
1. Let S be a surface of revolution: S = (f (v) cos(u), f (v) sin(u), g(v)), where (f (v),0, g(v))
is a regular curve in the xz plane parametrized by arclength. Show that the Gaussian cur-
vature of S is

K = −f
′′(v)
f(v)

and use this fact to construct a surface that has K = 1 but it is not contained in the unit
sphere.

2. Let α : [0,2π]→ R3 be the curve defined by

α(t) = (cos(t)2 − 1
2
, sin(t) cos(t), sin(t))

Determine the singular points, the curvature and the torsion of α. Show that the trace of
the curve lies on a sphere S and on a cylinder C (the axis of the cylinder is the z axis).
Compute the first and the second fundamental form of S and C .

3. Show that the surface (u + uv2 − 1
3u

3, v + vu2 − 1
3v

3, u2 − v2) is minimal and that the
coordinates curves are lines of curvature.

4. Let α(v) : I → R3 be a bi-regular curve in R3 and let w(v) be a unit vector field along α
such that α′ ⊥ w′. Consider the surface

S = {α(v)+uw(v),u ∈ R, v ∈ I}

determine a relation between β′ ∧w and w′ and use it to describe the regular points of S.
Show that the regular points of S are not elliptic.

5. Show that a closed (compact without boundary) surface of genus g > 0 in R3 has elliptic,
parabolic and hyperbolic points.
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1. We have

Xu = (−f(v) sin(u), f (v) cos(u),0), Xv = (f ′(v) cos(u), f ′(v) sin(u), g′(v))

Xuu = (−f(v) cos(u),−f(v) sin(u),0), Xvv = (f ′′(v) cos(u), f ′′(v) sin(u), g′′(v))
Xuv = (−f ′(v) sin(u), f ′(v) cos(u),0)

A unit vector field orthogonal to Xu and Xv can be obtained by normalization of Xu ×Xv .
Using the fact that the curve is parametrized by arclength this simplifies to:

N = (g′(v) cos(u), g′(v) sin(u),−f ′(v)).
We can compute the coefficients of the first fundamental form

E = f(v)2, F = 0, G = 1

for the second fundamental form

e = −f(v)g′(v), f = 0, g = −f ′′(v)g′(v)+ g′′(v)f ′(v)
then the ratio of the determinants of the two forms is

K = g
′(v)
f(v)

(
−f ′′(v)g′(v)+ g′′(v)f ′(v)

)
since f ′(v)2 + g′(v)2 = 1 we have 2f ′(v)f ′(v)+ 2g′(v)g′′(v) = 0 hence

g′′(v) = −f
′(v)f ′′(v)
g′(v)

if we replace in the expression of the Gauss curvature we get the requested equality.

It follows that the Gauss curvature is equal to 1 if and only if

f ′′(v)+ f(v) = 0

hence f(v) = a cos(v) + b sin(v), then g(v) is determined, up to a constant, by the
condition

g′(v)2 = 1− f ′(v)2

The surface is rotationally symmetric and it lies in a unit sphere if and only if, up to
isometries of R3, the generating plane curve (f (v),0, g(v)) is (cos(v),0, sin(v)). It is
clear that by choosing a,b, one can find surfaces that do not satisfy this condition.

2. One may notice that α(t)−(1
2 ,0,0) has unit norm or, doing a longer computation, consider

α(t)− (a, b, c) and determine a,b, c so that the norm is constant (e.g. by taking the power
series). Hence the curve lies in the sphere of radius 1 and center in (−1

2 ,0,0. This can be
parametrized by

(cos(v) cos(u)− 1
2
, cos(v) sin(u), sin(v))

it is clear that α is the image of the curve (u(t), v(t)) = (t, t). Since this sphere is isometric
to the standard sphere under a translation (i.e. an isometry of R3) we have that the first
and the second fundamental forms coincide with the one of the standard sphere (see the
notes). If the curve lies on a cylinder whose axis is parallel to the y axis then we have to
find a point (a, b,0) such that (cos(t)2 − 1

2 , sin(t) cos(t),0)− (a, b,0) has constant norm.

It is easy to check that (0,0,0) satisfies this condition and the norm is equal to 1
2 . Hence

the curve lies on the cylinder

x2 +y2 = 1
4

that can be parametrized by

(
1
2

cos(u),
1
2

sin(u), v)

here we omit the computation of the fundamental forms.
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3. We have
Xu = (1+ v2 −u2,2uv,2u), Xv = (2uv,1+u2 − v2,−2v)

Xuu = (−2u,2v,2), Xuv = (2v,2u,0), Xvv = (2u,−2v,−2)

Moreover

Xu ×Xv = (−2u− 2u3 − 2uv2,2v + 2v3 + 2u2v,1−u4 − v4 − 2u2v2)

denote by λ the norm of this vector. Then

N = 1
λ
Xu ×Xv .

...

4. Since w has constant norm, we have w′ ⊥ w, moreover we assumed α′ ⊥ w′. Hence α′
and w′ are both orthogonal to w′. It follows that

α′ ×w = λ(v)w′

for some function λ. Denote by

X(u,v) = α(v)+uw(v)

the parametrization of S, then

Xu = w, Xv = α′ +uw′

hence
Xu ×Xv = w ×α′ +uw ×w′ = −λw′ +uw ×w′

since w′ ⊥ w ×w′ this is the sum of two orthogonal vectors and it is zero if and only if
both of them vanish. It follows that

Xu ×Xv = 0 ⇐⇒ λ(v) = 0, u = 0

hence the singular points of s are the points of α such that λ(t) = 0.

If S is elliptic then the maximum and the minimum of the Gauss curvature are positive. On
the other hand through each point of S we have a line that lies on S, parallel to w. Hence
there is a normal section of S that contains a line, i.e. has curvature equal to 0.

5. A compact surface is R3 is orientable. Hence we can apply the Gauss Bonnet theorem and
we have that ∫

S
K = 2πχ(S) = 2π(2− 2g) < 0.

Hence there are points where the curvature is negative. On the other hand, since S is
compact, there is at least one point where the Gauss curvature is positive. By continuity
there are points on S where the curvature vanishes.
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