Lecture 2: Shifted symplectic structures

Tony Pantev

University of Pennsylvania

Summer School in Derived Geometry Pavia, September 2015

University of Pennsylvania

< □ > < A > >

Outline

- shifted symplectic and isotropic structures
- examples and constructions

University of Pennsylvania

Symplectic structures

Recall: For X a smooth scheme/ \mathbb{C} is a symplectic structure is an $\omega \in H^0(X, \Omega_X^{2,cl})$ such that its adjoint $\omega^{\flat} : T_X \to \Omega_X^1$ is a sheaf isomorphism.

Note: Does not work for *X* singular (or stacky or derived):

- *T_X* and Ω¹_X are too crude as invariants and get promoted to complexes T_X and L_X.
- A form being closed is not just a condition but rather an extra structure.

Image: A math a math

Definition: X derived Artin stack locally of finite presentation (so that \mathbb{L}_X is perfect).

- A *n*-shifted 2-form $\omega : \mathcal{O}_X \to \mathbb{L}_X \land \mathbb{L}_X[n]$ i.e. $\omega \in \pi_0(\mathcal{A}^2(X; n))$ - is nondegenerate if its adjoint $\omega^{\flat} : \mathbb{T}_X \to \mathbb{L}_X[n]$ is an isomorphism (in $D_{qcoh}(X)$).
- The space of *n*-shifted symplectic forms *Sympl*(*X*; *n*) on *X*/ℂ is the subspace of $\mathcal{A}^{2,cl}(X; n)$ of closed 2-forms whose underlying 2-forms are nondegenerate i.e. we have a homotopy cartesian diagram of spaces

$$\begin{array}{c} Sympl(X,n) \longrightarrow \mathcal{A}^{2,cl}(X,n) \\ \downarrow & \downarrow \\ \mathcal{A}^{2}(X,n)^{nd} \longrightarrow \mathcal{A}^{2}(X,n) \end{array}$$

Shifted symplectic structures: examples (i)

- Nondegeneracy: a duality between the stacky (positive degrees) and the derived (negative degrees) parts of L_X.
- $G = GL_n \rightsquigarrow BG$ has a canonical 2-shifted symplectic form whose underlying 2-shifted 2-form is

 $k \to (\mathbb{L}_{BG} \land \mathbb{L}_{BG})[2] \simeq (\mathfrak{g}^{\lor}[-1] \land \mathfrak{g}^{\lor}[-1])[2] = Sym^2 \mathfrak{g}^{\lor}$

given by the dual of the trace map $(A, B) \mapsto tr(AB)$.

- Same as above (with a choice of G-invariant symm bil form on g) for G reductive over k.
- The *n*-shifted cotangent bundle $T^{\vee}X[n] := \operatorname{Spec}_X(\operatorname{Sym}(\mathbb{T}_X[-n]))$ has a canonical *n*-shifted symplectic form.

・ロト ・ 日下・ ・ 日下・

Shifted symplectic structures: examples (ii)

Theorem: [PTVV] Let *F* be a derived Artin stack equipped with an *n*-shifted symplectic form $\omega \in Symp(F, n)$. Let *X* be an \mathcal{O} -compact derived stack equipped with an \mathcal{O} -orientation $[X] : \mathbb{H}(X, \mathcal{O}_X) \longrightarrow k[-d]$ of degree *d*. If the derived mapping stack MAP(X, F) is a derived Artin stack locally of finite presentation over *k*, then, MAP(X, F) carries a canonical (n-d)-shifted symplectic structure.

Remark:

- 0) Analog to Alexandrov-Kontsevich-Schwarz-Zaboronsky result.
- A *d* O-orientation on X is a kind of Calabi-Yau structure of dimension *d*;
- A compact oriented topological *d*-manifold has an *O*-orientation of degree *d* (Poincaré duality).

Lagrangian structures

Let (Y, ω) be a *n*-shifted symplectic derived stack. A lagrangian structure on a map $f : X \to Y$ is

- **a** path γ in $\mathcal{A}^{2,\mathrm{cl}}(X;n)$ from $f^*\omega$ to 0
- that is 'non-degenerate' (in a suitable sense), i.e. the induced map $\theta_{\gamma} : \mathbb{T}_f \to \mathbb{L}_X[n-1]$ is an equivalence.

Examples:

- usual smooth lagrangians L → (Y, ω) where (Y, ω) is a smooth (0)-symplectic scheme.
- there is a bijection between lagrangian structures on the canonical map $X \rightarrow (\operatorname{Spec} k, \omega_{n+1})$ and *n*-shifted symplectic structures on X (thus lagrangian structures generalize shifted symplectic structures)

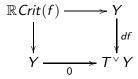
メロト メロト メヨト メ

Shifted symplectic structures: examples (iii)

Theorem: [PTVV] Let (F, ω) be *n*-shifted symplectic derived Artin stack, and $L_i \rightarrow F$ a map of derived stacks equipped with a Lagrangian structure, i = 1, 2. Then the homotopy fiber product $L_1 \times_F L_2$ is canonically a (n - 1)-shifted derived Artin stack.

