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Tangent complex

X P dStC, x : SpecpCq Ñ X a point

ˆ

Stalk TX ,x of the
tangent complex

˙

“

¨

˝

normalized chain complex
of the homotopy fiber of
X pCrεsq Ñ X pCq over x

˛

‚

simplicial abelian group
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Tangent complex

X P dStC, x : SpecpCq Ñ X a point

ˆ

Stalk TX ,x of the
tangent complex

˙

“

¨

˝

normalized chain complex
of the homotopy fiber of
X pCrεsq Ñ X pCq over x

˛

‚

When X is a moduli stack:

H´1pTX ,xq “ infinitesimal automorphisms of x ;

H0pTX ,xq “ infinitesimal deformations of x ;

H1pTX ,xq Ě obstructions of x .
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Examples (i):

X “ BG “ rpt {G s ñ TX ,pt “ gr1s.

X “ moduli of vector bundles E on a smooth projective Y ñ
TX ,E “ RΓpY ,EndpE qqr1s.

X “ moduli of maps f from C to Y ñ TX ,f “ RΓpC , f ˚TY q.

X “ moduli of local systems E on a compact manifold Y ñ
TX ,E “ RΓpY ,EndpEqqr1s.
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Examples (ii):

X “ derived intersection

L1

h
ą

M

L2 “

˜

L1 X L2, OL1

L
â

OM

OL2

¸

of smooth subvarieties L1, L2 Ă M in a smooth M ñ

TX ,x “ r TL1,x ‘ TL2,x
// TM,x s,

0 1

H0pTX ,xq “ TL1XL2,x ;
H1pTX ,xq “ failure of transversality.
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Examples (iii):

Special case: X “ derived zero locus Rzeropsq of s P H0pL,E q.
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Examples (iii):

Special case: X “ derived zero locus Rzeropsq of s P H0pL,E q.

an algebraic vector bundle on
a smooth variety L
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Examples (iii):

Special case: X “ derived zero locus Rzeropsq of s P H0pL,E q.

Thus

X “ L

h
ą

M

L “
´

Z , i´1
L pSym‚pE_r1sq, s5q

¯

,

where:

Z “ t0X “ zeropsq is the scheme theoretic zero locus of s,

iL : Z Ñ L is the natural inclusion, and

s5 is the contraction with s.
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Examples (iv):

In particular TX “ r i˚LTL ‘ i˚LTL

i˚
L
do`i˚

L
ds

// i˚MTM s,

0 1
where

M “ totpE q, and

iM , o, and s are the natural maps L
o
  ❇

❇❇

Z

iL ??���

iL
��❃

❃❃
❃

iM // M.

L
s

>>⑤⑤⑤⑤
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Examples (iv):

In particular TX “ r i˚LTL ‘ i˚LTL

i˚
L
do`i˚

L
ds

// i˚MTM s,

0 1
where

M “ totpE q, and

iM , o, and s are the natural maps

Exercise: Show that there is a natural quasi-isomorphism

TX “

«

i˚LTL

p∇sq5

// i˚LE

ff

“

«

TL

p∇sq5

//E

ff

|Z

.

Note: ∇ : E Ñ E b Ω1
L is an algebraic connection which exists

only locally and is not unique. However p∇sq|Z is well defined
globally and independent of the choice of ∇.
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Cotangent complex

A P cdgaC, X “ SpecpAq P dStC,
QA Ñ A a cofibrant (quasi-free) replacement

ˆ

cotangent complex
LX “ LA

˙

“

ˆ

Kähler differentials
Ω1
QA of QA

˙

If X P dStC is a general derived Artin stack, then
X “ hocolimtSpecA Ñ X u (in the model category dStC) and

LX “ holimSpecAÑX LA

Note:

LX P LqcohpX q - the dg category of quasi-coherent OX

modules.

