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I will use these notes to add some support material for topics that are not

covered in the textbook. This is a first version that will certainly contain mista-

kes....
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Isometries of the Euclidean space

We will mostly work in R3, but some of the definitions make sense in higher

dimensions as well. Let

Rn = {(x1, . . . , xn), xi ∈ R, i = 1, . . . , n}

a point in Rn is just an ordered collection of real numbers. We know that, for

n = 3, we can choose a coordinate system in the Euclidean space (i.e. an origin

O, three axes and a unit to measure the distance) and a point in x ∈ R3 can

be identified with a point P in the Euclidean space, or with a vector (O, P). In

analogy with the tree dimensional case we will use the vector notation for points

in Rn. Moreover we can identify a point in Rn with a matrix:

(x1, . . . , xn) ∈ Rn ≃



x1

...

xn


 ∈M(n× 1,R)

where M(m × n,R) is the set of matrices with m rows, n columns and real

entries. Hence we have three different ways of looking at an element x ∈ Rn.

In Rn we have a standard scalar (dot) product : for x = (x1, . . . xn),y =
(y1, . . . , yn) ∈ Rn

x ·y = x1y1 + . . . , xnyn =
n∑

i=1

xiyi.

The scalar product in Rn is a positive definite symmetric bilinear form i.e.

(i) (x1 + x2) ·y = x1 ·y + x2 ·y, ∀x1, x2, y ∈ Rn
(ii) (λx) ·y = λ(x ·y), ∀x,y ∈ Rn, λ ∈ R

(iii) x · (y1 +y2) = x ·y1 + x ·y2, ∀x,y1, y2 ∈ Rn
(iv) x · (λy) = λ(x ·y), ∀x,y ∈ Rn, λ ∈ R
(v) x ·y = y ·x, ∀x,y ∈ Rn

(vi) x ·x ≥ 0, ∀x ∈ Rn,
(vii) x ·x = 0 ⇐⇒ x = 0
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Denote by d(x,y) the Euclidean distance of x from y . For n = 2, x · x
can be interpreted as the squared distan-

ce d(x,0)2 of x from the origin. In analo-

gy with this case we define the Euclidean

norm of x as

x − y

y

−y
x

fig. 1.1

||x|| =
√
x ·x.

and ||x|| = d(x,0) for every x ∈ Rn. Mo-

reover (see fig. 1.2) it is clear that

||x −y|| = d(x,y). (1.1)

And we can use the scalar product to recover informations about the distan-

ce of two points. But the scalar product
x + yy

x

fig. 1.2

gives also informations about the angles

between vectors. For two nonzero vectors

x and y we have

||x +y||2 = (||x|| + ||y|| cos(x̂y))2 +
+ (||y|| sin(x̂y))2 =
= ||x||2 + ||y||2 +
+ 2||x|| ||y|| cos(x̂y).

But, from the bilinearity of the scalar product we also have

||x +y||2 = (x +y) · (x + y) = ||x||2 + ||y||2 + 2x ·y

comparing the two expressions we find

x ·y = ||x|| ||y|| cos(x̂y).

In particular the two vectors x and y are orthogonal if and only if x · y = 0. If

we replace y by −y , we have

d(x,y)2 = ||x − y||2 = ||x||2 + ||y||2 − 2x ·y.

If we identify x,y with n× 1 matrices we also have

x ·y = xt ·y

where xt denotes the transpose of x and, on the right hand side · is the usual

matrix product.
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Corollary 1.1 [Schwarz’s inequality] For x,y ∈ Rn we have

x ·y ≤ ||x|| ||y||

and the equality holds if and only if x and y are parallel;

Definition 1.1 A map f : Rn → Rn is an isometry if

d(f (x), f (y)) = d(x,y)

for every x,y ∈ Rn.

It follows that any triangle is mapped onto a congruent triangle, hence an isome-

try preserves the angles between vectors:

Lemma 1.1 Let f : Rn → Rn be an isometry. Then

̂f (x)f (y) = x̂y

for every x,y ∈ Rn.

Moreover, by choosing δ = ǫ in the definition of continuity:

Lemma 1.2 Let f : Rn → Rn be an isometry. Then f is a continuous function.

A first class of isometries is given by the translations: for a fixed v ∈ Rn, we

define a map Tv : Rn → Rn by

Tv(x) = x + v.

Then

d(Tv(x), Tv(y)) = ||Tv(x)−Tv(y)|| = ||(x+v)−(y+v)|| = ||x−y|| = d(x,y)

hence Tv is an isometry. It is clear that Tv has an inverse, given by T−v .

Lemma 1.3 Let f , g : Rn → Rn be isometries. Then the composition g ◦ f is

an isometry.

Proof: For x,y ∈ Rn we have

d((g ◦ f )(x), (g ◦ f )(y)) = d(g(f (x)), g(f (y))) = d(f (x), f (y)) = d(x,y).
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Now let f : Rn → Rn be an isometry and let v = f (0). Then f̃ = T−v ◦ f is an

isometry and

f̃ (0) = (T−v ◦ f )(0) = T−v(f (0)) = T−v(v) = v − v = 0.

Hence f̃ fixes the origin and

Tv ◦ f̃ = Tv ◦ (T−v ◦ f ) = (T−v ◦ Tv) ◦ f = f

and every isometry f is the composition of a translation and an isometry f̃ that

fixes the origin. To understand the structure of the isometries of Rn we only

have to study isometries that fix the origin.

Proposition 1.1 A map f : Rn → Rn is an isometry that fixes the origin if and

only if f preserves the scalar product.

Proof: Let f be an isometry such that f (0) = 0. Then, for x ∈ Rn:

||x|| = d(x,0) = d(f (x), f (0)) = d(f (x),0) = ||f (x)||.

Using the fact that the angles are preserved by f we have, for x,y ∈ Rn

f (x) · f (y) = ||f (x)|| ||f (y)|| cos( ̂f (x)f (y)) = ||x|| ||y|| cos(x̂y) = x ·y.

hence f preserves the scalar product. Conversely, assuming that f preserves the

scalar product

||x||2 = x ·x = f (x) · f (x) = ||f (x)||2

and f preserves the norm of any vector x ∈ Rn. In particular ||f (0)|| = ||0|| = 0

hence f (0) = 0. Finally

d(f (x), f (y))2 = ||f (x)− f (y)||2 =
= ||f (x)||2 + ||f (y)||2 − 2f (x) · f (y) =
= ||x||2 + ||y||2 − 2x ·y = ||x −y||2 = d(x,y)2

and f is an isometry.

If A ∈ M(n×n,R) we can define a linear map fA : Rn → Rn by

fA(x) = A ·x

and we consider a special class of maps, defined by orthogonal matrices

A ∈ O(n) = {A ∈M(n×n,R) : At ·A = I}.

We have

fA(x) · fA(y) = (A ·x)t · (A ·y) = xt ·At ·A ·y = x ·y
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hence, when A ∈ O(n), the map fA preserves the scalar product. Since fA(0) =
0 because fA is linear, we have, form the previous Proposition, that fA is an

isometry.

Proposition 1.2 Let f : Rn → Rn be an isometry such that f (0) = 0 then f is

a linear map and f = fA for some orthogonal matrix A ∈ O(n).

Proof: We first prove that f is linear. Let x,y ∈ Rn. As we observed before, the

image of a triangle with vertices 0, x, x+y is a triangle congruent to the original

one. The same is true for the triangle with vertices 0, y,x + y . It follows easily

that the parallelogram with vertices 0, x, x + y,y is mapped onto a congruent

parallelogram with vertices 0, f (x), f (x+y), f (y). In particular f (x+y) is the

vector sum of f (x) and f (y), i.e.

f (x +y) = f (x)+ f (y) (1.2)

for every x,y ∈ Rn. Thus we proved that f satisfies the first part of the

definition of a linear map. Now we want to prove that

f (λx) = λf(x) (1.3)

for every λ ∈ R and x ∈ Rn. From (1.2) we get

f (2x) = f (x + x) = f (x)+ f (x) = 2f (x).

By induction on n it follows that

f (nx) = nf(x)

for every n ∈ N. From (1.2) and the fact that f (0) = 0 it follows that f (−x) =
−f (x). For n ∈ N we have then

f ((−n)x) = f (n(−x)) = nf(−x) = −nf(x).

hence (1.3) is satisfied for λ ∈ Z. Let p,q ∈ Z with q ≠ 0. Then

p

q
f(x) = p

q
f(q

x

q
) = pf(x

q
) = f (p

q
x)

and (1.3) holds for λ ∈ Q. If λ ∈ R we choose a sequence λn ∈ Q that converges

to λ . Then, using the continuity of f

λf(x) = lim
n→∞

λnf (x) = lim
n→∞

f (λnx) = f ( lim
n→∞

λnx) = f (λx)

and f is a linear map, we can write f = fA for some matrix A ∈ M(n × n,R).
Since f is an isometry such that f (0) = 0 we have

x ·y = fA(x) · fA(y) = (A · x)t · (A ·y) = xt ·At ·A ·y



6 Chapter 1 Curves

for every x,y ∈ Rn. Denote by ei the standard basis of Rn and by δij the

Kronecker symbol. Then ei · ej = δij . Let B = At ·A then it is easy to show that

eti · B · ej = bij. Hence At ·A = B = I and A ∈ O(n).

Let A ∈ O(n). Then we have

1 = det(I) = det(At ·A) = det(At)det(A) = det(A)2

hence det(A) = ±1. If det(A) = 1 we say that the isometry fA is orientation

preserving , otherwise fA is orientation reversing.

Let x(t) = (x1(t), . . . , xn(t)), y(t) = (y1(t), . . . , yn(t)) ∈ Rn be two families

of vectors depending on a real parameter t. Assume that the vectors are of class

C1 i.e. the functions xi(t),yi(t) are differentiable for i = 1, . . . , n. Then the

scalar product x(t) ·y(t) is a real valued function and we may differentiate it:

(
x(t) ·y(t)

)′ =


n∑

i=1

xi(t)yi(t)



′

=
n∑

i=1

xi(t)
′yi(t)+

n∑

i=1

xi(t)yi(t)
′ =

= x(t)′ ·y(t)+ x(t) ·y(t)′ (1.4)

Remark 1.1 As an immediate consequence we have:

(i) If ||x(t)|| is constant then x(t) · x′(t) = 0.

(ii) If x(t) and y(t) are orthogonal for all t then x′(t) ·y(t) = −x(t) ·y ′(t).

Curves

We have two different points of view for curves: the first one is more ’geome-

tric’, we are interested in a geometric locus given by is a one dimensional subset

of Rn. The second one is more related to physics: a curve is the trajectory of a

moving point particle, meaning that we keep track of the way the particle moves

(for instance the speed).

Example 1.1 A definition of the unit circle in R2 that fits into the first scheme is

S1 = {(x,y) ∈ R2 : x2 +y2 = 1}

while

α1(t) = (cos(t), sin(t)), t ∈ [0,2π]

α2(t) = (cos(2t), sin(2t)), t ∈ [0, π] (1.5)

define the same trajectory but the speed of the particle is higher in α2 than in α1.

At the end we are interested in the ’shape’ of a curve but the second point of

view will give us more informations and tools useful to study it.
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Definition 1.2 A map f : Rm → Rn is of class Ck if

f (x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

and each of the first k derivatives of the functions fi : Rm → R, i = 1, . . . , n, is

continuous.

Definition 1.3 A curve of class Ck in Rn is a map α : I → Rn of class Ck where

I ⊂ R is an interval (possibly unbounded). The trace of α is the image α(I) of the

interval I.

If there exists a plane π ⊂ Rn such α(I) ⊂ π then we will say that α is a pla-

ne curve. We can always move a plane by an isometry and assume that the

plane passes through the origin and rotate it so that it coincides with the set

{(x1, . . . , xn) ∈ Rn : x3 = . . . , xn = 0}. In most cases we will identify this plane

with R2.

If α is of class Ck then, for 1 ≤ i ≤ k, the i-th derivative of α is

α(i) = (α(i)1 , . . . , α
(i)
n ).

Note that

α′(t0) = (α′1(t0), . . . , α
′
n(t0)) =

=
(

lim
t→t0

α1(t)−α1(t0)

t − t0
, . . . , lim

t→t0

αn(t)−αn(t0)
t − t0

)
=

= lim
t→t0

(
α1(t)−α1(t0)

t − t0
, . . . ,

αn(t)−αn(t0)
t − t0

)
=

= lim
t→t0

1

t − t0
(α1(t)− α1(t0), . . . , αn(t)− αn(t0)) =

= lim
t→t0

α(t)−α(t0)
t − t0

for every t, α(t)−α(t0) is a vector, and we get a vector in the limit, called the

tangent vector to α at t = t0. The norm of α′(t) is the speed of α. Similarly

α′′(t) is the acceleration vector of α.

Definition 1.4 A curve α : I → Rn of class Ck is k-regular if α′(t), . . . , α(k)(t) are

linearly independent for every t ∈ I.

If α is 1-regular then we will just say that α is regular. A curve α is then regular

if and only if α′(t) ≠ 0 for every t ∈ I.

Example 1.2 The cuspidal cubic is a curve α : R → R2 defined by

α(t) = (t2, t3)
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The trace of this curve (see fig. 1.3) can also be defined as

{(x,y) ∈ R2 : y2 − x3 = 0}

in fact a cubic is a curve defined as the zero locus of a po-

fig. 1.3

lynomial of degree three. This cubic is not regular since

α′(t) = (2t,3t2) vanishes at t = 0. This is the only singular

point of α and there is no tangent vector for t = 0. The cur-

ve α is smooth, but, in a neighborhood of t = 0, the trace

of α is not the graph of a smooth function (in this case a

function of the y variable), we have x = y 3
2 .

Example 1.3 The nodal cubic is a curve α : R → R2 defined by

α(t) = (t2 − 1, t(t2 − 1))

The trace of this curve (see fig. 1.4) can also be defined

as

{(x,y) ∈ R2 : y2 − x3 − x2 = 0}

The image of the map α is not injective, we have α(1) =

fig. 1.4

α(−1) = (0,0) hence it does not make sense to speak

about the tangent vector at a point of the trace of a

curve. In this example it is possible to describe the zero

set of a polynomial by intersecting with a straight line:

let y = tx be a line through the origin, the intersection

with y2−x3−x2 = 0 occurs when x2(−x+ t2−1) = 0

i.e. x = t2 − 1 and y = t(t2 − 1). This method will not work in general since a

straight line through the origin will intersect the locus in more than one point.

Example 1.4 The Folium of Decartes is a curve α : R→ R2 defined by

α(t) =
(

3t

1+ t3 ,
3t2

1+ t3

)
.

The curve α is injective, but the trace of this curve (see fig.

fig. 1.5

1.5) is not locally homeomorphic to an interval in the real line.

Every subset X of Rn has a topology induced by the topology

of Rn. The open sets in X are of the form X ∩ U where U is

open in Rn. As t grows, the points of the curve accumulate

close to the origin and every (small enough) neighborhood of

the origin in the trace of α is disconnected.

Now we move to more standard examples :
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Example 1.5 Let p,q ∈ Rn. The straight line through p and q is defined by

α(t) = q + (1− t)(p − q).

This is a regular curve and α′(t) is constant equal to q − p.

Example 1.6 Let a,b be positive real numbers and let p = (x0, y0) ∈ R2. Then

α(t) = (x0 + a cos(t),y0 + b sin(t))

is an ellipse with center in p. If a = b we have a circle.

Example 1.7 A cycloid is the path traced by a point p on the boundary of a

circle (say of radius 1) as the circle rolls (without

slipping) along a straight line. Let t be the angle

fig. 1.6

b

b

of the circle’s rotation and assume that, for t = 0,

the circle is centered in (0,1) and the point p is

(0,0). Then the coordinates of the point p (fig.

1.6) at time t are given by

α(t) = (t − sin(t),1− cos(t)).

The resulting curve is not regular, we have α′(t) = (1− cos(t), sin(t)) and this

vector vanishes for t = 2kπ , k ∈ Z,

i.e. every time the curve intersects

fig. 1.7

the x axis. The cycloid was studied,

in particular, during the XVII centu-

ry when it was discovered that it has

remarkable properties, try to google

the words tautochrone or brachysto-

crone...

Example 1.8 An Astroid is a curve traced out by a point p on the circumferen-

ce of one circle (of radius a) as that circle rolls

without slipping on the inside of a second circle

fig. 1.8

b

b

having four times the radius of the first. Let t

be the angle that measures the rotation of the

center of the small circle and denote by θ the

angle that measures the rotation of the point p

on the small circle. Since the small circle rota-

tes without slipping we have at = a
4θ. Hence

θ = 4t. Assume that, for t = 0, the small circle

is centered in (
3
4a,0) and the point p is (a,0).
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We describe the trajectory of p as sum of two vectors. The first one describe the

trajectory of the center of the small circle. The second one the coordinates of the

point p (fig. 1.8) at time t, with respect to a frame centered at the center of the

small circle, these are given by

(
a

4
cos(3t),−a

4
sin(3t)

)

since the coordinates of the center of the small

circle are

fig. 1.9

(
3a

4
cos(t),

3a

4
sin(t)

)

the coordinates of p are given by the sum of

these two vectors and parametric equation of

the astroid is

α(t) =
(

3a

4
cos(t)+ a

4
cos(3t),

3a

4
sin(t)− a

4
sin(3t)

)

Using trigonometric formulas it is possible to show that

α(t) = (a cos(t)3, a sin(t)3).

The resulting curve is not regular, we have

α′(t) = (−3a cos(t)2 sin(t),3a sin(t)2 cos(t))

and this vector vanishes for t = kπ2 , k ∈ Z.

Arclength

Definition 1.5 Two curves α : I → Rn, β : J → Rn differ be the parametrization

if there exists a diffeomorphism φ : J → I such that β(s) = α(φ(s)). We will also

say that β is a reparametrization of α.

In general, if α is not smooth, it is enough to require that φ has the same regu-

larity of α (it follows from the inverse function theorem that φ−1 has the same

regularity as well). In particular two curves that differ by the parametrization

have the same trace.

Note that I = [a, b] and J = [c, d] are intervals in the real line. A diffeomor-

phism φ : J → I must be monotone and maps the boundary of the interval J into

the boundary of the interval I. Hence we have two possible cases: φ(c) = a and

φ(d) = b (if φ is increasing) or φ(c) = b andφ(d) = a (if φ is decreasing). Since

we are mainly interested in the geometric properties of the trace of a curve α ,

we will look for the best possible parametrization of α.
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Definition 1.6 Let α : [a, b] → Rn be a curve of class C1. Then we define the

length of α by

L(α) =
∫ b
a
||α′(t)||dt.

The length of a curve does not depend on the parametrization:

Proposition 1.3 Let β be a reparametrization of a curve α. Then L(α) = L(β).

Proof: Let α : [a, b] → Rn and β : [c, d] → Rn and let φ : [c, d] → [a, b] be a

diffeomorphism. Then φ is monotone and we have two possible cases:

(i) φ is increasing:

L(β) =
∫ d
c
||β′(s)||ds =

∫ d
c
||α(φ(s))′||ds =

=
∫ d
c
||α′(φ(s))φ′(s)||ds =

∫ d
c
||α′(φ(s))|||φ′(s)|ds =

=
∫ d
c
||α′(φ(s))||φ′(s)ds =

∫ b
a
||α′(t)||dt = L(α)

(ii) φ is decreasing:

L(β) =
∫ d
c
||β′(s)||ds =

∫ d
c
||α(φ(s))′||ds =

=
∫ d
c
||α′(φ(s))φ′(s)||ds =

∫ d
c
||α′(φ(s))|||φ′(s)|ds =

= −
∫ d
c
||α′(φ(s))||φ′(s)ds = −

∫ a
b
||α′(t)||dt =

=
∫ b
a
||α′(t)||dt = L(α)

Let U ⊂ Rn be a connected subset of Rn. Then we define the distance between

two points p,q ∈ U by:

d(p, q) = inf{L(α) : α : [a, b]→ U,α(a) = p,α(b) = q}.

Sometimes it is not possible to find a minimizing curve: let U = R2 \ {(0,0} and

p = (−1,0), q = (0,1). The minimizing curve between p and q in R2 is the

segment joining the two points, but the trace of this curve does not lie in U ,

hence we can only approximate it with curves in U and get it as a limit. In the

case of Rn this definition is consistent with the one given in a previous section:
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Proposition 1.4 Let p,q ∈ Rn. Then the distance between p,q is the length

of the line segment joining p and q.

Proof: Let α : [0,1] → Rn be given by α(t) = q + (t − 1)(q − p) then α(0) = p
and α(1) = q and α is a parametrization of the line segment. We have

L(α) =
∫ 1

0
||q − p||dt = ||q − p||

∫ 1

0
dt = ||q − p||.

Let β : [0,1] :→ Rn be any curve such that β(0) = p and β(1) = q. Let v =
(q − p)/||q − p|| (hence v is constant unit vector). We have

∫ 1

0
β′(t)·v dt =

∫ 1

0
(β(t)·v)′ dt = β(1)·v−β(0)·v = (q−p)·v = ||q−p|| = L(α).

and, using the Schwarz inequality

∫ 1

0
β′(t) · v dt ≤

∫ 1

0
||β′(t)|| ||v||dt =

∫ 1

0
||β′(t)||dt = L(β).

Hence L(β) ≥ L(α) for any other curve β and α is a minimizer according to the

new definition of distance.

Definition 1.7 Let α : I → Rn be a C1 curve and let t0 ∈ I. The arclength function

relative to t0 is defined by:

s(t) =
∫ t
t0

||α′(t)||dt.

In other words the arclength function measures (up to sign) the length of the

curve segment between α(t0) and α(t).