In particular, if F = Y is a smooth symplectic Deligne-Mumford stack (e.g. a smooth symplectic variety), and $L_i \hookrightarrow Y$ is a smooth closed lagrangian substack, i = 1, 2, then the derived intersection $L_1 \times_F L_2$ is canonically (-1)-shifted symplectic.

Remark: An interesting case is the derived critical locus $\mathbb{R}Crit(f)$ for f a global function on a smooth symplectic Deligne-Mumford stack Y. Here



University of Pennsylvania

Recall: In classical symplectic geometry the local structure of a symplectic manifold is described by the **Darboux theorem:**

University of Pennsylvania

Recall: In classical symplectic geometry the local structure of a symplectic manifold is described by the **Darboux theorem:** *a* symplectic structure is locally (in the C^{∞} or analytic setting) or formally (in the algebraic setting) isomorphic to the standard symplectic structure on a cotangent bundle.

- ∢ ⊢⊒ →

In the derived and stacky setting there are two natural incarnations of an n-shifted symplectic cotangent bundle:

- (a) The shifted cotangent bundle $T_{M}^{\vee}[n] = \mathbf{Spec}_{/M} (\mathrm{Sym}_{\mathcal{O}_{M}}^{\bullet} (T_{M}[-n]))$, equipped with *n*-th shift of the standard symplectic form;
- (b) The derived critical locus $\mathbf{Rcrit}(\mathbf{w})$ of an n+1 shifted function $\mathbf{w} : M \to \mathbb{A}^1[n+1]$, equipped with the inherited *n*-shifted symplectic form $\omega_{\mathbf{Rcrit}(\mathbf{w})}$.

defined for general Lagrangian intersections in **[PTVV'2012]**.

In the derived and stacky setting there are two natural incarnations of an n-shifted symplectic cotangent bundle:

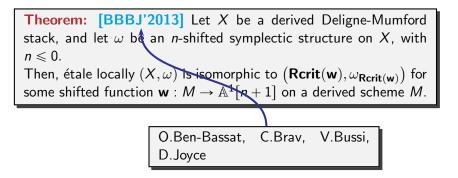
- (a) The shifted cotangent bundle $T_{M}^{\vee}[n] = \mathbf{Spec}_{/M} \left(\operatorname{Sym}_{\mathcal{O}_{M}}^{\bullet}(T_{M}[-n]) \right)$, equipped with *n*-th shift of the standard symplectic form;
- (b) The derived critical locus $\mathbf{Rcrit}(\mathbf{w})$ of an n+1 shifted function $\mathbf{w} : M \to \mathbb{A}^1[n+1]$, equipped with the inherited *n*-shifted symplectic form $\omega_{\mathbf{Rcrit}(\mathbf{w})}$.

Note: (a) is a special case of (b) corresponding to the zero shifted function.

Image: A math a math

Remark: • Shifted cotangent bundles are too restrictive to serve as local models of shifted symplectic structures.

• Derived critical loci of shifted functions have enough flexibility to provide local models. This leads to a remarkable shifted version of the Darboux theorem:



Theorem: [BBBJ'2013] Let X be a derived Deligne-Mumford stack, and let ω be an *n*-shifted symplectic structure on X, with $n \leq 0$. Then, étale locally (X, ω) is isomorphic to $(\text{Rcrit}(\mathbf{w}), \omega_{\text{Rcrit}(\mathbf{w})})$ for some shifted function $\mathbf{w} : M \to \mathbb{A}^1[n+1]$ on a derived scheme M.

Question: Find additional geometric structures that will ensure a global existence of a potential?

Answer: Potentials always exist in the presence of isotropic foliations.

University of Pennsylvania

Theorem: [CPTVV] Let X be a derived stack, locally of f.p. and let ω be an *n*-shifted symplectic structure on X. Assume:

- ω is exact, i.e. $[\omega] = 0 \in H^{\bullet}_{DR}(X)$;
- (X, ω) is equipped with an isotropic foliation (\mathscr{L}, h) .

Then there exists

- a shifted function $f : [X/\mathscr{L}] \to \mathbb{A}^1[n+1]$, and
- a symplectic map $s : X \to \mathbf{Rcrit}(f)$ of *n*-shifted symplectic stacks, i.e. $s^* \omega_{\mathbf{Rcrit}(f)} = \omega$. Moreover, if (\mathscr{L}, h) is Lagrangian, then *s* is étale.