X is locally of finite presentation iff LX is perfect. In this case
TX “ L

_
X “ HompLX ,OX q.
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p-forms

A P cdgaC, X “ SpecpAq P dStC,
QA Ñ A a cofibrant (quasi-free) replacement. Then:

‘pě0 ^p
A LA “ ‘pě0Ω

p
QA - a fourth quadrant bicomplex with

vertical differential d : Ωp,i
QA Ñ Ωp,i`1

QA induced by dQA, and

horizontal differential dDR : Ωp,i
QA Ñ Ωp`1,i

QA given by the de Rham
differential.

Hodge filtration: F qpAq :“ ‘pąqΩ
p
QA: still a fourth quadrant

bicomplex.
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(shifted) closed p-forms

Motivation: If X is a smooth scheme/C, then

Ωp,cl
X –

´

Ωěp
X rps, dDR

¯

. Use pΩěp
X rps, dDRq as a model for closed

p forms in general.

Definition:

complex of closed p-forms on X “ SpecA:
Ap,clpAq :“ tot

ś

pF ppAqqrps

complex of n-shifted closed p-forms on X “ SpecA:
Ap,clpA; nq :“ tot

ś

pF ppAqqrn ` ps

Hodge tower:
¨ ¨ ¨ Ñ Ap,clpAqr´ps Ñ Ap´1,clpAqr1 ´ ps Ñ ¨ ¨ ¨ Ñ A0,clpAq
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(shifted) closed p-forms (ii)

Explicitly an n-shifted closed p-form ω on X “ SpecA is an
infinite collection

ω “ tωiuiě0 , ωi P Ωp`i ,n´i
A

satisfying
dDRωi “ ´dωi`1.

Note: The collection tωiuiě1 is the key closing ω.
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p-forms and closed p-forms

Note:

The complex A0,clpAq of closed 0-forms on X “ SpecA is
exactly Illusie’s derived de Rham complex of A.

There is an underlying p-form map

Ap,clpA; nq Ñ ^p
LA{krns

inducing
H0pAp,clpAqrnsq Ñ HnpX ,^p

LA{kq.

The homotopy fiber of the underlying p-form map can be very
complicated (complex of keys): being closed is not a property
but rather a list of coherent data.
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Functoriality and gluing:

the n-shifted p-forms 8-functor
App´; nq : cdgaC Ñ SSets : A ÞÑ |Ωp

QArns » p^p
ALAqrns |

the n-shifted closed p-forms 8-functor
Ap,clp´; nq : cdgaC Ñ SSets : A ÞÑ |Ap,clpAqrns |

App´; nq and Ap,clp´; nq are derived stacks for the étale
topology.

underlying p-form map (of derived stacks)

A
p,clp´; nq Ñ A

pp´; nq

Notation: | ´ | denotes MapC´dgModpC,´q i.e. Dold-Kan applied
to the ď 0-truncation - all our dg-modules have cohomological
differential.
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global forms and closed forms

For a derived Artin stack X (locally of finite presentation {C) we
have

Definition:

AppX q :“ MapdStCpX ,App´qq is the space of p-forms on X ;

Ap,clpX q :“ MapdStCpX ,Ap,clp´qq is the space of closed
p-forms on X ;

the corresponding n-shifted versions :
AppX ; nq :“ MapdStCpX ,App´; nqq
Ap,clpX ; nq :“ MapdStCpX ,Ap,clp´; nqq

an n-shifted (respectively closed) p-form on X is an element
in π0A

ppX ; nq (respectively in π0A
p,clpX ; nq)
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global forms and closed forms (ii)

Note:

1) If X is a smooth scheme there are no negatively shifted forms.

2) When X “ SpecA then there are no positively shifted forms.
For general X they might exist for any n P Z.
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global forms and closed forms (ii)

underlying p-form map (of simplicial sets)

A
p,clpX ; nq Ñ A

ppX ; nq

this map is not a monomorphism for general X , its homotopy
fiber at a given p-form ω0 is the space of keys of ω0.