It is clear the the arclength function is differentiable and we have

s′(t) = ||α′(t)|| ≥ 0

if we assume that α is a regular curve then s(t) is a differentiable strictly increa-

sing function and we have a differentiable inverse t(s) : J → I for some interval

J ⊂ R. It is then possible to consider the new parametrization of α given by

β : J → Rn:

β(s) = α(t(s)).

The chain rule for the derivative of a function then shows that

β′(s) = α′(t(s))t′(s) = 1

s′(t)
α′(t(s)) = 1

||α′(t(s))||α
′(t(s))

so that ||β′(s)|| = 1. In other words:
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Proposition 1.5 If α : I → Rn is a regular curve of class C1, then it is possible

to find a parametrization β of α such that ||β′|| = 1. We say that α is then

parametrized by arclength.

The parametrization by arclength has the property that the length of the curve

segment between two points β(s) and β(s0), with s > s0 is s − s0. If I = [a, b] we

will often assume that t0 = a so that J = [0, L] where L is the length of the curve

α.

Example 1.9 Consider the circle α(t) = (x0 + r cos(t),y0 + r sin(t)) for t ∈
[0,2π]. Then α′(t) = (−r sin(t), r cos(t)) and ||α′(t)|| = r . Hence

s(t) =
∫ L

0
r dt = r t

so that t(s) = s
r and β(s) = (x0 + r cos( sr ),y0 + r sin( sr )) for s ∈ [0,2π].

Example 1.10 Consider the cycloid α(t) = (t − sin(t),1− cos(t)) . Then α′(t) =
(1− cos(t), sin(t)). If t ∈ [0,2π] then α is regular in the interior of the interval

and we have

s(t) =
∫ t

0

√
2− 2 cos(t)dt =

∫ t
0

2

√
1− cos(t)

2
dt =

=
∫ t

0
2 sin(

t

2
)dt = 4(1− cos(

t

2
)).

The length of the curve, in the interval [0,2π] is then equal to 8, and t(s) =
2 arccos(1− s

4
) for s ∈ [0,8].

In general it is difficult to compute the arclength function for a given function,

this requires finding a primitive and an inverse. The importance of the arclength

is mainly theoretical. In some applications it is possible to use a numerical

approximation.

The Frenet frame

From now on we will only consider curves in R3. There is an n-dimensional

analogue for all the statements in this section, and the proofs are substantially

the same.

Let α : I → R3 be a 2-regular (or bi-regular) curve. We normalize the tangent

vector α′(t) in order to get a unit vector (this is automatic if α is parametrized

by arclength, bur here we are not assuming that). We let

t = 1

||α′(t)||α
′(t)
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then

dt

dt
= d

dt

(
1√

α′(t) ·α′(t)
α′(t)

)
=

= 1

||α′(t)||α
′′(t)− 1

2

2(α′(t) ·α′′(t))
(α′ ·α′)32

α′(t) =

= 1

||α′(t)||α
′′(t)− α

′(t) ·α′′(t)
||α′(t)||3 α′(t) =

= 1

||α′(t)||

(
α′′(t)− α

′(t) ·α′′(t)
||α′(t)||2 α′(t)

)
(1.6)

and we define the normal vector by

n = 1

||dtdt ||
dt

dt
|.

Then n is a unit vector (here we are using the fact that α is bi-regular) and, since

t has constant length, it follows from Remark 1.1 that t and n are orthogonal.

We define the bi-normal vector by

b = t ×n

where × denotes the cross product. Since t and n are unit and orthogonal we

have that b is a unit vector orthogonal to the plane spanned by t and b

Definition 1.8 Let α : I → R3 be a bi-regular curve. The orthonormal frame

{t,n, b} is the Frenet frame of α(t).

The Frenet frame is a family of positive orthonormal basis of R3 parametrized

by the points of α. Let ω12 = ||dtdt ||. Then, by definition

dt

dt
=ω12n

Since b has constant length we have
db
dt ⊥ b. Since b · t = 0 it follows from

Remark 1.1 that

db

dt
· t = −dt

dt
· b = 0

hence e
db
dt is parallel to n and we let

db

dt
=ω32n

since t ·n = b ·n = 0 we obtain similarly

dn

dt
· t = −ω12,

dn

dt
· b = −ω32.
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Summing up we obtained the Frenet’s equations



dt
dt =ω12n
dn
dt = −ω12 t −ω32 b
db
dt =ω32n

or, in matrix form



dt
dt

dn
dt

db
dt


 =




0 ω12 0

−ω12 0 −ω32

0 ω32 0


 ·



t

n

b


 .

The matrix

Ω =




0 ω12 0

−ω12 0 −ω32

0 ω32 0




is skew-symmetric and this fact will be important later. The matrix Ω depends

on the parametrization of α(t) but if we let

k(t) = ω12

||α′(t)|| , τ(t) = ω32

||α′(t)||
the functions k(t), the curvature of α and τ(t), the torsion of α, then these

functions are independent on the parametrization (we will prove it later). Note

that, since ω12 > 0, the curvature k(t) is always positive. From (1.6) we derive

α′′(t) = ||α′(t)|| dt
dt
+ α

′(t) ·α′′(t)
||α′(t)||

1

||α′(t)||α
′(t) =

= ||α′(t)||2 k(t)n+ α
′(t) ·α′′(t)
||α′(t)|| t =

= ||α′(t)||2 k(t)n+ ||α′(t)||′ t. (1.7)

i.e. the decomposition of the acceleration of α into tangent and normal compo-

nent. if the curve is parametrized by arclength then wee see that the curvature

measures the variation of the velocity vector.

The curvature and the torsion of α will be the key quantities needed to under-

stand the structure of α. We will now derive more efficient formulas to compute

them.

Lemma 1.4 Let x,y ∈ Rn be nonzero vectors. Then

||x ×y||2 = ||x||2 ||y||2 −
(
x ·y

)2
.
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Proof:

||x ×y||2 = ||x||2 ||y||2 sin(x̂y)2 = ||x||2 ||y||2 (1− cos(x̂y)2) =

= ||x||2 ||y||2 (1−
(

x ·y
||x|| ||y||

)2

) = ||x||2 ||y||2 −
(
x ·y

)2
.

Proposition 1.6 Let α : I → R be a bi-regular curve. Then the curvature of α(t)

is given by the following formula.

k(t) = ||α′(t)× α′′(t)||
||α′(t)||3 .

Proof: We have, using (1.6)

||dt
dt
||2 = dt

dt
· dt
dt

= 1

||α′(t)||2
(
α′′(t)− α

′(t) ·α′′(t)
||α′(t)||2

)
·
(
α′′(t)− α

′(t) ·α′′(t)
||α′(t)||2

)
=

= 1

||α′(t)||2

(
α′′(t) ·α′′(t)− 2

(α′(t) ·α′′(t)2
||α′(t)||2 + (α

′(t) ·α′′(t)2
||α′(t)||2

)
=

= 1

||α′(t)||2

(
||α′′(t)||2 − (α

′(t) ·α′′(t)2
||α′(t)||2

)
=

= 1

||α′(t)||4
(
||α′′(t)||2 ||α′(t)||2 − (α′(t) ·α′′(t)2

)
=

= 1

||α′(t)||4 ||α
′(t)×α′′(t)||2

Hence

||dt
dt
|| = 1

||α′(t)||2 ||α
′(t)×α′′(t)|| (1.8)

and we can conclude using the definition of ω12.

Note that this formula makes sense also if the curve is only 1-regular.

Corollary 1.2 Let α : I → R be a bi-regular curve. Then the curvature of α(t)

does not depend on the parametrization of α.

Proof: Let β(s) = α(φ(s)) be a different parametrization of α. Then

β′(s) = α′(φ(s))φ′(s), β′′(s) = α′′(φ(s))φ′(s)2 +α′(φ(s))φ′(s).
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Then

k(s) = ||β′(s)× β′′(s)||
||β′(s)||3 = ||φ

′(s)3 (α′(φ(s))× α′′(φ(s))) ||
||α′(φ(s))||3φ′(s)3 =

= ||α′(φ(s))×α′′(φ(s))||
||α′(φ(s))||3 .

Now we want to derive a similar expression for the torsion of α:

Proposition 1.7 Let α : I → R be a bi-regular curve. Then the torsion of α(t) is

given by the following formula.

τ(t) = α′ ×α′′′ ·α′′
‖α′(t)×α′′(t)‖2

.

Proof: Using (1.7) we have

α′(t)×α′′(t) = ||α′(t)|| t ×
(
||α′(t)||2 k(t)n+ ||α′(t)||′ t

)
= ||α′(t)||3 k(t)b.

And

b = 1

||α′(t)×α′′(t)|| α
′(t)×α′′(t).

Then, using the fact that the cross product of two parallel vectors vanishes,

db

dt
= 1

||α′(t)×α′′(t)|| α
′(t)×α′′′(t)+

(
1

||α′(t)×α′′(t)||

)′
α′(t)×α′′(t).

And, since the triple product of three vectors that lie on the same plane is zero

(and using (1.6),(1.8)):

db

dt
·n = 1

||α′(t)×α′′(t)|| α
′(t)×α′′′(t) ·n =

= 1

||α′(t)×α′′(t)|| α
′(t)×α′′′(t) ·n =

= 1

||α′(t)×α′′(t)|| α
′(t)×α′′′(t) · 1

||dtdt ||
dt

dt
=

= 1

||α′(t)×α′′(t)|| ||dtdt ||
α′(t)× α′′′(t) · 1

||α′(t)||α
′′(t) =

= ||α′(t)||2
||α′(t)×α′′(t)|| ||2 α

′(t)×α′′′(t) · 1

||α′(t)|| α
′′(t) =

= ||α′(t)||
||α′(t)×α′′(t)|| ||2 α

′(t)×α′′′(t) ·α′′(t).
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we can conclude using the definition of ω32.

Example 1.11 The straight line: α(t) = (x0+lt, y0+mt,z0+nt)where (x0, y0, z0),

(l,m,n) ∈ R3 are constant. We have α′(t) = (l,m,n) and α′′(t) = (0,0,0) hence

the curve is not bi-regular and we cannot use the formula for the torsion of α. For

the curvature we get k(t) = 0.

Proposition 1.8 Let α : I → R3 be a regular curve. Then k(t) = 0 if and only if

α is a straight line.

Proof: For one of the implications we can use Example 1.11. If α is regular we

may assume that α is parametrized by arclenght. Then the norm of t = α′(t)
is constant and α′′(t) is orthogonal to t. Since the curvature vanishes we have

α′(t) × α′′(t) = 0 and α′′(t) is parallel to α′(t). Since α′(t) ≠ 0 this is only

possible if α′′(t) = 0. Hence α′(t) = (l,m,n) for some constants l,m,n and if

we integrate once more we get the equation of a line. the curvature

Example 1.12 The α(t) = (x0+r cos(t),y0+r sin(t),0) be a circle in the xy pla-

ne inR3. We haveα′(t) = (−r sin(t), r cos(t),0), α′′(t) = (−r cos(t),−r sin(t),0)

and α′′′(t) = −α′(t). Hence α′(t)× α′′(t) = (0,0, r 2) and ||α′(t)|| = r and the

curvature of α is constant:

k(t) = r
2

r 3
= 1

r
.

To compute the torsion we can use the properties of the triple product:

α′(t)×α′′′(t) ·α′′(t) = −α′(t)×α′′(t) ·α′′′(t) = 0.

Hence

τ(t) = 0.

Remark 1.2 Let α : I → R3 be a bi-regular curve. Then the two planes spanned

by {t,n} and {α′(t),α′′(t)} coincide. In fact we have that t is parallel to α′(t)
while α′′(t) (see (1.7)) is a linear combination of t and n. Since b is a unit vector

perpendicular to that plane we must have

b = ± 1

||α′(t)×α′′(t)||α
′(t)×α′′(t).

We have

α′(t)×α′′(t) = ||α′(t)||t × (||α′(t)||2 k(t)n+ ||α′(t)||′ t) = ||α′(t)||3 k(t)b.
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Since k(t) > 0 we have then

b = ± 1

||α′(t)×α′′(t)||α
′(t)×α′′(t).

Proposition 1.9 Let α : I → R3 be a bi-regular curve. Then τ(t) = 0 if and

only if α is a plane curve.

Proof: Since the curve α is regular we may assume that α is parametrized by

arclength. Suppose first that τ(t) = 0. From

the Frenet equation we get
db
dt = 0 and b(t) =

b is constant. Let t0 ∈ I and

α(t)
α(t0)

b

fig. 1.10

F(t) =
(
(α(t)−α(t0)) · b

)
.

Then

F ′(t) = d

dt

(
(α(t)−α(t0)) · b

)
=

= α′(t) · b = t · b = 0

so that F(t) = F(t0) = 0. Hence, for every t, the vector α(t) − α(t0) lies in a

plane orthogonal to b (Fig. 1.10). In particular α is a plane curve. Suppose now

that, for every t, α(t) lies in some plane. Denote by v a vector orthogonal to that

plane. Then

0 = d

dt

(
(α(t)−α(t0)) · v

)
= α′(t) · v

taking another derivative we have α′′(t) · v = 0. Hence v is orthogonal to the

plane spanned by {α′(t),α′′(t)} but (see Remark 1.2) this implies that v is pa-

rallel to b(t). Hence b(t) = b is constant. From the Frenet equations it follows

that τ(t) = 0.

Example 1.13 If the curve is not bi-regular a singularity in the Frenet frame may

occur at the points where k = 0. Let

α(t) =




(t,0, e
− 1

t2 ) t < 0

(0,0,0) t = 0

(t, e
− 1

t2 , ) t > 0

The curve is not bi-regular at t = 0, the torsion is zero in an open dense set but

the curve lies in the xz plane for t < 0 and in the xy plane for t > 0.

The fact that the curvature is constant characterizes the circle among the plane

curves:
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Proposition 1.10 Let α : I → R3 be a bi-regular plane curve such that k(t) = k
is constant. Then the trace of α is a portion of a circle.

Proof: Assume that the curve is parametrized by arclength and let n be the

normal vector in the Frenet frame. Let

F(t) = α(t)+ 1

k
n.

Since α is a plane curve the torsion τ is zero and we have

F ′(T) = t + 1

k
(−kt) = 0.

Hence F(t) = p for some point p ∈ R3, then

||α(t)− p|| = ||1
k
n|| = 1

k

and α(t) is a point of the circle of radius
1
k centered in p.

Example 1.14 The α(t) = (r cos(t), r sin(t), at) be a cylindrical helix in R3 .

This is a bi-regular curve and we have α′(t) = (−r sin(t), r cos(t), a), α′′(t) =
(−r cos(t),−r sin(t),0) andα′′′(t) = (r sin(t),−r cos(t),0). Henceα′(t)×α′′(t) =
(ar sin(t),−ar cos(t), r 2) and ||α′(t)|| =

√
a2 + r 2. The curvature of α is con-

stant:

k(t) = r

r 2 + a2
= 1

r
.

Since α′(t)× α′′(t) ·α′′′(t) = −ar 2. the torsion of α is also constant

τ(t) = − a

r 2 + a2
.

For the helix we have that v = (1,0,0) is a constant vector such that v ·α′(t) =
a is also constant. We can use this fact to generalize the definition:

Definition 1.9 A bi-regular curve α : I → R3 is a generalized helix if the tangent

vector α′(t) makes a constant angle with a fixed unit vector v, i.e. t · v = cos(θ)

is constant.

Proposition 1.11 A bi-regular curve α : I → R3 is a generalized helix if and

only if the ratio τ/k is constant.
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Proof: Suppose first that α(t) : I → R3 is a generalized helix parametrized by

arclength. Then t ·v = cos(θ) and, taking the derivative, k(t)n ·v = 0. Since the

curvature of α is positive we have

n · v = 0 (1.9)

and v belongs to the plane spanned by t and b. Since the angle between v and t

is θ we have that b · v = ± sin(θ). Taking the derivative of (1.9) we obtain

0 = d

dt
(n · v) = −(k(t) t + τ(t)b) · v = − cos(θ)k(t)± sin(θ)τ(t).

It follows that τ/k = ± cot(θ) is constant.

For the converse, let θ be an angle such that cot(θ) = τ/k. Let

v = cos(θ) t − sin(θ)b.

Then

d

dt
v = cos(θ)k(t)n− sin(θ)τ(t)n = k(t)(cos(θ)− sin(θ)

τ(t)

k(t)
)n = 0.

So that v is a constant unit vector and t · v = cos(θ) is constant.

We conclude this section with the so called local canonical form. Assume that

α : [0, L] → R3 is a C3 bi-regular curve parametrized by arclength such that

α(t0) = (0,0,0). We can write

α(t) = α(t0)+ tα′(t0)+
t2

2
α′′(t0)+

t3

6
α′′′(t0)+ o((t − t0)3)

where, for t close to t0,

lim
t→t0

o((t − t0)3)
(t − t0)3

= 0.

We have α(t0) = 0 and

α′(t0) = t(t0),

α′′(t0) = k(t0)n(t0),

α′′′(t0) = k
′(t0)n(t0)− k(t0)

(
k(t0) t + τ(t0)b

)
.

Hence

α(t) =
(
t − 1

6
k(t0)

2 t3
)
t +

(
1

2
k(t0) t

2 + 1

6
k′(t0) t

3

)
n

−
(

1

6
k(t0)τ(t0) t

3

)
b + o(t3).

Using this formula it is possible to derive some information about the local

behavior of the curve near t = t0, in particular with respect to some planes:
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Definition 1.10 Let α : I → R3 be a bi-regular curve. The plane spanned by

(i) n and b is the normal plane at α(t)

(ii) t and b is the rectifying plane at α(t)

(iii) t and n is the osculating plane at α(t).

From the local canonical form we see that the curve α, for t close enough to t0

(i) stays on one side of the rectifying plane (since k > 0)

(ii) crosses the osculating plane in the direction of b (resp −b) if the torsion

is negative (resp. positive)

Global results

We will now prove three theorems that show the importance of the curvature

and the torsion in the theory of space curves. First note that if x(t) is a C1 family

of vectors in R3 depending on time and fA : R3 → R3 is a linear map then, since

A does not depend on t,

d

dt
fA(x(t)) =

d

dt
A · x(t) = A · x′(t) = fA(x′(t)).

Theorem 1.1 Let α : I → R3 be a bi-regular curve and let f : R3 → R3 be an

orientation preserving isometry. Let β(t) = f (α(t)). Then β and α have the

same curvature and torsion at the corresponding points.

Proof: Any isometry is the composition of a linear map and a translation. If f

is a translation then the result is obvious since the components of α and β only

differ by a constant and the curvature and the torsion are computed by taking

derivatives of α and β. Hence it is enough to consider the case f = fA where

A ∈ O(3) is an orthogonal matrix with positive determinant. We assume that α

is parametrized by arclength. Then

fA(tα) = fA(α′(t)) =
d

dt
fA(α(t)) =

d

dt
β(t) = β′(t).

Since fA is an isometry β′(t) has unit length and

fA(tα) = tβ.

Similarly

fA(
d

dt
tα) =

d

dt
tβ
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since the two vectors have the same norm we have

fA(nα) = nβ.

The map fA is an orientation preserving isometry. Hence

{fA(tα), fA(nα), fA(bβ)} = {tβ, nβ, fA(bα)}

is a positive orthonormal basis. It follows that fA(bα) = bβ and fA maps the

Frenet frame of α into the Frenet frame of β at every point. We have

dtβ

dt
= d

dt
fA(tα) = fA

(
dtα
dt
)

)
= fA(kα nα) = kα nβ.

Comparing with the Frenet’s equations for β we obtain kα = kβ.

dbβ

dt
= d

dt
fA(bα) = fA

(
dbα
dt

)
= fA(ταnα) = ταnβ.

Comparing with the Frenet’s equations for β we obtain τα = τβ.

Hence curvature and torsion are invariant under isometries. Note that if fA is

orientation reversing we still have fA(tα) = tβ and fA(nα) = nβ but fA(bα) =
−bβ hence the curvature of β is still the same as the curvature of α but the

torsion of β and the torsion of α differ by the sign.

We prove a ’converse’ to the previous theorem:

Theorem 1.2 Let α,β : I → R3 be two bi-regular curves such that ||α′(t)|| =
||β′(t)||, kα(t) = kβ(t) and τα(t) = τβ(t) for every t ∈ I. Then there exists an

orientation preserving isometry f : R3 → R3 such that β(t) = f (α(t)).

Proof: We fix t0 ∈ I. Then {tα(t0),nα(t0), bα(t0)} {tβ(t0),nβ(t0), bβ(t0)} are

two positive orthonormal bases of R3 and we can find an orientation preserving

isometry fA : R3 → R3 that maps one onto the other. We, for every t ∈ I, three

families of vectors depending on t:

x(t) = fA(tα(t)), y(t) = fA(nα(t)), z(t) = fA(bα(t).

We have

dx(t)

dt
= d

dt
fA(tα(t)) = fA(

d

dt
tα(t)) = fA(kα(t) ||α′(t)||nα(t)) =

= kα(t) ||α′(t)||f (nα(t)) = kβ(t) ||β′(t)||y(t)

dy(t)

dt
= d

dt
fA(nα(t)) = fA(

d

dt
nα(t)) =

= fA(−kα(t) ||α′(t)|| tα(t)− τα(t) ||α′(t)||bα(t)) =
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= −kα(t) ||α′(t)||fA(tα(t))− τα(t) ||α′(t)||fA(bα(t)) =
= −kβ(t) ||β′(t)||x(t)− τβ(t) ||β′(t)||z(t)

dz(t)

dt
= d

dt
fA(bα(t)) = fA(

d

dt
bα(t)) = fA(τα(t) ||α′(t)||nα(t)) =

= τα(t) ||α′(t)||f (nα(t)) = τβ(t) ||β′(t)||y(t)

Hence {x(t),y(t), z(t)} satisfies a system of linear vector ODE’s with initial con-

ditions x(t0) = tβ(t0),y(t0) = nβ(t0), z(t0) = bβ(t0). By the Cauchy theorem

x(t),y(t), z(t) is the unique solution of the system and it is defined in the whole

interval I. On the other hand we have that tβ(t),nβ(t),nβ(t) is another solution

of the same equations with the same initial condition. We can conclude that

tβ(t) = x(t) = fA(tα(t)), nβ(t) = y(t) = fA(nα(t)), nβ(t) = z(t) = fA(bα(t)

and the isometry fA maps the Frenet frame of α into the Frenet frame of β for

any t. In particular the tangent vector α′(t) to α is mapped into the tangent

vector β′(t) to β. Let

γ(t) = fA(α(t))+ β(t0)− fA(α(t0)).

Then γ is obtained by applying to α the isometry fA and a translation defined by

the vector β(t0) − fA(α(t0)). Hence γ and α differ by an orientation preserving

isometry. We have

γ′(t) = d

dt
fA(α(t)) = fA(α′(t)) = β′(t)

with γ(t0) = β(t0). Hence γ(t) = β(t).

Corollary 1.3 A bi-regular curve α : I → R3 is an helix if and only if the

curvature and the torsion are constant.

Proof: Given α it is possible to find an helix that has the same curvature and

torsion. Hence the two curves are isometric and α is an helix.

This shows that once the curvature and the torsion of a bi-regular curve are

given then the curve is uniquely determined up to isometries. The next result

shows that it is possible to prescribe the curvature and the torsion arbitrarly:
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Theorem 1.3 Let k, τ : I → R be two smooth functions such that k(t) > 0 for

every t ∈ I. Given t0 ∈ I, p ∈ R3 and a positive orthonormal basis {v1, v2, v3}
of R3 there exists a bi-regular curve α : I → R3 such that

(i) α(t0) = p
(ii) ||α′(t)|| = 1 for every t ∈ I

(iii) t(t0) = v1, n(t0) = v2, b(t0) = v3

(iv) kα(t) = k(t), τα(t) = τ(t) for every t ∈ I

Proof: The first three parts of the statement are in some sense obvious, we can

always parametrize α with the arclength, apply an isometry fA such that the

Frenet frame of α at t = t0 coincides with {v1, v2, v3} and then a translation that

moves α(t0) in p. The main thing here is the statement about the curvature and

the torsion.

Let us consider the system of vector ODE’s in the unknowns x(t),y(t), z(t)




dx(t)
dt = k(t)y(t)
dy(t)
dt = −k(t)x(t)− τ(t) z(t)
dz(t)
dt = τ(t)y(t)

with initial conditions x(t0) = v1,y(t0) = v2, z(t0) = v3 This is a system of li-

near ODE’s and by the Cauchy theorem there is a unique solution x(t),y(t), z(t)

defined in the whole interval I. Let

α(t) = p +
∫ t
t0

x(t)dt.

It is clear that α(t0) = p. Now we want to prove that α is parametrized by

arclength. Let

Ω(t) =




0 k(t) 0

−k(t) 0 −τ(t)
0 τ(t) 0


 , A(t) =



x(t)

y(t)

z(t)


 .

Note that A(t) is a 3 × 3 matrix whose rows are determined by the components

of the vectors x(t), y(t), z(t). Then we can write the system in matrix form as

A′(t) = Ω(t) ·A(t).

We know that A(t0) is an orthogonal matrix with positive determinant (in fact

for t = t0 the rows of A coincide with v1, v2, v3). If we prove that A(t) ∈ O(3)
for all t then x(t), y(t), z(t) will be an orthonormal basis of R3, in particular
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||α′(t)|| = ||x(t)|| = 1. Let B = At · A. Then, using the fact that Ω is skew-

symmetric

B′ =
(
At ·A

)′
= At′ ·A+At ·A′ = A′t ·A+At ·A′ =

= (Ω ·A)t ·A+At · (Ω ·A) = At ·Ωt ·A+At ·Ω ·A =
= −At ·Ω ·A+At ·Ω ·A = 0

Hence B(t) = B(t0) = I and A(t) is orthogonal. Note that the determinant

det(A(t)) is a continuous function of the entries of A(t). Since this determi-

nant can only be equal to ±1 and it is equal to 1 at t = t0 we can conclude that

A(t) is always orientation preserving. Now we know that α(t) is parametrized

by arclength and α′(t) = x(t) = t. Hence

dt

dt
= dx(t)

dt
= k(t)y(t)

since k(t) > 0 and y(t) is a unit vector it follows that y(t) = n and kα = k.

Since we have positively oriented frames we may conclude that b = z(t) and

db

dt
= dz(t)

dt
= τ(t)y(t) = τ(t)n.

In particular τα = τ.



Surfaces

A regular surface in R3 is a subset of R3. Remember that a curve is a map, not

a set. Hence we are taking a different approach here. The reason is that if we

consider sets instead of maps it is easier to prove global results. Our first goal is

to use the tools of calculus to study the surfaces, the first tool is the differential

of a function:

Definition 2.1 Let U ⊂ Rn be an open subset and f : U → Rm be a smooth map.

If p ∈ U then the differential of f at p is the linear map df(p) : Rn → Rm

associated, with respect to the standard basis, to the matrix

df(p) =




∂f1

∂x1
. . .

∂f1

∂xn
...

...
∂fn
∂x1

. . .
∂fn
∂xn




Now we give the definition of regular surface. The idea is the we smoothly de-

form and patch together open subsets of R2. There is a technical part in the

definition that is necessary to avoid singularities like corners or cuspidal points

or the lack of a tangent plane.

Definition 2.2 A regular surface is a subset S ⊂ R3 such that for every point p ∈ S
there exists a neighborhood V of p in R3 and a surjective map X : U → V ∩ S
defined in an open set U ⊂ R2 such that

(i) X is differentiable, i.e. X(u,v) = (x(u,v),y(u,v), z(u,v)) where x,y, z

are smooth functions U → R.

(ii) X is an homeomorphism, i.e. X has a continuous inverse X−1 : V ∩ S → U .

(iii) The differential dX(q) : R2 → R3 is injective at every point q ∈ U .

The map X is called local parametrization near p

Recall that a function V ∩ S → R2 of R3 is continuous if it is the restriction of

a continuous function defined in an open set containing V ∩ S. If X : R2 → R3,
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X(u,v) = (x(u,v),y(u,v), z(u,v)) is differentiable then the differential of X

at q is the linear map R2 → R3 defined, with respect to the standard bases of R2

and R3, by the matrix

dX(q) =




∂x
∂u(q)

∂x
∂v (q)

∂y
∂u (q)

∂y
∂v (q)

∂z
∂u(q)

∂z
∂v (q)




the differential is injective if and only if dX(q) has rank 2, i.e. the two column

vectors in dX(q) are linearly independent. This is equivalent to the fact that at

least one of the determinants of the 2× 2 minors of dX(q)
(
∂x
∂u(q)

∂x
∂v (q)

∂y
∂u (q)

∂y
∂v (q)

)
, =

(
∂y
∂u (q)

∂y
∂v (q)

∂z
∂u(q)

∂z
∂v (q)

)
,

(
∂x
∂u(q)

∂x
∂v (q)

∂z
∂u(q)

∂z
∂v (q)

)

is different from zero.

Example 2.1 Let f : U → R be a smooth function, where U ⊂ R2 is an open set.

Let

S = {(x,y, z) ∈ R3 : z = f (x,y)}

be the graph of f . Consider the function X : U → R3

X(u,v) = (u,v, f (u,v)).

By definition, X(U) = S. The function X is differentiable, injective and surjective

on S. If (x,y, z) ∈ S then X−1(x,y, z) = (x,y), a continuous map. Moreover

dX(u,v) =




1 0

0 1
∂f
∂u

∂f
∂v




and this matrix has constant rank 2. Hence S is a regular surface, covered by just

one coordinate neighborhood. This shows that planes (for f (x,y) = ax+by+c),
the paraboloid (for f (x,y) = x2 + y2), the hyperboloid (for f (x,y) = x2 − y2)

are regular surfaces.

Example 2.2 Fix r > 0 and let S2(r) = {(x,y, z) ∈ R3 : x2 +y2 +z2 = r 2} be the

sphere of radius r centered in the origin. Let U = {(u,v) ∈ R2 : u2 + v2 < r 2}
and consider the map

X1(u,v) = (u,v,
√
r 2 −u2 − v2).

The image of X1 is an open subset of S2(r) (the upper hemisphere) and, since we

are showing that it is the graph of the smooth function f (x,y) =
√
r 2 −u2 − v2
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we have that the definition of regular surface is satisfied by the upper hemisphere.

If we consider

X2(u,v) = (u,v,−
√
r 2 −u2 − v2)

then we have that S2(r) minus the circle lying in the xy plane, satisfies the de-

finition of regular surface. To prove that S2(r) is a regular surface we have to

cover it with four more parametrization:

X3(u,v) = (u,
√
r 2 −u2 − v2, v), X4(u,v) = (u,−

√
r 2 −u2 − v2, v)

that cover the points with y > 0 and y < 0, and (we still have two points (±1,0,0)

missing)

X5(u,v) = (
√
r 2 −u2 − v2, u, v), X4(u,v) = (−

√
r 2 −u2 − v2, u, v).

Hence, locally, the sphere is always the graph of a function defined in one of the

coordinate planes. This is a general fact, to show it we will use a fundamental

tool of the multivariate calculus:

Theorem 2.1 [Inverse function theorem] Let U ⊂ Rn be an open subset and

f : U → Rn be a smooth map. If dF(p) is an isomorphism then f is a local

diffeomorphism.

In particular it is possible to find an open neighborhood U ′ of p such that

f : U ′ → f (U ′) is a diffeomorphism (i.e. it is smooth with a smooth inverse).

In the case of a function of one variable this just means that a differentiable

function f : R → R such that f ′(x0) ≠ 0 (i.e. a function that is monotone close

to x0) is invertible and has a smooth inverse.

Example 2.3 The function f : R2 → R2 defined by

f (x,y) = (x2 −y2,2xy)

is not injective (we have (f (−x,−y) = f (x,y)) but

df(x,y) =
(

2x −2y

2y 2x

)

has determinant 4(x2 + y2) hence every point different from the origin has a

neighborhood U such that f restricted to U has a smooth inverse.

Proposition 2.1 Let S be a regular surface. If p ∈ S then there is a neighbo-

rhood V of p in S such that V is the graph of a function.
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Proof: Let p ∈ S and let X : U → S be a local parametrization and let q = X−1(p).

Assume, for example, that

det

(
∂x
∂u(q)

∂x
∂v (q)

∂y
∂u (q)

∂y
∂v (q)

)
≠ 0

(otherwise we use another pair

of coordinates). And define the

functionφ : U → R2,φ(u,v) =
π◦X = (x(u,v),y(u,v)), whe-

re π is the projection on the

xy coordinate plane in R3.

Then dφ(q) is an isomorphi- U ′ φ(U ′)

S

π X̃φ

X

fig. 2.1

sm and we have a neighborhood

U ′ of q such that φ, restric-

ted to U ′, has a smooth inver-

se: ψ(x,y) = (u(x,y), v(x,y)). Then X̃ = X ◦ ψ : φ(U ′) → S is a local

parametrization in a neighborhood of p and it is given by

X̃(x,y) = (x(u(x,y), v(x,y),y(u(x,y), v(x,y)), z(u(x,y), v(x,y)) =
= (x,y, z(u(x,y), v(x,y))

i.e. S is locally the graph of a function.

In general it is not easy to prove directly that a function X is an homeomor-

phism. We would like to have tools that help us constructing examples without

having to check it every time. We need another general result:

Definition 2.3 Let f : V → R where V is an open subset of Rn. A number a ∈ R
is a regular value for f if f−1(a) ≠ ∅ and, for every p ∈ f−1(a), the gradient

∇f (p) is non zero.

Theorem 2.2 [Implicit function theorem] Let V ⊂ Rn be an open subset and

f : V → R be a smooth map. If a ∈ R is a regular value for f . If p =
(x1, . . . , xn) ∈ f−1(a) and

∂f
∂xi
(p) ≠ 0 then there exists a neighborhood W

of p, a neighborhood U of πi(p) = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ Rn−1 and a

smooth function g : U → Rn such that

f−1(a)∩W = {(x1, . . . , xi−1, g(x1, . . . , xi−1, xi+1, . . . , xn), xi+1, . . . , xn)}

for (x1, . . . , xi−1, xi+1, . . . , xn) ∈ U .
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Proposition 2.2 Let f : V ⊂ R3 → R be a smooth function. If a ∈ R is a regular

value for f then f−1(a) is a regular surface in R3.

Proof: This is an immediate consequence of the implicit function theorem. In

fact we have that, locally, f−1(a) is the graph of a smooth function, i.e. a regular

surface.

Example 2.4 The sphere S2(r) can be defined as f−1(r 2), where f (x,y, z) =
x2 +y2 + z2. The gradient of f is the vector

∇f = 2(x,y, z)

and if p§2(r), with r > 0, this vector is nonzero. In fact we have seen before that

the points p = (x,y, z) with x > 0 belong to the graph of the function X1...

Example 2.5 The torus T 2 is the surface

T 2 = {(x,y, z) ∈ R3 : (
√
x2 + y2 − a)2 + z2 = r 2}.

generated by a circle of radius r in the

xz plane, centered at (a,0,0) (where

a > r > 0), rotated around the z axis.

To show that T 2 is a regular surface we

fig. 2.2

consider the function

f (x,y, z) = (
√
x2 +y2 − a)2 + z2.

and we have to prove that r 2 is a regu-

lar value for f . In fact f is a smooth

function and at least one of the partial

derivatives

∂f

∂x
=

2x(
√
x2 +y2 − a)√
x2 + y2

,
∂f

∂y
=

2y(
√
x2 +y2 − a)√
x2 +y2

∂f

∂z
= 2z

does not vanish at f−1(r 2). Hence r 2 is a regular value for f and T 2 is a regular

surface.

Example 2.6 The torus is a special case of rotational surface. Let α : [a, b] → R3,

α(t) = (f (t),0, g(t)) be a regular curve with no self-intersections (the curve is

allowed to be closed i.e. α(a) = α(b)) such that f (t) > 0 (i.e. the curve does not

intersect the z axis). Then we define

S = {(f (v) cos(u), f (v) sin(u), g(v) ∈ R3 : v ∈ (a, b),u ∈ R}.
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It is possible to cover S with two coordinate neighborhoods (with u ∈ (0,2π) and

(π,3π) respectively) and prove that S is a regular surface. We will not give the

details. Note that, from the fact that α is assumed to be injective, it follows that

(u,v) can be uniquely determined once (x,y, z) ∈ S is given.

If α(t) = (a cosh(t),0, at) where a is a positive constant, the resulting surface

is called catenoid. The curve α is called catenary and it is related to the shape

taken by a chain hanging with two fixed ends.

Example 2.7 The helicoid is the surface obtained by considering all the lines

joining a point of a circular helix

(a cos(t), a sin(t), bt)

with the point (0,0, bt) of the z axis

having the same height:

S = {(av cos(u),av sin(u), bu}

Where u ∈ (0,2π) and v ∈ R. it is

possibile to prove that S is a regular

surface.

fig. 2.3

The tangent space

The main tool we used studying the theory of curves was the Frenet frame. At

each point of a bi-regular curve α in R3 we have a positive orthonormal basis of

R3. In other words we attach at every point of α a linear space spanned by these

vectors and we study how the basis of this space changes along the curve. We

want to do something similar for the surfaces. The first step will be the definition

of tangent space. In the case of a curve α this was the space spanned by α′ and

it was clear that this was independent on the chosen parametrization of α. Here

we have to work a little more..
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U1 U2U

S

πφ1 φ2

X1 X2

fig. 2.4

Suppose that, in a neighborhood of a point p ∈ S we have two different parame-

trizations X1 : U1 → S and X2 : U2 → S. Then W = X1(U1) ∩ X2(U2) ≠ ∅ and we

have a map

X12 = X−1
2 ◦X1 : X−1

1 (W)→ X2(W).

From the definition of S it follows that X12 is an homeomorphism. We know that,

locally, S is the graph of a smooth function f defined, for example, in an open

subset of the xy plane. We have already used the implicit function theorem to

show that the maps φ1 = π ◦ X1 and φ2 = π ◦ X2 are local diffeomorphisms

close to X−1
1 (p) and X−1

2 (p) respectively. It follows that X12 = φ−1
2 ◦ φ1 is a

diffeomorphism close to X−1
1 (p).

Proposition 2.3 Let S be a regular surface, p ∈ S and X1 : U1 → S, X2 : U2 → S
two local parametrizations near p. Then the map

X−1
2 ◦X1 : X−1

1 (X1(U1)∩ X2(U2))→ X−1
2 (X1(U1)∩X2(U2))

is a diffeomorphism.

This is an important fact as it shows that ’smooth’ objects defined in S using

some parametrization remain ’smooth’ with respect to any other local parame-

trization:

Definition 2.4 Let S be a regular surface. Then f : S → Rn is differentiable if

f ◦X : U → Rn is a smooth map for every local parametrization X : U → S of S.

It follows that, in order to check that a function f : S → Rn is smooth in a

neighborhood of a point p ∈ S, it is enough to take one local parametrization X1
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near p. If X2 is a different parametrization then f ◦X2 = f ◦X1 ◦X−1
12 is smooth

if and only if f ◦X2 is smooth.

Remark 2.1 Sometimes when f : S → Rn is a smooth map, instead of writing

f (p) we will use the notation f (u,v) justified by the fact that, given f ◦X−1, f is

uniquely determined.

Definition 2.5 Let S1, S2 be regular surfaces. Then f : S1 → S2 is differentiable

map if X−1
2 ◦ f ◦ X1 : U1 → U2 is a smooth map for every local parametrizations

X1 : U1 → S1 and X2 : U2 → S2 such that f (X1(U1)) ⊂ X2(U2). If f has a

differentiable inverse then we say that f is a diffeomorphism.

From the point of view of differential geometry two diffeomorphic surfaces are

indistinguishable.

Remark 2.2 As a corollary of the proposition we have that if X : U → S is a local

parametrization then X−1 : X(U) → U ⊂ R2 is a differentiable map. Hence S is

locally diffeomorphic to a plane.

Let S be a regular surface, p ∈ S and let X : U → S be a local parametrization

near p. If α : I → R3 is a regular curve such that α(I) ⊂ U (from now on we will

write α : I → S) and α(0) = p = X(u0, v0). Then β(t) = X−1 ◦ α(t) is a regular

curve in U , that can be described as β(t) = (u(t), v(t)). Clearly

α(t) = X ◦ β(t)

in particular

α′(t) = d

dt
(X ◦ β(t)) =

=
(
∂x

∂u

du

dt
+ ∂x
∂v

dv

dt
,
∂y

∂u

du

dt
+ ∂y
∂v

dv

dt
,
∂z

∂u

du

dt
+ ∂z
∂v

dv

dt

)
=

= du

dt

(
∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
+ dv
dt

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
=

= du

dt

∂X

∂u
+ dv
dt

∂X

∂v

It follows that any vector tangent to a curve is S passing through p = X(u0, v0)

is a linear combination of the two vectors (that do not depend on the curve, but

just on the parametrization)
∂X
∂u and

∂X
∂v . If v = a ∂X∂u + b

∂X
∂v (with a,b ∈ R) is

any linear combination of the two vectors then α(t) = X(at + u0, bt + v0) is a

curve in S such that α(0) = p and α′(0) = v. Hence any linear combination of

the two vectors is tangent to some curve through p. This justifies the following

definition



The tangent space §2.2 35

Definition 2.6 Let S be a regular surface. If p ∈ S and X : U → S is a local

parametrization near p then the tangent space at p to S is the vector space TpS

spanned by the two vectors
∂X
∂u and

∂X
∂v .

Let X1(u,v) : U1 → S and X2(u
′, v′) : U2 → S be two parametrizations near p.

Then

X1(u,v) = X2 ◦X12(u,v) = X2(u
′(u,v), v′(u,v))

hence

∂X1

du
= ∂X2

du′
∂u′

du
+ ∂X2

dv′
∂u′

du
,
∂X1

dv
= ∂X2

du′
∂u′

dv
+ ∂X2

dv′
∂u′

dv

or
(
∂X1

du
∂X1

dv

)
=
(
∂u′

du
∂v′

du
∂u′

dv
∂v′

dv

)(
∂X2

du′
∂X2

dv′

)
. (2.1)

Since X12 is a diffeomorphism the differential of X12 is a linear isomorphism.

Hence
∂X1

du ,
∂X1

dv and
∂X2

du′ ,
∂X2

dv′ span the same linear subspace of R3. It follows that

the definition of the tangents space at p does not depend on the choice of a

parametrization near p.

Example 2.8 Let π = {(x,y, z) ∈ R3 : ax + by + cz + d = 0} be a plane in R3.

Then (a, b, c) ≠ (0,0,0) and, assuming c ≠ 0 we have a global parametrization

U = R2 → π given by X(u,v) = (u,v,−1
c (au + bv − d)). Hence the tangent

space at a point X(u,v) is spanned by the two vectors (1,0,−ac ), (0,1,−
b
c ). Note

that the tangent space is a plane parallel to π passing through the origin.

Example 2.9 Consider the local parametrization of the upper hemisphere in S2(1)

given by

X(u,v) = (u,v,
√

1−u2 − v2)

where (u,v) ∈ U = {(u,v) ∈ R2 : u2 + v2 < 1}. Then

∂X

du
= (1,0,− u√

1−u2 − v2
),

∂X

du
= (0,1,− v√

1−u2 − v2
).

