Prova scritta - 2010-2011

Analisi II Edile M-Z 25 maggio 2011

n. 1 cognome

nome

matricola				

Risposte										
Domande	1	2	3	4	5	6	7	8	9	10

Scrivere il numero della risposta che si ritiene corretta sopra al numero della corrispondente domanda

Domanda 1) Dato $v \in \mathbb{R}$ sia $t \mapsto x(t,v)$ la soluzione del seguente problema di Cauchy:

$$\begin{cases} \ddot{x} = 2\dot{x} - x, \\ x(0) = 1, \\ \dot{x}(0) = v. \end{cases}$$

Determinare il minimo della funzione $v \mapsto |x(1, v)|$ per $v \in [1, 2]$.

2)
$$e^t + (v-1)te^t$$

4) 1

Domanda 2) Sia $\omega = 2(x - y - xy)dx + (2y - 2x - x^2)dy + dz$. Calcolare il seguente integrale curvilineo

$$\int_{\gamma} \omega$$

dove γ è la spezzata che congiunge (nell'ordine) i punti (0,0,0), (1,0,0), (1,1,0), (1,1,1), (0,0,1).

$$2) \pi$$

$$3) -$$

Domanda 3) Calcolare il seguente integrale triplo

$$\iiint_{\mathbb{R}} |z| \sqrt{x^2 + y^2} dx dy dz$$

dove
$$P = \{$$

$$z) \in \mathbb{R}$$
 2) 0

dove
$$P = \{(x, y, z) \in \mathbb{R}^3 : \le x^2 + y^2 \le z^2, |z| \le 2\}.$$
1) $\frac{128}{15}\pi$ 2) 0 3) $\frac{56}{3}\pi$ 4) $\frac{64}{15}\pi$

4)
$$\frac{64}{15}\pi$$

Domanda 4) Determinare quale, tra i seguenti, è un punto critico della funzione

$$f(x, y, z) = (x + y)^3 - 2z(y - 1)$$

1)
$$(-1, 1, 0)$$

1)
$$(-1,1,0)$$
 2) $(2,1,0)$ 3) $(-1,0,0)$ 4) $(0,0,0)$

Domanda 5) Sia $S = \{(x, y, z) \in \mathbb{R}^3 : (x - y)^2 - zx = 0\}$. Si determini per quale valore del parametro $\alpha \in \mathbb{R}$ il vettore

$$v_{\alpha} = \begin{pmatrix} 1 \\ 1 \\ \alpha \end{pmatrix}$$

è tangente all'insieme S nel punto (1, 2, 1).

- 1) -1
- 2) Non esiste un α con la proprietà richiesta
- 3) -2
- 4) 0

Domanda 6) Quale delle seguenti funzioni risolve l'equazione differenziale $\dot{x} = \frac{x^2}{t^2-1}$?

1)
$$x(t) = 1 + t^{1-\sqrt{2}}$$

2)
$$x(t) = 1$$

3)
$$x(t) = \frac{2}{\arctan(t)-2}$$

1)
$$x(t) = 1 + t^{1-\sqrt{2}}$$
 2) $x(t) = 1$
3) $x(t) = \frac{2}{\arctan(t)-2}$ 4) $x(t) = \frac{-1}{\arctan(t)-2}$

Domanda 7) Sia ω la forma differenziale

$$(y^2\cos(xy^2) - ye^x + 1)dx + (2xy\cos(xy^2) - e^x)dy.$$

Stabilire quale delle seguenti funzioni è una primitiva di ω .

1)
$$\sin(xy^2) - ye^x + x -$$

2)
$$\sin(xy) - y^2e^x + x -$$

1)
$$\sin(xy^2) - ye^x + x - 7$$
 2) $\sin(xy) - y^2e^x + x - 1$
3) $\sin(x^2y) - ye^{xy} + x$ 4) $\frac{1}{2}$

4)
$$\frac{1}{2}$$

Domanda 8) Determinare il gradiente della seguente funzione:

$$f(x, y, z) = xe^{xz} - 2zy$$

$$1) \quad \begin{pmatrix} e^{xz} \\ -2z \\ -2y \end{pmatrix}$$

$$2) \begin{pmatrix} xze^{xz} \\ -2 \\ -2 \end{pmatrix}$$

1)
$$\begin{pmatrix} e^{xz} \\ -2z \\ -2y \end{pmatrix}$$
 2)
$$\begin{pmatrix} xze^{xz} \\ -2 \\ -2z \\ x^2e^{xz} - 2y \end{pmatrix}$$
 4)
$$\begin{pmatrix} e^{xz} \\ -2 \\ -2 \\ -2 \end{pmatrix}$$

$$4) \quad \begin{pmatrix} e^{xz} \\ -2 \\ -2 \end{pmatrix}$$

Domanda 9) Calcolare il seguente integrale doppio

$$\iint_D 3\sqrt{x^2 + y^2} dx dy$$

dove $D = \{(x, y) \in \mathbb{R}^2 : 1 \le x^2 + y^2 \le 4\}.$ 1) 0 2) $\frac{1}{3}\pi$ 3) 14π

2)
$$\frac{1}{9}\pi$$

Domanda 10) Sia $D = \{(x,y) \in \mathbb{R}^2 : |x+y| = 2\}$ e sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione data da

$$f(x,y) = \frac{(x-y)}{\sin(|x+y|)}.$$

Determinare f(D).

1)
$$[0, +\infty]$$

1)
$$[0, +\infty)$$
 2) $(-\infty, 0]$ 3) $[-1, 1]$

4) R