If X is a smooth and proper scheme then this map is indeed a
mono (homotopy fiber is either empty or contractible) ñ no
new phenomena in this case.

Theorem (PTVV): for X derived Artin,
AppX ; nq » MapLqcohpX qpOX , p^p

LX qrnsq (smooth descent)

in particular an n-shifted p-form on X is an element in
HnpX ,^p

LX q
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global forms and closed forms (iii)

Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

´

Ωp`1
A rn ´ is, d ` dDR

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ
totΠpF ppAqqrns

ˇ

ˇ

ˇ

“ |NC pAqppqrn ` ps|
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global forms and closed forms (iii)

Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

´

Ωp`1
A rn ´ is, d ` dDR

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ
totΠpF ppAqqrns

ˇ

ˇ

ˇ

“ |NC pAqppqrn ` ps|

negative cyclic complex
of weight p
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global forms and closed forms (iii)

Remark: If A P cdga is quasi-free, and X “ SpecA, then

A
p,clpX ; nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

´

Ωp`1
A rn ´ is, d ` dDR

¯

ˇ

ˇ

ˇ

ˇ

ˇ

“
ˇ

ˇ

ˇ
totΠpF ppAqqrns

ˇ

ˇ

ˇ

“ |NC pAqppqrn ` ps|

Hence

π0A
p,clpX ; nq “ HC

n´p
´ pAqppq.
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global forms and closed forms (iv)

Definition: Given a higher Artin derived stack the n-th algebraic de
Rham cohomology of X is defined to be Hn

DRpX q “ π0A
0,clpX ; nq.

Remark:

agrees with Illusie’s definition in the affine case.

if X is a higher Artin derived stack locally f.p., then
H‚
DRpX q – H‚

DRpt0X q “ algebraic de Rham cohomology of
the underived higher stack t0X defined by Hartschorne’s
completion formalism.
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global forms and closed forms (iv)

Definition: Given a higher Artin derived stack the n-th algebraic de
Rham cohomology of X is defined to be Hn

DRpX q “ π0A
0,clpX ; nq.

Remark:

agrees with Illusie’s definition in the affine case.

if X is a higher Artin derived stack locally f.p., then
H‚
DRpX q – H‚

DRpt0X q “ algebraic de Rham cohomology of
the underived higher stack t0X defined by Hartschorne’s
completion formalism.

Corollary: Let X be a locally f.p. derived stack and let ω be an
n-shifted closed p-form on X woth n ă 0. Then ω is exact, i.e.
rωs “ 0 P H

n`p
DR pX q.
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Examples (i):

(1) If X “ SpecpAq is an usual (underived) smooth affine scheme,
then

A
p,clpX ; nq “ pτďnp Ωp

A

dDR // Ωp`1
A

dDR // ¨ ¨ ¨

0 1

qqrns,

and hence

π0A
p,clpX ; nq “

$

’

&

’

%

0, n ă 0

Ωp,cl
A , n “ 0

H
n`p
DR pX q, n ą 0

e.g. if X “ C
ˆ, then dz{z P π0A

1,clpX ; 0q and also
dz{z P π0A

0,clpX ; 1q.
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Examples (ii):

(2) If X is a smooth and proper scheme, then
πiA

p,clpX ; nq “ F pH
n`p´i
DR pX q.

(3) If X is a (underived) higher Artin stack, and X‚ Ñ X is a
smooth affine simplicial groupoid presenting X , then
π0A

ppX ; nq “ HnpΩppX‚q, δq with δ “ Čech differential.
In particular if G is a complex reductive group, then

π0A
ppBG ; nq “

#

0, n ‰ p

pSym‚
g

_qG , n “ p.
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Examples (iii):

(4) Similarly

A
p,clpBG ; nq “

ˇ

ˇ

ˇ

ˇ

ˇ

ź

iě0

`

Symp`i
g

_
˘G

rn ` p ´ 2is

ˇ

ˇ

ˇ

ˇ

ˇ

,

and so

π0A
p,clpBG ; nq “

#

0, if n is odd

pSymp
g

_qG , if n is even.
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Examples (iv):

(5) If X “ Rzeropsq for s P H0pL,E q on a smooth L, then

Ω1
X “ E_

|Z

p∇sq5

// Ω1
L|Z ,

´1 0

and if we choose ∇ local flat algebraic connection on E we can
rewrite Ω1

X as a module over the Koszul complex:

¨ ¨ ¨ // ^2E_ b Ω1
L

s5
// E_ b Ω1

L
s5

// Ω1
L

// Ω1
L|Z 0

¨ ¨ ¨ // ^2E_ b E_ s5
//

OO

E_ b E_ s5
//

OO

E_ //

r∇,s5s

OO

E_
|Z

p∇sq5

OO

´1
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Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

¨ ¨ ¨ // ^2E_ b Ω2
L

// E_ b Ω2
L

// Ω2
L

// Ω2
L|Z 0

¨ ¨ ¨ // ^2E_ b E_ b Ω1
L

//

OO

E_ b E_ b Ω1
L

//

OO

E_ b Ω1
L

//

OO

pE_ b Ω1
Lq|Z

OO

´1

¨ ¨ ¨ // ^2E_ b S2E_ //

OO

E_ b S2E_ //

OO

S2E_ //

OO

S2E_|Z

OO

´2
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Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

¨ ¨ ¨ // ^2E_ b Ω2
L

// E_ b Ω2
L

// Ω2
L

// Ω2
L|Z 0

¨ ¨ ¨ // ^2E_ b E_ b Ω1
L

//

OO

E_ b E_ b Ω1
L

//

OO

E_ b Ω1
L

//

OO

pE_ b Ω1
Lq|Z

OO

´1

¨ ¨ ¨ // ^2E_ b S2E_ //

OO

E_ b S2E_ //

OO

S2E_ //

OO

S2E_|Z

OO

´2

2 forms of degree ´1
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Examples (v):
In the same way we can describe Ω2

X as a module over the Koszul
complex

¨ ¨ ¨ // ^2E_ b Ω2
L

// E_ b Ω2
L

// Ω2
L

// Ω2
L|Z 0

¨ ¨ ¨ // ^2E_ b E_ b Ω1
L

//

OO

E_ b E_ b Ω1
L

//

OO

E_ b Ω1
L

//

OO

pE_ b Ω1
Lq|Z

OO

´1

¨ ¨ ¨ // ^2E_ b S2E_ //

OO

E_ b S2E_ //

OO

S2E_ //

OO

S2E_|Z

OO

´2

Note: The de Rham differnetial dDR : Ω1
X Ñ Ω2

X is the sum
dDR “ ∇ ` κ, where κ is the Koszul contraction

κ : ^aE_ b SbE_ Ñ ^a´1E_ b Sb`1E_.
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Examples (vi):
Important Remark: [Behrend] If E “ Ω1

L and so s is a 1-form,
then a 2-form of degree ´1 corresponds to a pair of elements

α P pΩ1
Lq_ bΩ2

L and φ P pΩ1
Lq_ b Ω1

L such that r∇, s5spφq “ s5pαq.

Take φ “ id P pΩ1
Lq_ b Ω1

L. Suppose the local ∇ is chosen so that
∇pidq “ 0 (i.e. ∇ is torsion free). Then r∇, s5spidq “ ds.

Conclusion: The pair pα, idq gives a 2-form of degree ´1 iff
ds “ s5pαq, or equivalently ds|Z “ 0, i.e. is an almost closed
1-form on L.

Exercise: Suppose s is almost closed and let pα, idq be an
associated 2-form of degree ´1. Describe the complex of keys for
pα, idq if it exists.
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