Analisi Matematica II

20 Aprile 2007 – Prova scritta

Svolgere due esercizi a scelta tra i primi tre e uno a scelta tra i rimanenti due.

Esercizio 1. Olivia ha preparato una torta circolare del diametro 1m metro distribuendovi in superficie dell'uvetta con densità data (in g/m^2) da $\rho(x,y) = xy - x + 2$ (il centro della torta è l'origine delle coordinate). Offre metà della torta a Poldo che, particolarmente ghiotto di uvetta deve decidere lungo quale diametro tagliare la torta in modo da ottenerne la massima quantità .

Esercizio 2. Siano ξ e η le rispettive soluzioni dei seguenti problemi di Cauchy

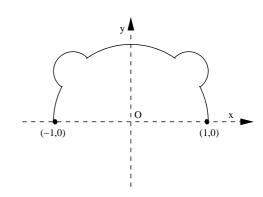
$$\begin{cases} y'' = -y, \\ y(0) = 1, \\ y'(0) = 0 \end{cases} \qquad \begin{cases} y'' = -y, \\ y(0) = 0, \\ y'(0) = a \end{cases}$$

Posto $m_a := \max_{x \in \mathbb{R}} (\xi(x) - \eta(x))$, determinare il valore di a tale che m_a sia minimo (in altre parole scegliere la velocità iniziale del secondo oscillatore in modo che si allontani il meno possibile dal primo).

Esercizio 3. Calcolare il gradiente della seguente funzione

$$f(x,y) = \int_0^{xy^2} e^{-t^2} \, \mathrm{d}t$$

nel punto (1,3) e calcolare l'equazione del piano tangente al grafico di f in quel punto. Esercizio 4. Determinare il valore α_0 del parametro $\alpha \in \mathbb{R}$ affinché la forma differenziale


$$\omega_{\alpha}(x,y) = (e^{x+y} + xe^{x+y} - y)dx + (xe^{x+y} - \alpha x)dy$$

sia esatta. Calcolare poi l'integrale curvilineo

$$\int_{\gamma} \omega_{\alpha}$$

dove γ è la curva in figura percorsa da sinistra verso destra.

Esercizio 5. Il tetraedro T di vertici (1,0,0), (0,1,0), (1,1,0) e (1,1,1) è costituito di un materiale avente densità $\rho(x,y,z) = |x-y| + 1$. Determinare la massa di T.

Durata della prova: 120 minuti — Giustificare i passaggi effettuati