Facoltà di Ingegneria - CDL in Ingegneria per l'Ambiente e le Risorse

Analisi Matematica II

11 NOVEMBRE 2003- PROVA SCRITTA

Svolgere 3 dei seguenti esercizi

Esercizio 1. Disegnare il dominio della seguente funzione:

$$f(x,y) = \sqrt{y + \sqrt{x^2 - 1}}.$$

Esercizio 2. Calcolare l'area della superficie parametrizzata da

$$\varphi(u,v) = (u\cos v, u\sin v, v)$$

con $u \in [0, 1]$ e $v \in [0, \pi]$.

Esercizio 3. Determinare i valori del parametro $\alpha > 0$ tale che la soluzione $y_{\alpha}(x)$ del problema di Cauchy

$$\left\{ \begin{array}{l} y''(x)=-\alpha y'(x),\\ y(0)=1,\\ y'(0)=-1, \end{array} \right.$$

soddisfi $\lim_{x \to +\infty} y_{\alpha}(x) = 0.$

Esercizio 4. Dato il campo vettoriale $\vec{v}(x,y)=(y^2,-xy)$, calcolare il seguente integrale curvilineo:

$$\int_{\gamma} \left\langle \vec{v}, \vec{t} \right\rangle \, \mathrm{d}s$$

dove γ è la curva parametrizzata da

$$\theta \mapsto (\theta \cos \theta, \theta \sin \theta), \qquad \theta \in [\pi, 2\pi]$$

e $\vec{t}(\theta)$ è il vettore tangente alla curva γ nel punto $\gamma(\theta)$, per ogni $\theta \in [\pi, 2\pi]$.

Durata della prova: 2 ore. Giustificare tutte le risposte fornite!