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Introduction

The bicycle is one of the most common means of transport in the world. In particular, the
history of modern bicycles started in the 19th century in Europe and the shape of this
vehicle, which has changed little since the first chain-driven model was developed around
1885, descends from the so-called safety bicycle. Nevertheless, materials and design have
been improved, especially since the 21st century with the introduction of new technologies.
In addition to this, the invention of the bicycle has had also an enormous effect on society,
changing deeply the culture and favouring the advancement of modern industrial methods:
several components that eventually played a key role in the development of cars were
invented for the bicycle.

Therefore, it is not surprising that since the end of the nineteenth century many
authors have been aiming to find accurate equations to describe the motion of this system
(see [Whi99], [Bou99]). However, due to the complexity of the problem related mainly
to the nonholonomic constraints of the system, the majority of researchers who studied
this argument introduced simplified or linearised models in order to handle the problem,
for instance [LM82], [MS06]. Others considered a nonlinear model, but only considering
particular motions, as in [BMCPO07]. A more detailed review of the nonlinear and lin-
earised models developed for studying the bicycle dynamics can be found in [MPRS11]
and [MPRS07], respectively.

Recently, much theoretical research has focused on bicycle self-stability, that is the
capability of the system to reach equilibrium again asymptotically if initially perturbed. It
is common knowledge that the rideability of a bicycle may be related to its self-stability.
The problems behind the self-stability of this system are not very clear, even if it is widely
believed that gyroscopic and caster trail effects play an important role in such stability.
Nevertheless, Kooijmann et al. recently demonstrated that a riderless two-wheeled vehicle
can be self-stable without trail or gyroscopic effects. In order to do this, they introduced
a simplified bicycle model, composed by only two masses and called two-mass-skate
(TMS), [MPRSO07].

In this thesis we aim to solve the problem of whether or not a bicycle can be self-stable
considering a sufficiently accurate model. However, as stated above, the complexity of the
system is a hindrance to this achievement. Although a bicycle has a structural simplicity,
its geometry is complicated and presents considerable difficulties in expressing the position
of the front and rear frames. For example, if the front wheel is tilted, a variation in both
the steering angle and the yaw angle can occur. This is the reason most of the models for
bicycle dynamics available in the literature always have a certain number of approximations.

Instead of having considered a linearised model, we have preferred to simplify the model
geometry and take into account the nonlinearity of the bicycle. We believe that bicycle
self-stability is closely related to the nonlinear equations for the system. Thus, we focused
our attention on the element of the general model which causes the equations of motion to
be complex, that is the pitch angle, which is the angle between the local rear frame z-axis
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and the line of intersection of the symmetry plane with the ground. In particular, as shown
in [RF12] and [Cos06], this angle depends on two other angles, and, consequently, finding
the solution of the whole system requires us to evaluate a differential-algebraic equation
(DAE, see [Ricl1]). Hence, the pitch angle is usually approximated (see [MS06], [Cos06])
or considered constant.

Starting from a model of a general bicycle with
toroidal wheel, the aim of this work is to find the
minimum set of assumptions such that the pitch
angle is constant, and subsequently to study the
dynamics of this new model. It will be shown
that the most particular feature of this model is a
spherical front wheel.

The paper is organized as follows. First we
present a brief review of the main mathematical
notions needed to study the problem. Then, we
turn our attention to the bicycle model. In par-
ticular, we first consider the geometry of a bicycle
with toroidal wheels, by defining the geometric
parameters which characterize the system itself.
After having chosen a proper set of generalised
coordinates, we study the pitch angle and find the
algebraic equation which defines this angle. Sub-
sequently, the hypothesises which guarantee that
this angle does not depend on time are determined. Figure 0.1: Francis J. W. Whipple (1876-

Therefore, we define a new bicycle model, called 1943), who proposed one of
Constant Pitch Angle bicycle, and study its geom- the first n}athematlcal mod-

. . ) A els for a bicycle.

etry and kinematics. In particular, we derive the

linear and angular velocities for this new system

and introduce the nonholonomic constraints to model the rear and front contact points
of the wheels with the ground plane. By a slightly lengthy calculation, we express the
constraints with respect to the generalised coordinates, but, due to the length of the
equations, we need to define certain nonlinear functions to write all the constraints in a
clear, concise form.

Finally, the dynamics of this system is considered. We write the bicycle’s kinetic energy
and its potential. Moreover, we use the artifice of nonlinear functions to easily handle
both these expressions. Then, following the geometric approach proposed in [BBCMO03],
the equations of motion are derived before studying the self-stability of the system and
particular motions, such as the circular one.




Chapter 1

Background from differential
geometry

Modern analytical mechanics is naturally discussed in the mathematical language of
differential geometry. In this chapter we give an introduction to the basic elements of
differential geometry and then we will use them in the study of mechanical systems from a
geometric point of view. However, a more comprehensive introduction to this subject may
be found in [Boo75], [GPV95], [AMRS8] and [War71].

1.1 Differentiable manifolds

Roughly speaking, a differentiable manifold is a topological space which locally looks like
an Euclidean space, even if it differs from an Euclidean space globally. In the following, Q)
is a paracompact connected Hausdorff space.

Definition 1.1. Let U be an open set of QQ and ¢: U — R” be a homeomorphism of U
onto ¢(U) with the induced topology of @ in R™ through F. Then, we call the pair (U, ¢)
a coordinate chart (or coordinate system) of @ of dimension n.

Definition 1.2. An n-dimensional atlas on @ is given by a collection {(Uj, ¢;)}jes of
coordinate charts of dimension n on @, such that:

i. Ujes Uj = Q, that is, {U;}jes is an open cover of Q;
ii. for each nonempty intersection U;NU;, the mapping cpjoapi_l s i (UiNU;) — ¢ (U;N0G)
is a diffeomorphism.

Remark 1.1. Since the topological space is connected, we do not have atlas with different
dimensions; even if it is not necessary, this assumption results in a well-defined dimension.

Definition 1.3. Let = {(Uj, ¢;)}je.s be a differentiable atlas of dimension n on Q). Then,
a coordinate chart (U, ¢) is said compatible with % if, for each intersection U N U; # @,

piow L p(UNU)) = ¢;(UNT;)
is a diffeomorphism.
Therefore, it is possible to order the atlases by inclusion. In particular, if % and ¥
are two n-dimensional atlases on @), where ¥ is obtained adding compatible charts to %,
then % < ¥. The notation < represents a partial order, and by Zorn’s Lemma, we can

state that there exists a maximal element of the inclusion sequence which contains an
initial atlas. In other words, we can choose a family of coordinate charts is mazimal.
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Definition 1.4 (Differentiable manifold). A differentiable manifold of dimension n is
paracompact connected Hausdorff space @) together with an n-dimensional maximal differ-
entiable atlas. Moreover, the maximal atlas is also called an n-dimensional differentiable
structure on Q.

We note that the definition of differentiable manifold is independent of the choice of
atlas because the collection of coordinate charts is mazimal.

Example 1.1. A trivial example of differentiable manifold is given by @ = R together
with the atlas % = {(R,Id)}. Also, the circle S! is another example of a differentiable
manifold. Indeed, it can be covered with two charts that are each locally R!.

Definition 1.5. Let ) and N be two differentiable manifolds of dimension n and m,
respectively. Then, let U an open set of (), and consider x € U. We say that the map-
ping f: U — N is differentiable in x € U if there exists a chart (Uj, ;) in a neighbourhood
of x in @ and a chart (Vj, ) in a neighbourhood of f(z) in N such that

vrofod; s o (U nUNFHW)) = vr(Vi) CR™

is differentiable in x. Furthermore, if f is differentiable for all x € U, then we say that f is
differentiable in U.

Remark 1.2. We note that the definition above it given by means of the representation of
the manifold in R™ through the coordinates charts. Moreover, it does not depends on the
choice of the chart ¢; and 9. Indeed, given two other charts ¢; and 1, we have

differentiable

—_—
Ypofodil= Ypoy’ otpofodilo Gjogr!
S—— S———

diffeomorphism diffeomorphism
hence it is well defined.

Definition 1.6. Given two differentiable manifolds as above, a one-to-one and invertible
mapping f: Q — N is called a diffeomorphism (between manifolds) if f is differentiable
in Q and also the inverse f~!: N — Q is differentiable.

Definition 1.7. Let @ be a differentiable manifolds. A pair (N, f) is a submanifold of Q
if f: N — @Q is injective and its differential is injective for each point in N. If f is also a
homeomorphism, then we say that f is an embedding.

Let @ be a differentiable manifold of dimension n and ¢ € () is a point in the manifold.
Then we consider the space

C™(Q,q) ={ f € C™ real-valued function defined in a neighbourhood Uy of ¢ },

where the neighbourhood of ¢ depends on function. This is clearly a vector space, and
defining a multiplication as

f9(q) = f(q)-g9(a),

for each function f,g of class C*° in C*°(Q,q). Therefore, the set C*>°(Q,q) is a real
algebra. We consider the equivalence relation ~ in C*°(Q, q) such that two elements f
and g in C*°(Q, q) are equivalent if they coincide in a neighbourhood of ¢, that is,

f~g <= f =g in a neighbourhood of q.
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We define the equivalence class of the germs of functions C*°(Q, q)/~ = C°(Q) = C°,
which defines an algebra on R. Then, we consider the dual space

(CO) = {v ‘ v: Cg° — Ris a linear form },
and its vector subspace

X(q) = { v € (C)" | v(faga) = F(@0(90) + 0(F0)g(a), ¥ fur 90 € CF |

that is, we consider the subspace of the elements of the dual space which follow the product
rule above.

Definition 1.8. The vector subspace X (q) of (C7°)* is called the derivation space in g,
and the linear form v is a derivation of the Cg° algebra.

Let Cg°(0) = {fq e Oy ’ fqla) = 0} be the ideal of CJ°. It is possible to prove
that the derivation space X(g) is canonically isomorph to [Cgo(O)/(C’gO(O))Qr, which

is n-dimensional.!

Definition 1.9. The vector space X (q) is called the tangent space to @Q at ¢, and it is
denoted by 7,Q. Each element v € T,(Q) is said the tangent vector to @ at g. The dual
space X (q)* is called the cotangent space of @ at ¢, and it is denoted by 1;Q.

Once we have defined the notion of differentiable manifold, we can quickly review other
elements of differential geometry we will need later. The tangent bundle of a manifold @ is
the disjoint union of the tangent spaces to @) at the points ¢ € Q; that is,

T™ = | J T,M.
9€Q

Thus, a point of T'M is a vector v which is tangent to M at some point ¢ € M. The
natural projection on the tangent bundle is the mapping 79: T'Q — @ which assigns to
each vector its base point. We note that the inverse image 7g(¢) of a point ¢ € Q under
the natural projection is the tangent space T,Q. This space is also called the fibre of the
tangent bundle over the point ¢ € Q.

Likewise, the cotangent bundle T*Q of a manifold @ is the vector bundle over @) formed
by the collection of all the dual spaces Ty Q). Elements w € T7'Q are called dual vectors or
covectors. The cotangent bundle projection, which assigns to each covector its base point,
is denoted by mg: T*Q — Q.

Let f: @ — N be a diffeomorphism between manifolds Q and N. We define the
differential of f the map T'f: T(Q — TN. There are other notations such as f, and df.
The set of all diffeomorphism from @ to N will be denoted by C*°(Q, N). When N = R,
we shall denote the set of smooth real-valued functions on @ by C*°(Q).

Example 1.2 (Level sets). For a given set of smooth functions f;(x): R® - R, i =1,...,k,
manifolds often arise as level sets Q = { = | fi(z) =0,i =1,...,k }. If the gradients Vf;
are linearly independent, or more generally if the rank of {V f(z)} is a constant r for
all z, then @ is a smooth manifold of dimension n — r. The proof uses the implicit
function theorem to show that an (n — r)-dimensional coordinate chart may be defined
in a neighbourhood of each point on (. In this situation, the set @ is called an implicit
submanifold of R".

'More details about the definition of the derivation space and the results needed to define the tangent
space can be found in [GPV95]
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Definition 1.10. Let Q and N be two differentiable manifolds and f: Q — N be a
differentiable map. The map f is a submersion at a point q € @ if its differential is a
surjective linear map. In this case g is called a regular point of the map f. Moreover,
a point p € N is a reqular value of f if all points ¢ in the pre-image f~!(p) are regular
points. A differentiable map f that is a submersion at each point is called a submersion.
Equivalently, f is a submersion if its differential T'f has constant rank equal to the dimension
of N.

Remark 1.3. If we consider the manifold in Example 1.2 and assume that » = k = dim @),
then the map f: R" — Q is a submersion.

A wector field X on @ is a smooth mapping X: Q — T'Q which assigns to each
point ¢ € @ a tangent vector X (q) € T,Q, or, in other words, 7g o X = Idg. The set of all
vector fields over ) is denoted by X(Q). We note that a vector field is a section of the
tangent bundle. An integral curve of a vector field X is a curve satisfying ¢(t) = X (c(t)).
Given q € @, let ¢(q) denote the maximal integral curve of X, that is, c¢(t) = ¢:(q),
with ¢(0) = ¢. In this case, “maximal” means that the interval of definition of ¢(t) is
maximal. It is easy to verify that ¢¢9 = Id and

Gtis = Pt 0 ¢s,

whenever the composition is defined. The flow of a vector field X is then determined by
the collection of mappings ¢;:  — (. From the definition, they satisfies

Sola) = X@ila), 1€ (~ar(a)e20). Vo€

Similarly, a one-form a on @ is a smooth mapping «: @ — T*@ which associates to
each point ¢ € Q a covector a(q) € T;@Q, that is, g o @ = Id. The set of all one-forms
over ) is denoted by A(Q).

Both notions, vector fields and one-forms, are special cases of a more general geometric
object, called tensor field. A tensor field t of controvariant order r and covariant order s is
a C'*°-section of T, (), that is, it associates to each ¢ €  a multilinear map

t(q): T;Q x - xT;QxXTyQ x - x T,Q — R.

r times s times

It is common to say that ¢ is a (r, s)-tensor field. The tensor product of a (r, s)-tensor
field t and a (17, §')-tensor field ¢’ is the (r + 1/, s + §')-tensor field t ® t' defined by

t®t/(q)(w1,...,wr,/¢1,...,Mr/,vl,...,vs,wl,...,ws/) =
= @) (Wi, .oy Wy V1,5 -5 0s) (@) (s - s o, W e, W),
where ¢ € @, while v;, w; € T;,Q and wj, uj € T;Q.
A special subspace of tensor fields is A*(Q) C TPQ, the set of all (0, k) skew-symmetric

tensor field . The elements of A*(Q) are called k-forms. If we consider a (0, k)-tensor
field ¢, the alternation map A: TPQ — A*(Q) is defined by
1 .
A(t)(v:l) R Uk) = H Z &gn(a)t(vg(l), s 7v0(k))7

: TEY L
where sign(o) is the sign of the permutation o,

+1, if o is even,
—1, if o is odd,

sign(o) = {
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and X is the set of all k-permutations. A permutation is called odd if it can be written as
the product of an odd number of transposition (that is, a permutation that interchanges just
two objects) and otherwise is even. Thus, the operator A skew-symmetrises k-multilinear
maps. It is easy to see that A is linear, A’Ak(Q) =1Id and Ao A = A.

Definition 1.11. The wedge or exterior product between o € A¥(Q) and § € AY(Q) is the
form o A B € AF(Q) defined by

(k +1)!

aNB ="

Ala® p).

We note that the numerical factor in this definition agrees with the convention
of [AMRSS8] and [Mon02]|, but not that of [GPV95]. For example, let us consider «
and 8 one-forms, then

(A B)(v1,v2) = a(v1)B(v2) — a(v2)B(v1), Vi, vz € TyQ,
while if o € A%(Q) and 3 € AY(Q), we have

(a A B)(v1,v2,v3) = a(v1,v2)B(vs) + a(vs, v1)B(v2) + a(ve, v3)B(v1).
Proposition 1.1. The wedge product has the following properties:
1. a A is associative, that is, a« A (BA7y) = (a A B) Av;

2. a A B is bilinear in o and B, i.e.,

(acy +baz) A B = alar A B) + baz A B),
a A (cBr +dB2) = c(a A Br) +d(a A Ba);
3. aA B is anticommutative, that is, a A = (—1)"BAa, where a € A¥(Q) e B € A(Q).

The algebra of exterior differential forms A(Q) is given by the direct sum @F_, Q*(Q),
together with its structure as an infinite-dimensional real vector space and with the
multiplication A.

When dealing with exterior differential forms, another important geometric object is
the exterior derivative d. In particular, the exterior derivative da of a k-form « on the
manifold @ is the (k 4 1)-form on @ determined by the following proposition:

Proposition 1.2. There ezists a unique mapping d from k-forms on Q to (k + 1)-forms
on @ such that:

1. if a is a 0-form, that is, o = f € C*®(Q), then df is the one-form that is the
differential of f;

2. da is linear in «; that is,for all real numbers c1 and co
d(cia1 + caae) = crdag + codagy;
3. da satisfies the chain rule
d(aAB)=danf+ (—1)Fa ndp,

where a is a k-form and B an l-form (that is, it is a A-antiderivation);
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4. d?> =0, that is, d(da) = 0 for any k-form o

5. d is a local operator; that is, da(x) depends only on « restricted to any open
neighbourhood of q; in fact, id U CV C Q are open, then

d(aly) = (da)ly,

where a € QF(V). We also say that d is natural with respect to inclusions.

A k-form is called closed if da = 0 and ezact if there exits a (k — 1)-form § such
that « = df. By the definition of exterior derivative, it follows that every exact form is
closed, whilst, by Poincaré lemma, a closed form is locally exact.

Definition 1.12. Let f: Q@ — N be a smooth mapping from the manifold @ to the
manifold N, and let « be a k-form on N. Then we define the pull back f*a of a by w to
be the k-form on @ given by

f*a(Q)(vh cee ’Uk) = Ol(f(Q))(qu('Ul)7 s 7qu(vk))v

where v; € T,Q). Furthermore, if f is a diffeomorphism between manifolds, we can also
define the push forward f. as f. = (f~1)*.

We note that the pull back defines a mapping f*: A¥(N) — A*(Q).

Proposition 1.3. The pull back has the following properties:

1. (go f)* = f*og*, where f € C*(Q,N) and g € C*°(N,W), with Q, N and W
differentiable manifolds;

2. (1dp)

r@ 1@

3. the pull back of a wedge product is the wedge product of the pull back, that is,
[Hlan)=franfp,
where f € C®(Q,N), a € A¥(Q) and B € AY(N);

4. the exterior derivative d commutes with the pull back, that is, for any f € C*°(Q, N)
we have d(f*a) = f*(da), con a € A¥(N). We also say that the d is natural with
respect to the pull back.

There is also another natural operation associated with a vector field X, which allow
us to decrease the dimension of a k-form.

Definition 1.13. Let a € A¥(Q) be a k-form on the manifold @, and let X be a vector
field. The contraction or interior product is defined by

ixa=X_da= Xjam_"ikd:ci? Ao Ada,

Proposition 1.4. Let « be a k-form and 5 an [-form on a manifold Q. Then the
contraction is R-linear and satisfies

ix(anB)=(ixa) AB+ (-1)fa A (ixB),

that is, it is a N-antiderivation.
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1.1.1 Lie derivatives and Jacobi-Lie bracket

Tensor field and differential forms can be differentiated with respect to a vector field. The
resulting derivative is known as the Lie derivative and may be defined in two equivalent
ways. We begin with its dynamical definition.

Definition 1.14 (Dynamic definition of Lie derivative). Let a be a k-form on a manifold @
and let X be a vector field with flow ¢; on Q). The Lie derivative of « along X is given by

Lxa= %g]%; [(dia) —a] = dt g rav.

Theorem 1.1 (Lie derivative theorem). Using the above notation, we have

d

a ¢IQZ¢I£XO"

t=0

which holds also for time-dependent vector fields.

Example 1.3. Let X(z,y) = (z,y) and a = (2% + y?)dz. The time-t flow of X is given
by ¢t(x7 y) = (etxa ety)v S0

(61 )(@,9) = ((e2) + (¢'9)2) ¢y dw =
= *(@” +y)d(w o ) =
— 62t($2 +y2)(etd:c) —

eHa(z,y).

Therefore,
d
Lxoa= — eta = 3a.
dt =0
The other definition of the Lie derivative is given by following an algebraic approach
and requiring that the Lie derivative is a derivation.

Definition 1.15 (Cartan’s formula for Lie derivative). Cartan’s formula defines the Lie
derivative of a k-form « with respect to a vector field X in terms of the exterior derivative d
and the contraction I as

Lxa=X _Jda+d(X Ja).

It can be proved by straightforward computation that the two definitions of Lie derivative
given above are equivalent.

Let us consider the case when f is a real-valued function on a manifold () and X is a
vector field on @); then, the Lie derivative of f along X is indeed the directional derivative

(Lx f)(a) = Xq(f) == dfe(X(q)),
which in coordinates on () has the expression

of
ozt

Lxf=X"

Moreover, given two vector fields X,Y € X(Q), we can define the Lie derivative of Y
with respect to X. However, it is useful to introduce the Jacobi-Lie bracket before.
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Definition 1.16 (Jacobi-Lie bracket). The Jacobi-Lie bracket on X(Q) is defined in local
coordinates by

(X, Y]=(DY) - X — (DX)-Y,
which, in finite dimensions, is equivalent to
X, Y]=(X-V)Y —(Y-V)X.

It is easy to prove that the vector field determined by the Jacobi-Lie bracket is unique

and that the map f — X (Y (f)) =Y (X(f)) is a derivation; for further details, see [AMRSS],
[HSCS09]. Furthermore, there is and interesting link between the Jacobi-Lie bracket and
the Lie derivative as follows.

Theorem 1.2. Given X,Y € X(Q), the Lie derivative of Y along X is equal to the
Jacobi-Lie bracket of the vector fields, that is,

LxY =[X,Y].
Thus, theorem 1.1 holds with a replaced by the vector field Y .
Remark 1.4. The Lie bracket of two vector fields has a geometric meaning in terms of

successive applications of the flows of the two vector fields in forward and reverse direction.
The case for two vector fields in R™ is given in [BBCMO03].

If a set of vector fields X; is such that there exist functions ~;;, such that
[ X, Xi] = vijr Xk

then the set is called involutive. In this case no new directions are generated by bracketing,
and this is an impediment to show controllability.

Proposition 1.5. Given a diffeomorphism ¢: Q — N, the Jacobi-Lie bracket satisfies
(0" X,0"Y] = ¢"[X,Y].

Proposition 1.6. Given a function f € C*°(Q) and two vector fields X,Y € X(Q), the
Lie derivative satisfies

ﬁx(F'Y)Z,fo'Y+f'£XY.

Finally, we conclude by stating some relevant properties which involve the exterior
derivative, the contraction and the Lie derivative.

Proposition 1.7. Let us consider X, Y € X(Q) two arbitrary vector fields, f € C®(Q)
and o € A*(Q), then we have:

1. dEXa:L’Xda;
2. Lyxa= fLxa+df AN (X da);

3. [ X, Y]da=Lx(Y da)-Y d(Lxa).
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1.2 Distributions and the Frobenius theorem

We introduce here the notion of distributions. This will be the key notion in the geometrical
modelling of nonholonomic dynamical systems.

Definition 1.17. Let @@ be an n-dimensional manifold and let ¢ be an integer such
that 1 < ¢ < n. A c-dimensional distribution D on ( is a family of linear c-dimensional
subspaces { Dy } of the tangent spaces T,Q for each ¢ € Q. A distribution D is called
smooth (or differentiable) if for each g € @ there exists a neighbourhood U of ¢ there are ¢
vector fields X7, ..., X, of class C* on U which span D at each point of U.

Likewise, it is possible to define codistributions on @ as a family of linear subspace of
the cotangent spaces T;’Q. A more complete exposition can be found in [Mon02].

We define the rank of D at ¢ as the dimension of the linear subspace D, that is, the
mapping p: @ — R such that p(q) = dimD,. For any gy € Q, if D is differentiable, it is
clear that p(q) > p(go) in a neighbourhood of gg. Therefore, rho is a lower semicontinuous
function. If p is a constant function, then D is called a regular distribution. Henceforth we
will consider regular distributions, unless otherwise stated.

For a distribution D, a point ¢ € Q is called regular if ¢ is a local maximum of p, that
is, p is constant on an open neighbourhood of q. Otherwise, g is called a singular point of D.
The set R of regular point of D is open. Moreover, it is dense, because if g € S = Q \ R,
and U is a neighbourhood of qg, U necessarily contains regular points of D, because p|;;
must have a maximum being integer valued and bounded. Consequently, g0 € R. We
observe that in general R will not be connected.

Definition 1.18. A vector field X on @ is said to belong to (or lie in) the distribution D
if X(q) € Dy for each ¢ € Q. A smooth distribution D is called involutive (or completely
integrable) if [X,Y] € D whenever X and Y are smooth vector fields lying in D.

Definition 1.19. A submanifold N of @ is an integral manifold of a distribution D on @
if
dy(TwN) =D((n)),  VneN,

where ¥: @@ — N.

Definition 1.20. Given a distribution D, we define its annihilator D° C T*(Q as the
codistribution given by

D°: DomD C Q - T7Q
q»—)Dg:(Dq)O:{aGT;Q‘a(U):O, VUEDq},
where « is a one-form.

We note that D? is differentiable if and only if D is a regular distribution.

Remark 1.5. We note that an immersed submanifold NV of @) is an integral submanifold
of D if T,,N is annihilated by D, at each point n € N. Furthermore, N is an integral
submanifold of maximal dimension if (7,,N)° = D,, for all n € N. In particular, this
implies that the rank of D is constant along N.

A leaf L of D is a connected integral submanifold of maximal dimension such that
every connected integral submanifold of maximal dimension of D which intersects L is an
open submanifold of L. The distribution D is said partially integrable if for every regular
point ¢ € R, there exists a leaf passing through q. Moreover, D is called a completely
integrable distribution if there exists a leaf passing through ¢ for every g € @. In this case,
the collection of all these leaves defines a foliation of Q).
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Proposition 1.8. Let D be a smooth distribution on Q) such that through each point of Q)
there passes an integral manifold of D. Then D is involutive.

Theorem 1.3 (Frobenius). Let D be a c-dimensional, involutive smooth distribution on Q.
Let g € Q. Then there exists an integral manifold of D passing through q, that is, if D id
involutive then it is also integrable.

1.3 Fibre bundles and connections

In this section we give a brief introduction of fibre bundles and related concepts such
as connections, which will be useful for studying the geometric structure of mechanics.
In particular, fibre bundles provide a basic geometric structure for the understanding of
many mechanical and control problems, in particular for nonholonomic problems. Roughly
speaking, a fibre bundle consists of a given space, named the base, together with another
space, called the fibre, attached at each point, and certain compatibility conditions.

Definition 1.21. A fibre bundle is a space ) for which the following are given: a space B
called the base space, a projection m: QQ — B with fibres 7~1(b), b € B, homeomorphic to
a space F', a structure group G of homeomorphisms of F' into itself, and a covering of B by
open sets Uj, satisfying

1. the bundle is locally trivial, that is, W_I(Uj) is homeomorphic to the product
space U;j x F

2. if h; is the map giving the homeomorphism on the fibres above the set U}, then hj(h,;l)
is an element of the structure group G for any z € U; N Uy, # @.

If the fibres of the bundle are homeomorphic to the structure group, we call the bundle
a principal bundle. If the fibres of the bundle are homeomorphic to a vector space, we call
the bundle a vector bundle.

Example 1.4. A basic example of a vector bundle is 7'S*, that is the tangent bundle of
the circle. The base is S, the fibres are homeomorphic to R, and since the tangent space
can be represented by any nonzero real number, the structure group is ratios of nonzero
real numbers and may be identified with R\ {0}.

The frame bundle of a manifold ) has the same structure group as T'QJ, but the fibres
are the set of all bases for the tangent space. Therefore, for T'S', the fibres of the frame
bundle are homeomorphic to its structure group R \ {0}, and hence the frame bundle is a
principal bundle. In fact, all frame bundles are principal.

An important additional structure on a bundle is a (Ehresmann) connection. Intuitively,
suppose we have a bundle and consider (locally) a section of this bundle, i.e., a choice of a
point in the fibre over each point in the base. We call such a choice a field.

The idea is to single out fields that are “constant”. For vector fields on the plane, for
example, such fields are literally constant. For vector fields on a manifold or an arbitrary
bundle, we have to specify this notion. Such fields are called horizontal and are also key
to defining a notion of derivative, or rate of change of a vector field along a curve.? A
connection is used to single out horizontal fields, and is chosen to have other desirable
properties, such as linearity. For instance, the sum of two constant fields should still be
constant. As we shall see below, we can specify horizontality by taking a class of fields

2The Lie derivative does not give a way of differentiating vector fields along curves.
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that are the kernel of a suitable form. Note that we do not in general have a metric; given
one, there is a natural choice of connection and horizontality on the tangent bundle.

More formally, let us consider a bundle with projection map 7: (Q — R, where the
manifold R is the base space, and let T;m denote its differential at any point. We call the
kernel of T;m at any point the vertical space, which is denoted by V.

Definition 1.22. An Fhresmann connection A is a vector-valued one-form on @ such that
1. A is vertical valued, that is, the map A,: T,Q — V; is linear for each point ¢ € Q;
2. Ais a projection, that is, A(v,) = v, for all v, € V.

The key property of the connection is the following: if we denote by H, or hor g the
kernel of A, and call it the horizontal space, the tangent space to @ is the direct sum of
the horizontal and vertical spaces, that is, T,Q = V, ® H,. For instance, we can project a
tangent vector onto its vertical part using the connection. Note that the vertical space
at @ is tangent to the fibre over ¢. When nonholonomic systems will be discussed, we shall
choose the connection so that the constraint distribution is the horizontal space of the
connection.

Now define the bundle coordinates ¢ = (r®,s%) for the base and fibre spaces. The
coordinate representation of the projection 7 is just projection onto the factor r, and the
connection A can be represented locally by a vector-valued differential form w?, that is,

0

_ a
—Y s

A

where w?(q) = ds* + A%(r,s)dr*. Henceforth, the summation on repeated indices is
understood. In particular, since the tangent space is is the direct sum of H; and V,, every
vector v € T5() can be written as

0 3}
— B ;b .
="+ ow
then w(vy) = $* + A% and

0
0sa’

Alvg) = (8" + AG7)

This clearly demonstrates that A is a projection, since when A acts again only ds® results
in a nonzero term, and this has a unitary coefficient.

Definition 1.23. Given an Ehresmann connection A, a point ¢ € @, and a vector v, € T, R
tangent to the base at a point r = w(q) € R, we can define the horizontal lift of v, to be
the unique vector vf in H, that projects to v, under T;w. If we have a vector X, € T,Q),
we shall also write its horizontal part as

hor X, = X, — A(q) - X§.
Remark 1.6. In coordinates, the vertical projection is given by the map
(7%, %) — (0, 8% + A% (r, s)rr%),
while the horizontal projection is the map

(7%, 8%) = (7Y, = AL (1, 8)77).
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Definition 1.24. The curvature of A is the vertical-vector-valued two-form B on @ defined
by its action on two vector fields X,Y € X(Q) by

B(X,Y) = —A(|hor X,horY]),
where the bracket [-, -] on the right hand side is the Jacobi-Lie bracket of vector fields.

Remark 1.7. This definition shows that the curvature exactly measures the failure of the
horizontal distribution to be integrable, because the right hand side is equal to zero if
and only if the horizontal subbundle is Frobenius integrable. In particular, the curvature
measures the lack of integrability of a (constraint) distribution.

For the exterior derivative of a one-form «, which could be vector-space valued, on a
manifold @ acting on two vector fields X,Y € X(Q), we have the following useful identity

do(X,Y) = X(aY)) - YV(a(X)) — o([X,Y])

which shows that in coordinates, the curvature may be evaluated by writing the connection as
a one-form w® in coordinates, computing its exterior derivative (component by component),
and restricting the result to horizontal vectors, that is, to the constraint distribution. In
other words,

B(X,Y) = dwa(horX,horY)%,
s

so that the local expression for curvature is given by
B(X,Y)" = BigX°Y?,
where the coefficients Bg s are given by

oAb 9A OA DAL
b o B a B pa o
Bap = <a7’5 Oore * 4o 0s® As 0s@ |-

Example 1.5 (Connections on TR!). We are going to illustrate the idea of connection
by considering the simplest possible example. Let us consider a connection on the bundle
TQ = TR' with coordinates (z,4). We may define the horizontal space to be the kernel of
the form

di 4+ Af(z,4)d,

where A} is a smooth function of x and #. More specifically, we can choose a connection
that is linear in the velocities, that is

dz + a(x)idz.
In this case, A is the R-valued form
(dz + a(x)a':daz)2
oz’
and elements of T,(Q) are
vy =i 450
T " ox o’

and their projection onto the vertical space is

Alvg) = (di: + a(a:)i:dm)% (j;i n j;;) - a(x)ig)%.
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The kernel of A, i.e., the horizontal vectors, is generated by

0 .0
Span{ e a(;v)x% } .

Note that the standard choice is a(z) = 0, that is, the standard horizontal space is the
span of the vectors 0/0x.
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Background from differential geometry




Chapter 2

Basic of geometric mechanics

In this chapter we develop the basic concepts in the geometric mechanics of holonomic
and nonholonomic systems, which provide the elements for studying the dynamics of the
bicycle in the next chapters. More detail about this subject can be found in [AKN02],
[Hol08a], [Hol08b], [NF67], [BBCMO03] and references therein.

2.1 Constrained systems

The affine space E? where the motion takes place is three-dimensional and Euclidean, that
is, the distance between two elements of the affine space is defined as

pla,b) :=lla—b| = \/{a—ba—b), Va,beE?

where (-, -) is the metric pairing which defines the scalar (or inner) product on R3. Then,
we fix some point O € E? called the origin of reference of the reference frame, so that the
affine space E? inherits a vector space structure. The position of every point S € E? is
uniquely determined by its position vector OS = r, whose initial point is O and end point
is 5. The set of all position vectors forms the three-dimensional vector space R?, which is
equipped with the scalar product defined in E3.

Time is one-dimensional and it is denoted by ¢t. The set R = {t} is called the time axis.
A moment in time occurs at ¢t € R.

The motion (or path) of the point S is a smooth map R D A — E3, where A is an
interval of the time axis. We say that the motion is defined on the interval A. If the origin O
is fixed, then every motion is uniquely determined by a smooth vector function r: A — R3.

Definition 2.1. The image of the interval A under the map ¢ — 7(¢) is called the trajectory
or orbit of the point S.

Given the position of the point .S in an inertial reference frame, that is, a coordinate
systems in uniform rectilinear motion relative to absolute space, its velocity v at an

instant t € A is defined as g
.

dt
Clearly, the velocity is independent of the choice of the origin. Likewise, the acceleration
of the point is by definition the vector a = v = i € R3,
We note that the space E? can be viewed as a differentiable manifold which is also
called configuration space for a single point, and the velocity of the point is an element of
the tangent space to this configuration manifold.

= 7(t) € R®.
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Now, let us consider a set of n particles in E® each having constant mass m; and
located at position r; = (x4, ¥, 2i), ¢ = 1,...,n, where the triple (z;,y;, z;) denotes the
standard Cartesian coordinates. In general, the system of n point masses is moving under
the influence of external and internal forces and it may be that there are certain functional
relations among some of the coordinate components. In this case we say that the motion
of the point masses is subject to certain constraints.

Definition 2.2. Given a set of n particles in the physical space E3, we define a bilinear
and limiting constraint as a relation of the form

f(xlvylazla'"7zn7i.17y'17"'7z7’b7t>:Oa (21)

which does not depend on the acceleration of the points. We say the constraint is scleronomic
if it is independent of time, otherwise it is called rheonomic. The general constraint (2.1)
is also called a kinematic constraint, whilst we say a constraint is geometric if it can be
expressed in the form

f(xlvylazlv"'vznat)zo- (22)

In general we have a number C' of constraints imposed on the n particles.

In the following, we consider only scleronomic constraints. A kinematic constraint is
integrable if the functional relation (2.1) is integrable, that is, it may be expressed as a
geometric constraint. Using the terminology introduced by Hertz in [Her94], we have the
following definition.

Definition 2.3. An integrable kinematic constraint is called holonomic, that is, it is a
functional relation of the form (2.2), while a nonintegrable kinematic constraint is called
nonholonomic.

We are now considering two simple examples to better understand the difference between
holonomic and nonholonomic constraints.

Example 2.1 (Pure rolling). Ideal rolling motion combines rotation and translation of an
object with respect to a surface, such that, the two are in contact with each other without
sliding. In particular, let us consider a disc of radius R which is rolling (without sliding)
smoothly on a horizontal surface along the X-axis of an inertial reference frame such that
its centre of mass translates with a velocity v(C) = 7.

Y
|

V>

Figure 2.1: Pure rolling of a disc along the X-axis.
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Because the disc is a rigid body, the velocity of the point C' can be written with respect
to the velocity of B as

F(C) = HB) + @A (C — B) =& A (C — B),

where ¥(B) = 0 since the particle at contact has zero instantaneous velocity resulting from
equal and opposite linear velocities due to pure rotation and pure translation. Thus, the
pure rolling motion is characterized by the kinematic constraint

T = R,

where ¢ is the angle subtended by the arc, such that ¢ = w. However, we note that this
relation is integrable, and we have
z = Ro,

that is, the pure rolling constraint is a holonomic.

This example shows that holonomic constraints, given as constraints on the velocity,
may be integrated and expressed as relations on the configuration variables. Therefore,
holonomic constraints impose restrictions on both the positions and the velocities of a
system. On the other hand, nonholonomic constraints restrict types of motion but not
position, that is, they impose no restrictions on the possible values of the coordinates of
the system. This statement should become clearer with the following example.

Example 2.2 (Falling disc). Let us consider a disc of radius R rolling without sliding on
the m-plane. As shown in Figure 2.2, the position of the disc at any time can be determined
by the contact point coordinates (x,y), the self-rotation angle x, the angle o between the
plane of the disc and the vertical axis, and the heading angle 6.

A7

Figure 2.2: The geometry for the rolling falling disc.

The condition that the disc rolls without sliding on the plane m means that the
instantaneous velocity of the contact point of the disc is equal to zero at any time. An
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arbitrary small displacement of the disc can be characterised by the variations of all the
coordinates, which we shall denote by dz, dy, df, dy and da. Let R be the radius of the
disc. Since the system rolls without sliding, the variations of the five coordinates that
determine the position of the disc must satisfy the conditions

dr = Rdx cos¥,
dy = Rdx sin 6.

Thus, the condition of rolling without sliding is a nonintegrable kinematic constraint
expressed by constraints

T = Ry cos#,
{g’/ = Rysiné. (2.3)

We note that, although these conditions must be satisfied, the five coordinates may take
all sets of values as the disc rolls on the plane, that is, the disc can take up any position
relative to the plane.

2.1.1 Generalised coordinates

We assume that the number of constraints imposed on the system is equal to C = m + p,
where the holonomic constraints are m, whilst p is the number of nonholonomic constraints.
Furthermore, we require that the m holonomic constraints are independent, that is, the

Jacobian matrix of the vector function F(z1,yi,...,2,) = 0 which defines all the holonomic
constraints
ofi  0fi df1
I=|
Ofm  Ofm Ofm

satisfies the full rank condition. Consequently, the system can take only configurations
which satisfy these constraints, that is, all the possible positions of the system belong to

Q={(x1,y1,---,2m) | F(z1,Y1,-.-,2m) =0}, (2.4)

where F(x1,y1,...,2m) = 0 is the vector function of the constraints. We note that @
has a differentiable manifold structure; in particular, since the holonomic constraints
are independent, it is an [-dimensional embedded submanifold of R3", with | = 3n — m.
Therefore, following the formalism introduced by Lagrange, we introduce a new set of
coordinates, called generalised coordinates, which may be interpreted as coordinates for
the system’s configuration space. Let us formalise these notions.

Definition 2.4. The [-dimensional manifold @ defined by the set (2.4) is called the
configuration space of the system, which is parametrised by a set of [ generalised coordinates.
A motion (or trajectory) of the system is given by the curve ¢(t) € @) parametrised by
time in some interval ¢ € (¢1,t2). The tangent vector at any point ¢ € @ defines the
generalised velocity ¢ € T,Q). The phase (or state) space is the tangent bundle T'Q with
coordinates (g, q).

We note that the generalised coordinates are the smallest number of variables needed
to determine the position of the system at a give moment of time.
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Example 2.3. With reference to Example 2.2, the generalised coordinates for the falling
disc are given by ¢ = (x,y,6, x,«). As a result, the corresponding configuration space
is Q = SE(2) x S x S, where SE(2) ~ R? x S! (as a set) is the Euclidean group in the
plane, that is, the group of rigid motions in the plane.

The introduction of generalised coordinates allows us to consider the constrained motion
of the system in R?" as a free motion a reduced space, namely the configuration space Q.
In this space, we have only the remaining nonholonomic constraints, which can be written
as
fi(q', ... q Y ... .¢) =0, i=1,...,p.

However, in mechanics we usually have nonholonomic constraints which are linear in the
velocity field, that is,

!
Zaki(q],t)q'k—&—bi(qj,t) =0, i=1,...,p. (2.5)
k=1

If b = 0, then the constraints are called homogeneous, while they are scleronomic whenever
both a; and b do not depend on time. In this thesis, we consider only systems with
scleronomic homogeneous constraints, which are also called Pfaffian constraints, expressed
as

A(q)q =0,

where A(q) is a p x [ linear matrix and ¢ is a column vector. Moreover, we assume that
rank(A) = p, so that also the nonholonomic constraints are linearly independent.

Example 2.4. If we consider constraints (2.3) introduced in Example 2.2, we can easily
prove that these are Pfaffian. In fact, they can be written in the form

(2.6)

Zcosf + ysinf = Ry,
Zsinf — ycosf =0,

which is obtained by requiring that velocity is along the direction of the motion, that is,

<UP771> = RX7
(UP,.Tl> = 07

where 71 and 77 are the versors of the local reference frame. In conclusion, we have

T
cosf sinf —-R )
(— sinf cosf 0O ) z =0 (27)

where the matrix A has rank 2.

2.1.2 Virtual displacements and degrees of freedom

As stated before, an arbitrary motion of a system can be represented in its configuration
space by a curve parametrised by time. If the system is holonomic, then the converse is also
true: any curve in the configuration space represents a motion of the system in the physical
space. However, this is not true for nonholonomic systems. In particular, only certain
curves in the configuration space correspond to motions of the system compatible with its
(nonholonomic) constraints, since a point of the configuration space, which represents the
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position of the system at a given instant of time, cannot move in an arbitrary direction.
This is because the generalised velocities, and possibly the time, defining a displacement
must satisfy the linear nonholonomic constraints (2.5).

If we consider scleronomic homogeneous nonholonomic constraints, for each configu-
ration g, all the possible displacement compatible with the constraints lie on the tangent
space T;Q to the configuration space.

Definition 2.5. At any configuration ¢, the set of all possible virtual displacements is
defined to be the subspace of the tangent space to the configuration manifold at ¢ consisting
of vectors dq that satisfy the constraints, that is, the subspace D, defined by

Dy ={dq € T,Q | A(q)dqg=0}.

Thus, the kinematic constraints are described by a distribution D which is the collection
of the linear subspaces D, C T,Q, for each ¢ € Q. Then, a curve ¢(t) € @ is said to satisfy
the constraints if §(t) € Dy for all ¢ in a certain interval. In general, this distribution will
be nonintegrable in the sense of Frobenius theorem, that is, the constraints are, in general,
nonholonomic.

Definition 2.6. The number of linearly independent virtual displacements of a system is
called the number of its degrees of freedom.

We note that for a holonomic system the number of degrees of freedom is equal to the
number of generalised coordinates. On the other hand, for a nonholonomic system we
have g = [ — p, where [ is the number of generalised coordinates, whilst p is the number of
independent nonholonomic constraints.

Example 2.5. If we consider the falling disc of Example 2.2, the system is composed by a
single rigid body whose position in the three-dimensional space is described by means of six
coordinates. By requiring that the disc has a contact point with the plane 7, we introduce
a holonomic constraint, hence, we need five generalised coordinates to parametrise the
configuration space. Finally, we have two nonholonomic constraints, and the number of
degrees of freedom is equal to three. For instance, we can naturally choose 6, x and « as
degrees of freedom, while z and y are determined by constraints (2.3).

2.2 Hamilton’s principle

In this section we give a brief account of the variational principles involved in the derivation
of the equations of motion for holonomic systems. Let ) be the configuration space of
a system with generalised coordinates ¢%, i = 1,...,l. Then, let us consider a family
of C? curves q(t,s): [t1,ta] X (—¢,e) — @ which connect two given point ¢; and g in
the configuration space, such that ¢(¢,0) = ¢(t) for all t € [t1,t2], while ¢(t1,5) = @1
and q(ta,s) = qo for all s € (—¢,¢).

Next, we consider a real-valued function L: T'() — R, called Lagrangian. For a
mechanical system, L is often chosen to be

L(q,4) = K(q,9) + U(q),

where K: T'QQ — R is the kinetic energy of the system and U: @Q — R is the potential. The
action S is defined as the integral over the time interval (t1,t2) of the Lagrangian, that is,

s= " L),d ).

t1
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Theorem 2.1 (Hamilton’s principle of stationary action). The Fuler-Lagrange equations

doL 9L

—— — — =0 =1,...,1 2.8
atog o 0 T Ton (28)

follow from the stationarity of the action S, that is, Hamilton’s principle singles out
particular curves q(t) by the condition

05 =0,
where the variation is over smooth curves in QQ with fived endpoints q1 and go.

Proof. The wvariational derivative in the statement of Hamilton’s principle is defined as

(2 . . d
0S5 =9 L(q"(t),q"'(t))dt .= —
t1 ds

L/QZXq%Lqu%Ls»dt

t1

s=0

Differentiating under the integral sign, denoting

A d A
oG (t) i= — Yt
q ( ) ds Szoq ( ’8)7
and integrating by parts, we have
t2 /0L .  OL ..
0S = .5Z+..(5'Z)dt—
t1 (8ql e an 1
t2 /1 OL d OL . OL .tz
= - - —— 6Zdt+{ ,.62] ,
/t1 <8q2 dt 3q1> 4 g t

where §¢* = %(5qi. Because the endpoints are fixed, the variations vanish and so the last

term, hence we obtain
2 (0L d OL -
4 \J¢* dtog q

Therefore, the action S is stationary, that is, §S = 0, for an arbitrary C! function §¢*(t) if
and only if the Euler-Lagrange equations (2.8) hold. O

Thus, a motion of the Lagrangian system extremises the functional S among all its
possible variations.

A critical aspect of the Euler-Lagrange equations is that they may be regarded as a
way to write Newton’s second law in a way that makes sense in arbitrary curvilinear and
even moving coordinate systems. That is, the Euler-Lagrange formalism is covariant. This
is of enormous benefit, not only theoretically, but for practical problems as well.

In the presence of external forces F;, ¢ = 1,,l we must consider the total work done by
these forces along the motion, which is given by

l to
W=> [ Ft
j=17h

We note that if these forces are derivable from a potential U, in the sense that F; = —9U/dq",
then these forces can be incorporated into the Lagrangian by adding to potential to L.
Thus, this way of adding forces is consistent with the Euler-Lagrange equations themselves.
In general, we derive the equations of motion from a variational-like principle, namely the
Lagrange-d’Alembert principle for system with external forces, which states that

58 = oW,
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where

! t2 . to
5W:Z/ Fjaqﬂdt:/ F - Sqdt
j=1 t1 t

1

is the wirtual work done by the force field F' with a virtual displacement dq as defined
above. Taking the variations as before, the equations of motion are

doL L
dto¢t  Ogt

F, i=1,...,1. (2.9)

An advantage of Lagrangian models of mechanical system dynamics is their manifest
invartance with respect to coordinate changes. Moreover, it is possible to extend these
models to include dissipation by defining a dissipation function D(q,q) such that

T Dg = rate of dissipation of energy per second.

We generally assume that dissipation functions are quadratic, symmetric, and positive
definite with respect to the generalised velocity variables ¢. This type of rate-dependent
dissipation is often called Rayleigh dissipation. The dissipative equations of motion are
given locally by
0L oL oD _ 210
dt 0¢ 0q  9q

Theorem 2.2. If E(q,q) is the total energy of the system, then

oD
E(q,q) = —¢7 =—.
(¢,4) = —4 9

dt

Theorem 2.3. The dissipative Lagrangian system is invariant under a change of coor-
dinates ¢ = Q(q). In particular, if the system dynamics is given by a Lagrangian L(q, )
and dissipation function D(q,q), with corresponding equation of motion (2.10), then the
same system dynamics is prescribed in terms of Q-coordinates by a Lagrangian L£(Q, Q),
dissipation function D(Q, Q) and equations of motion

doL oL 0D

i 0Q og "

2.3 Nonholonomic mechanics

An important issue about the equations of motion for nonholonomic systems is whether the
constraints are to be imposed before or after taking variations. Imposing the constraints
on the class of curves considered before taking the variations, we get equations that are
variational in the usual sense, that is, an action functional defined on a space of curves id
extremised. This type of approach is certainly appropriate for optimal control problems.
However, for mechanics, the correct approach is to impose the constraints after taking
variations, that is, the correct equations of motion for nonholonomic mechanical systems
are given by the Lagrange-d’Alembert principle.

Let us consider a mechanical system described by generalised coordinates ¢ = (¢', ..., ql)
and Lagrangian L = K + U. Then, we assume that the mechanical system is subjected
to p linear nonholonomic constraints which in generalized coordinates can be expressed as
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where A(q) is a p x [ matrix. At any configuration ¢ in the configuration space @, we know
that the set of all possible virtual displacements is defined to be the subspace D, C T,@Q of
the tangent space to the configuration manifold at ¢ consisting of vectors dg that satisfy
the constraints, i.e., the subspace D, defined by

Dy ={0qeT,Q | Alq)ég=0}.

Therefore, the nonholonomic constraints are introduced by means of a distribution D on Q.
The (generalized) constraint force, which is regarded as a cotangent vector at g, is assumed
to lie in the annihilator of the distribution D. Thus, F' has to be a linear combination of
the rows of A(q):

F = XA(q),

where ) is a row vector whose elements are called Lagrange multipliers. This assumption
is usually named as the nonholonomic principle. We observe that these multipliers are
related to the forces that have to be exerted by the constraints in order that the system
satisfy the nonholonomic constraints. Intrinsically, A is a section of the cotangent bundle
at the point ¢(¢) which annihilates the constraint distribution. We can summarise this
situation with the assumption: in any virtual displacement consistent with the constraints,
the constraint forces F; do no work, that is, we assume that the identity

Fi6q" + Fadq® + -+ + Fiog' =0

holds for all virtual displacements dq’ € D,. In this case, the nonholonomic constraints
are said to be ideal. Therefore, the system is equivalent to a holonomic one with applied
appropriate external forces. Recalling equations (2.9), we have

d oL n oL
dt 0¢"  0q¢*

=g,  Alg)g=0. (2.11)

In particular, we have [ second order differential equations, and p constraint equations.

Definition 2.7. We call equations (2.11) the nonholonomic equations or the Lagrange-
d’Alembert equations for a mechanical system with Pfaffian constraints.

A problem with the above classical derivation of the Lagrange-d’Alembert equations is
that no adequate justification is given for the nonholonomic principle, i.e., the assertion that
the vector of generalized forces always has to annihilate all possible virtual displacements
(in the case of ideal constraints). With this assumption, the total energy of the system is
conserved, and conservation of energy indeed holds for many systems with nonholonomic
constraints. The rate of change of the total energy of the system is equal to the rate
of work done by the generalized forces, which is (F), ¢), therefore, conservation of energy
requires only that the work done by the generalized forces at each instant be zero, that is,
that (F,q¢) = 0. The constraints ensure that the vector ¢ does lie in D,, but conservation
of energy in itself does not explain why the generalized force vector should annihilate all
the possible virtual displacements.

It has long been the general consensus in the mechanics community that the Lagrange-
d’Alembert equations do indeed provide an accurate model of the observed behaviour of
constrained physical systems. However, what the confusion over the equations mentioned
above did do was, quite properly, to highlight the inadequacies in the classical derivation
of the Lagrange-d’Alembert equations.

To solve this situation, we now derive the equations of motion for nonholonomic system
by means of variational problems, although we remark that the equations for nonholonomic
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mechanical systems are not literally variational. This formulation, in general, leads to
equations that are different from the Lagrange-d’Alembert equations (2.11), though in the
case of holonomic constraints, both formulations obviously yield the same equations. Let
us consider again a configuration space () and a distribution D that describes the kinematic
constraints. A curve ¢(t) € Q will be said to satisfy the constraints if ¢(t) € Dy(t) for all ¢.
This distribution will, in general, be nonintegrable in the sense of Frobenius theorem, that
is, the constraints are nonholonomic.

Definition 2.8 (Lagrange-d’Alembert principle). Given a system with nonholonomic
constraints defined by a distribution D and Lagrangian L: TQQ — R, the Lagrange-
d’Alembert equations of motion for the system are determined by

2 ) .

) L(q¢'(t),q"(t))dt = 0,

t1
where the variations dq(t) of the curve g(t) must satisfy dq(t) € Dy for each t € [t1, 2],
and 5q(t1) = 5q(t2) =0.

This principle is supplemented by the condition that the curve ¢(t) itself satisfy the
constraints.

As explained before, in such a principle we take the variation dq before imposing the
constraints, that is, we do not impose the constraints on the family of curves defining the
variation. The usual arguments in the calculus of variations show that this constrained
variational principle is equivalent to the equations

d oL OL\ .,
— 0L = ==—2" — i = 2.12
0 (dt a4 6q’> 00" =0, (2.12)

for all variations d¢ such that dq € D, at each point of the underlying curve ¢(t). To explore
the structure of the equations determined by (2.12) in more detail, let {w®} be a set of p
independent one-forms whose vanishing describes the constraints on the system, that is, the
constraints on dqg € T'Q are defined by the p conditions w®-v =0, for a =1,...,p. Using
the fact that these p one-forms are independent, it is possible to choose local coordinates
such that the one-forms w a have the form

w(q) = ds® + A% (r, s)dr®, a=1,...,p, (2.13)
where ¢ = (r,s) € R"P x RP. In other words, we are locally writing the distribution as
D={(r,s,735)e€TQ|s+ A% =0}.
With this choice, the constraints on dq = (dr,ds) are given by the conditions
ds® + Alor® = 0. (2.14)

The equations of motion for the system are given by (2.12), where the variations satisfy the
constraints. Substituting (2.14) into (2.12) and using the fact that or is arbitrary, we get

d oL oL L (d oL oL
(e o) =4 (Gigm ) o=Loomp Q1)

These equations combined with the constraint equations

§% =A%, a=1,...,p, (2.16)

(0]

give a complete description of the equations of motion of the system.
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Definition 2.9. We define the constrained Lagrangian by substituting the constraint (2.16)
into the Lagrangian, that is

L.(r%, s, 7%) = L(r®, s, 7%, — A& (r, s)r%).
Consequently, the equations of motion (2.15) can be written in terms of the constrained
Lagrangian in the following way. Let us consider the relations
0L _ 0L 0L
ore  gre g8’
OL. 0L 0L (aA )

ore - ore Qb 87“0‘
L. 0L 0L <8A5 -5>.

st 0s@ 95t \ 9se "

Substituting the constrained Lagrangian L. into equation (2.12), we have

d0Le OLe a@LC_d<8L baL)_aL aL 0AY
dt or®  Or® “9se  dt

g ~Agg) o Tag o
+ AO‘W —Aagg osb 83‘1
C(pon oy (daL oLy o
dt ore  Ore dt 0s¢  Os® dt” “9sb
b
oLoA, oL 0A,
0sb Ore >3 9s9

(daL 8L> a(d@L 0L)
S ) e (S +

dt or*  Ore dt 0§¢  0s®

oL (0Ay oAb oAb oA

el o a a a B
e <8ra o T A0~ Aage |7

Therefore, the equations of motion for nonholonomic systems can be written as

d 0L, OL. OL. 0L

- . a — b 7
dt ore  Ore 95t 93 9ap Das” (2.17)

where

(2.18)

Ab OAL HAL Ab
Bb — 9 a B + g B _ A%a a
orf  ora 059 059

Remark 2.1. We note that the coeflicients Bgﬁ are such that B% =0 and Bgﬁ = —Bga.
Letting dw® be the exterior derivative of w®, we have

dw® = d(ds® + Abdr) =

8A 0Ab
o 7.0 a Yo ga .0 «
=355 dr® Adr 5sa gdr” N dr®,
and contracting dw® with ¢, we obtain
A oAb oAb 0Ab
b . aB a a pasf g0 apa 5 a pa o 7.0
dw’(q, ) = 58" dr Bae 15 AGrPdr 58" dr 83‘1 S Agrtdr” =
9A%  9Ab oAb DAY
_ B « a a B 1.
= — A — A dr® =
(ara o 0 ga ~ fagga | TN
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Therefore, the equations of motion for the constrained system have the form
d 0L, 0L, «OLc  OL dub <q’ 0 > .

dt ore  Ore “Pse Qb ore
This form of the equations isolates the effects of the constraints. In fact, the left-hand side
may be checked to be the variational derivative of the constrained Lagrangian, while the
right-hand side consists of the forces that maintain the constraints. In the special case that
the constraints are holonomic, dw® = 0, since dw® represents the curvature, that is, the
lack of integrability of the constraints.

(2.19)

2.3.1 Intrinsic formulation of the equations

We can now rephrase our coordinate computations in the language of the Ehresmann
connections that we discussed in Chapter 1. Suppose that we have chosen a bundle and
an Fhresmann connection A on that bundle such that the constraint distribution D is
given by the horizontal subbundle associated with A. In other words, we assume that the
connection A is chosen such that the constraints are written as A-¢ = 0.

Note that this is an intrinsic way of writing the constraints and a way of thinking of the
collection of one-forms that we used in the coordinate description. In those coordinates,
it is possible to choose the bundle  — R to be given in coordinates by (r,s) — r, and
the connection is, in this choice of bundle, defined by the constraints. It is clear that this
choice of bundle is not unique; sometimes this sort of ambiguity is removed for systems
with symmetry.

Example 2.6. If we consider the physical example of the falling disc given in Example 2.2,
it is natural to choose r = (0, x,«) and s = (z,y) Then the connection given by the
constraints can be written as

w! = dx — cos Ody
and

w? = dy — sin Ody.

Definition 2.10. Let L be a Lagrangian on T'Q) and let FL: TQQ — T*Q be defined in
coordinates by

where p; = OL/0¢’. We call FL the fibre derivative of L.

In the language of connections, the constrained Lagrangian can be written as
Le(g, ¢) = L(g, hor g),
and we have the following theorem.
Theorem 2.4. The Lagrange-d’Alembert equations may be written as the equations
6Lc = (FL, B(4,4q)),
where (-, +) denotes the pairing between a vector and a dual vector, and where
OL. d 8Lc>
0q>  dt0¢> )’
in which §q is a horizontal variation, that is, it takes values in the horizontal space, and B is
the curvature regarded as a vertical-valued two-form, in addition to the constraint equations

A(q)q = 0.

(5Lc = <5qoz7



Chapter 3

Introduction of a new bicycle
model

Once we have quickly introduced the theory of nonholonomic systems, we turn the attention
to the mathematical description of the bicycle model we want to study. It is common
knowledge that in the literature there exist many different models for describing the bicycle
dynamics, although the mechanical system is usually handled introducing approximation
or simplification of the geometric structure. In a general and comprehensive case, we
pointed out that problems arise from the pitch angle, that is, the angle between the local
rear frame z-axis and the line of intersection of the symmetry plane with the ground. In
particular, because this angle depends on other coordinates, the motion of the bicycle is
obtained by solving a set of Differential-Algebraic equations. Therefore, we are going to
define a new model for the bicycle in which this angle remains constant during the motion,
still considering a nonlinear system.

3.1 Geometry of a general bicycle

We start considering a general bicycle model with toroidal wheel. In particular, we refer
to the notation introduced in [RF12]. According to the model in Figure 3.1, we assume
that the the riderless bicycle, which moves on a horizontal plane rolling without slipping,
is composed by the following rigid bodies: the rear and front wheels, the rear frame, and
the front frame.

Furthermore, the rear wheel and the rear frame identify the so-called rear assembly,
while the front wheel and the front frame the front assembly. Introduce a plane of symmetry,
named rear plane, which contains the rear assembly, we can define the contact line as the
intersection between the rear plane and the ground. If the front assembly lies in the front
plane of symmetry, we say the bicycle is in the trivial configuration when the rear and the
front plans of symmetry are parallel and both are normal to the horizontal ground plane.

Referring to the trivial configuration, we define the geometric parameters which charac-
terise the whole bicycle. The major radii of the rear and the front wheel are R and Ry,
respectively, whereas r and ry are the crown radii.

Moreover, the wheelbase w is defined as the distance between the two contact points in
the trivial configuration, while the caster angle A is the angle between the vertical axis
and the steering axis. We also identify the segment BC as the length [, the trivial pitch
angle o, the fork lower b and the fork offset d, that is, the perpendicular distance between
the steering axis and the centre of the front wheel. Hence, in the trivial configuration, the
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| lcosy

Figure 3.1: Model for general bicycle.

relation
w =1cosy+ bsin A + dcos A

holds. We note that the trivial pitch angle can be set to zero because of its arbitrariness; in
the following, we will choose it such that the centre of mass of the rear frame is characterized
by only one coordinate in a proper reference frame. It is also useful to introduce the reduced
caster angle as € = \ — .

With reference to Figure 3.1, we can easily define the trail by means of geometric
considerations. In particular, if the bicycle is in the trivial configuration, the trail is given
by

— pptan A — —
@ = prat cos\’

and the normal trail is
an = pysin A —d,

where py = Ry + ry. These two parameters has been widely studied in the literature
because of its stability effects on the bicycle, [Cos06] and [CLM11].

In conclusion, we have fifteen different geometric parameters characteristic of the
bicycle, and, according to the situation, one singles out the nine independent which can be
measured easier in order to define the bicycle geometry.

3.1.1 Reference frames

In order to identify the bicycle in a generic configuration, we define one inertial reference
frame and different local reference frames for each of the bodies which compose the system.
Let ¥ = (0; X,Y, Z) be the inertial reference frame, where the Z-axis is perpendicular to
the ground in the direction opposite to gravity, and the X-axis is parallel with the contact
line in the trivial configuration. The right-hand rule is used to determine the direction of
the Y-axis as usual.

The local reference frames are introduced as in [RF12]. The first one is centred in
the rear contact point Sar = (A’; x4/, yar, za), with z4 normal to the ground, passing
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through A" and A, while x 4/ is parallel with the X-axis in the trivial configuration. Another
moving frame, labelled as S4 = (A;x4,ya,24), is attached in A, being x4 always parallel
with X, but z4 directed through A and B. The third frame is introduced for the rear
assembly is Sp = (B;xp,yp, 28), with origin in the rear wheel centre B and xp passing
through B and C, while zp is normal to zp and lie on the rear symmetry plane. We note
that, due to the hinge, Sp is not sensitive to the wheel rotation, therefore it is useful
to introduce an addition frame Sp, = (B;Zp,, YBr, 2Br) Which takes such a rotation into
account.

With reference to the front assembly, we have the reference frame Sp = (D;xp,yp, 2p)
centred in D, with zp directed parallel to the steering axis, whereas zp lying on the
front symmetry plane and normal to the steering axis itself. In addition to this, we
introduce four more reference frames like those used for the rear wheel: Sp = (F;xp, yg, 2E)
and Sg, = (E;zgr, YEr, 2Er) attached in E, the former uninfluenced by the wheel rotation,
while the latter sensitive to it; Sp = (F;zp,yp, zr) with zp passing through F and E,
whilst Spr = (F'; xpr, ypr, zpr) with zpr passing through F’ and F, both having the abscissa
directed parallel to X in the trivial configuration.

After having defined the local reference frames, their orientations can be related to the
inertial frame by means of proper Euler angles and rotation matrices. However, we first
introduce some transformations which relate each local frame to the following one.

Considering the bicycle in a generic configuration, the coordinates of the rear contact
point are A’ = (z,4,0)7 in the inertial reference frame, because we have the holonomic
(geometric) constraint z = 0. On the other hand, the contact line is parallel with X no
more, but they form an angle #, named yaw angle and taken about the vertical Z-direction.
We adopt the right-hand rule, so the angle is positive for counter-clockwise rotations.
Therefore, the S 4/ orientation with respect to the inertial frame is described by the rotation
matrix

cosf  sinf O
Ra =Ri1(f) = | —sinf cosf 0
0 0 1

Remark 3.1. We choose the alias approach to represent rotation, that is, the change in
vector coordinates is due to a turn of the coordinate system, instead of a turn of the vector
itself.

The orientation of S4 with respect to Sy can be obtained by a rotation about x4
of the roll angle o, which the bicycle’s rear plane of symmetry makes with the vertical
direction.! We remark that, due to physical reasons, this angle can assume values in the
open interval (—3, §). Moreover, in this paper we take a positive for clockwise rotations,
in order to have a positive angle when the bicycle leans to the left. Hence, the rotation

matrix becomes
1 0 0
Ro(—a)= [0 cosa —sina
0 sina cos a

Passing to the rear frame, we note that the hinge B allows a rotation about the yp-axis.
The pitch angle p takes this rotation into account, being defined as the angle between zp
and the contact line, both belonging to the rear plane of symmetry. As the roll angle, even

Tt can be proved that the Sa orientation is obtained by means of two rotations, and an additional
rotation about the ya-axis is useless.
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the pitch angle is taken positive for clockwise rotations, thus

cospp 0 sinp
Rs(-w)=| 0 1 0
—sinpg 0 cosp

Remark 3.2. We define the pitch angle such that it includes the constant angle ¢. In
particular, we write wu(t) = i(t) + ¢, where 7i(t) is the effective pitch angle.

Furthermore, we introduce the steering angle ¢ € (=3, %) as the rotation about zp,
that is, the steering axis, which is tilted backward with respect to zp by the reduced caster

angle ¢, therefore we have

cos e 0 sine
R'(—e) = 0 1 0 ,
—sine 0 cose

and
cosy  siny 0
Ra(yp) = | —sinyy  cosyp 0
0 0 1

We observe that, due to the previous choice about the roll angle, the angles v and « have
the same sign.

The overall rotation characteristic of every frame can be expressed as a sequence of
partial rotations, each defined with respect to the preceding one. The frame with respect
to which the rotation occurs is termed current frame. Because we have chosen the alias
approach to describe rotations, composition of successive rotations is then obtained by
multiplication of the rotation matrices following the inverse order of rotations, that is

RY = RP'R*2. . RIRY,

where Rffl, i1 =1,...n, denotes the rotation matrix of frame ¢ with respect to frame ¢ — 1.
Therefore, the direct transformation from ¥ to S4 is given by the rotation matrix

cosf sin 0 0
Ra=TRa(—a)R1(0) = | —cosasinf cosacosf —sina
—sinasingd sinacosf  cosa

By recalling the meaning of a rotation matrix in terms of the orientation of a current frame
with respect to a fixed frame, it can be recognized that its rows are the direction cosines of
the axes of the current frame with respect to the fixed frame, whilst its columns are the
direction cosines of the axes of the fixed frame with respect to the current frame.

Let x be the rear wheel rotation angle, which we assume to be zero in the trivial
configuration. Then, the resulting orientation of the Sp, frame is obtained by?

Risr = Ry (\)Ra(—0)R1(0) =
CxCo+8aSyS9 CyS9 —SaSyCo —CqSy
= — Ca So Co Co — Sa 5
Sy €O —SaCxSe SySg+8aCyCo Ca Cy

2The notations ¢ and s are the abbreviations for cos and sin, respectively.
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where the rotation Ry, (x) is taken about the yp-axis. Similarly, for the Sp orientation we
have

R = Ra(—p)Ra(—a)R1(0) =

Cpu Co —Sa Sy Sg Cp S +Sa Sp Co Ca Sp
= —Ca Sp Ca Co — Sa
—5SuCo—SaCuSe —SuSp+SaCuCy CaCpu

Then, we draw the rotation matrix characteristic of the front assembly, which describes
the Sp orientation with respect to 3. This is given by the composition of four different
matrices, that is,

Rp = Ra(¥)Ra(—p — €)Ra(—a)R1(0) =

Cyy(Cpute Co — S Spute 59) — Ca S S0
= | Sy(Sa Sute 89 — Cute Co) — Ca Cyp So
— Sp+e C — Sa Cute So

Cy) (C/H-a So + 8a Sp+te cg) + Ca Sy Co Ca Spte Cop — SaSyp
Car Cop €9 — S5 (Cpige 50 + Sa Sute C0)  — Ca Spute Sp — Sa Cop
— Sp+e 59 T Sa Cute Co Ca Cp+te

Now, in order to overcome the complexity of Rp, we believe convenient to introduce
three more auxiliary rotation angles which define the same transformation. It is common
knowledge that three independent rotations are sufficient to describe the orientation of a
rigid body in space. Thus, let 9~, a, and i be the front yaw angle, roll or camber angle,
and pitch angle, taking the signs in accordance with the previous conventions, so we have
the rotation matrix

Rp = Ra(~)Ra(~a)R1(0) =

C~Cr— 8> S~S~ CrSy+8y8yCy  Cxsy

© o [ ] ©ne a"pu o a®u
= —Casbv Cacbv —Sa
—SﬁCbV—SaCﬁSa —SﬁSg—FSaCﬁCg CaCﬁ

Because Rp and R p describe the same transformation, the two matrices are identical. So
equating the direction cosines we obtain nine expressions of the auxiliary angles, used in
the following, such as

sin & = cos asin(p + €) sin ¢ + sin o cos P, (3.1)

although they are not all independent, due to the orthogonality conditions between the
direction cosines.

Finally, introducing the front wheel rotation angle xf, which is set to zero in the
trivial configuration, the direct transformation from 3 to Sg, is given by the rotation
matrix Re, = Ry, (Xf)ﬁg(—&)ﬁl(g), and by analogy with the rear wheel, the S and Sp

orientations are obtained by Ry = R1(f) and Rp = Ra(—a)R1(0), respectively.

3.1.2 Configuration space

Once we have geometrically characterised the general bicycle model in its trivial configura-
tion, we need to introduce a certain number of coordinates for describing the behaviour
of the system. We observe that the bicycle is composed by four rigid bodies, therefore,
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without any constraints, it should have 24 degrees of freedom. However, imposing the
holonomic constraints on the system, that is, frames are connected by three hinges and
each wheel has one contact point with the flat ground plane, the minimum number of
generalised coordinates needed to describe the configuration space is equal to seven.

Hence, the motion of the system is characterised by orbits on a 7-dimensional manifold.
We remark that the number of generalised coordinates for nonholonomic systems is different
from the number of degrees of freedom of the system itself. Afterwards, as the nonholonomic
constraints will be imposed on the system, we will see that our bicycle has three degrees of
freedom.

In principle, any set of generalised coordinates is good as another, hence, according
to [RF12], we choose our seven independent generalised coordinates as follows:

1. the triple (x,y, ), which gives the translational position of the rear contact point
together with its rotational position;

2. the roll angle «;
3. the steering angle 1;
4. the rear and front wheel rotation angles x, and xy, respectively.

In summary, identifying the Euclidean group in the plane SE(2) as the group of translations
and rotations in the plane, that is, the group of rigid motions in the plane, the configuration
space of the bicycle is given by

Q =SE(2) x S* x S x §' x s,

which we parametrize with the coordinate vector ¢ = (x,y,0, x5, o, ¥, x)*. We note that,
by definition, all the generalised coordinates are equal to zero in the trivial configuration.

We also remark that the pitch angle, as well as the coordinates z; and y; of the
point F’, are not independent of the generalized coordinates, therefore it is possible to
express them as a functions of these coordinates. In the next section, we will derive the
relations of both this angle and the front contact point coordinates with respect to the
coordinate vector gq.

3.1.3 Pitch angle and front contact point.

We have mentioned that both the pitch angle and the front wheel contact point depend
on the generalized coordinates chosen. Their expressions can be derived by writing the
vector (F' — A’) explicitly. It is clear that, in the trivial configuration, this vector has
magnitude w and direction parallel to the X-axis, but in general its length and direction
are not constant. First of all, we observe that

(FF—A)=(F -F)+(F-E)+(E-D)+

+(D_C)+(C_B)_'_(B_A)—i-(A—A’)? (3.2)

and then we express each of the vectors on the right hand side with respect to the inertial
reference frame. Because the wheels are toroidal, we have

(A—A) =7k, (F' = F) = —r/k,
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where {7, 7, k } are the unit vectors of the coordinate system X. Then, using the direction
cosines of the rotation matrix R 4, the position of the rear hub B in the inertial reference
frame is given by

(B — A)y, = —Rsinasin 07+ Rsin a cos 07+ R cos ak.
Likewise, we proceed with the other vectors. In particular, we have

(C — B) =lI(cos pcos — sin asin psin ) '+
+ 1(cos psin 6 + sin a sin p cos 6)7+ I cos asin p &,

(D — C) = b(sin i cos § + sin & cos fisin §) 7+

+ b(sin fisin @ — sin @ cos i cos )7 — bcos & cos i k,

(E — D) = d(cos ji cos f — sin @ sin fisin 0) 7+
+ d(cos fisin  + sin & sin fi cos 0) ]+ dcosasinfik,

and

(F'— FE) = —Rysin jits;,, — Ry cos ﬁ/;:sD =
= Rysin asin 07 — Ry sin a cos gj’— Ry cos &E,
where the auxiliary angles introduced above are used for the vectors characterising the

front assembly. Therefore, from relation (3.2), we obtain three scalar equations. The first
and the second give the coordinates of the front contact point, that is,

xf =a — Rsinasinf + [(cos 1 cos § — sin asin psin )+
+ b(sin(p + €) cos @ + sin accos(p + €) sin 6)+
+ dcost(cos(p+ €) cos @ — sinasin(p + €) sin 0)+

—dcosasinysind + Ry sin @ sin 6
and

yf =y + Rsinacosd + [(cos psin 6 + sin o sin p cos 0)+
+ b(sin(p + €) sin @ — sin accos(p + €) cos )+
+ dcosi)(cos(p + €) sin 0 + sin asin(p + €) cos )+

+dcosasiniycos — Ry sin & cos 6,
whereas the third one provides an algebraic equation for the pitch angle:

(r—rf)+ Rcosa + lcosasinpu — bcosacos(u + )+ (3.5)
+ d(cosasin(p + €) cos ) —sinasiny) — Ry cosa =0, '

where we have used the auxiliary angles for writing these expressions easily.
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3.2 Definition of the CPA bicycle

Because a closed-form solution for equation (3.5) is difficult to be found, now we have
derived the algebraic equation which defines the pitch angle ;1 we want to find the minimum
conditions such that this angle does not depend on the generalised coordinates, that is, it
is constant in time. Assuming that Ry and d are equal to zero, and r = ry, we obtain

Rcosa + lcosasiny —beosacos(u+¢) =0,
and dividing by cos «, which is always different from zero, we have
R+ lsinp—bceos(u+¢) = 0. (3.6)

Thus, in this situation, the effective pitch angle is constant and equal to the trivial pitch
angle ¢. From a physical point of view, the assumptions introduced above correspond to
a zero fork offset and a spherical front wheel, which has the radius equal to the crown

radius r, that is, ry = r, as in Figure 3.2. We will call this particular bicycle as Constant
Pitch Angle (CPA) bicycle.

Figure 3.2: Model for the CPA bicycle.

Remark 3.3. Because the trivial pitch angle is arbitrary, we remark that it will be chosen
such that the centre of mass of the rear frame can be characterized by only one coordinate
in the local reference frame.

As a result of this simplification, also the expressions (3.3) and (3.4) for the front wheel
contact point are simpler. In particular, we have

zf=x—[R+Ising — bcos(p + €)]sin asin 6+
+ [l cosp + bsin(p + €)] cos O =

=z + wcosf
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and

yr=y+ [R+Isinp —bcos(p + )| sin asin 6+
+ [lcos + bsin(p + ¢)]sinf =
=y + wsinb,

respectively, where we remind that w = [ cos p 4 bsin(p + ) is the wheelbase.

Furthermore, requiring that the pitch angle has to be constant, the wheelbase in a
general configuration becomes constant. Indeed, the distance between the rear and front
contact points is given by

\/(xf—:r)2—(yf—y)2 = Vw? cos? 0 4+ w?sin2 6 = w.

However, even if both the pitch angle and the wheelbase do not depend on the generalised
coordinates, the general configuration of the CPA bicycle is given by means of the rotational
matrices we have introduced in Section 3.1.1.

3.3 Kinematics of the CPA bicycle

We now turn our attention to the kinematics of CPA bicycle. The linear velocities of
each point of the system with respect to the inertial reference frame by differentiating the
expression of its positions with respect to time. We write down the linear velocities of
the four centres of mass in the inertial reference frame, which will be useful in the next
chapter. Therefore, the rear wheel centre of mass has velocity

—

#(B) = (& — Révcos asin § — Rfsin v cos 0)7+
+ (§ + Récos a cos § — Rf sin asin 0) 7+ (3.7)
— Rdésin aE,
while for we rear frame we have
U(G) = U(B) + {lg (—d cos asin @ sin @ — O(sin asin ¢ cos 6 + cos @ sin 0)) +
+do (—d sin asin 6 — 6 cos o cos 9)] ™+
+ [lQ (a cos asin ¢ cos 6 + B(cos ¢ cos  — sin asin @ sin 9)) + (3.8)
+do (—d sin o cos 0 — 6 cos asin 9)] 7+

+ (Iaéesin acsin p — dacvcos ) k,

where (G — B)s, = (l2,ds,0)T; the velocity of the point C is obtain from equation (3.8)
noting that (C' — B)g, = (1,0,0)T, hence the front frame centre of mass velocity is

U(H) =9(C) + {hg( — ércos acos Asin @ + f(sin Asin @ — sin a cos A cos 0)) +
+ ds (d(sina cos 1 sin @ + cos asin A sin 1 sin 0)+

+ é(sinasin)\sinq/) cos 0 — cos a.cos 1 cos § + cos Asin ¢ sin 0)+

+ 9)(cos arsin 1) sin @ + sin asin A cos 1) sin @ — cos A cos 1) cos 9))+

+13 (d(sin asin ) sin @ — cos asin A cos ¢ sin 6)+
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+ 0(— cos A cos 1 sin f — sin acsin A cos ¢ cos @ — cos asin ) cos 0)+
+1)(sin ovsin A sin ¢) sin @ — cos v cos 1 sin @ — cos A sin 1) cos 9))} +
+ {hg (d cos a cos A cos 0 + O(— sin A cos @ — sin a cos Asin 0)) +
+ds (d(— sin a cos 1) cos § — cos acsin A sin v cos 0)+
+ O(sin a sin A sin ¢ sin § — cos a cos ¥ sin @ — cos Asin ¢ cos 0)+
+ 1/1(— cos a:sin Y cos  — sin o sin A cos ¥ cos 6 — cos A cos ¢ sin 0))+

+13 (d(cos asin A cos ¥ cos ) — sin acsin ¢ cos 0)+
+ 0(cos A cos 1 cos B — sin asin A cos 1 sin ) — cos a sin ) sin 6)+

+¢(cos @ cos 1 cosf — sin asin A sin ¢ cos @ — cos Asin 1) sin 9))} T+
+ [—hgd cos Asin o + dg (d(sin asin Asin ) — cos acos ) +
+ zﬁ(sin asin 1 — cos asin A cos w)> +
+ 13 (d(— sin asin A cos ¢) — cos asin )+
+1)(— cos asin A sin ¢ — sin v cos w)ﬂ k,
whilst the velocity of the front wheel is simply
H(E) = 27+ 97 = (& — wlsin )7+ (§ + wh cos 0)7.

Moreover, the angular velocities of each body can be easily obtained in the body-fixed

frame by the rule
= djs » \ . dks .\ dis |\ »
Qg = ( == - )
S <dt ,ks>ls+< 7t JS>Js+< 7 7Js>ks,

where the pairing (-, -) is the scalar product, while the versors are obtained as the rows of
the rotation matrices introduced above. Therefore, by a slightly lengthy but straightforward
calculation, all the kinematic quantities of interest shall be provided. In particular, we
write down the angular velocities in the local reference frame, that is,

1= —(O[ cosx + éCOSO&Sin X)/Z‘SB7+

&l

+ (x — 0sina)Js,, + (6 cosacosy — ésin X)ESBT
for the rear wheel, considering the proper rotation,
@ = (—dcos @ + 6 cos asin @) Ts, +
— @sin ajs, + (asing + 0 cos a cos go)ESB
for the rear frame,
@3 = [—d cos A cos 1) 4 0(cos asin A cos ¢ — sin arsin w)] s, +
+ {o’z cos Asin ) — 0(cos asin Asin ¢ + sin v cos w)} Jsp+

+ {dsin)\—i-ﬁlcosacos)\—i-ﬂ ESD
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for the front frame, and, using the auxiliary angles, the angular velocity of the front wheel
is

Dy = —(§ COS Xa + 0 cos & sin Xa)?Sp,+
+ (Xa — 0 sin )75y, + (gcos&cos Xa — Qsin XG)ESETa

by analogy with the rear wheel. Then, we have to impose the nonholonomic constraints on
the two contact points.

3.3.1 Nonholonomic constraints

In general, the most interesting aspect of the bicycle is probably related to the nonholonomic
constraints on the velocities of the two contact points. Even for our simplified model, we
require that both the wheels roll on the plane without slipping. It is common knowledge
that this particular constraints are not integrable in the sense of Frobenius’s theorem. For
deriving the constraint equations, we consider the infinitesimal displacement of the wheel,
as shown in Figure 3.3.

Y

|
dSQ

Figure 3.3: Infinitesimal displacement of the rear contact point.

In fact, an increment of the angle x by the amount dy, considering 6 and « constant,
corresponds to a displacement of the point A’ through an interval ds; = (R + r cos a)d,
whereas an increment of the roll angle a by the amount da, while 6 and x are constant,
corresponds to a displacement of the point A’ through the interval dsy = rda. Obviously, if
the yaw angle 0 varies, with o and y constant, the point A does not move. Hence, we have

dxr = dsj cosf — dss sin 6,
dy = ds1sinf + dsy cos 6,

and differentiating with respect to time, we obtain the kinematic constraints

{;p = —rdasinf + (R + rcosa)x cos 0, (3.9)

§ =rdcosf + (R + rcosa)ysinb.

Remark 3.4. Because of the sign conventions for the roll angle, the infinitesimal displacement
are positive as depicted in Figure 3.3.



38 Introduction of a new bicycle model

We note that the constraint equations (3.9) can also be written in a different way, that
is,

(3.10)

#cosf +ysinh = (R + rcosa)y,
Zsinf — ycos = —ra.

Moreover, the front contact point constraints shall be expressed by analogy with those
on the point A’. Therefore, using the auxiliary angles, the condition for rolling without
slipping is simply given by

{a’cfcosg—i-yfsing:rfcos&xf, (3.11)

Tpsin® — gy cos = —rya.
Remark 3.5. As mentioned before, the nonholonomic constraints introduced above reduce
the free velocities of the systems. Indeed, our bicycle model has just three degrees of
freedom. This is a particular feature of nonholonomic systems, which have less degrees

of freedom than the number of generalized coordinates. Furthermore, the choice of the
degrees of freedom is arbitrary and depends on the particular situation studied.

Because equations (3.11) are written by means of the auxiliary angles, we need to
express them with respect to the generalized coordinates. First of all, comparing matrix R p
with Rp and being u = ¢ = X\ — €, we note that

sinf cos & = (cos avcosp — sin asin Asin ¢) sin 0+
+ cos Asin ¢ cos 0,

and

cos 0 cos & = (cos acos b — sin avsin Asin 1)) cos 6+

— cos Asinsin 6,

whereas the front contact point velocity can be obtained by taking the derivative respect
to time of (3.3) and (3.4). Moreover, deriving with respect to time equation (3.1), we have

Qcos @ = —dsin asin Asin ) + 1 cos a sin A cos 1+ (3.12)
+dcosacos1j)—@l}sinasin1,b. .

We now have all the relations needed to express the nonholonomic constraints of the
front contact point with respect to generalized velocities, eliminating the auxiliary angles.
Therefore, starting form the second of (3.11), we write it as

(& sin @ — g cosf)(cos awcos ) — sin asin Asin )+
+ (i cos B + sin 0) cos Asin 1 + wh(sin asin Asin i) — cos a cos ) =

= —rdacosa,
and, using equation (3.12) and constraints (3.10), we obtain

(R + rcos a)x cos Asin ¢ + r1p(cos asin A cos ¢ — sin asin 1))+ (3.13)
+ wh(sin asin A sin 1) — cos acos ) = 0. '

Likewise, the first constraint of (3.11) becomes

(2 cosf + ysin @) (cos acos ) — sin asin Asin 1)+

— (i‘sin@—QCOSH)COS)\sinl/J—i—wécos/\sinw = rcos2&)'(f
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and, using constraints (3.10), we obtain

(R4 rcosa)x(cosacosty —sinasin Asiny) + ré cos Asin ¢+ (3.14)

+ wé cos Asin ¢ = r cos? axf.

As we have stated before, choosing three degrees of freedom we can constrain four
generalized velocities. In particular, riding a bicycle, one controls the roll angle, the steering
angle and the forward velocity, therefore we opt for these as free coordinates. Consequently,
relations (3.14) and (3.13) shall be expressed with respect to x; and 6, respectively. For
simplifying the computation, we introduce the nonlinear functions

a(a, 1) = w(cos acostp — sin Asin asin 1)

and
d(a, 1) = (R + rcosa)(cos o cos b — sin asin Asin¢)),

therefore, noting that a(«, 1) > 0 for a bicycle usual geometric parameter values, we can
write (3.14) and (3.13) as

X = Xg(e ) + &b, v) + (e, ) (3.15)
and ' .
0 = xm(a,v) +¥pla, ), (3.16)
respectively, where
1 -
gl v) = —— |d(a, ¥) + win(a, v) cos Asin ¢
(o, ) = CEASY
lA(a, ) = CO:; . [cosasin)\(;czzww—) sin asin Y cos \ sin 14 7
and 1
m(a, ) = R (R4 rcosa)cos Asin,
pla, ) = a(ar ) [cos arsin A cos i) — sinasin)] .

Remark 3.6. It is clear that the explicit expression of constrain (3.15) is obtained substi-
tuting 6 with the relation (3.16), as it is not a free generalised velocity.

Remark 3.7. The nonlinear functions introduced in expressions (3.15) and (3.16) are the
same used in [RF12], considering the assumptions r = rf, d = 0, Ry = 0, and relation (3.6).
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Chapter 4

Dynamics of the CPA bicycle

We now turn our attention to the dynamics of the CPA bicycle introduced in the previous
chapter. The equations of motion will be derived by means of the Euler-Lagrange equations
for nonholonomic systems. Because we need to write the Lagrangian for our system, we
start by writing the kinetic energy and the potential associated with the CPA bicycle.

4.1 Kinetic energy and potential

The kinetic energy of the the CPA bicycle is clearly equal to the sum of the kinetic energy
of each of the rigid bodies which compose the system. Each kinetic energy is computed
by Koénig’s theorem, which states that the kinetic energy of each body is the sum of the
kinetic energy associated to the movement of the centre of mass and the kinetic energy
associated to the movement of the particles relative to the centre of mass, that is,

1 1
K; = 5mw?(PZ») + §<cvi,ai(Pi)wi>, i=1,2,3,4,

where (J; are the angular velocities introduced before, m; is the mass of the i-th body, P;
its centre of mass and o;(P;) its inertia tensor in the local reference frame of the body.

For example, let us write the kinetic energy for the rear wheel. The velocity of the
centre of mass of the rear wheel is given by equation (3.7), hence

v2(B) = #® + 9 + R?a® + R?6?sin® at
+ 2Rdvcos a —i sin @ + 3 cos ) — 2RO sin a (i cos § + ¢ sin §),

while the inertia tensor of a torus is

lex 0 0
o1(B) = 0 Ty 0 |,
0 0 Ige
where
5 1 3
Iy = (81”2 + 2R2) mi Iy = (47‘2 + R2> mq,

thus we have

(Jsg,,01(B)dsy,,) = Ilm((jz2 + 02 cos? a) + Ty (X + 0 sin a)2.
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In conclusion, the kinetic energy of the rear wheel is
1 .
K = 5 {;icQ + 9% + R%a% + R%6? sin® a} +

+miR [c’v cos a(—isin @ + 3 cos f) — fsin o cos O + ¢ sin 9)} +
+ %(o}2 + 6% cos? ) I1pe + %(X — sin a)*I1,.

Likewise, it would be possible to write down the expression for the kinetic energy of
the other rigid bodies. However their expressions are very complicated. Therefore, we
need to write the total kinetic energy in a more manageable form, which can be readily
used to compute the equations of motion. In particular, we write the kinetic energy in
a general form by means of nonlinear functions which are defined as the Hessian of the
kinetic energy itself, that is, by computing the second partial derivative of the kinetic
energy with respect to the velocities which multiply each of these functions. Furthermore,
we write these functions such that they depend only on the roll and the steering angles, as
this choice will simplify future computations. Thus, it can be easily prove that the kinetic
energy has the following general form:

K0, 9.d) = S MG+ 37) + 56%(0,0) + 2630, ) + %d(e, )+

5B+ DisF + afgla, ) + dabh(a, ) + ax k(o v)
+ 00l(r, ) + U pmla, ) + Oxn(@) + X p(a, )+
+0(—zsin@ + ycosh)q(v) + &(—xsinh + ycos )r(a, )+
+1p(—@sin @ + g cos 0)s(a, 1) + O(i cos 6 + g sin O)u(a, )+
+ 1p(2 cos O + g sin 0)z(1)).
The nonlinear functions are evaluated by means of the Wolfram Mathematica code, reported
in Appendix A. For instance, we have

M = my +ma +m3 + my.

In the same way, the potential can be written as a general function of the roll and
steering angles, that is, U = U(«, v). Assuming that the system is subjected to only the
gravity force acting on the centres of mass, we have

U(a,v) = —g [Mr + (m1 + ma + m3) R cos a+
+ ma(lg cos asin p — dg sin a 4+ hg cos v cos )+
+ m3(l cos asin ¢ + [3(cos arsin A cos ¢ — sin avsin )+
+ d3(— cos asin Asin ) — sin awcos ) + hg cos acos \)] .
Moreover, we can easily consider the dissipation as a function of the generalised
velocities. Indeed, it is possible to derive purely velocity dependent dissipative forces from
a dissipation function, which we assume to be quadratic, symmetric and positive definite

with respect to the generalised velocities themselves. For example, we can consider the
dissipation due to the steering axis rotation by means of a Rayleigh dissipation such as

F = %1/@[)2, (4.1)

where v is the coefficient of viscous friction. In the same way, we could take into account
the presence of suspensions in the CPA bicycle model by considering both the potentials
due to the springs and the dissipative functions due to the dampers. However, for the
purpose of this thesis, we examine only the case of the steering axis dissipation.
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4.2 Equations of motion

According to the theory of nonholonomic systems exposed in Chapter2, we develop the
equations of motion using the Ehresmann connection given by the constraints, and deriving
the constrained Lagrangian. The equations are then written explicitly in terms of the
constrained Lagrangian and the curvature of the connection.

We start writing the classical Lagrangian. This is taken to be of the form kinetic energy
plus potential, that is,

L(ea a7¢75t7’yv 97Xfa d>¢7 X) = K(@, 0%1%55, y79a Xf7a7w7X) + U(Oé, ¢) (42)

Due to the symmetry properties of the wheels, we note that the Lagrangian depends neither
on the position (z,y) of the rear contact point nor on the angles x and x;.

Then we turn our attention to the nonholonomic constraints to write the constrained
Lagrangian. Without considering the symmetry of the problem, we think of these constraints
as the horizontal space of an Ehresmann connection. In particular, we have to choose a
bundle ) — R. As we have already remarked in the previous chapter, possible controls
would be added to either the roll angle «, the steering angle i or the rear wheel rotation
angle x; therefore, we are motivated to choose the base R to be S' x S! x S parametrised
by («, 1, x), where the projection to R is simply

q=(2,9,0, x5, 0,0, )" = (a, 1, x)T.

Then, identifying the base and the fibre velocities as 7 = (¢t,¢), x) and § = (a'v,g'/,é,j(f),
respectively, such that ¢ = (s, ), the constraints derived in Section 3.3 can be written as

-a a o
% = —ALr*,

where A2 are the components of the Ehresmann connection. In particular, these are

Al = rsing, Al =o, Al = —(R+ rcosa) cos,
A? = —rcosé, A2 =0, A2 = —(R+rcosa)sin,
A} =0, AS = —pla, ), A3 = —ia, 1),
AY = “h(a, ), A = —l{a, ), A3 = —g(a, ).

We now define the constrained Lagrangian by substituting the nonholonomic constraints
into the classical Lagrangian (4.2), hence

Lo(r®, s, 7%) = Lo(r®, 8%, 7%, —Ag (r, s)rY) =
= Lc(a7 wa da ¢7 X)
We observe that the constrained Lagrangian does not depend on the fibre coordinates,
that is, it is cyclic in the variable s. Furthermore, we observe that the substitution of the
nonholonomic constraints into the Lagrangian influences only the kinetic energy expression,
whilst the potential remains the same. For writing the equations of motion in a concise

form, it is useful to write the constrained kinetic energy by means of a new set of nonlinear
functions, that is,

Koloib,0,,0) = 50A(0,6) + L XCl, ) + 508(0, v)+
+ @G (e, ) + axM(a, ) + X P(o ¥),
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where one can easily check that

Ao, ) = Mr? + a(a, )+Fh2(a,w) + 2h(cv, )k (v, ) + 2rr(a, 1),
Cla,v) = (R—l—rca) m(a,)b(a, ) + E+ Fg ( )+
+ 2m(a, ) [n(a) + g(a, ¥)p(a, ¥) + (R + 7 cos a)u(a, ¥)]

¥)p
E(a, ) = d(a, ) + (e, ¥)b(ev, ¥) + FI2(a, ) + 25, )1, )+
+ 20(a, 1) [m(ar, 1) + Bla, )p(ar, )]
G(or,¥0) = Fh(o, $)(ev, ) + e, 1) g(or, 1) + h(or, ) + Lo, ) k(r, 1)+
+ h(a, )m(a, 1) + Pla, ) h(a, ¥)p(a, 1)+
+ rple, )g(¥) + rs(a, ¥),
M(a,v) = Fg(a, ¥)h(a, ) + Mo, $)g(a, 1) + Glo, ) ke, )+
+ (e, ) (o, ¥)p(a, 1) + rin(a, 1)g(d),
Plor, ) = (v, ) e, )b(ar, ) + Fg(or, )i{or, 1) + o, )l(a, )+
+ gl ¥)m(a, ¥) + o, ¥)n(a) + mla, ¥)l(a, )p(a, )+
+ plon, )G (e, ¥)p(a, 1) + (R + 1 cos a)plar, )ula, )+
+ (R4 rcosa)z().

From the theory, we know that the equations of motion in terms of the constrained
Lagrangian are given by expression (2.17), thus the equations of motion for the CPA bicycle
are given by

doL. OL.  OL
dtore  gre — 9gb

—— B} g7 (4.3)

where , ,
Bb — 8Alc7t _ 8A + A aA a 8Agz
B o 67“0‘ > gse TP gsa’
are the coefficients of the curvature of the connection A(r,s). In particular, after a
straightforward computation, we have

(4.4)

Bly = =By = pla, 9)r cosb,
Bly = —Bj}, = —rsinacosd + m(a,)r cos b,
B%?, = _B§2 = —p(a,¥)(R+ rcosa)sind,

Bfy = —B3; = pla, ¢)rsind,
B2, = —B3 = —rsinasinf + m(a,¥)rsin b,
B3y = —B3, = p(a, ¥)(R + 7 cos @) cos 0,

(e, ¢
3%2 = —331 - E?a )

om(a,
B§3:*B§1: éa )7
ng = —ng = omte, ¥)
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~

(e, ) | Ol )
o0 T oa
95 (a,
Bly =Y = Ant),
93(a, )
ob

4 _ 4 _
B12__B21 -

4 _ 4 _
B23__B?)2_

with the remaining Bg 3 Zero.
Therefore, the equation for the roll angle is

d OL. OL. OL
dt 96 da  0F
OL

0

(B, + Bsx)+

c

. . OL
. (Big¥ + B%&;X) - B

: oL
B}y + Blx) — ——
c( 129 13X) 3Xf

(3%21/} + Bil:’))'(),
C

which we can write explicitly in the form

(o ) + G 0, ) + XM (o) + 62 PR

+ axala, ¥) + apb(a, v) + ¥?d(a, ¥) + xve(e, ¥) + X (e, ) =
_OU(a, )

o oo’

om(a, )
Oa

(@) = (a(0) + glar ) + A ) Do) )

+ (k(av0) + Fia, o) 52 4 Fifa, ) 20

+ ah(a’w)k(a,w) + Q?L(a, V) 81{:(;;;1” + 2rar(8()i/’}w),

0, ) = (2() + u(cr )5 )Pl )1 + Fh(a, )20 ¥) | It |

oY o
5 i
PO gt 0) + plas ) L) o A ka4

~ k(o p)  ~ om(a, ) | Op(a,9)
+ h(a,v) 90 + 9
op(a, ) | Op(a, 1))
o " op
Os(a, ) 10d(a,v) 1 4

+r T e 2P (D)

+ (rq(¥) + g(e, ¥) + h(a, ¥)p(a, ¥))

S

+

h(e, ¥)p(a, 1)+

() +rpla, ) — =+

8b%o;¢) B ﬁ(a,¢)8l(g(;w)+
o) PO, i, ) P,
e(a,v) = (u(a, v)m(a, ) + M (R + rcos a))p(a, )r+

(4.5)
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+ (o(0) + ula 0)p(a )l + P i)+
9o )

09(0,9) , DGl t)
9 + E(
Ok(0.1) | (. 1)

oY oY
+glay) = o M ¥)p(as v) + m(a,¥)h(a,v)
PRICED) i

9o )

o0 g T
0

o) MO 0, ) PO g )

) o, g, ) PEE)

oo
— (R + rcosa)p(a, w)aufaaozw),
Flan) = (ulasw)ifo, ) + MR+ r cos o))ifo, 6)r — ~i?(a,9) 220 ¢

2 oo
(o) 0, )0, ) PO

du(a, )
oo

gl ) +m(a, ¢) a, )+

Ip(a, )
ow T

a@) + rin(a, )21 0, (e, )

—m(a, ) (R + rcosa)

Then, taking into account the dissipative function (4.1) for the steering axis rotation,
the equation for the steering angle becomes

ddL. L. OF 9L

) } L . )
(Bj1é + B%?,X) — —| (Bja+ ngx)‘*‘

iAoy o o oil. 99|,
oL oL
~ o6l (B3¢ + Bisx) — TXf ) (B31é + BsX),
and writing it explicitly, we have
JE(as0) +aG(a, ) + XPla, ) + 7250
+ XG0, ) + adh(a, ¢) + &2, ¥) + dxm(a, ¢) + PAle, ) = (4.6)
oU .
= ((9(;; dj) - V¢)
where
~ 96
3a) = (m(a,0) + Fila, ) + 5l w)pla ) Lot

+ (s(, ) + q(¢)Pla, ¥))pla, ) (R + r cos o)+

+ 10, 0) + Bl ¥)b(a, ) + o w)plar ) e,
) = 2200 4wy, ) PO ) PO
- Al(a, ) op(a, ) ol(a, 1)
Pl ) gt 20 i)+ 290 ) e
4 PO ) 2,y 2D D



4.2 Equations of motion 47

+ 2o, ) 0 0,1 4 9, T, ) 200y

Oh(a, )
oY

0
m(a, ¥) + Fl(a, ¥) + ple, ¥)pla, ¥))

2(¥) + u(e, ¥)pla, ¥))pla, P)r,

+
7 8}; ~ 0 Oh N ok
lfo,0) = PO (0 5) 1 i, ) 298]y Ol ¥) ()

h N
+ ras(ggw) + 9 E;Z ¥) m(a, ) + h(a, 1)

420 ) 0P ) 4 oo, )

B ;aa(;;w) B ?L(oz,w) ﬁk(ao;b,z/}) B T@rgo;,}w),

9b(a, )
foJe + Oa

+ +

—~~

Ip(a, )
oo +

e, ) = 280N 50 )b ) + e, )l )

— rsin ap(a, ