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Calabi-Yau Theorem: Let X be a compact Kähler manifold of

complex dimension n with c1(X) = 0. Then every Kähler class

k ∈ H2(X) contains a unique Ricci-flat Kähler metric ω ∈ k.

Example: Let f be a homogeneous complex polynomial of degree

n+ 2 in n+ 2 complex variables. Let

X = Xf = {[z1 : . . . : zn+2] ∈ CPn+1 : f(z1, . . . , zn+2) = 0}.

If f is generic, then X is smooth with c1(X) = 0.

Can take k = 2πc1(O(1)|X). Then ωFS|X ∈ k, so there exists a

smooth function ϕ : X → R, unique up to constants, such that

the Kähler form ω = ωFS|X + i∂∂̄ϕ ∈ k is Ricci-flat.

Today: Let f = ft move in a holomorphic family parametrized

by t ∈ C. Assume Xt = Xft is smooth as above for all t 6= 0 but

X0 is singular. What happens to the Ricci-flat metric ωt (t 6= 0)

representing kt = 2πc1(O(1)|Xt) as t→ 0?
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We are lightyears away from understanding this properly. Main

enemy is collapsing. In the n = 1 cubic example, (Xt, ωt) is a flat

2-torus for all t 6= 0 that GH-converges to a line as t→ 0.

To avoid collapsing it is necessary to assume that the singularities

of the complex variety X0 are sufficiently mild (’canonical’).

• n = 1: canonical ⇔ smooth, i.e. no singularity at all

• n = 2: canonical ⇔ locally biholomorphic to C2/Γ for a finite

group Γ ⊂ SU(2) acting freely on S3 ⊂ C2

In particular, canonical singularities are isolated for n = 2.

• For n ≥ 3, a canonical singularity need not be isolated. Even

if it is isolated, it is rarely (for us: never) of the form Cn/Γ.
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If n = 2 and if X0 has only canonical singularities (i.e. isolated

orbifold singularities of the form C2/Γ), then the behavior of the

Ricci-flat metrics ωt on Xt as t→ 0 is completely understood.

1) orbifold version of the Calabi-Yau theorem (folklore) ⇒ there

is a unique Ricci-flat Kähler orbifold metric ω0 ∈ k0 on X0

I.e. if π : C2 → C2/Γ is the quotient map, then locally

π∗ω0 = ωC2 + smooth errors.

I.e. (X0, ω0) is locally asymptotic to a flat cone C2/Γ.

Not even quasi-isometric to the singularities of ωFS|X0
!

2) Gluing construction (∃ many complete noncompact Ricci-flat

Kähler manifolds asymptotic to C2/Γ at infinity) ⇒ ωt converges

smoothly to ω0 away from X
sing
0 , and globally in the GH sense.

(Biquard-Rollin 2012, Spotti 2012)
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If n ≥ 3, even if X0 has only canonical singularities, Yau tells us

nothing even remotely as precise as 1), so 2) is doomed. A great

deal of abstract theory has been developed to fix this.

• There exists a smooth function ϕ0 on X
reg
0 , globally bounded,

unique up to constants, such that ω0 = ωFS|X0
+ i∂∂̄ϕ0 is Ricci-

flat. (Eyssidieux-Guedj-Zeriahi 2009, Demailly-Pali 2010.) But:

No information about second derivatives of ϕ0 near Xsing
0 .

• ωt converges to ω0 smoothly on compact subsets of Xreg
0 , and

(Xt, ωt) GH-converges globally to the completion of (Xreg
0 , ω0).

Volume fixed, diameter bounded above. (Rong-Zhang 2011)

Question: Could the singular set of the completion of (Xreg
0 , ω0)

be much larger than the singular set of the variety X0?

• No! (Donaldson-Sun 2014, Song 2015)
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• All sequential pointed GH limits (X0, λ
2
jω0, x), where x ∈ Xsing

0
and λj → +∞, are metric cones. (Cheeger-Colding 2000)

Metric cone: a metric space of the form C = C(Y ) = [0,∞)× Y
(Y is a complete geodesic metric space of diameter at most π,

can be singular) with metric “gC = dr2 + r2gY ”.

