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Tangent and cotangent complex

Tangent complex
X €dSte, x:Spec(C) — X a point

= | of the homotopy fiber of

<Sta|k Tx x of the
X(C[e]) — X((C)«Kver X

normalized chain  complex
tangent complex )

| simplicial abelian group
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Tangent and cotangent complex

Tangent complex

X €dSte, x:Spec(C) — X a point

normalized chain  complex
<f:sltﬂxégr§f Itet]<e> = | of the homotopy fiber of
& P X(C[e]) = X(C) over x

When X is a moduli stack:

H=Y(Tx ) = infinitesimal automorphisms of x;
H°(Tx ) = infinitesimal deformations of x;
HY(Tx x) = obstructions of x.
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Tangent and cotangent complex

Examples (i):

= X = BG = [pt/G] = Txp — sl1]

m X = moduli of vector bundles E on a smooth projective Y =
Tx,e = RI(Y,End(E))[1].

m X = moduli of maps f from Cto Y = Txr = RI(C,f*Ty).

m X = moduli of local systems [E on a compact manifold Y =
Txk = RI(Y,End(E))[1].
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Tangent and cotangent complex

Examples (ii):

m X = derived intersection

L
L1 >< L2 = L1 (@) L2, OL1 ®OL2
M Om

of smooth subvarieties L1, > € M in a smooth M =
’]TX,X = [ TL1,X® TL2,X — TM,X ]7
0 1
HO(TX,X) = TleLz,x;

HY(Tx ) = failure of transversality.
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Tangent and cotangent complex

Examples (iii):

Special case: X = derived zero locus Rzero(s) of s € HO(L, E).
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Tangent and cotangent complex

Examples (iii):

Special case: X = derived zero locus Rzero(s) of s € HO(L, E).

an algebraic vector bundle on
a smooth variety L
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Tangent and cotangent complex

Examples (iii):
Special case: X = derived zero locus Rzero(s) of s € HO(L, E).

Thus

h
X=LXL= (Z, i[l(Sym°(EV[1]),sb)) ;
M

where:
m Z = topX = zero(s) is the scheme theoretic zero locus of s,
m j; : Z — L is the natural inclusion, and

m s’ is the contraction with s.
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Tangent and cotangent complex

Examples (iv):

. . . ifdotifds
In particular Tx = [T, @®iT;, i Tm ],
0 1
where
m M = tot(E), and
B iy, o0, and s are the natural maps i L o
N
Z——M
N
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Tangent and cotangent complex

Examples (iv):
iffdo+i*ds

In particular Tx = [T, @®iT;, iv T 1,

0 1
where

m M = tot(E), and

B iy, o0, and s are the natural maps

Exercise: Show that there is a natural quasi-isomorphism
Vs v
Tx = [/L 7, o /LE] [TL—>( g E] .
|Z

ViE—-E® Q{ is an algebraic connection which exists
only locally and is not unique. However (Vs), is well defined
globally and independent of the choice of V.
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Tangent and cotangent complex

Cotangent complex

A€ cdgac, X = Spec(A) e dStc,
QA — A a cofibrant (quasi-free) replacement

cotangent complex \ [ Kahler differentials
Lx =L ~ \ Qpa of QA

If X € dStc is a general derived Artin stack, then

X = hocolim{Spec A — X} (in the model category dStc) and

Lx = holimgpec aAx La
Note:

B Lx € Lyeon(X) - the dg category of quasi-coherent Ox
modaules.

m X is locally of finite presentation iff Lx is perfect. In this case
TX = L)\é = Hom(]Lx,Ox).
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Forms and closed forms

p-forms

A€ cdgac, X = Spec(A) € dStc,

QA — A a cofibrant (quasi-free) replacement. Then:

®p=0 A La = ®p=0,4 - a fourth quadrant bicomplex with
vertical differential d : Q‘(’\)’,’;\ — Q‘(’\)’,’;\H induced by dga, and

horizontal differential dpg : Q'&,’i‘ — Q’g;\l’i given by the de Rham
differential.

Hodge filtration: F9(A) := ®p>,Q2p,: still a fourth quadrant
bicomplex.
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Forms and closed forms

(shifted) closed p-forms

Motivation: If X is a smooth scheme/C, then
Qfgd ~ (Qip[p], dDR). Use (Qip[p], dpr) as a model for closed
p forms in general.

Definition:
m complex of closed p-forms on X = Spec A:
AP</(A) := totl[(FP(A))[p]
m complex of n-shifted closed p-forms on X = Spec A:
AP (A: n) := tot![(FP(A)[n + p]
m Hodge tower:
.- — AP<(A)[—p] » APLI(A)[L = p] > - — AO(4)
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Forms and closed forms

(shifted) closed p-forms (ii)

Explicitly an n-shifted closed p-form w on X = Spec A is an
infinite collection

+i,n—i
w = {wiliso> wi € Q)
satisfying

dprwi = —dwij1.

Note: The collection {w;};-; is the key closing w.
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Forms and closed forms

p-forms and closed p-forms

Note:

m The complex A%</(A) of closed 0-forms on X = Spec A is
exactly lllusie’'s derived de Rham complex of A.

m There is an underlying p-form map
AP (A n) — APLa[n]

inducing
HO (AP (A)[n]) — H"(X, APLac).

m The homotopy fiber of the underlying p-form map can be very
complicated (complex of keys): being closed is not a property
but rather a list of coherent data.
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Forms and closed forms

Functoriality and gluing:

m the n-shifted p-forms co-functor
AP(—;n) : cdgac — SSets : A — | QP [n] ~ (AGLA)[n] |
m the n-shifted closed p-forms co-functor
AP (—; n) : cdgac — SSets : A — | AP (A)[n] |
m AP(—;n) and AP (—; n) are derived stacks for the étale
topology.
m underlying p-form map (of derived stacks)

AP (—; n) — AP(=; n)

Notation: | — | denotes Mapc_dgnmod (C, —) i.e. Dold-Kan applied
to the < O-truncation - all our dg-modules have cohomological
differential.
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Forms and closed forms

global forms and closed forms

For a derived Artin stack X (locally of finite presentation /C) we
have

Definition:
m AP(X) := Mapgst. (X, AP(—)) is the space of p-forms on X;
m APY(X) := Mapgst. (X, AP (—)) is the space of closed
p-forms on X;

m the corresponding n-shifted versions :
AP(X; n) :== Mapgst. (X, AP(—; n))
AP (X n) := Mapgst. (X, AP(—; n))

m an n-shifted (respectively closed) p-form on X is an element
in mo.AP(X; n) (respectively in mo.AP{(X; n))
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Forms and closed forms

global forms and closed forms (ii)

Note:
1) If X is a smooth scheme there are no negatively shifted forms.

2) When X = Spec A then there are no positively shifted forms.
For general X they might exist for any n e Z.
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Forms and closed forms

global forms and closed forms (ii)

m underlying p-form map (of simplicial sets)
AP(X: n) — AP(X; n)

m this map is not a monomorphism for general X, its homotopy
fiber at a given p-form wyq is the space of keys of wy.

m If X is a smooth and proper scheme then this map is indeed a
mono (homotopy fiber is either empty or contractible) = no
new phenomena in this case.

m Theorem (PTVV): for X derived Artin,
AP(X;n) ~Mapr, . x)(Ox, (APLx)[n]) (smooth descent)

m in particular an n-shifted p-form on X is an element in
H"(X, APLx)
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Forms and closed forms

global forms and closed forms (iii)

Remark: If A € cdga is quasi-free, and X = Spec A, then

AP (X; n) = H <QZ+1[n —il,d + dDR)

i=0

— |tot"(FP(A))[n]

= [NC(A)(p)[n + P
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Forms and closed forms

global forms and closed forms (iii)

Remark: If A € cdga is quasi-free, and X = Spec A, then

AP (X; n) = H <QZ+1[n —il,d + dDR)

i=0

— |tot"(FP(A))[n]

= [NC(A)(p)[n + P

negative cyclic complex
of weight p
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Forms and closed forms

global forms and closed forms (iii)

Remark: If A € cdga is quasi-free, and X = Spec A, then

AP (X; n) = H <QZ+1[n —il,d + dDR)

i=0

— |tot"(FP(A))[n]

= [NC(A)(p)[n + P

Hence

w0 AP (X; n) = HCZ™P(A)(p).
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Forms and closed forms

global forms and closed forms (iv)

Definition: Given a higher Artin derived stack the n-th algebraic de
Rham cohomology of X is defined to be Hp(X) = mo. A%< (X; n).