This implies, in particular

X(u,v) · ∂X
du

= X(u,v) · ∂X
dv

= 0

i.e. the two vectors that span the tangent space at a point p are orthogonal to p

itself. This is true for every point of the sphere. In other words TpS
2(1) = p⊥.
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Example 2.10 Consider the parametrization of a rotational surface given by

X(u,v) = (f (v) cos(u), f (v) sin(u), g(v))

where the generating curve is defined in an interval I and (u,v) ∈ U = {(u,v) ∈
R2 : u ∈ (0,2π),v ∈ I}. Then

∂X

du
= (−f (v) sin(u), f (v) cos(u),0),

∂X

du
= (f ′(v) cos(u), f ′(v) sin(u), g′(v)).

form a basis of the tangent space to the surface.

Note that, if we have a local parametrization X near p = X(u0, v0) then we may

consider the curves

α1(t) = X(u0 + t, v0), α2(t) = X(u0, v0 + t)

it is easy to verify that the tangent vector to α1 is always given by
∂X
du(α1(t)) and

the tangent vector to α2 is
∂X
dv (α2(t)). These curves are called coordinate curves

in S. In particular

∂X

du
(p) = dX(u0, v0)(1,0),

∂X

dv
(p) = dX(u0, v0)(0,1)

and the tangent space to S at p is the image of R2 = T(u0,v0)R
2 under the linear

map dX(u0, v0). Thus dX(u0, v0) is linear isomorphism between R2 and the

tangent space at p to S. The linear map dX−1(p) : TpS → R2 is then well defined.

Let f : S1 → S2 be a smooth map between surfaces. Then we want to define the

differential of f at a point p. This will be a linear map between TpS1 and Tf (p)S2.

Let α : I → S1 be a curve such that α(t0) = p and α′(t0) = v ∈ TpS1. We know

that we can describe it locally as α(t) = X(u(t), v(t)). Then β = f ◦α is a curve

on S2 such that β(t0) = f (p) we define

df(p)(v) = β′(t0)

it is possible to prove that df(p) is well defined, i.e. the image of v does not

depend on the choice of the curve α and this is a linear map TpS1 → Tf (p)S2. In

fact we can write

df(p) = (d(f ◦X))(u0, v0) ◦ (dX)−1(p)

which is a composition of well defined linear maps.

This is a good definition as many properties that are known to be true in the

case of maps Rn → Rm remain true. In particular:
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Proposition 2.4 Let f : S1 → S2, g : S2 → S3 be smooth map between surfaces.

Then, if p ∈ S1

(i) d(g ◦ f )(p) = dg(f (p)) ◦ df(p)
(ii) If df(p) is a linear isomorphism then f is a local diffeomorphism of a

neighborhood of p in S onto a neighborhood of f (p).

(iii) If S is connected and df(p) = 0 for all p in S then f is constant.

(iv) If f : S → R has a local maximum or minimum at p then df(p) = 0.

We will not prove these facts here, but using them we can easily prove one a

fundamental result in linear algebra, at least in the case of R3, that we will use

later in these notes:

Theorem 2.3 Let v → A·v be a linear map in R3. If the matrix A is symmetric

then there is an orthonormal basis of R3, {e1, e2, e3} such that A · ei = λiei,
i.e. ei are eigenvectors for the linear map with eigenvalues λi.

Proof: Define a map f : S2(1) → R by f (v) = (A · v) · v (i.e. we take the dot

product of A · v and v). This is a smooth map and if v is a point such that

df(v) = 0, we have that, for every curve α on S2(1) such that α(0) = v

0 = df(v)(α′(0)) = d

dt
f (α(t))t=0 =

d

dt
((A ·α(t)) ·α(t)) =

= (A ·α′(0)) · v + (A · v) ·α′(0)

the fact that A is symmetric implies that, for every v,w ∈ R3,

(A · v) ·w = (A · v)t ·w = vt ·At ·w = vt ·A ·w = v · (A ·w)

hence df(v) = 0 if and only if, for every vector w, tangent to S2(1) in v, we

have (A · v) ·w = 0, i.e. A · v is orthogonal to the tangent space at v to S2(1).

From the description of the tangent space to a sphere (Example 2.9), this implies

that A ·v is parallel to v, i.e. A ·v = λv for some λ (i.e. v is an eigenvector) and

f (v) = λv · v = λ is the corresponding eigenvalue.

If f is constant then df(v) = 0 for every v ∈ S2(1). Hence every vector is an

eigenvector corresponding to the eigenvalue f (v) and the proof is trivial since

the linear map is just a multiple of the identity. If f is not constant, using the

fact that the sphere S2(1) is compact, we have that f has a maximum at some

point e1 and a minimum at e2 with e1 ≠ e2. At these points we have df = 0

hence e1 and e2 are eigenvectors, moreover

f (e1)e1 · e2 = (A · e1) · e2 = e1 · (A · e2) = f (e2)e1 · e2
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and, since f is not constant, this is possible only if e1 · e2 are orthogonal. Now

let e3 = e1 × e2. Then {e1, e2, e3} is an orthonormal basis of R3 and

(A · e3) · e1 = e3 · (A · e1) = f (e1)e3 · e1 = 0

(A · e3) · e2 = e3 · (A · e2) = f (e2)e3 · e2 = 0

hence A · e3 is orthogonal to both e1 and e2, so it must be parallel to e3. Then e3

is an eigenvector of our linear map.

Let S be a surface. Given a basis of the tangent space TpS at p ∈ S, we would

like to add a third vector to obtain a basis of R3, this basis should vary ’smoothly’

when we move the point p on the surface

Definition 2.7 Let S be a surface. A vector field V on S is a smooth map S → R3.

If V(p) ∈ TpS for every p in S then we say that V is a tangent vector field. If

V(p) ⊥ TpS we say that V is a normal vector field.

Note that if a surface is orientable and the orientation is defined by a vector field

N , then we have an opposite orientation defined by the field −N .

Definition 2.8 Let S be a surface. We say that S is orientable if there exists a unit

normal vector field N on S.

Example 2.11 Any plane and the sphere S2(1) are orientable surfaces. In the case

of the plane the normal field is constant, while in the case of the sphere, we can

define N(p) = p.

Example 2.12 Let S = {(f (v) cos(u), f (v) sin(u), g(v)),u ∈ [0,2π],v ∈ I} be

a rotational surface. Then, taking the cross product of the two vectors that span

the tangent space (see Example 2.10) we obtain a vector that is orthogonal to the

tangent space:

V = (f (v)g′(v) cos(u), f (v)g′(v) sin(u),−f ′(v))

then ||V ||2 = f (v)2(g′(v)2 + f ′(v)2) ≠ 0 since we assume that the surface is

regular and f (v) > 0. Hence we can normalize and define an orientation of S by

choosing N = V/||V ||.

Example 2.13 Let S = {(cos(u), sin(u), v),u ∈ [0,2π],v ∈ R} be a cylinder.

Then, as one may deduce by the formula in the previous example, or by direct

computation, the normal field at a point p is just the projection of p onto the xy

plane: N = (cos(u), sin(u),0).
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Example 2.14 It is possible to prove that the Moebius strip, defined by

S = ((1+ v
2

cos(
u

2
)) cos(u), (1+ v

2
cos(

u

2
)) sin(u), f racv2 sin(

u

2
))

is a non-orientable surface: the intersection of S with the xy plane is a circle

α(t) and, assuming that S is orientable, we would have a smooth normal field

N(α(t)) at the points of the circle. However it is possible to show that if we start

with N(α(0)) and we move the point around the circle once, when we are back to

α(2π) = α(0) then N(2π) = −N(0) hence N is not even continuous. This is not a

proof and we will not give a rigorous proof here.

Note that orientability is a global property for a surface. Given a local parame-

trization X : U → S it is always possibile to define a smooth normal vector at the

points of X(U), as we have done in the case of rotational surfaces, by letting

N(X(u,v)) = 1∣∣∣| ∂X∂u ×
∂X
∂v

∣∣∣ |
∂X

∂u
× ∂X
∂v
. (2.2)

Hence any surface that can be covered by just one local parametrization (for

example the graphs) is orientable. Problems may arise when we try to ’glue’

together the normal fields defined in different parametrizations.

(i) Let S be orientable with the orientation is defined by a normal field Ñ . If

X : U → S is a local parametrization then we have a normal field N on

X(U) defined by (2.2). We may have N = ±Ñ. If the plus sign occurs

then we say that the parametrization is compatible with the orientation.

In the other case we may consider a new parametrization Y : U ′ → S

defined by Y(u,v) = X(v,u) (i.e. we switch the role of u and v). Then

the cross product in (2.2) will change sign and the parametrization will be

compatible with the orientation.

(ii) Given two different parametrizations X1 and X2 near a point p ∈ S, we

have two normal fields N1 and N2 defined by the formula (2.2). Clearly,

at a point p ∈ S we have N1(p) = ±N2(p). If N1(p) = N2(p) for all p

we say that the two charts are define the same orientation on S. In the

case of the Moebius strip it is possible to cover the surface with two local

parametrizations, but the intersection of the images of X1 and X2 is not

connected, in one of the two connected components the orientation is the

same, on the other one we have opposite orientations. It is possible to

prove that a surface S that can be covered by local parametrization Xi(Ui)

such that Xi(Ui)∩Xj(Uj) is connected is orientable.

(iii) Given two different parametrizations X1 and X2 near a point p ∈ S we

have a diffeomorphism X12 such that X1 = X2 ◦X12 (where this map is well
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defined). Then an easy computation following from (2.1), shows that the

normal vectors defined by (2.2) coincide if and only if

det

(
∂u′

du
∂v′

du
∂u′

dv
∂v′

dv

)
> 0.

This gives us a way of checking if two local parametrizations are compa-

tible without computing the normal vector. In particular a surface S is

orientable if and only if S can be covered by local parametrizations such

that the determinant of the change of coordinates is positive.

We conclude this section with the following important fact

Theorem 2.4 Every compact surface S ⊂ R3 is orientable.

Note that there are smooth two dimensional manifolds that are non-orientable,

like the projective space or the Klein bottle. But these manifolds cannot be

smoothly embedded in R3.

The first fundamental form

Given a symmetric bilinear form F on a vector space V , we have a quadratic

form, that we will denote again by F : V → R, defined by F(v) = F(v,v). Knowing

F(v) for each v ∈ V we can recover F(v,w) for v,w ∈ V in fact from

F(v+w) = F(v+w,v+w) = F(v,v)+2F(v,w)+F(w,w) = F(v)+2F(v,w)+F(w)

we have the polarization formula

F(v,w) = 1

2
(F(v +w)− F(v)− F(w).

For example, if F(v,w) is the standard dot product in Rn then F(v) is the

squared norm of v. If {v1, . . . , vn} is a basis of V then the form is completely

determined by the matrix

F =




F(v1, v1) F(v1, v2) . . . F(v1, vn)

F(v2, v1) F(v2, v2) . . . F(v2, vn)
...

. . .

F(vn, v1) F(vn, vn)




In fact, if v = a1v1 + . . .+ anvn and w = b1v1 + . . .+ bnvn then

F(v,w) =
(
a1 an

)
· F ·



b1

...

bn


 .
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We introduce a simplified notation for the functions defined on S and their

derivatives. If F : S → Rn is a smooth function then, instead of writing F(p) for

p ∈ S, we will use a local parametrization X : U → S such that p ∈ X(U) to write

F(p) = F(u,v), i.e. we identify F with F ◦ X. We will also replace the standard

notation for the partial derivatives if F is a function of u and v we let

Fu =
∂F

∂u
, Fv =

∂F

∂v
.

In particular, given a local parametrization X : U → S, Xu and Xv form a basis of

the tangent space at the points of X(U).

We now want to define two bilinear symmetric (or, equivalently, quadratic)

forms on the tangent space of a regular surface.

Definition 2.9 Let S be a regular surface. Then the first fundamental form of S at

p is the bilinear symmetric form defined on TpS by the restriction of the standard

euclidean product in R3:

Ip(v,w) = v ·w

for every v,w ∈ TpS.

Let p ∈ S and let X : U → S be a local parametrization of S such that p =
X(u0, v0). Then Xu(u0, v0) and Xv(u0, v0) form a basis of TpS, and the first

fundamental form at p is completely determined by the functions

E = Xu ·Xu, F = Xu ·Xv , G = Xv ·Xv .

In fact, if w1 = a1Xu + a2Xv ,w2 = b1Xu + b2Xv ,∈ TpS, we have

Ip(w1,w2) =
(
a1 a2

)
·
(
E F

F G

)
·
(
b1

b2

)
.

Note that, since the Euclidean scalar product is positive definite, the matrix re-

presenting the second fundamental form is positive definite, i.e. E > 0, G >

0, EG − F2 > 0. The matrix associated to the first fundamental form depend on

the parametrization. If X1 : U1 → S (with coordinates (u,v)) and X2 : U2 →
S (with coordinates (u′, v′)) are two local parametrization in a neighborhood

of a point p ∈ S then we have a smooth change of coordinates X12(u,v) =
(φ1(u,v),φ2(u,v) and, from X1 = X2 ◦X12 follows

X1u = X2u′φ1u +X2v′φ2u, X1v = X2u′φ1v +X2v′φ2v

If we compute the coefficient of the first fundamental form we get

E = X1u ·X1u = (X2u′φ1u +X2v′φ2u) · (X2u′φ1u + X2v′φ2u) =
= φ1

2
uE

′ + 2φ1uφ2uF
′ +φ2

2
uG

′
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F = X1u ·X1v = (X2u′φ1u +X2v′φ2u) · (X2u′φ1v +X2v′φ2v) =
= φ1uφ1vE

′ + (φ1uφ2v +φ2uφ1v)F
′ +φ2uφ2vG

′

G = X1v ·X1v = (X2u′φ1v + X2v′φ2v) · (X2u′φ1v + X2v′φ2v) =
= φ1

2
vE

′ + 2φ1vφ2vF
′ +φ2

2
vG

′

or, in matrix form
(
E F

F G

)
=
(
φ1u) φ2u)

φ1v) φ2v)

)
·
(
E′ F ′

F ′ G′

)
·
(
φ1u) φ1v)

φ2u) φ2v)

)

or

I1(p) = dXt12 · I2 · dX12.

This formula will play a role later, when we will discuss integration on surfaces.

Now we want to show that the first fundamental form is related to the measure

of distances on a surface. We start from the length of a curve: let α : [a, b] → S
be a regular curve. Then we know that we may write α(t) = X(u(t), v(t)) hence

||α′||2 = ||u′Xu + v′Xv||2 = I(u′Xu + v′Xv|) = u′2E + 2u′v′F + v′2G

and

L(α) =
∫ b
a

√
u′2E + 2u′v′F + v′2G.

Since the distance between two points on S is the infimum of the lengths of

the curves joining the two points, it is clear that the first fundamental curve

completely determines the distance between points on S. A f map between

two surfaces in R3 is an isometry if the distance between points is preserved

by f . We have a complete description of the isometries of R3. In particular

all these isometries are smooth maps (we have only proved that isometries are

continuous) and they preserve the length of curves. This is true in a much more

general context, we state the result for the case of surfaces:

Theorem 2.5 [Myers-Steenrod] A map f between two surfaces is an isometry

if and only if f is a smooth map that preserves the length of curves.

We will need an infinitesimal version of this result

Lemma 2.1 A differentiable map f : S1 → S2 between two surfaces is an

isometry if and only if df : TpS1 → Tf (p)S2 preserves the scalar product.
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Proof: If f is an isometry, p ∈ S1 and v ∈ TpS1, let α : I → S1 be a regular curve

such that α(t0) = p, α′(t0) = v. Then, for t close to t0
∫ t
t0

||α′(s)||ds = L(α)tt0 = L(f ◦α)
t
t0
=
∫ t
t0

||df(p)(α′(s))||ds.

If we take the derivative w.r to t, at t = t0, we get

||v|| = ||α′(t0)|| = ||df(p)(α′(t0))|| = ||df(p)(v)||

hence df(p) preserves the norm of the vectors. Using the polarization formula

we can conclude that df(p) preserves the scalar product.

For the opposite implication, let β = f ◦α, then we have

L(β) =
∫

I
||β′(t)||dt =

∫

I
||df(α′(t))||dt =

∫

I
||α′(t)||dt = L(α)

and f is an isometry since it preserves the length of the curves.

An immediate consequence of this infinitesimal description of the isometries

between the surfaces is a relation between the two first fundamental forms. He-

re we only assume that f is a local isometry, i.e. for every p ∈ S1 there is a

neighborhood V of p in S1 such that f is an isometry between V and f (V):

Corollary 2.1 A differentiable map f : S1 → S2 between two surfaces is a

local isometry if and only if

Ip(w1,w2) = If (p)(df (p)(w1), df (p)(w2))

holds for every p ∈ S1 and w1,w2 ∈ TpS1.

This allows us to construct maps that are local isometries between surfaces

but are not induced by isometries of R3, i.e. we have intrinsic isometries between

surfaces:

Corollary 2.2 Let S1 and S2 be regular surfaces parametrized by X1 : U → S1

and X2 : U → S2. If

E1 = E2, F1 = F2, G1 = G2

then ◦X1X
−1
2 is an isometry between S1 and S2.

Proof: Let β : I → U be a regular curve and let α1 = X1 ◦ β, α2 = X2 ◦ β. Then

α1 = X12

||α′1||2 = ||u′X1u + v′X1v||2 = u′2E1 + 2u′v′F1 + v′2G1 =
= u′2E2 + 2u′v′F2 + v′2G2 = ||u′X2u + v′X2v ||2 = ||α′2||2.
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Then f preserves the length of tangent vectors, the length of curves is then also

preserved.

Example 2.15 Let U = {(u,v) ∈ R2 : u ∈ (0,2π)} and let

X1(u,v) = (u,v,0), X2(u,v) = (cos(u), sin(u), v)

Then S1 = X1(U) is an open subset of a plane in R3, while S2 = X2(U) is a subset

of a cylinder. We have

X1u = (1,0,0), X1v = (0,1,0), X2u = (− sin(u), cos(u),0), X2v = (0,0,1)

and E1 = E2 = G1 = G2 = 1, F1 = F2 = 0. Hence S1 and S2 are isometric. Note that

this isometry cannot be induced by an isometry of R3 since every isometry of R3

maps planes into planes. The plane and the cylinder are not globally isometric,

in fact the two surfaces are topologically distinct, the first fundamental group of

the plane is trivial while the one of the cylinder is not: every circle in R2 can be

continuously deformed to a point while there are circles in the cylinder that are

not contractible.

The first fundamental form of a surface allows to compute distances on the

surface, by integrating the norm of tangent vectors to curves. Hence it is related

to the ’intrinsic’ geometry of the surface, i.e. to quantities that can be computed

without knowing how the surface is embedded in R3.

The second fundamental form

We studied the curves in R3 using the Frenet frame. The starting point is the

variation of the tangent space to the curve. We now want to study the variation

of the tangent space to a two dimensional surface S. Since any surface is locally

orientable and the tangent space is completely determined by the normal vector,

it is enough to study the variation of a unit normal field on S. This will lead us

to the definition of another bilinear form on TpS.

Definition 2.10 Let S be an orientable surface. The Gauss map on S is the map

N : S → S2(1) defined by p → N(p).

Example 2.16 If S is a plane then the Gauss map is constant. On S2(1) the Gauss

map is the identity. On a cylinder the Gauss map is not constant and the image of

the Gauss map is a circle (see Example 2.13).

The Gauss map is a smooth map and we may consider its differential at a point

p ∈ S. This will be a linear map dN : TpS → TN(p)S2(1). But the characterization

of the tangent space to S2(1) (Example 2.9) tells us that TN(p)S
2(1) is orthogonal
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toN(p). The space TpS is orthogonal toN(p) by definition, hence the two spaces

coincide.

Definition 2.11 Let S be an orientable surface. The Weingarten map on S at the

point p is the linear map Sp : TpS → TpS defined by

Sp = −dN(p).

The Gauss curvature K(p) and the mean curvature H(p) of S at p are defined by

K(p) = det(Sp), H(p) = 1

2
tr(Sp).

Note that given an endomorphism, the determinant and the trace can be compu-

ted using any matrix associated to the linear map w.r. to a basis of the vector

space. Then we define the second fundamental form of S by

IIp(w1,w2) = Sp(w1) ·w2 = −dN(p)(w1) ·w2.

With respect to the {Xu, Xv} basis we have

d(N)(Xu) =
d

dt
N(u0 + t, v0) = Nu, d(N)(Xv) =

d

dt
N(u0, v0 + t) = Nv

and

d(N)(Xu) ·Xv = Nu ·Xv =
d

du
(N ·Xv)−N ·Xvu = −N ·Xvu

d(N)(Xv) ·Xu = Nv ·Xu =
d

dv
(N ·Xu)−N ·Xuv = −N ·Xuv = −N ·Xuv

if we let

e = −Nu ·Xu, f = −Nu ·Xv = −Nv ·Xu, g = −Nv ·Xv

then, if w1 = a1Xu + a2Xv and w2 = b1Xu + b2Xv , we have

IIp(w1,w2) =
(
a1 a2

)
·
(
e f

f g

)
·
(
b1

b2

)
.

In particular, the second fundamental form is a symmetric bilinear form on TpS.

Note that we can also compute the coefficients of the second fundamental form

as

e = N ·Xuu, f = N ·Xuv , g = N ·Xvv

and these expressions are easier to compute since, in general, the expression for

the normal vector N is complicated and here we avoid taking derivatives of this

term. We now want to derive a formula for the Weingarten operator, since the
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Gauss curvature and the mean curvature are defined in terms of this operator.

