-shifted polyvector fields on X :

PolpX , n ` 1q :“ RΓ pX ,SymTX r´1 ´ nsq

When equipped with the Schouten-Nijenhuis bracket this is graded
Poisson dg algebra which after a shift by n ` 1 becomes a graded
dgLie algebra. Thus

PolpX , n ` 1qrn ` 1s P dgLiegr
C
.
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Shifted Poisson structures

Definition:

(a) An n-shifted Poisson structure on X is a morphism of
graded dg Lie algebras π : Cr´1sp2q Ñ PolpX , n ` 1qrn ` 1s.

(b) π is non-degenerate if the associated element in cohomology
π0 induces a quasi-isomorphism π

5
0 : LXĂÑTX r´ns.

π : Cp2q Ñ PolpX , n` 1qrn ` 2s gives rise to an

element π0 P H
´npX ,Φ

p2q
n pTX qq, where

Φ
p2q
n pTX q :“

"
Sym2

OX
TX , if n is odd

^2
OX

TX , if n is even.
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Shifted Poisson structures

Definition:

(a) An n-shifted Poisson structure on X is a morphism of
graded dg Lie algebras π : Cr´1sp2q Ñ PolpX , n ` 1qrn ` 1s.

(b) π is non-degenerate if the associated element in cohomology
π0 induces a quasi-isomorphism π

5
0 : LXĂÑTX r´ns.

Notation:

PoisspX , nq “ MapdgLiegr
C

pCr´1sp2q,PolpX , n ` 1qrn ` 1sq
will denote the space of n-shifted Poisson structures.

PoisspX , nqnd Ă PoisspX , nq will denote the space of
non-degenerate n-shifted Poisson structures
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Equivalence theorems (i)

To quantize all the interesting shifted symplectic structures on
moduli spaces we need two comparison results. The first allows us
to pass from symplectic to Poisson structures:

Theorem: [CPTVV] Let X be a derived Artin stack locally of
finite presentation. Then there exists a natural map of spaces

σ : PoisspX , nqnd Ñ SymplpX , nq

which is a weak homotopy equivalence.

Remark: A version of this theorem for Deligne-Mumford derived
stacks was recently proven by J. Pridham by a different method.
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Equivalence theorems (ii)

Theorem: [Melani,CPTVV] Let X be a derived Artin stack. Then

there exists a natural map of spaces Details

µ : PoisspX , nq Ñ Pn`1pX q.

If X is locally of finite presentation and 1-affine, then µ is a weak
homotopy equivalence.
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Equivalence theorems (ii)

Theorem: [Melani,CPTVV] Let X be a derived Artin stack. Then

there exists a natural map of spaces Details

µ : PoisspX , nq Ñ Pn`1pX q.

If X is locally of finite presentation and 1-affine, then µ is a weak
homotopy equivalence.

Gaitsgory: X is 1-affine if the global section functor

ΓpX ,´q : QcohX´mod Ñ QcohpX q´mod

is an equivalence.
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Equivalence theorems (ii)

Theorem: [Melani,CPTVV] Let X be a derived Artin stack. Then

there exists a natural map of spaces Details

µ : PoisspX , nq Ñ Pn`1pX q.

If X is locally of finite presentation and 1-affine, then µ is a weak
homotopy equivalence.

Remark ‚ The two comparison results together convert any
n-shifted symplectic structure ω into a Pn`1 structure µ ˝ σ

´1pωq
on X .

‚ This Pn`1-structure combined with the formality of En`1

then give rise to a shifted quantization of X .
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From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence

PoisspX , nqnd – SymplpX , nq.
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From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence

PoisspX , nqnd – SymplpX , nq.

Note:

To simplify the exposition will assume that X is a derived
scheme which is locally of finite presentation.

Such a derived scheme X can be represented by a pair
pt0X ,OX q
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From Poisson to symplectic

Goal: Explain the geometry leading to the equivalence

PoisspX , nqnd – SymplpX , nq.

Note:

To simplify the exposition will assume that X is a derived
scheme which is locally of finite presentation.

Such a derived scheme X can be represented by a pair
pt0X ,OX q

algebraic
space sheaf of

cdgaď0
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Pn`1-structures

Definition: A Pn`1-structure on a derived scheme X is a pair
pO1

X
, αq, where

O1
X

is a sheaf of strict Pn`1-algebras on t0X ;

α : O1
X

Ñ OX is a quasi-isomorphism of sheaves of cdgaď0.

Goal: Define a map of spaces

Pn`1pX qnd // SymplpX , nq

X

A
2,clpX , nq
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Pn`1-structures

Pn`1-structures (i)

Note: Defining Pn`1-structure is straightforward for derived
schemes or derived Deligne-Mumford stacks but is somewhat
subtle for derived Artin stacks.
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Pn`1-structures

Pn`1-structures (i)
Given A P cdgaď0

C
, the space of Pn`1-structures on A is the

mapping space

Pn`1pAq “ MapdgOpC
pPn`1,EndE1

pAqq .

The comparison between n-shifted Poisson structures and
Pn`1-structures in the affine case is provided by Melani’s theorem:

Theorem: [Melani] For any A P cdgaď0
C

, there is a natural map
of spaces

µ : PoisspA, nq Ñ Pn`1pAq,

which is a weak equivalence if LA is perfect.

Back
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Pn`1-structures

Pn`1-structures (ii)

Note:

Melani’s proof works in greater generality, and specifically in
the relative situation (i.e. for families of algebras), for graded,
or mixed graded families of algebras, etc.

The statement is functorial: both Poissp´, nq and Pn`1p´q
are stacks on the small étale site of derived schemes, and
Melani’s construction gives an equivalence of spaces

PoisspX , nq – Pn`1pX q

for any X which is a derived DM stack which is locally of
finite type.
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Pn`1-structures

Pn`1-structures (iii)

This reasoning does not work for derived Artin stacks. Descent
problem: we can not pull back shifted Poisson structures or
Pn`1-structures by smooth maps. So we need to properly
understand the definition of Pn`1pX q when X is a derived Artin
stack.

We use relative formal geometry (relative geometry of X over XdR)
to define Pn`1pX q and to define the map

µ : PoisspX , nq Ñ Pn`1pX q

in complete generality.

Back
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