Question: Do we see the same cone at every scale? Is the limit

independent of our choice of sequence λj → +∞?

• Yes! (Donaldson-Sun 2015)

Heavily uses the algebraic structure of Kähler metric cones, e.g.

the growth rates of holomorphic functions are algebraic numbers,

hence remain constant as the cone varies continuosly.

Open Question: Given x ∈ Xsing
0 , how to determine the metric

tangent cone to (X0, ω0) at x?
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Warning: There are local examples of Ricci-flat Kähler metrics
where the underlying variety has an isolated singularity but the
metric tangent cone has rays of singularities. (H-Naber 2013)

Getting closer to the main theorem, will now describe a class of
singularities where such pathologies seem highly unlikely.

Let Z ⊂ CPn be a smooth complex hypersurface of degree ≤ n

with a Kähler metric ωZ with Ric(ωZ) = ωZ. This induces a Ricci-
flat Kähler cone metric ω∗ on the complex affine cone CC(Z) over
Z in Cn+1. (Calabi 1979)

Example: Z = {z2
1 + · · ·+ z2

n+1 = 0} ⊂ CPn

CC(Z) = {z2
1 + · · ·+ z2

n+1 = 0} ⊂ Cn+1

Ricci-flat Kähler cone metric ω∗ = i∂∂̄|z|2(n−1)/n on CC(Z)
CC(Z) = C(Y ), Y = T1S

n, fibration S1 → Y → Z

For n = 2: Z = conic ⊂ CP2, CC(Z) = C2/Z2, Y = T1S
2 = RP3.

But for n ≥ 3, Y is not a spherical space form, CC(Z) 6∼= Cn/Γ.
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Theorem (H-Sun): Assume the following:

• n ≥ 3

• Xt = {ft = 0} ⊂ CPn+1 is a family of complex hypersurfaces of

degree n+ 2, smooth for t 6= 0, singular for t = 0.

• X0 has at worst isolated canonical singularities, and ω0 is the

unique weak Ricci-flat Kähler metric cohomologous to ωFS|X0
.

• Each singularity of X0 is of the form CC(Z), where Z ⊂ CPn is

a hypersurface of degree ≤ n with a Kähler metric ωZ such that

Ric(ωZ) = ωZ. (Here Z may vary from point to point.)

• ω∗ is Calabi’s Ricci-flat Kähler cone metric on CC(Z).

Then the following conclusion holds:

Every singularity of X0 has a small open neighborhood V such

that there exists a biholomorphism Φ : U → V with some small

open neighborhood U of the apex in CC(Z) such that

|∇kω∗(Φ∗ω0 − ω∗)|ω∗ = O(rλ−k)

for some λ > 0 and all k ∈ N0.



Remarks:

• This provides the first known examples of compact Ricci-flat
manifolds with non-orbifold isolated conical singularities.

• New gluing constructions: special Lagrangians, G2-manifolds
with and without singularities, ...?

• There exist many admissible model cones CC(Z) beyond the
’standard’ example where Z ⊂ CPn is a quadric. E.g. for n = 3,
Z can be any smooth cubic; then Calabi’s Ricci-flat Kähler cone
metric ω∗ on CC(Z) is not explicit and has no Killing fields.

• We get polynomial convergence even if the tangent cone is not
Jacobi integrable. This is not just an added bonus: our method
is incapable of pinning down the tangent cone without at the
same time establishing polynomial convergence.

• We do not really need Xt, X0, Z to be hypersurfaces.
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Outline of proof

Introduce a new parameter s ∈ [0,1] and a new family of Kähler
metrics ωs on X

reg
0 . Here ω0 is again the unique weak Ricci-flat

metric on X
reg
0 , with as of now unknown asymptotics.

ω1 is a ’brute force’ initial metric: it is equal to Calabi’s ω∗ model
(hence Ricci-flat and precisely conical) near each singularity, but
completely arbitrary in the interior of Xreg

0 .