Since d(N)(Xu)·Xv = dN(Xv)·Xu, with respect to the {Xu, Xv} basis this linear

operator is represented by a symmetric matrix

Sp =
(
a11 a12

a12 a22

)

where

dN(Xu) = Nu = −(a11Xu + a21Xv), dN(Xv) = Nv = −(a12Xu + a22Xv)

from the first equation, taking the scalar product with Xu on both sides, we get

e = −Nu ·Xu = a11Xu ·Xu + a12Xv ·Xu = a11E + a12F

similarly

f = −Nu ·Xv = a11Xu ·Xv + a12Xv ·Xv = a11F + a12G

g = −Nv ·Xv = a12Xu ·Xv + a22Xv ·Xv = a12F + a22G

or, in matrix form:

(
a11 a12

a12 a22

)
=
(
E F

F G

)−1

·
(
e f

f g

)
.

By taking the determinant of the right end side we obtain a formula for the Gauss

curvature in terms of the coefficients of the first and the second fundamental

form:

K = eg − f
2

EG− F2
(2.3)

since
(
E F

F G

)−1

= 1

EG− F2

(
G −F
−F E

)

we can compute the product and obtain the following formula for the mean

curvature:

H = eG − 2fF + Eg
2(EG− F2

.

Example 2.17 Let S be a plane in R3. Then, at every point of p ∈ S, we have a

constant normal field N(p) = N0. It follows that dN = 0 and both the Gauss and

the mean curvature vanish identically.
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Example 2.18 Let S = S2(r) be the sphere of radius r centered at the origin.

Then, for p ∈ S, we have N(p) = 1
rp. It follows that N = 1

r I is a linear map,

hence dN = N . The determinant of −dN , i.e. Gauss curvature, is constant equal

to
1
r2 , while the mean curvature is equal to − 1

r .

Example 2.19 We have already seen (see Example 2.13) that the normal vector at

p = X(u,v) = (cos(u), sin(u), v) in the cylinder is N(u,v) = (cos(u), sin(u),0),

we have

Xu = (− sin(u), cos(u),0), Xv = (0,0,1)

Xuu = (− cos(u),− sin(u),0), Xuv = (0,0,0). Xvv = (0,0,0)

hence E = G = 1, F = 0, e = −1, f = g = 0 hence K = 0 and H = 1
2 .

Example 2.20 Consider the helicoid, defined by S = {v cos(u), v sin(u),u) for

u ∈ [0,2π] and v ∈ R. We have

Xu = (−v sin(u), v cos(u),1), Xv = (cos(u), sin(u),0)

and a normal field defined by

N = 1√
1+ v2

(− sin(u), cos(u),−v).

We also have

Xuu = (−v cos(u),−v sin(u),0), Xuv = (− sin(u), cos(u),0), Xvv = (0,0,0)

hence

E = 1+ v2, F = 0, G = 1

e = 0, f = 1√
1+ v2

, g = 0.

It follows that the Gauss curvature is equal to

K = − 1

(1+ v2)2

while the mean curvature H is zero. A surface with zero mean curved is called

minimal.

We proved that the matrix associated to the Weingarten operator with respect

to the basis {Xu, Xv} is symmetric. It follows that the spectral theorem applies

and it is possible to determine an orthonormal basis {e1, e2} of TpS at every

point p ∈ S such that Sp(e1) = k1e1, Sp(e2) = k2e2. The vectors e1, e2 are
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called principal directions at p while the eigenvalues k1 and k2 are the principal

curvatures at p .

As in the case of the curves it is possible to derive geometric information on

S from the knowledge of the curvature, there are cases when this is particularly

efficient:

Definition 2.12 Let S be a surface. A point p ∈ S is umbilical if the principal

curvatures are equal at p. If every point of S is umbilical then S is called umbilical.

Theorem 2.6 Let S be a connected umbilical surface. Then S is an open subset

of a sphere or of a plane.

Proof: Let p ∈ S. Since the eigenvalues k1, k2 of Sp are equal we have that, w.r.

to the basis e1, e2, Sp is associated to the matrix

(
k1 0

0 k1

)
= k1 I

i.e. Sp and dN(p) are multiples of the identity on TpS and we can write dN(p) =
λ(p)I, where λ(p) is a smooth function on S (in fact λ(p) = −k1(p)). We first

work in a local parametrization X : U → S of S. Let v = aXu + bXv ∈ TpS then

dN(p)(v) = λv hence

λ(aXu + bXv) = dN(p)(aXu + bXv) = aNu + bNv

it follows that

Nu = λXu, Nv = λXv (2.4)

we take the derivative of the first equation with respect to v and the derivative

of the second one with respect to u:

Nuv = λvXu + λXuv , Nvu = λuXv + λXvu

but Nuv = Nvu and Xuv = Xvu hence taking the difference of the two equations

we get

λvXu = λuXv

since Xu and Xv are linearly independent this is possible only if λu = λv = 0 i.e.

λ is a constant function on the local parametrization of S.

We have two cases
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(i) If λ = 0 then dN = 0 hence N(p) = N0 is constant. Let (u0, v0) ∈ U and

let f (u,v) = (X(u,v)− X(u0, v0)) ·N0. Then

∂f

∂u
= Xu ·N = 0,

∂f

∂v
= Xv ·N = 0

hence f (u,v) is constant. Since f (u0, v0) = 0 we have that X(u,v)

belongs to a plane orthogonal to N0 and passing through X(u0, v0).

(ii) If λ ≠ 0 consider the function f (u,v) = X(u,v)− 1
λN0. Then, using 2.4

∂f

∂u
= Xu −

1

λ
Nu = 0,

∂f

∂v
= Xv =

1

λ
Nv = 0

and f (u,v) = q is constant. Then

∣∣|X(u,v) = q
∣∣ | =

∣∣∣∣|
1

λ
N(u,v)

∣∣∣∣ | =
1

λ

i.e. the points X(u,v) lie on a sphere of radius
1
λ centered in q.

Now we want to prove that this result is global. Given two points on the surface

we can connect them with a curve [a, b] → S. The trace of the curve is then

compact (since the image of a compact set via a continuous map is compact)

and can be covered with a finite number of local parametrizations. When two

parametrizations overlap we get that they must cover a portion of the same

plane or of the same sphere. Hence S is a subset of a plane or of a sphere.

Now we describe the second fundamental form in different ways that will help

us to derive geometric consequences from the value of the principal curvatures

of a surface S. Let α : I → S be a bi-regular curve parametrized by arclenght.

Then α′′(t) = k(t)n(t), where k(t) is the curvature of α and n is the normal

vector in the Frenet frame of α.

Definition 2.13 Let S be a regular orientable surface and let α : I → S be a

bi-regular curve. Then we define the normal curvature

Curve!Normal curvature of α at a point p = α(t0) ∈ S by

kn(t0) = k(t0) cos(θ(t0))

where k is the curvature of α and θ is the angle between the normal vector n of

α and the unit normal N(p) of S at p.

Note that the sign of the normal curvature depends on the choice of the orienta-

tion of S. Since n and N are both unit vectors we have an equivalent definition

kn(t0) = α′′(t0) ·N(α(t0))
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i.e., up to sign, kn is the length of the projection of α′′ on the normal to the

surface. Denote by N(t) the restriction of N to the points of α(t). Then, from

the definition of differential if follows that dN(α′(t0)) = d
dtN(α(t))t=t0 = N′(t0).

Moreover, since α′(t) is tangent to S, we have α′(t) ·N(t) hence

0 = α′′(t) ·N(t)+α′(t) ·N′(t) = α′′(t) ·N(t)+ α′(t) · dN(α′(t)).

Hence

II(α′(t0)) = −dN(α′(t0)) ·α′(t0) = α′′(t0) ·N(t0) = kn(t0).

The left hand side of this equation only depends on the value of v = α′(t0), it

follows that, if β(t0) = α(t0) and β′(t0) = v then α and β have the same normal

curvature at t = t0 and the normal curvature is in fact a function kn(v) defined

on the tangent space. In particular, to compute kn(v) we can choose any curve

through p that is tangent to v. Let α(t) be the plane curve determined by the

intersection of S with the plane through p spanned by v and N(p). This curve

is the normal section of S at p in the direction of p, we can parametrize α with

arclength and so that v = α′(t0). Since α is a plane curve the normal vector

to α lies on the plane and, being orthogonal to v, must coincide with ±N(p).
It follows that n(t0) · N(p) = ±1. and kn = ±k. The normal curvature of the

normal section coincides, up to sign, with the curvature of α. The value of the

second fundamental form at p in the direction of v ∈ TpS is (up to sign) the

curvature of the corresponding normal section.

Let e1, e2 ∈ TpS be the principal directions of S at p and let v ∈ TpS be an

unit vector. Then (since the basis is orthonormal) we can write v = cos(θ)e1 +
sin(θ)e2 and

−dN(p)(v) = Sp(cos(θ)e1 + sin(θ)e2) = cos(θ)Sp(e1)+ sin(θ)Sp(e2) =
= cos(θ)k1e1 + sin(θ)k2e2

and we have the Euler formula for the normal curvature

kn(v) = IIp(v) = −dN(p)(v) · v =
= (cos(θ)k1e1 + sin(θ)e2) · (cos(θ)e1 + sin(θ)e2) =
= cos(θ)2k1 + sin(θ)2k2.

Since v is uniquely determined by θ we can write kn(v) = kn(θ) and, taking the

derivative w.r. to θ

k′n(θ) = −2 cos(θ) sin(θ)k1 + 2 sin(θ) cos(θ)k2 = 2 cos(θ) sin(θ)(k2 − k1)

if k1 = k2 then kn is constant equal to k1. Otherwise we have critical points of

kn only if cos(θ) = 0 or sin(θ) = 0. It follows that the principal curvatures k1
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and k2 are the minimum and the maximum value that the normal curvature can

assume at the point p.

Definition 2.14 Let S be a regular orientable surface in R3. A point p ∈ S is

elliptic if K(p) > 0 , hyperbolic if K(p) < 0 , parabolic if K(p) = 0 but H(p) ≠ 0

and planar if K(p) = H(p) = 0.

If a point p ∈ S is elliptic then K(p) = k1(p)k2(p) > 0 and k1 and k2 have the

same sign. It follows that all the normal curvatures at p have the same sign,

hence (up to a change of orientation in S), we may assume that for any normal

section at p, we have n = N . It follows that the normal sections are all curved

’the same way’ near p and they all stay on one side of the tangent space at p to

S. Conversely if K < 0 we have normal sections at p that lie on both sides of the

tangent space at p.

Example 2.21 The origin is an elliptic (resp. hyperbolic) point for the graph of

the function f (x,y) = x2 + y2 (resp f (x,y) = x2 − y2). All the points of a

cylinder are parabolic while all the points of a plane are planar. Note that the

normal curvature of a curve α is determined by the second derivative of α. If

the second derivative of α vanishes then we may have a planar point on S even

if the surface is not a plane. For example, if we consider the rotational surface

(v cos(u), v sin(u), v4), with u ≥ 0 and v ∈ (0,2π), the resulting surface is

regular (even if the graph of the generating function intersects the z axis) and the

origin is a planar point.

We will now describe two constructions that lead to new definitions of the

normal curvature. Let f : S → R be a smooth function. Then, for p ∈ S we may

consider a curve α : I → S such that α(0) = p. Let w = α′(0). We define the

Hessian of f at p by

Hf (p)(w) =
d2

dt2
(f ◦α)t=0.

This is a map defined on TpS. In local coordinates, if α(t) = α(u(t), v(t)), we

have

Hf (p)(w) = d2

dt2
f (u(t), v(t))t=0 =

d

dt
(
∂f

∂u
u′ + ∂f

∂v
v′ =

= ∂2f

∂u2
u′2 + 2

∂2f

∂u∂v
u′v′ + ∂

2f

∂v2
v′2 + ∂f

∂u
u′′ + ∂f

∂v
v′′ =

=
(
u′ v′

)
·


∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2


 ·

(
u′

v′

)
+
(
∂f
∂u

∂f
∂v

)
·
(
u′′

v′′

)
=
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= wt ·


∂2f
∂u2

∂2f
∂u∂v

∂2f
∂u∂v

∂2f
∂v2


 ·w +

(
∂f
∂u

∂f
∂v

)
·
(
u′′

v′′

)
.

The second summand depends on the choice of the curve, not only on the tan-

gent vector w so, in general, Hf (p) is not well defined. But if p is a critical point

of f , i.e.
∂f
∂u(p) =

∂f
∂v (p) = 0 then the Hessian is well defined and coincides,

formally, with the standard Hessian of a function R2 → R2.

Let S be a regular orientable surface and let p = X(u0, v0) ∈ S in a local

parametrization of S. We define the function

f (u,v) = (X(u,v)−X(u0, v0)) ·N(u0, v0)

then

∂f

∂u
(p) = Xu(p) ·N(p) = 0,

∂f

∂v
= Xv(p) ·N(p) = 0

and p is a critical point of f . The function f measures the projection of X(u,v)−
p on the normal vector at p, i.e. the (signed) height of X(u,v) relative to the

tangent plane at p. Let w ∈ TpS be a unit vector and let α : I → S be a curve,

parametrized by arclength, such that α(0) = p and α′(0) = w. Then we have

IIp(w) = kn(w) = α′′ ·N(p) =
d2

dt2
(α(t)−α(0)) ·N(p) = Hf (p)(w).

For a real valued function of several variables the Hessian at a critical point

gives information about the nature of the critical point. E.g., if the Hessian is

positive/negative definite then the point is a local minimum/maximum. If the

point p is elliptic this is exactly the case since the principal curvatures have the

same sign. It follows that the local picture of the surface, as graph with respect

to the tangent space at p, is similar to the one of a paraboloid at the origin, i.e.

the surface lies on one side of the tangent space.

Example 2.22 We consider a torus T 2 ⊂ R3, described as rotational surface:

X(u,v) = ((r cos(v)+ R) cos(u), (r cos(v)+ R) sin(u), r sin(v))

for u,v ∈ [0,2π] and R > r . Then

Xu(u,v) = (−(r cos(v)+ R) sin(u), (r cos(v) + R) cos(u),0),

Xv(u,v) = (−r sin(v) cos(u),−r sin(v) sin(u), r cos(v))

and

N(u,v) = (cos(u) cos(v), sin(u) cos(v), sin(v))
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Xuu = (−(r cos(v)+ R) cos(u),−(r cos(v)+ R) sin(u),0),

Xuv = (r sin(v) sin(u),−r sin(v) cos(u),0),

Xvv = (r cos(v) cos(u),−r sin(u) cos(v),−r sin(v)).

Hence

E = (r cos(v)+ R)2, F = 0, G = r 2

e = −(r cos(v)+ R) cos(v), f = 0, g = −r

and the Gauss curvature is given by

K = cos(v)

r(r cos(v) + R).

The denominator is always positive, hence we have K > 0 at the points where

cos(v) > 0. This are the points on the ’exterior’ of the torus, and it is clear that

the surface lies on one side of the tangent space. The points with K = 0 are the

ones of the top and lower circles. The tangent space at these points contains the

circles. The points with K < 0 are the ones in the ’interior’ of the torus. There the

tangent space intersects the surface.

Calculus on surfaces

Denote by C∞(Rn) the set of smooth real valued functions on Rn and let w ∈
Rn be a nonzero vector. Then we can associate to each function f ∈ C∞(Rn) its

partial derivative in the direction of w:
∂f
∂w . This is another function in C∞(Rn)

and we can think of the vector w as an operator on the set of smooth functions:

w(f) = ∂f

∂w
= df(w).

We are not proving it here, but the knowledge of this map uniquely determines

the vector w, for example if f (x,y) = x2 + 3xy − y + 1 and we know that
∂f
∂w = 2x+3y then it is clear thatw = (1,0) and we are taking the derivative w.r.

to the x variable. This operator has the following properties

(i) Linearity: ∀f , g ∈ C∞(Rn), ∀a,b ∈ R: w(af + bg) = aw(f)+ bw(g).
(ii) Leibnitz rule: ∀f , g ∈ C∞(Rn): w(fg) =w(f)g + fw(g).

We can replace the fixed vector v with a vector field X on Rn and let

Xf(p) = ∂f

∂X(p)
(p) = df(p)(X(p))
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and a vector field X can be seen as a differential operator on C∞(Rn). Denote

by X(Rn) the set of smooth vector fields on Rn. Then we have the following

properties:

(i) Linearity: ∀X,Y ∈ X(Rn), ∀f ∈ C∞(Rn), ∀a,b ∈ R: (aX + by)(f ) =
aX(f )+ bY(f ).

(ii) Tensoriality: ∀X ∈ X(Rn), ∀f , g ∈ C∞(Rn): (fX)(g) = fX(g).

From the last property follows, taking f (p) = 0, that if X(p) = 0 then X(g) =
0 at p. Hence if two vector fields X1, X2 coincide at p then 0 = X1(g)(p) −
X2(g)(p), i.e. the value of X(g) at p only depends on the value of X at p.

Denote by {e1, . . . , en} the standard basis of Rn. If

X(x1, . . . , xn) = (a1(x1, . . . , xn), . . . , an(x1, . . . , xn) =
∑

i

aiei

then X acts on a function f by

X(f) =
∑

i

aiei(f ) =
∑

i

ai
∂f

∂xi

If Y = (b1(x1, . . . , xn), . . . , bn(x1, . . . , xn) is another vector field then we may

take the derivative, with respect to X, of the function Y(f ):

XY(f ) = X

∑

j

bj
∂f

∂xj


 =

∑

i

ai


∑

j

∂bj

∂xi

∂f

∂xj
+ bj

∂f

∂xj∂xi




similarly

YX(f ) = Y

∑

j

aj
∂f

∂xj


 =

∑

i

bi


∑

j

∂aj

∂xi

∂f

∂xj
+ aj

∂f

∂xj∂xi




hence

(XY − YX)(f ) =
∑

ij

(
ai
∂bj

∂xi
− bi

∂aj

∂xi

)
∂f

∂xj∂xi

and XY − YX is a well defined vector field (while XY and YX are not, due to the

presence of the second derivatives) denoted by [X, Y] and called Lie bracket of

the field X and Y . Note that if the component of ai, bj of the two vector fields are

constant, then [X, Y] = 0 (hence XY = YX), e.g. [ ∂∂xi ,
∂
∂xj
] = 0 and this reflects

the well know fact that the mixed partial derivatives with respect to coordinate

fields are equal.

A vector field Y = (b1(x1, . . . , xn), . . . , bn(x1, . . . , xn) is defined by a set of n

real valued functions, so we may define the derivative of the vector field Y with
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respect to the vector field X by

DXY = (X(b1), . . . , X(bn))

then DXY is again a vector field in Rn.

Example 2.23 Let

X = (xy,−2y) = (xy) ∂
∂x

− 2y
∂

∂y
, Y = (x,−3y2) = x ∂

∂x
− 3y2 ∂

∂y
.

Then

DXY = (X(x),X(−3y2)) =

= ((xy)
∂

∂x
(x)− 2y

∂

∂y
(x), (xy)

∂

∂x
(−3y2)− 2y

∂

∂y
(−3y2)) =

= (xy,12y2) = xy ∂

∂x
+ 12y2 ∂

∂y

for example, at the point p = (1,2), we have DXY(p) = 2
∂
∂x + 48

∂
∂y .

It is possible to give a different, more geometric, description of DXY . Let p ∈ Rn
and let v = X(p). If α is a regular curve in Rn such that α(0) = p and α′(0) = v
then we may consider the restriction Y(t) of the vector field Y to the points of

α(t) and

DXY(p) =
d

dt
Y(α(t))t=0.

Example 2.24 We consider X,Y from the previous example and let p = (1,2).
Then X(p) = (2,−4) and we may consider the curve α(t) = (1 + 2t,2 − 4t)

passing through p at time t = 0 and such that α′(0) = X(p). We have

Y(t) = (1+ 2t,−3(2− 4t)2)

and

DXY(p) =
d

dt
(1+ 2t,−3(2− 4t)2)t=0 = (2,48) = 2

∂

∂x
+ 48

∂

∂y
.

In particular the value of DXY at a point p can be determined knowing only the

value of X at p and the values of Y along any curve through p tangent at X(p).

The following properties of the derivative of a vector field are easy to prove:

(i) Linearity: ∀X,Y ,Z ∈ X(Rn), ∀a,b ∈ R:

DX(aY + bZ) = aDXY + bDXZ, D(aX+bY)Z = aDXZ + bDYZ.
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(ii) Leibnitz rule: ∀X,Y ∈ X(Rn), ∀f ∈ C∞(Rn):

DX(fY) = X(f)Y + fDXY.

(iii) Tensoriality: ∀X,Y ∈ X(Rn), ∀f ∈ C∞(Rn):

D(fX)Y = fDXY.

(iv) Torsion free: ∀X,Y ∈ X(Rn):

DXY −DYX = [X, Y].

(v) Compatibility with the metric: ∀X,Y ,Z ∈ X(Rn):

X(Y · Z) = (DXY) · Z + Y · (DXZ).

Since, to define DXY , Y does not have to defined in an open set of Rn, it make

sense to study DXY for X,Y ,∈ X(S), where S is a regular surface in R3. The

result is, in general, a vector in Rn that it is not tangent to S, while we would like

to obtain an intrinsic object. A result in this direction is the following

Proposition 2.5 Let S be a surface and let X,Y ∈ X(S), then the bracket of

the two vector fields (computed in R3) is tangent to S, i,e

[X, Y] ∈ X(S).

If, in particular, X and Y are coordinate vector fields, then it is possible to

prove that [X, Y] = 0.

Example 2.25 Let X : U → S be a local parametrization of a regular surface S.

Let X = Xu and Y = Xv , then

DXY =
∂

∂u
(
∂x1

∂v
,
∂x2

∂v
,
∂x3

∂v
) = Xuv

and we know that, in general, Xuv has a component along the normal to the

surface.

Definition 2.15 Let S be a regular surface and let X,Y ∈ X(S) then we define the

covariant derivative of Y with respect to X by

∇XY = (DXY)tang

where Ztang denotes the orthogonal projection on the tangent space to S.
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Again, the value at p of ∇XY only depends on the value of X at p and the values

of Y along any curve through p tangent to X(p). It is possible to verify that the

5 properties of DXY still hold for the covariant derivative (assuming Proposition

2.5 the proof is an easy consequences of the formulas in Rn).

It is convenient to introduce a different notation that will allow simplify some

formula and the generalization to higher dimensions. Let V be an Euclidean

vector space (i.e. a vector space equipped with a positive definite symmetric

bilinear form), we denote the scalar product of X,Y ∈ V by < X,Y > and if

{v1, . . . , vn} is a basis of V we let

gij =< vi, vj >

for i, j = 1, . . . , n. This defines a symmetric positive definite matrix G. Then G is

invertible and we denote by gkl the entries of G−1.

Example 2.26 Let v ∈ V and suppose that we know the scalar product of v with

each element vi of a basis of V . Let

< v,vi >= ai

it is possibile to write v as linear combination of the elements of the basis of V :

v = λ1v1+ . . .+λnvn. We want to determine the relations between the coefficients

λi and aj . We have

ai =< v,vi >=<
n∑

j=1

λjvj , vi >=
n∑

j=1

λj < vj , vi >=
n∑

j=1

gijλj

it follows that


a1

...

an


 = G ·



λ1

...

λn




or 

λ1

...

λn


 = G−1 ·



a1

...

an




hence

λj =
n∑

i=1

gjiai.

This shows that it is possible to recover the coefficients of v as linear combination

of the elements of a basis by knowing the scalar products of v with these elements.
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We can show that the properties 1), . . . ,5) of the covariant derivative allow us

to completely determine ∇:

Proposition 2.6 Let S be a surface and let ∇̃ be an operator X(S)×X(S) → X(S)

that satisfies the properties 1), . . . ,5) definded above. Then ∇̃ = ∇.

Proof: Given X,Y ∈ X(S) it is enough to show that ∇XY is completely determi-

ned by the properties 1), . . . ,5) (hence it is unique) showing that < ∇XY,Z > is

determined for every Z ∈ X(S). We have

< ∇XY,Z > = X < Y,Z > − < Y,∇XZ >=
= X < Y,Z > − < Y, [X,Z] > − < Y,∇ZX >=
= X < Y,Z > − < Y, [X,Z] > −Z < Y,X > + < X,∇ZY >=
= X < Y,Z > − < Y, [X,Z] > −Z < Y,X > +
+ < X, [Z, Y] > + < X,∇YZ >=
= X < Y,Z > − < Y, [X,Z] > −Z < Y,X > + < X, [Z, Y] > +
+ Y < X,Z > − < ∇YX,Z >=
= X < Y,Z > − < Y, [X,Z] > −Z < Y,X > + < X, [Z, Y] > +
+ Y < X,Z > − < [YX],Z > − < ∇XY,Z >

Hence

2 < ∇XY,Z > = X < Y,Z > −Z < Y,X > +Y < X,Z > −
− < [YX],Z > − < Y, [X,Z] > + < X, [Z, Y] > .

This is known as Koszul’s formula for the covariant derivative. Note that the

bracket of two vector fields is uniquely determined on S by the inclusion S ⊂ R3.

This shows that the covariant derivative of two vector fields only depends on the

scalar product (and the derivatives) defined on the tangent space to S. In other

words the covariant derivative is an intrinsic quantity (in spite of the fact that

our original definition involves a derivative in R3)

Let S be a surface and let X : U → S be a local parametrization. Sometimes we

will use the notation (u1, u2) (instead of (u,v)) for the coordinates in U , as this

allows the use of summations. Moreover we let

X1 = Xu1 , X2 = Xu2
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Definition 2.16 Let S be a surface and let X : U → S be a local parametrization of

S. We define the Christoffel symbols of S (relative to the parametrization X) by

∇XiXj =
∑

k

Γ kijXk

for i, j = 1,2.

The vectors X1, X2 span, locally, the tangent space to S. Since the covariant

derivative of two tangent vector fields is a tangent vector field we have that∇XiXj
must be a linear combination of X1 and X2. Then Γ kij are just the coefficients of

this linear combination. For example

∇X1X2 = Γ 1
12X1 + Γ 2

12X2.

Proposition 2.7 Let X : U → S be a local parametrization of a surface S and

let Γ kij be the corresponding Christoffel symbols. Then Γ kij = Γ kji and

Γmij =
1

2

∑

l

glm(Xigjl +Xjgil −Xlgij). (2.5)

Proof: 1) Since Xi and Xj are coordinate vector fields we have

0 = [Xi, Xj] = ∇XiXj −∇XjXi =
=

∑

k

Γ kijXk −
∑

k

Γ kjiXk =

=
∑

k

(Γ kij − Γkji)Xk

Since X1 and X2 are linearly independent the coefficients of this linear combina-

tion must vanish.

2) At each point of X(U), the vectors X1 and X2 span the tangent space to

S. This is an Euclidean vector space (with the scalar product induced by the

scalar product in R3, i.e. the second fundamental form). Given three indices

i, j, l ∈ {1,2}, we have

Xlgij = Xl < Xi, Xj >=< ∇XlXi, Xj > + < Xi,∇XlXj >=
= <

∑

k

Γ kliXk, Xj > + < Xi,
∑

k

ΓkljXk >=

=
∑

k

Γ kligkj +
∑

k

Γ kljgik
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We can permute the indices and get two other relations

Xigjl =
∑

k

Γ kijgkl +
∑

k

Γ kilgjk,

Xjgli =
∑

k

Γ kjlgki +
∑

k

Γ kjiglk.

We sum these last two relations and we subtract the first one:

Xigjl +Xjgil −Xlgij = 2
∑

k

Γkijgkl.

Now we multiply on both sides by glm and sum over l:

∑

l

glm(Xigjl + Xjgil −Xlgij) = 2
∑

k

Γkij
∑

l

gklg
lm.

Note that
∑

l

gklg
lm

is the product of the k-th row of the matrix G and them-th column of the matrix

G−1. Since G ·G−1 = I we have

∑

l

gklg
lm = δkm

and the previous formula reduces to

∑

l

glm(Xigjl +Xjgil −Xlgij) = 2Γmij .

Note that from 2) we get another (compare with Koszul’s formula) proof of

the fact that the covariant derivative (completely determined by the Christoffel

symbols) only depends on the first fundamental form of S.

One of the crucial tools in the study of curves was the Frenet frame, a basis of

R3 defined at every point of the curve. The way this frame changes from point to

point can be used (via the Frenet equations) to study the geometry of the curve.

We want something analogue for the case of surfaces. At every point of a local

parametrization we have a well defined frame X1, X2, N = X1×X2 and we want to

study the way this frame changes on S. This is done by studying the derivatives

with respect to the two variables u1 and u2 that we use to define the parame-

trization (the analogue, for a curve α(t), was the derivative with respect to the
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parameter t). Here we introduce a different notation for the second fundamental

form:

A11 = e = Xuu ·N, A12 = A21 = f = Xuv ·N,A22 = g = Xvv ·N.

Proposition 2.8 Let X : U → S be a local parametrization of a surface S. Then

(i)

DXiXj =
∑

k

Γ kijXk +AijN, (2.6)

(ii)

DXiN = −
∑

jk

gjkAijXk. (2.7)

Proof: 1) We have

DXiXj =
(
DXiXj

)tang
+
(
DXiXj

)norm
=

= ∇XiXj+ < DXiXj , N > N =

=
∑

k

ΓkijXk+ <
∂

∂ui

∂X

∂uj
, N > N =

=
∑

k

ΓkijXk+ < Xij, N > N =
∑

k

Γ kijXk +AijN.

2) Since the norm of N is constant we have

0 = Xi < N,N >= 2 < DXiN,N >

hence DXiN is orthogonal to the tangent vector, and must be a linear com-

bination of the vectors X1 and X2. Since < N,Xj >= 0 is constant we also

have

0 = Xi < N,Xj >=< DXiN,Xj > + < N,DXiXj >=
= < DXiN,Xj > + < N,

∑

k

Γ kijXk +AijN >=

= < DXiN,Xj > + < N,AijN >=< DXiN,Xj > +Aij.

and

< DXiN,Xj >= −Aij .
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It follows (see Example 2.26) that the coefficient of DXiN as linear combination

of X1 and X2 are given by

G−1 ·
(
Ai1
Ai2

)

or

DXiN = −
∑

jk

gjkAijXk.

In the theory of curves we showed (see Theorem 1.3) that the curvature and

the torsion can be prescribed and completely characterize a curve up to rigid

motions. We would like to have a similar result for surfaces, where the role

of the curvature and the torsion is taken by the two fundamental forms. In

general the coefficients gij of the first fundamental form and Aij of the second

fundamental form are subject to some extra condition:

Proposition 2.9 Let S be a regular surface and let X : U → S be a local parame-

trization of S. Then the coefficients of the first and the second fundamental

form are subject to the following compatibility conditions:

Xk
(
Γ lij
)
−Xj

(
Γ lik
)
+
∑
p

(
ΓpijΓ lkp − Γ

p
ikΓ ljp

)
=
∑
p

gpl
(
AijAkp −AikAjp

)

for i, j, k, l ∈ {1,2}, known as Gauss equations. And

Xk(Aij)−Xj(Aik)+
∑

l

(
Γ lijAkl − Γ likAjl

)
= 0

for i, j, k ∈ {1,2}, known as Codazzi-Mainardi equations.

Proof: We take the derivative, with respect to Xk of (2.6):

DXk

(
DXiXj

)
= DXk


∑

l

Γ lijXl +AijN

 =

=
∑

l

DXk

(
Γ lijXl

)
+ Xk(Aij)N +AijDXkN =

=
∑

l

Xk
(
Γ lij
)
Xl +

∑

l

Γ lijDXkXl +Xk(Aij)N +AijDXkN =

=
∑

l

Xk
(
Γ lij
)
Xl +

∑

l

Γ lij


∑
p

ΓpklXp +AklN

+
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+ Xk(Aij)N −Aij
∑

pl

gplAkpXl =

=
∑

l


Xk

(
Γ lij
)
+
∑
p

ΓpijΓ lkp −Aij
∑
p

gplAkp


Xl +

+

Xk(Aij)+

∑

l

Γ lijAkl

N

(note that, in the last step we renamed some of the indices). We obtain similar

formula switching the role of k and j:

DXj
(
DXiXk

)
=

∑

l


Xj

(
Γ lik
)
+
∑
p

ΓpikΓ ljp −Aik
∑
p

gplAjp


Xl +

+

Xj(Aik)+

∑

l

Γ likAjl

N.

But our fields are coordinate fields hence

DXk

(
DXiXj

)
= ∂

∂xk

∂

∂xi

∂X

∂xj
= ∂

∂xj

∂

∂xi

∂X

∂xk
= DXj

(
DXiXk

)

hence we can compare the normal and the tangential part of the corresponding

expressions. For the tangential part:

Xk
(
Γ lij
)
+
∑
p

ΓpijΓ lkp −Aij
∑
p

gplAkp = Xj
(
Γ lik
)
+
∑
p

ΓpikΓ ljp −Aik
∑
p

gplAjp

or

Xk
(
Γ lij
)
−Xj

(
Γ lik
)
+
∑
p

(
ΓpijΓ lkp − Γ

p
ikΓ ljp

)
=
∑
p

gpl
(
AijAkp −AikAjp

)
.

For the normal part:

Xk(Aij)+
∑

l

Γ lijAkl = Xj(Aik)+
∑

l

Γ likAjl

or

Xk(Aij)− Xj(Aik)+
∑

l

(
Γ lijAkl − Γ likAjl

)
= 0.

Then we have the following result (we omit the proof here)
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Theorem 2.7 [Bonnet] Let gij , Aij be smooth functions defined in an open set

V ⊂ R2, for i, j = 1,2, such that the matrix G = (gij) is positive definite. As-

sume that these function satisfy the Gauss and Codazzi-Mainardi equations.

Then for every q ∈ V there exists a neighborhood U ⊂ V of q and a diffeo-

morphism X : U → X(U) ⊂ R3 such that X(U) is a regular surface that has

gij and Aij as coefficients of the first and the second fundamental forms. Mo-

reover, if U is connected and X̃ : U → X̃(U) is another surface with the same

fundamental forms then X(U) and X̃(U) differ by an isometry of R3.

Another fundamental result of the theory of surfaces states that the Gauss

curvature, that, locally, is defined by the ratio of the determinants of the two

fundamental forms, is an intrinsic quantity. In other words K is completely

determined by the first fundamental form (and its derivatives):

Theorem 2.8 [Gauss-Theorema Egregium] Let S be a regular surface. Then

the Gauss curvature K of S is invariant by local isometries.

Proof: Using Corollary 2.1, it is enough to show that the Gauss curvature only

depends on the first fundamental form. Consider a local parametrization X :

U → S of S and the corresponding Gauss equation

Xk
(
Γ lij
)
−Xj

(
Γ lik
)
+
∑
p

(
ΓpijΓ lkp − Γ

p
ikΓ ljp

)
=
∑
p

gpl
(
AijAkp −AikAjp

)

and choose i = j = 1, k = l = 2, then

X2

(
Γ 2
11

)
− X1

(
Γ 2
12

)
+

∑
p

(
Γp11Γ 2

2p − Γ
p
12Γ 2

1p

)
=
∑
p

gp2
(
A11A2p −A12A1p

)
=

= g12 (A11A21 −A12A11)+ g22 (A11A22 −A12A12) =
= g22

(
A11A22 −A2

12

)

where we used the fact that the second fundamental form is symmetric, i.e.

Aij = Aji. Hence

A11A22 −A2
12 =

1

g22


X2

(
Γ 2
11

)
−X1

(
Γ 2
12

)
+
∑
p

(
Γp11Γ 2

2p − Γ
p
12Γ 2

1p

) .

The left hand side is the determinant of the second fundamental form and the

right hand side only depends on the first fundamental form. Hence we can

conclude using the formula (2.3) for the Gauss curvature.
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Example 2.27 Let S be the xy plane in R3 with the obvious parametrization:

X(u,v) = (u,v,0). Then

X1 = (1,0,0), X2 = (0,1,0)

Since X1 and X2 are constant vectors, every derivative will vanish and we have

DXiXj = 0 for every i, j ∈ {1,2}. Hence Γ kij = 0 i, j, k ∈ {1,2}.

Example 2.28 Let S be a rotational surface parametrized by

X(u,v) = (f (v) cos(u), f (v) sin(u), g(v)).

Then

X1 = Xu = (−f (v) sin(u), f (v) cos(u),0), X2 = Xv = (f ′(v) cos(u), f ′(v) sin(u),

Hence g11 = E = f (v)2, g12 = F = 0 and g22 = G = f ′(v)2 + g′(v)2. Then

G =
(
f (v)2 0

0 f ′(v)2 + g′(v)2
)
, G−1 =




1
f (v)2 0

0
1

f ′(v)2+g′(v)2




and

Γ 1
11 = 1

2

∑

l

gl1
(
X1g1l +X1g1l −Xlg11

)
=

= 1

2

(
X1g11 +X1g11 −X1g11

)
= 1

2
Xu(f (v)

2) = 0.

Γ 2
11 = 1

2

∑

l

gl2
(
X1g1l +X1g1l −Xlg11

)
=

= 1

2
g22

(
X1g12 +X1g12 −X2g11

)
= − f (v)f ′(v)

f ′(v)2 + g′(v)2 .

Γ 1
12 = 1

2

∑

l

gl1
(
X1g2l +X2g1l −Xlg12

)
= f

′(v)

f (v)
.

Γ 2
12 = 1

2

∑

l

gl2
(
X1g2l +X2g1l −Xlg12

)
= 0.

Γ 1
22 = 1

2

∑

l

gl1
(
X2g2l +X2g2l −Xlg22

)
= 0.

Γ 2
22 = 1

2

∑

l

gl2
(
X2g2l +X2g2l −Xlg22

)
=

= 1

2
g22X2g22 =

f ′(v)f ′′(v)+ g′(v)g′′(v)
f ′(v)2 + g′(v)2 .
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Parallel transport and geodesics

Given a vector v in Rn we can define a vector field V by letting V(p) = v
for every p ∈ Rn. We can define the same vector field by saying that V(p) and

V(q) only differ by a translation (to be precise V(q) is the image of V(p) under

the differential of the translation that maps p to q). If α : I → Rn is a curve in

Rn then the restriction V(t) of V to the points of the trace of α is a constant

vector field hence satisfies the differential equation Dα′(t)V(t) = d
dtV(t) = 0,

viceversa, a vector field V(t) along α that satisfies that equation has constant

components, hence V(t1) and V(t2) are parallel in Rn for every choice of t1 and

t2. On a surface, in general, we do not have a notion of translation that can help

us to define a field that is always parallel to a given vector, we will then use a

differential equation:

Definition 2.17 Let S be a surface and let α : I → S be a regular curve. A smooth

vector field V along α is parallel along α if

∇α′V = 0

for every t ∈ I.

Proposition 2.10 Let S be a surface an let α : I → S be a regular curve. If the

vector fields V1 and V2 are parallel along α then < V1, V2 > is constant along

α.

Proof: We show that < V1, V2 > is constant by taking the derivative with respect

to the parameter t of the geodesic, this is the same as

α′ < V1, V2 >=< ∇α′V1, V2 > + < V1,∇α′V2 >= 0.

As an immediate consequence we have that

(i) If V is parallel along α then the norm of V is constant along α,

(ii) If V1, V2 are parallel along α then the angle between V1 and V2 is constant

along α.

Theorem 2.9 Let S be a surface and let p ∈ S, v ∈ TpS. If α : I → S is a

regular curve such that α(0) = p then there exists a unique parallel vector

field V(t) along α such that V(0) = v.



Parallel transport and geodesics §2.6 67

Proof: Let X : U → S be a local parametrization and suppose first that the trace

of α is contained in X(U). If α(t) = X(u1(t),u2(t)) we can write

α′(t) = u′1(t)X1 +u′2(t)X2, V(t) = a1(t)X1 + a2(t)X2

for some smooth functions a1(t), a2(t). Then

∇α′V = ∇u′1(t)X1+u′2(t)X2
V = u′1(t)∇X1V +u′2(t)∇X2V =

=
∑

i

u′i(t)∇XiV =
∑

i

u′i(t)∇Xi (a1X1 + a2X2) =
∑

ij

u′i∇Xi
(
ajXj

)
=

=
∑

ij

u′i

(
Xi(aj)Xj + aj∇XiXj

)
=

=
∑

ij

u′iXi(aj)Xj +
∑

ij

aj
∑

k

ΓkijXk =

=
∑

k

∑

i

u′iXi(ak)Xk +
∑

k


∑

ij

aju
′
iΓ kij


Xk =

=
∑

k


dak
dt

+
∑

ij

aju
′
iΓ kij


Xk

where, in the last step, we used the chain rule to take the derivative of ak with

respect to t. Hence V is parallel if and only if

dak

dt
+
∑

ij

aju
′
iΓkij = 0 (2.8)

holds for k = 1,2. This is first order a linear ODE that can be solved uniquely

given the initial condition V(0) = (a1(0)X1 + a2(0)X2) = v and the solution is

defined in the whole interval I where the curve α is defined. The definition of

parallel vector fields along α does not involve a parametrization and this concept

is independent on the parametrization we choose to verify that V is parallel along

α. Hence if the trace of α is not contained in a parametrization and we want to

define V at α(t), we can cover the image of [0, t] under α (a compact set since

the image of a compact set under a continuous map is compact) with a finite

number of local parametrizations and the equation can be solved on each of

them. Due to the uniqueness of the solution V is well defined at α(t).

Example 2.29 If S is the xy plane in R3 with the usual parametrization, then the

Christoffel symbols are identically zero. Hence the equation (2.8) just says that

the component of a parallel vector field along any curve must be constant and we

find the usual notion of parallelism in R2.
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Definition 2.18 Let S be a surface and let p ∈ S, v ∈ TpS. Given a curve α : I → S
such that α(0) = p, the unique parallel vector field V along α such that V(0) = v
is called parallel transport of v along α.

Example 2.30 Let S be the torus parametrized by

X(u,v) = ((R + r cos(v)) cos(u), (R + r cos(v)) sin(u), r sin(v))

it is possibile to compute the Chri-

stoffel symbols, the only non-

zero ones are:

Γ 2
11 =

1

r
sin(v)(R + r cos(v)),

Γ 1
12 = Γ 1

21 = −
r sin(v)

R + r cos(v)
.

We will consider three curves

fig. 2.5

on S and determine some pa-

rallel vector fields. Let u0 ∈
(0,2π) and let α1(t) be a coor-

dinate curve u = u0:

α1(t) = ((R + r cos(t)) cos(u0), (R + r cos(t)) sin(u0), r sin(t))

the field Xu, restricted to α1 is

Xu(t) = (−(R + r cos(t)) sin(u0), (R + r cos(t)) cos(u0),0)

cannot be parallel since it does not have constant norm. We let

V1(t) =
1

||Xu||
Xu = (− sin(u0), cos(u0),0)

(green in fig. 2.5) then

∇α′1V1 =
(
d

dt
V1(t)

)tang
= 0

i.e. V1 is parallel along α1. Similarly if we consider the upper circle:

α(2)(t) = (R cos(t), R sin(t), r)

any tangent field that has constant components is parallel (for example the red

one in fig. 2.5). In both cases the fields have constant components as vectors in R3

so the derivative w.r. to the parameter of the curve is always 0, but, in general,
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a field with constant components does not remain tangent to the surface. If we

consider the central circle (v = 0)

α(3)(t) = ((R + r) cos(t), (R + r) sin(t),0)

and we let V3 = α′3 = Xu (the blue one in fig. 2.5) then V3 is parallel along α3, we

have

α′3 = 1Xu + 0Xv , V3 = 1Xu + 0Xv

hence we have u′1 = 1, u′2 = 0 and a1 = 1, a2 = 0. The system of ODE requires

then Γk11 = 0 for k = 1,2. Since Γ 2
11 = 0 for v = 0 we have that V3 is parallel. This

also shows that the tangent vector field to a curve v = v0 is parallel if and only if

v = 0 or v = π .

Remark 2.3

(i) We used a local coordinate system to derive an equation for parallel vec-

tor fields V along a curve α, but the fact that V is parallel along α is

independent on the chosen parametrization.

(ii) A vector field V(t) restricted to a curve α on a surface S is parallel if V ′(t)
does not have a component tangent to S. Then if N(t) is the restriction of

a normal field to S to the points of α, we have V ′(t) = λ(t)N(t) for some

function λ(t).

(iii) If φ : S1 → S2 is a local isometry then a vector field V(t) is parallel along

α : I → S1 if and only if the vector field dφ(α(t))(V) is parallel along β(t) =
φ ◦ α(t). This follows from the fact that we have local parametrizations

X1 : U → S1 and X2 : U → S2 such that the Christoffel symbols for S1 and S2

are the same at the corresponding point and, if we write α(t) = X1(γ(t)),

β(t) = X2(γ(t)) then the ODE for parallel vector fields along the two curves

is the same.

Proposition 2.11 If two regular surfaces S1 and S2 are tangent along a curve

α : I → S1∩S2 (i.e. Tα(t)S1 = Tα(t)S2) then a tangent vector field V(t) is parallel

along α on S1 if and only if it is parallel along α on S2.

Proof: This is an immediate consequence of the previous remark. In fact if S1

and S2 are tangent along α(t) and V(t) is parallel on S1 then V ′(t) = λ(t)N1(t),

where N1(t) is normal to S1. But then N1 is also normal to S2 and V is parallel

on S2.

Example 2.31 Let us consider the fields defined in the Example 2.30. The curve

α2 is tangent to both S and a plane, hence a vector field along α2 is parallel if
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and only if it has constant components as vector in R3. The curve α3 lies also on a

cylinder tangent to the torus. The cylinder is locally isometric to the plane, and the

pre-image of α3 is a segment in R2. Since the tangent vector to a line is parallel

in R2 we can conclude that V3 is parallel on S.

Example 2.32 From the previous example it follows immediately that the tangent

vector to a great circle on a sphere S2 is parallel along the great circle: given a

great circle we have a cylinder tangent to the sphere along that circle.

Example 2.33

Let S be a regular surface and let α : I → S be a regular curve. Once we have

a nonzero parallel vector field V along α, it is easy to construct all other parallel

vector fields:

(i) Since V(t) is parallel then ||V(t)|| is constant and nonzero. Let W(t) be a

smooth unit vector field tangent to S and orthogonal to V(t).

(ii) Let t0 ∈ I and let Z(t) be the unique parallel vector field along α such

that Z(t0) = W(t0). Then, since the parallel transport preserves the length

and the angles of parallel vector fields, we have that ||Z(t)|| = ||Z(t0)|| =
||W(t0)|| = 1 and Z(t) is orthogonal to V(t). It follows that Z(t) = W(t)
and W(t) is also parallel along α.

(iii) Let v = aV(t0)+bW(t0) ∈ TSα(t0) be a tangent vector to S. Define the field

U(t) = aV(t)+ bW(t). Then

∇α′(t)U(t) = ∇α′(t)(aV(t)+ bW(t)) = a∇α′(t)V(t)+ b∇α′(t)W(t) = 0

hence U(t) is the unique parallel vector field along α such that U(t0) = v.

Definition 2.19 Let S be a regular surface and let α : I → S be a regular curve.

Then α is a geodesic if α′(t) is a parallel vector field along α.

From the definition it follows immediately that, if α is a geodesic, then ||α′|| is

constant i.e. α is parametrized with constant speed.

Theorem 2.10 Let S be a surface and let p ∈ S, v ∈ TpS. Then there exists a

unique geodesic α : (−ǫ, ǫ)→ S such that ǫ > 0, α(0) = p and α′(0) = v.

Proof: This is an immediate consequence of the existence result for parallel

vector fields. In a local coordinate system we have, with the notations of (2.8),

v1 = u′1 and v2 = u′2 hence α is a geodesic if and only if:

u′′k +
∑

ij

u′iu
′
jΓkij = 0 (2.9)
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holds for k = 1,2. This is first order a nonlinear ODE that can be solved uniquely

given the initial condition v(0), the solution is only guaranteed to exist in an

interval centered in 0.

Example 2.34 Let X(u1, u2) = (u1, u2,0), u1, u2 ∈ R, be a parametrization of the

xy plane S in R3. The Christoffel symbols vanish and α(t) = (u1(t),u2(t),0) is

a geodesic if and only if u′′1 (t) = u′′2 (t) = 0. If p = (a, b,0) and v = (v1, v2,0) ∈
TpS, the geodesic through p, tangent to v, is the straight line

α(t) = (a, b,0)+ t (v1, v2,0).

In general it is very difficult to solve the equation (2.9) explicitly, we will describe

a few examples where the geodesics can be found using geometric arguments:

Example 2.35 We can describe the geodesics of the sphere S2 without using the

equation (2.9). Let α(t) be a geodesic on S2, parametrized by arclength. From

||α′(t)|| = 1 it follows that < α′(t),α′′(t) >= 0. Taking the derivative of 1 =
||α(t)||2 =< α(t),α(t) > we obtain < α(t),α′(t) >= 0 and taking one more

derivative

0 =< α(t),α′(t) >′=< α(t)′, α′(t) > + < α(t),α′′(t) >= 1+ < α(t),α′′(t) >

so that < α(t),α′′(t) >= −1. If α is a geodesic then α′(t) is a parallel vector

field along α i.e. the covariant derivative ∇α′α′ vanishes. This is equivalent to the

fact that α′′(t) does not have a component along the tangent space to S2. Since

N(t) = α(t) is a unit normal field at the points of the curve

α′′(t) =< α′′(t),N(t) > N(t) = −N(t) = −α(t)

and α is a solution of the differential equation α′′(t)+α(t) = 0. It is easy to check

that the unique solution such that α(0) = p ∈ §2 and α′(0) = v ∈ TpS2 is given

by

α(t) = cos(t)p + sin(t)v

and α(t) is a great circle on S2.

Example 2.36 Let S = {(x,y, z) ∈ R3 : x2 + y2 = 1} be a cylinder in R3 and let

α(t) = (x(t),y(t), z(t)) be a geodesic parametrized by arclength. Then x(t)2 +
y(t)2 = 1 and

xx′ +yy ′ = 0

taking one more derivative we obtain

x′2 +y ′2 + xx′′ +yy ′′ = 0
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since α is parametrized by arclength: x′2 +y ′2 + z′2 = 1 and

xx′′ +yy ′′ = 1− z′2. (2.10)

Since α is a geodesic, α′′ is parallel to the normal vector (x(t),y(t),0) at every

point of α hence

x′′(t) = lambda(t)x(t), y ′′(t) = lambda(t)y(t), z′′(t) = 0

for some smooth function λ. We will describe the geodesic such that α(0) = p =
(1,0,0) and α′(0) = v = (0, a, b) ∈ TpS. From the third equation it follows that

z(t) = b t and z′(t) = b, hence, from (2.10), using the fact that ||v|| = 1:

xx′′ +yy ′′ = 1− b2 = −a2

then, since α lies on the cylinder,

−a2 = λ(t)x(t)2 + λ(t)y(t)2 = λ(t)(x(t)2 +y(t)2) = λ(t)

and λ(t) = −a2 is constant. Then we can integrate the ODE’s:

x′′ + ax = 0, y ′′ + ay = 0

with our initial conditions, and we obtain x(t) = cos(at), y(t) = sin(at), so that

α(t) = (cos(at), sin(at), bt).

If b = 0 the geodesic is a round circle, if a = 0 a vertical straight line, otherwise

α(t) is an helix.

Given a point p ∈ S and v ∈ TpS we have a geodesic α(t) tangent to v

at p. If we rescale the vector v, then the corresponding geodesic is just a

reparametrization of α:

Proposition 2.12 Let S be a regular surface, p ∈ S and, for v ∈ TpS, denote

by αv(t) : (−ǫ, ǫ) → S the geodesic such that α(0) = p and α′(0) = v. Then,

for λ ∈ R \ {0},
αλv(t) = αv(λt)

is the geodesic through p, defined in (− ǫλ ,
ǫ
λ), tangent to λv.

Proof: Let β(t) = αv(λt). Then β(0) = p and β′(0) = λ
alpha′v(0) = λv

∇β′β′ = ∇λα′v
(
λα′v

)
= λ2∇α′vα′v = 0

hence β is a geodesic. From the uniqueness of the solutions of the ODE (2.9) it

follows that αλv(t) = β(t).
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Corollary 2.3 Let S be a regular surface, p ∈ S then there is a neighborhood

V of 0 ∈ TpS such that for every v ∈ V , the geodesic αv(t) is well defined for

t = 1.

Proof: Let v ∈ TpS be a unit vector, let ǫ(v) be the maximal interval such

that αv(t) is well defined in [−ǫ(v), ǫ(v)), where p = αv(0). Then ǫ(v) is a

continuous function (follows from the continuous dependence on initial data

in the ODE (2.9)) defined in the unit circle, i.e. in a compact set. Let a be the

minimum of ǫ(v). Then every geodesic spreading from p with unit speed is

defined in (−a,a). It follows that if δ < 1
a and ||v|| < δ the geodesic αv(t) is

well defined in I = (−aδ ,
a
δ ) and 1 ∈ I.

Definition 2.20 Let S be a regular surface, p ∈ S and let V be a neighborhood of

0 ∈ TpS such that for every v ∈ V , the geodesic αv(t) is well defined for t = 1.

Then we define the exponential map at p: expp : V → S by

expp(v) = αv(1), expp(0) = p.

Theorem 2.11 Let S be a regular surface, p ∈ S. Then the exponential map at

p: expp : V → S is a local diffeomorphism from a neighborhood of the origin

in TpS in S.

Proof: The regularity of expp follows from results on the dependence of solu-

tions of ODE’s from initial data. We want to use the inverse function theorem to

show that expp is a local diffeomorphism. For this purpose we have to evaluate

the differential of expp at 0 ∈ V . We identify the tangent space at 0 to TpS with

TpS itself. Let v be a tangent vector at 0 ∈ V then β(t) = tv is a curve in V that

is tangent to v at t = 0. The image of β(t) is the curve

expp(β(t)) = expp(tv) = αtv(1) = αv(t)

i.e. the geodesic starting from p with speed v (in the last equality we used

Proposition 2.12). By definition

dexpp(0)(v) =
d

dt
αv(t)t=0 = v

and the differential of expp at 0 is the identity map. This is clearly an invertibile

linear map and the result follows.

Since expp : V → S is a local diffeomorphism, defined in a neighborhood V

of 0 ∈ TpS, we can use it to parametrize a neighborhood of p in S. We can
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parametrize V using the standard cartesian coordinate, then the corresponding

coordinates (u,v) on for the points of S are called normal coordinates, while if

we use polar coordinates in V then the coordinates in S are called polar geodesic

coordinates.

If we use the polar geodesic coordinates (ρ, θ) in S, with ρ ∈ (0, ǫ), θ ∈ (0,2π),
then, by definition, the coordinate curves θ = θ0 are the images of segments of

straight lines through the origin in TpS, i.e. geodesics in S. The images of the

curves ρ = ρ0 are called geodesic circles in S.

Proposition 2.13 Let S be a regular surface and let p ∈ S. Let p ∈ S and

V ⊂ TpS such that expp : V → S is a diffeomorphism. Then, using the

polar geodesic coordinates (ρ, θ) in S we have the following properties of the

coefficients of the first fundamental form of S:

E = 1, F = 0, lim
ρ→0

√
G = 0, lim

ρ→0
(
√
G)ρ = 0.

Proof: The first statement is obvious since Xρ is tangent to a unit speed geodesic.

Since Xρ and Xθ are coordinate vector fields we have [Xρ, Xθ] = 0 and

Xρ(F) = Xρ < Xρ , Xθ >=< ∇XρXρ, Xθ > + < Xρ,∇XρXθ >=
= < Xρ ,∇XρXθ >=< Xρ,−∇XθXρ >=

= −1

2
Xθ < Xρ , Xρ >= −

1

2
Xθ(1) = 0.

Hence F does not depend of ρ we can compute it by taking the limit of < Xρ, Xθ >

as ρ → 0. But it is easy to show that then Xθ → 0 (it is tangent to the geodesic

circles) while Xρ tends to a unit vector. Hence the limit of F is 0.

We omit the proof of the properties of G, it is possible to find it in the reference

books.

The fact that the coefficient F vanishes in polar geodesic coordinates is known

as Gauss Lemma . This means that the radial geodesics from p meet the geodesic

circles orthogonally, exactly like in the polar coordinates in an Euclidean space.

Proposition 2.14 Let S be a regular surface and let p ∈ S. Let p ∈ S and

V ⊂ TpS such that expp : V → S is a diffeomorphism. Then, using the polar

geodesic coordinates (ρ, θ) in S the Gauss curvature of S can be computed as

K(ρ, θ) = −(
√
G)ρρ√
G



Parallel transport and geodesics §2.6 75

Proof: We omit the proof of this result. The proof follows from the computation

of the Christoffel symbols of S.

We have then

Corollary 2.4 [Minding] Two surfaces S1, S2 that have the same constant

Gauss curvature are locally isometric.

Proof: Let p1 ∈ S and p2 ∈ S and parametrize two neighborhoods of these

points using polar geodesic coordinates, using the same range for the ρ and θ

variables. From the previous results we have that the coefficients E1 = E2 = 1

and F1 = F2 = 0 of the first fundamental form are equal. The coefficients G1 and

G2 satisfy the ODE

(
√
Gi)ρρ +K

√
Gi = 0.

Since K is constant we consider the following cases

1) K = 0. Then (
√
Gi)ρρ = 0 i.e. (

√
Gi)ρ is a function fi(θ) of the variable θ.

We have

1 = lim
ρ→0

√
Gi)ρ = lim

ρ→0
fi(θ)

and fi(θ) is constant equal to 1. We can then integrate once more w.r to ρ:
√
Gi = ρ + f̃i(θ)

for some function f̃i(θ). But we also have

0 = lim
ρ→0

√
Gi) = lim

ρ→0
f̃i(θ)

hence f̃i(θ) = 0 and Gi = ρ2. The coefficients of the first fundamental forms are

the same and the two surfaces are parametrized in the same neighborhood of

the origin in an Euclidean space. Hence S1 and S2 are locally isometric.

2) K > 0. We can integrate w.r. to ρ and find
√
Gi = Ai(θ) cos(

√
Kρ)+ Bi(θ) sin(

√
Kρ)

for some functions Ai, Bi. Since
√
G → 0 as ρ → 0 we have Ai(θ) = 0. Then

(
√
Gi)ρ =

√
KBi(θ) cos(

√
Kρ)

and, since (
√
G)ρ → 0 as ρ → 0,

√
Gi =

1√
K

sin(
√
Kρ)
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hence the coefficients of the first fundamental form are the same at the corre-

sponding points and the two surfaces are locally isometric. We omit the proof

for the case K < 0, which is similar.

One of the important properties of geodesic is the following:

Proposition 2.15 Let S be a regular surface and let β(t) be a geodesic. Then

β is locally length minimizing.

Proof: Here we omit some of the details of the proof. Let p be a point on

the trace of β and assume, for simplicity, that p = β(0). Consider a normal

geodesic neighborhood expp(V) of p and denote again by β : [0, L] → expp(V)
a connected segment of β whose image lies entirely in expp(V). Then β(t) =
expp(tv) for some v ∈ TpS. Let q = β(L). And let α[0, L] → S be another

curve such that α(0) = p, α(L) = q with α(t) ∈ expp(V) (we assume that the

trace of α lies in the coordinate neighborhood to simplify the proof, in fact it is

possible to show that this is not really necessary, up to a shrinking of V ). We

can parametrize α(t) : (0, L] → expp(V) ⊂ S using polar geodesic coordinates

α(t) = X(ρ(t), θ(t)), (where we assume that α does not pass through p twice,

otherwise we consider just a component of α) then

< α′, α′ >=< ρ′Xρ + θ′Xθ, ρ′Xρ + θ′Xθ >= ρ′2 +Gθ′2 ≥ ρ′2

and the equality holds if and only if θ′ = 0. Then

L(α) = lim
ǫ→0

∫ L
ǫ
||α′(t)||dt ≥ lim

ǫ→0

∫ L
ǫ
|ρ′(t)|dt

on the right hand side we have the length of a curve such that θ = θ0 is a

constant, and, if ρ′ > 0, this curve is the unique geodesic joining p and q. Hence

β minimizes the distance between p and q.

The converse is also true, any length minimizing regular curve α, parametrized

by arclength, is a geodesic.

Example 2.37 In a sphere a geodesic expp(tv) remains length minimizing until it

reaches the antipodal point −p. After that the minimizing geodesic is expp(−tv)
so the previous result cannot be extended to a global one.

Let X : V → expp(V) be a normal geodesic neighborhood of p, and let α1, α2

be two different geodesics, parametrized by arclength. Then, for every fixed ρ0,

α1(ρ0) and α2(ρ0) belong to the same geodesic circle in S (note that a geodesic
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circle, in general, is not a geodesic) hence can be connected by a curve para-

metrized by X(ρ0, s) , with s ∈ [θ0, θ1]. The length of this geodesic circle is

then

L(α1(t),α2(t)) =
∫ θ2

θ1

||Xθ||ds =
∫ θ2

θ1

√
Gds.

We know something about the behavior of the coefficient
√
G, close to ρ = 0, we

have that the initial slope at ρ = 0, is equal to 1, while the second derivative, with

respect to ρ is equal to −K
√
G. Intuitively we see that the sign of the curvature

controls the speed at which the two geodesic are spreading out of the point p. If

K < 0 then the length of the geodesic circle connecting two points of the curves

is increasing since
√
G is a convex function. If K = 0 the length of the circle

increases linearly. If K > 0 then
√
G is a concave function and we have two

possible behaviors: the length of the geodesic circle may continue to increase

(this can be seen in a paraboloid, for the geodesics starting at the origin) or, at

some point, it will start to decrease (e.g.in the sphere, where two great circles in

p will meet at the antipodal point −p).

We have seen that the curvature of the manifold may force two geodesic that

start at the same point to meet again at a different point (like in the case of the

sphere). It follows that the exponential map cannot be a global diffeomorphism

from the tangent space into the manifold, in fact it fails to be injective (points on

two different lines through the origin have the same image) (this is also related

to the fact that geodesic are only locally minimizing). Nevertheless, if the metric

has some reasonable properties, the exponential map is defined in the whole

tangent space:

Theorem 2.12 [Hopf Rinow] Let S be a regular surface, then the following facts

are equivalent

(i) S is a complete metric space.

(ii) any two points in S can be connected by a length minimizing geodesic.

(iii) the exponential map at a point p ∈ S is defined in the whole tangent space

TpS.

(iv) every geodesic is defined for t ∈ R.

Recall that, using the first fundamental form, we can define the length of the

curves in S, hence a distance in S. S is then a metric space and it is complete if

and only if every Cauchy sequence is converging.

Corollary 2.5 Every compact surface is complete
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Proof: Let α(t) be a geodesic parametrized by arclength such that α(0) = p.

Suppose that the geodesic is only defined in a maximal interval (on the right) of

the form [0, t0). We want to prove that t0 = +∞. Given a sequence of points tn
in [0, t0) such that tn → t0 we have that tn is a Cauchy sequence in R. Hence,

given ǫ > 0 we can find n0 ∈ N such that

|tn − tm| < ǫ, ∀m,n > n0

since the geodesic is parametrized by arclength we have that the length of the

arc αmn of α between α(tn) and α(tm) is |tn − tm| hence, since αmn is one of the

curves joining the two points

||α(tn)−α(tm)|| ≤ L(αmn ) = |tn − tm| < ǫ

if m,n are large enough. It follows that α(tn) is a Cauchy sequence on S, the

compactness of S implies that we can find a converging subsequence (that we

still denote by α(tn)) such that α(tn) → p. We let then α(t0) = p. This shows

that we can extend α continuously to t0, but it is possible to prove that this

can be done in a smooth way. From the existence theorem for geodesic we have

that there exists a geodesic in S such that γ(t0) = p and γ′(t0) = α′(t0) and γ is

defined in (−ǫ, ǫ). From the uniqueness part of that theorem we have that γ = α.

Hence α is defined in [0, t0 + ǫ). Since t0 was assumed to be maximal we have

a contradiction unless t0 = +∞. The result now follows from the Hopf-Rinow

theorem.

Let α be a curve (parametrized by arclength) on an oriented surface S. We

have that α′ is a unit vector tangent to S and N(α(t)) is a unit normal vector. It

follows that the vector field defined at the points of α by

U(t) = α′(t)×N(α(t))

is a unit vector field tangent to S and orthogonal to α′. In other words

{α′, N(α(t)),U(t)}

is an orthonormal frame at the points of α(t). It follows that we can write

α′′(t) = a(t)α′(t)+ b(t)N(α(t))+ c(t)U(t)

but since α′′(t) ⊥ α′(t) (since the length of α′ is constant) we have a(t) = 0.

Moreover α′′(t) · N(α(t)) is by definition the normal curvature of α. Hence,

using the symmetries of the triple product, we have

α′′(t) = knN+α′′·(α′×N)U = knN+N·(α′′×α′)U = knN+|N||α′′×α′| cos(θ)U
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where θ is the angle between N and α′′ × α′. We define the geodesic curvature

of α to be

kg = |α′′ ×α′| cos(θ)

so that

α′′(t) = knN + kg U

(note that the sign of kg depends on the choice of the orientation of S). Then the

curvature of α is

k(t) = kn(t)2 + kg(t)2.

We have the following properties of the geodesic curvature:

(i) If α is a plane curve then kn = 0, hence, up to sign, the curvature of α

coincides with the geodesic curvature.

(ii) A curve, parametrized by arclength, on S is a geodesic if and only if α′′(t)
is a normal vector. This happens if and only if kg = 0 since the geode-

sic curvature measures the length of the tangent part of α′′. Hence the

geodesic curvature measures the failure of α to be a geodesic.

Integration on surfaces

We give, without proofs, some results about the definition of integral of a

function defined on a surface, i.e. given a function f : S → R, we want to define

the integral of f over S. We try to find an analogue of the integral of a real valued

function defined in an open subset U of Rn. If f : U → R is bounded we have the

integral ∫

U
f dx1 . . . dxn

and, if φ : U ′ → U ⊂ Rn is a diffeomorphism we have the change of variable

formula: ∫

U
f dx1 . . . dxn =

∫
U ′f ◦φ|det(dφ)|dx′1 . . . dx′n

the absolute value of the determinant of the Jacobian of φ has a geometric mea-

ning that, in the case of two variables, corresponds to the area of the image of

a square with unit sides under φ. In the case of a surface we have that a local

parametrization plays the role of the diffeomorphism φ, mapping a two dimen-

sional open subset of R2 into an open subset of a surface. In general it is not

possible to cover the entire surface with just one coordinate neighborhood so we

will have to find a way of making this local construction global.
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Definition 2.21 Let X : U → S be a local parametrization and let f : S → R be a

function such that the support of f , i.e. the closure of the set {p ∈ S : f (p) ≠ 0}
is contained in X(U). Then f is integrable if the following integral exists

∫

U
f ◦ (X)(u,v)||Xu ×Xv||dudv .

Here Xu × Xv is the area of the parallelogram spanned by Xu and Xv at each

point of X(U). This parallelogram is the image of a square spanned by (1, ,0)

and (0,1) in the tangent space at a point of U under the differential of X. Using

the change of variable formula in R2 it is easy to show that this definition of

integral does not depend on the particular choice of the parametrization. If the

function f does not have support in X(U) we have to use a partition of the

unity:

Proposition 2.16 Let S be a regular surface and let Vi be open subsets of S

such that

(i) S =
⋃
Vi

(ii) every point of p has a neighborhood that interesects finitely many Vi

Then there are functions fi : S → R such that

(i) the support of fi is contained in Vi
(ii) fi(p) ≥ 0 for every p ∈ S.

(iii) for every p ∈ S,
∑
fi(p) = 1

we say that fi form a partition of the unity subordinated to the covering Vi
of S. It is possibile to prove that a partition of the unity always exists on S.

Given a covering of S by coordinate neighborhoods Vi = Xi(Ui) and function

f : S → R we have that f · fi has support in Vi hence we can use the previous

local definition of integral and set
∫

S
f =

∑∫

Vi

f fi.

This formula remains valid if the covering of S leaves out a ’zero measure set’.

By letting f = 1 the previous formula defines the area of a surface .

Example 2.38 Let X : (0,2π)× (−π2 ,
π
2 )→ S2 be the local parametrization

X(u,v) = (r cos(v) cos(u), r cos(v) sin(u), r sin(v))

this parametrization covers the entire sphere with the exception of a half circle,

this set does not contribute to the area of the sphere and we have

Xu ×Xv = (r 2 cos(v)2 cos(u), r 2 cos(v)2 sin(u), r 2 sin(v) cos(v))
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it follows that ||Xu×Xv|| = r 2 cos(v)2 and we can compute the area of the sphere:

∫ 2π

0

∫ π
2

− π2
r 2 cos(v)dudv =

∫ 2π

0
2r 2 du = 4πr 2.

The Gauss Bonnet theorem

The Gauss Bonnet theorem shows that there is a relation between the Gauss

curvature of a surface and the topology of the surface. In the case of plane curves

we see that it is possible, in some case, to associate a number, determined by the

curvature, to a given plane curve, and this number is linked to the structure

of the trace of the curve. Let α : [0, L] → R2 be a simple closed plane curve,

i.e. α(0) = α(L) and α(t1) ≠ α(t2) for {t1, t2} ≠ {0, L}. It is possible to prove

(Jordan’s theorem) that α divides the plane in two regions, only one of them is

bounded and we say that α is positively oriented if the normal vector points in

the direction of the bounded region. Then we have

Theorem 2.13 [Turning tangents] Let α : [0, L] → R2 be a simple, closed and

positively oriented curve in R2. Then
∫ L

0
kdt = 2π.

Proof: Assume that α is parametrized by arclength. Then, if θ(t) is the angle

between α′(t) and the positive direction of the x-axis, we have

α′(t) = (cos(θ(t)), sin(θ(t)))

and

α′′(t) = θ′(t) (− sin(θ(t)), cos(θ(t)))

our choice of the orientation implies that θ′ > 0 and we have:

k(t) = ||α′′(t)|| = θ′(t)

hence
∫ L

0
kdt =

∫ L
0
θ′(t)dt = θ(L)− θ(0)

but, since the curve is simple and closed, the difference between the two angles

must be 2π .
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Given a simple closed curve it is possible to find a curve with the same trace that

winds around several times (see (1.5)) in this case the integral of the curvature

will be an integer multiple of 2π , i.e. by computing the integral of the curvature

we may know how many times the curve winds around, this is a topological

information about α (see the definition of fundamental group of a circle).

There is a non-smooth version of the previous result. If a curve α : I → R2 is

only piecewise smooth and we have breakpoints for t = t1, . . . , tn, then we may

define the exterior angle at ti as the angle θi between the two vectors

α′(ti)− = lim
t→ti−

α′(t), α′(ti)+ = lim
t→ti+

α′(t)

if the curve is simple and closed then the integral of the curvature is less than

2π , but this can be compensated by adding the sum of the exterior angles:

∫ L
0
kdt +

∑

i

θi = 2π.

Example 2.39 Let α be the boundary of a triangle in R2. Then the sides of the

triangle are straight line and the curvature is zero. The previous formula reduces

to ∑

i

θi = 2π.

Since the exterior angles θi at the three vertices are related to the interior angles

φi by θi = π − φi, it follows that
∑
φi = π , if we replace the triangle by a

polygon with n sides, the same formula shows that the sum of the interior angles

is (n−2)π . This facts can be proved by using elementary geometry but, using this

formula, the proof is immediate. Note that the sides of a polygon are geodesics in

R2.

There is a topological classification of the compact oriented surfaces in R3.

Each such surface is characterized (up to diffeomorphism) by an integer, called

genus of the surface. Intuitively the genus counts the number of ’holes’ in the

surface. For example the sphere has genus 0, the torus has genus 1... The genus

is then a topological invariant of a surface and we can use it to define another

topological invariant, called the Euler characteristic of the surface S :

χ(S) = 2− 2g

where g is the genus of the surface. For example, the Euler characteristic of the

sphere is 2, the one of the torus is 0.... The (first version) of the Gauss Bonnet

theorem relates the Gauss curvature of the surface to the Euler characteristic in

a very simple form:
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Theorem 2.14 [Gauss-Bonnet I] Let S be a compact orientable surface in R3.

Then ∫

S
K = 2πχ(S).

It follows that if we deform a round sphere, this deformation can create points

where the curvature is not constant, positive or negative. But if the curvature is

decreased in some area then there must be some other area where the curvature

has increased since the total integral of the curvature is constant equal to 4π .

This also shows that it is not possible to deform a torus so that the curvature is

positive at all points, in fact the integral of the curvature remains equal to 0. We

also have an important consequence

Corollary 2.6 Let S be a compact oriented regular surface such that K > 0.

Then S is homeomorphic to a sphere.

Proof: It follows from the Gauss Bonnet theorem that the Euler characteristic of

S is positive. Since χ(S) = 2− 2g this is only possible if g = 0.

Now we can state a different version of the Gauss Bonnet theorem, that applies

to surfaces with boundary. We will not give a rigorous definition of surfaces with

boundary. While a regular surface is locally diffeomorphic to an open connected

sets in R2, we allow some coordinate neighborhoods in a surface with boundary

to be modeled by open sets in the half plane {(x,y),y ≥ 0}. The image of the

boundary points of this set (i.e. the points on the x axis) will define the boundary

of the surface. In most applications, for us, a surface with boundary is just the

result of removing (open) regions bounded by closed simple curves on a regular

surface:

Definition 2.22 A regular region R in a regular surface S is a compact set given

by the union of closures of connected disjoint open subsets of S such that the

boundary of R is the union of piecewise smooth simple curves.

We will assume that the boundary curves are ’positively oriented’, this is an ana-

logue of the choice of the orientation for simple closed. Intuitively, this means

that if one is walking on the curve in the ’positive’ direction and with one’s head

pointing to the normal vector N to the surface, then the region R remains to the

left. It can be shown that one of the two possible orientations of the curve makes

it positively oriented.
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Theorem 2.15 [Gauss-Bonnet II] Let S be a compact orientable surface in R3

and let R be a regular region whose boundary is the union of positively orien-

ted piecewise smooth curves αi. Denote by θij the exterior angles at the

singular points tj for the curve αi. Then
∫

R
K +

∑∫

αi

kg +
∑
θij = 2πχ(R)

where kg denotes the geodesic curvature of the curve αi.

This is an extremely powerful tool, but first one has to know how to compute

the Euler characteristic of a regular region!

Definition 2.23 A triangle in a regular surface S is a region T homeomorphic to

a disc such that the boundary of T is a piecewise smooth curve that has three

singular points with nonzero exterior angles. A triangulation of a region R in S

is a family {Ti} of triangles in S such that R is the union of the triangles and the

intersection of two distinct triangles Ti and Tj can only be empty, a side (one of

the smooth arcs in the boundary of the triangle) or a vertex (one singular point of

the boundary).

It is possible to prove that every regular region R in a regular surface admits a

triangulation. Given a triangulation it is possible to compute the number F of

faces (i.e. the triangles), the number E of the sides, and the number V of the

vertices. Then we define the Euler characteristic of R

χ(R) = F − E + V.

This quantity does not depend on the particular choice of the triangulation of R,

hence it is a topological invariant of R.

Example 2.40 Let R be the unit disc in the plane centered at the origin. We can

divide it in 4 triangles defined by the intersections with the 4 quadrants. Then

we have F = 4, E = 8, V = 5 (one vertex in the origin and four vertices on the

boundary). Then χ(R) = 1.

Example 2.41 We can divide each hemishpere of the sphere S2 in 4 triangles that

have a common vertex at a pole and the other vertices on a great circle (similar

to the previous example). It follows that F = 8, E = 12, V = 6. Hence χ(S2) = 2.

Example 2.42 Let R be a truncated cylinder. We can divide it in two parts by cut-

ting with a plane parallel to the axis, each of them is homeomorphic to a square,

and we can subdivide it in two triangles. Then we have F = 4, E = 8 and V = 4.

Hence χ(R) = 0.
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Corollary 2.7 Let S be a surface with K ≤ 0. Then two distinct geodesic

α1, α2 cannot intersect twice bounding a region R homeomorphic to a disc.

Proof: We apply the Gauss Bonnet theorem to the region R. Since α1 and α2 are

geodesic we do not have a contribution of the geodesic curvature and
∫

R
K + θ1 + θ2 = 2π

since the geodesic cannot be mutually tangent, we have that the exterior angles

are smaller than π . The fact that the integral gives a negative contribution leads

to a contradiction.

Corollary 2.8 Let S be a surface, homeomprhic to a cylinder, with K < 0.

Then S has at most one simple closed geodesic.

Proof: Here we only give a trace of the proof. First one has to show that the two

geodesic do not intersect (using the previous corollary). Then we have that the

two geodesic bound a region homeomorphic to a cylinder R, we apply the Gauss

Bonnet theorem to the region R and
∫

R
K = 0

a contradiction, since K < 0.

Given a triangle on a surface, assuming that the sides of the triangle are

geodesics, one has from the Gauss Bonnet theorem:
∫

T
K + θ1 + θ2 + θ3 = 2π

since the triangle is homeomorphic to a disc. If φi = π − θi are the interior

angles this implies

φ1 +φ2 +φ3 = π +
∫

T
K

hence the sum of the interior angles of a geodesic triangle in a sphere is larger

than π .

We will now sketch the proof of the Gauss Bonnet I theorem. It is possible to

show that, in a neighborhood of a point in S, we can find a local parametrization

X : U → S such that the first fundamental form is of the form

I =
(
λ(u,v) 0

0 λ(u,v)

)



86 Chapter 2 Surfaces

i.e. E = G and F = 0. This has some geometric consequence: given (u,v) ∈ U
such that X(u,v) = p ∈ X(U), the field

d
du(u,v) = (1,0) and

d
dv (u,v) = (0,1)

form an orthonormal basis of the tangent space at (u,v) to R2. The differential

of X maps these two fields into Xu(p) and Xv(p) and the first fundamental form

determines how the differential of X has deformed this orthonormal basis. In the

case of our parametrization we have that this deformation is just a rescaling by

λ(u,v), i.e. a similarity, and such a map preserves the angles between vectors.

A map with this property is called conformal .

We will assume, for simplicity, that each triangle T in a triangulation of S is

contained in the image of a conformal parametrization. Let α(t) : [0, L] → S be

the boundary of T and let α̃(t) be its pre-image under X, i.e. α̃(t) = (u(t), v(t))
is a curve in U ⊂ R2 such that α(t) = X(u(t), v(t)). The fact that the parame-

trization is conformal implies that the exterior angles θi at the singular points

of α and α̃ are the same. Furthermore a computation shows that the geodesic

curvature kg of α is related to the curvature k̃ of α̃ by the formula

kg =
1

2λ

(
λu v

′ − λv u′
)
+ k̃.

The formula for the Gauss curvature in a conformal coordinate neighborhood

has a particularly simple expression:

K = − 1

2λ
∆ log(λ)

and we can compute

∫

∂T
kg +

∑

i

θi =
∫ L

0

1

2λ

(
λu v

′ − λv u′
)
+
∫ L

0
k̃+

∑

i

θi

By the turning tangents theorem (and the fact that the parametrization is con-

formal) we have for the last two summands
∫ L

0
k̃+

∑

i

θi = 2π.

Moreover by Green’s theorem (the first integral on the right hand side can be

seen as the integral of a function on the pre-image T̃ of T in R2)

∫ L
0

1

2λ

(
λu v

′ − λv u′
)
=

∫

T̃

∂

∂u

(
λu

2λ

)
+ ∂

∂v

(
λv

2λ

)
dudv =

=
∫

T̃

1

2
∆(log(λ))dudv =

∫

T̃

1

2λ
∆(log(λ))λdudv =

= −
∫

T
K
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since the determinant of the first fundamental form that appears in the formula

for the integral of a function defined on a surface is, in this case, exactly λ. Hence

we proved
∫

T
K +

∫

δT
kg +

∑

i

θi = 2π

if we sum over all the triangles Ti of the triangulation of R (note that this number

is equal to the number of faces F in the triangulation, we get

∫

R
K +

∑

j

∫

δTj

kg +
∑

j

∑

i

θi = 2π F

Now note that, since S has no boundary, each side of the triangles in the sum of

the contribution of the geodesic curvatures, is counted twice, once for a triangle

Ti and another one for a triangle Tk that shares that side with Ti. But the as-

sumption on the orientation of the triangles implies that the two orientations, in

Ti and Tk, are opposite. It follows that the two contributions will cancel and we

are left with ∫

R
K +

∑

j

∑

i

θi = 2π F

We have three exterior angles for each triangle hence

∑

j

∑

i

θi =
∑

j

∑

i

(π −φi) = 3Fπ −
∑

j

∑

i

φi

but at each vertex the sum of the interior angles of the triangles that have that

vertex in common is 2π hence

∑

j

∑

i

θi = 3Fπ − 2π V

and ∫

R
K = 2π F − 3π F + 2π V

it is possible to prove, by induction, that 3F = 2E, hence

∫

R
K = 2π F − 2π 2+ 2π V = 2πχ(S).
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Changing the metric

In the last section we studied the intrinsic geometry of a surface S in R3. In the

formulas we computed quantities that only depended on the first fundamental

form, i.e. the inner product induced on TpS by the inclusion of S in R3. If

we replace the first fundamental form by a different symmetric positive definite

bilinear form on TpS, the formulas for the curvature will still make sense. By

doing this change we only allow some freedom in the way we measure the length

of vectors in TpS and this can make sense in some practical situations. Think of

a map, this can be seen as a subset of R2, a flat object. But motion on the map

is not equivalent to motion in the real space represented by the map, since, in

general, the map represents a ’curved’ piece of world and we cannot estimate the

distance between points from their representatives on a map. This suggests that

the length of a segment in the map should be measured differently according to

the curvature of the space that it represents.

Definition 2.24 Let S be a regular surface in R3. A Riemannian metric on S is

defined by the assignment of a symmetric positive definite bilinear form g(p) in

the tangent space TpS at each point of S. We require that g depends smoothly on

the point, i.e. if X,Y are smooth vector fields on S, then g(p)(X(p), Y(p)) is a

smooth function S → R.

If we choose the usual basis {Xu, Xv} of the tangent space at a point p ∈ S given

by a local parametrization, then g(p) is still represented by a 2 × 2 matrix. We

will then use then use the same notation used in the case of the inner product

induced by standard product in R3:

E(p) = g(p)(Xu, Xu), F = g(p)(Xu, Xv), G(p) = g(p)(Xv , Xv)

and the formulas for the quantities defined by the first fundamental form, like

the Christoffel symbols and the Gauss curvature still make sense. In the particu-

lar case F = 0 one can prove that the formula for the Gauss curvature takes the

form

K = − 1

2
√
EG

(
∂

∂v

(
Ev√
EG

)
+ ∂

∂u

(
Gu√
EG

))
(2.11)

and we will use it as the definition of the curvature of a Riemannian metric in

the following examples.

Example 2.43 Let S be the Poincare half-plane, defined by

S = {(x,y) ∈ R2 : y > 0}
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this is an open subset of R2, hence with the induced metric this is just a flat space.

But we can define a new metric, at point p = (u,v) we let

g(p) = 1

v2
< ·, · >

where < ·, · > is the standard scalar product in R2. We are just rescaling the

standard first fundamental point with a coefficient that depends on the point. At

the points of the form (u,1) this is just the standard inner product of R2, but

when v is large, the norm of a vector that has unit length in the Euclidean space,

becomes very small. If v is close to zero then this length becomes very large. This

means that the length of the tangent vector to a line segment of the form (0, t)

is such that the distance between (0, t1) and (0, t2) is huge if t1 and t2 are ’very

small’. At every point of S we have the standard basis Xu = (1,0) and Xv = (1,0).
It follows that

E = G = 1

v2
, F = 0

and we can use the formula (2.11) to compute the curvature of S

K = −v
2

2

(
∂

∂v

(
− 2

v2

))
= −1

Example 2.44 The stereographic projection φ from S = S2 \ {N} to R2 is a diffeo-

morphism. We can use this map to induce a metric on S by pretending that φ is

an isometry, i.e. for X,Y ∈ TpS we let

g(p)(X, Y) =< dφ(p)(X),dφ(p)(Y) >

where < ·, · > is the standard scalar product in R2. This induces a new metric on

an open subset of the sphere and this subset becomes isometric to the plane R2,

hence the Gauss curvature of S is 0.

It is possible to define the covariant derivative and the concept of geodesic using

the formulas developed for the standard metric. Geodesic turn out to be again

locally minimizers of the distance between two points:

Example 2.45 Let S be the Poincare half-plane and let γ : [a, b] → S be a curve

connecting two points p1, p2 that lie on the same vertical line, p1 = (u0, v1),

p2 = (u0, v2). Then if we represent γ by (u(t), v(t)),

L(γ =
∫ b
a

√
g(γ′, γ′)dt =

∫ b
a

1

v(t)

√
u′(t)2 + v′(t)2 dt ≥

≥
∫ b
a

1

v(t)

√
v′(t)2 dt =

∫ b
a

|v′(t)|
v(t)

dt ≥
∫ b
a

v′(t)

v(t)
dt =
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=
∫ v2

v1

1

v
dv = L(α)

where α(t) is the line segment [v1, v2] → S, defined by α(t) = (u0, t). It follows

that vertical line segments are geodesics. We can identify S with the subset of the

complex numbers {z ∈ C : Im(z) > 0}. Then it is possible to prove that the maps

of the form

z → az + b
cz + d

where a,b, c, d ∈ R and ad − bc = 1, are isometries of S. Since the image of a

geodesic under an isometry is again a geodesic (since isometries preserve distance

they must preserve length minimizing curves) one can consider the images of the

geodesic α(t) = it (the positive v axis) and obtain the geodesics

t → bd+ act2 + i
d2 + c2t2

.

It turns out that the geodesics are straight lines parallel to the v axis or half circles

centered at a point of the u axis. For example for a = b = c = 1 and d = 2 one

gets the circle of radius
1
4

centered at (3
4
,0).

The formula (2.5) that defines the Christoffel symbols in terms of the metric is

still valid, we have the matrices

G =
(

1
v2 0

0
1
v2

)
, G−1 =

(
v2 0

0 v2

)

and one can easily check that the only nonzero ones are

Γ 2
11 =

1

v
, Γ 1

12 = Γ 2
21 = Γ 2

22 = −
1

v

and it follows that the differential equations satisfied by the geodesics in S are

u′′v = 2u′v′, v′′v = (v′)2 − (u′)2

and the curves (0, et) are clearly solutions. Here we see that the parametrization

of the vertical straight lines is not the standard one!
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