Remark:

m agrees with lllusie’s definition in the affine case.

m if X is a higher Artin derived stack locally f.p., then
H)r(X) = H)g(toX) = algebraic de Rham cohomology of
the underived higher stack tgX defined by Hartschorne's
completion formalism.
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Forms and closed forms

global forms and closed forms (iv)

Definition: Given a higher Artin derived stack the n-th algebraic de
Rham cohomology of X is defined to be Hp(X) = mo. A%< (X; n).

Remark:

m agrees with lllusie’s definition in the affine case.

m if X is a higher Artin derived stack locally f.p., then
H)r(X) = H)g(toX) = algebraic de Rham cohomology of
the underived higher stack tgX defined by Hartschorne's
completion formalism.

Corollary: Let X be a locally f.p. derived stack and let w be an
n-shifted closed p-form on X woth n < 0. Then w is exact, i.e.
[w] = 0e HEEP(X).
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Forms and closed forms

Examples (i):

(1) If X = Spec(A) is an usual (underived) smooth affine scheme,

then
APE(X 1) = (T Q4 25 Q5T 5 )],
0 1
and hence
0, n<0
7T0.AP’CI(X; n) = QZ’CI, n=0

HRP(X), n>0

e.g. if X = C*, then dz/z € mp. A (X;0) and also
dz/z € mp A% (X;1).
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Forms and closed forms

Examples (ii):

(2) If X is a smooth and proper scheme, then
T AP (X; n) = FPHERP™'(X).

(3) If X is a (underived) higher Artin stack, and X, — X is a
smooth affine simplicial groupoid presenting X, then

70 AP(X; n) = H"(QP(X.), ) with § = Cech differential.

In particular if G is a complex reductive group, then

0, n+#p

P ‘n) —
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Forms and closed forms

Examples (iii):

(4) Similarly

AP(BG; n) =

9

H (Sym’”"gv)G [n+ p—2i]

i=0

and so

0, if nis odd

p,cl BG: _
To AR (BGin) {(Symng)G, if nis even.

Tony Pantev University of Pennsylvania

Shifted quantization



Forms and closed forms

Examples (iv):
(5) If X = Rzero(s) for s € HO(L, E) on a smooth L, then

v (Vs)
Qx = E|z - sz’
-1 0

and if we choose V local flat algebraic connection on E we can
rewrite Q}< as a module over the Koszul complex:

- BV @O - EY R0 -0l ——0l, 0
T T ][V,sb] T(VS)b
> A2EVQEY -2~ EV®EY —S- EV Ey -1
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Forms and closed forms

Examples (v):
In the same way we can describe Qi as a module over the Koszul

complex
e NEY Q2 EY@Q} Qf Q. 0
) t ! !
= AEVQEYQO - EYQE QA -EY®Q = (EY @)z -1
} 4 t !
> N2EV®SPEY —> EY ® S?EV — S?EV SE¥lz -2
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Forms and closed forms

Examples (v):

In the same way we can describe Qi as a module over the Koszul
complex

~-—>/\2EV®QE
A

= NEVREVRQ-EV®E
A A

--—>/\2EV ®52Ev — s EV ®52Ev

Ev @2 Q2 2, 0
f A
Q}—>EV®Qi—>(EV®QD|Z -1
A
V—>52EV|Z —2

2 forms of degree —1
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Forms and closed forms

Examples (v):
In the same way we can describe Qi as a module over the Koszul

complex
e NEY Q2 EY@Q} Qf Q. 0
) t ! !
= AEVQEYQO - EYQE QA -EY®Q = (EY @)z -1
} 4 t !
> N2EV®SPEY —> EY ® S?EV — S?EV SE¥lz -2

Note: The de Rham differnetial dpg : Q}< — Qi is the sum
dpr = V + K, where k is the Koszul contraction

ki APEY ®SPEY - AT1EY @ SPTLEV,
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Forms and closed forms

Examples (vi):
Important Remark: [Behrend] If E = Q} and so s is a 1-form,
then a 2-form of degree —1 corresponds to a pair of elements

ae ()02 and ¢ e ()Y ®Q} such that [V,s"](¢) = s°(a).

Take ¢ = id € (Q})¥ ® Q}. Suppose the local V is chosen so that
V(id) = 0 (i.e. V is torsion free). Then [V, s"](id) = ds.

Conclusion: The pair (a,id) gives a 2-form of degree —1 iff

ds = sb(a), or equivalently dsz =0, i.e. is an almost closed
1-form on L.

Suppose s is almost closed and let (¢, id) be an
associated 2-form of degree —1. Describe the complex of keys for
(o, id) if it exists.
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