For s ∈ (0,1) define ωs as the unique weak solution to a Monge-
Ampère equation MA(ωs) = fs, where fs interpolates between
MA(ω1) and whatever right-hand side makes ω0 Ricci-flat.

Easy key property: Each singularity has a fixed neighborhood V

such that ωs|V is Ricci-flat for all s ∈ [0,1].

Remains to prove: The set S = {s ∈ [0,1] : ωs has nice conical
asymptotics at each singularity of X0} is open and closed.



1) S is open.

Given s0 ∈ S, then for all s ∈ [0,1] close to s0 we want to solve
MA(ωs) = fs for an ωs with nice conical asymptotics.

Ansatz: ωs = ωs0 + i∂∂̄ϕs with sup |ϕs| = O(|s− s0|)

Since ωs0 solves MA(ωs0) = fs0, we may hope to construct ϕs
by an implicit function theorem. Since ωs0 has nice asymptotics,
the linearization of MA at ωs0, i.e. the Laplacian ∆ωs0

acting on
scalar functions, is invertible in weighted function spaces. But
we really need i∂∂̄ ◦∆−1

ω0 to be a bounded operator, and this does
not follow from general elliptic theory in weighted spaces.

Theorem (H-Sun): Let C = C(Y ) be a Ricci-flat Kähler cone
(Y smooth) with cone metric ω∗. If ∆ω∗h = 0 and if h ∼ rµ for
some µ ∈ [0,2], then i∂∂̄h = LXω∗ for some holomorphic vector
field X on C commuting with dilations.

Here we are not assuming that (C,ω∗) is of the form CC(Z) with
a Calabi metric, e.g. (C,ω∗) could certainly be irregular.



2) S is closed.

Closedness would follow from Yau’s estimates if they could be
applied. But this requires the model cone to have a one-sided
sectional curvature bound—which holds only for flat cones.

Let si ∈ S with si → s∞ ∈ [0,1]. Thanks to Donaldson-Sun,
the metric ωs∞ has a unique tangent cone C(Y∞). This may be
different from the given model cone C = C(Y ) = CC(Z), which
is by assumption the tangent cone of ωsi for all i <∞.

If Y∞ were smooth, with polynomial convergence of ωs∞ to the
metric of C(Y∞), then the general openness theorem of 1) would
immediately tell us that s∞ ∈ S.

In reality we need to argue as follows. First, Vol(Y∞) ≤ Vol(Y )
by Bishop-Gromov, morally with equality if and only if Y∞ ∼= Y .
Second, Vol(Y∞) ≥ Vol(Y ) by considerations of K-stability (this
is a beautiful recent result of Chi Li and Yuchen Liu), also morally
with equality if and only if Y∞ ∼= Y . So Vol(Y∞) = Vol(Y ), and
it appears we can go either way for the equality discussion.



Going through the equality case in Bishop-Gromov to prove that
Y∞ ∼= Y is technically beyond us. So we go through the equality
case in Li-Liu, using that our model cone is an affine cone.

By Donaldson-Sun there is a filtration of the local ring Ox whose
associated graded ring degenerates to the coordinate algebra of
C(Y∞), with constant Hilbert functions. This filtration is always
coarser than the standard Ox ⊃ mx ⊃ m2

x ⊃ . . . But C(Y∞) and
C(Y ) = CC(Z) have the same Hilbert function as well, and since
CC(Z) is an affine cone locally isomorphic to (X,x), this is equal
to the Hilbert function of the standard Ox ⊃ mx ⊃ . . . Thus C(Y∞)
is a degeneration of the model cone CC(Z). Standard K-stability
kicks in (Berman 2015), implying that Y∞ ∼= Y .

Once we know that C(Y∞) ∼= C(Y ), polynomial convergence of
ωs∞ to the tangent cone metric (which is crucially needed as input
for the openness of S at s∞) follows using the method of Allard-
Almgren even without assuming integrability. The reason is that
the tangent cone is locally biholomorphic to the original space,
and the Kähler-Ricci-flat equation never has any nonintegrable
linearized solutions preserving the complex structure.


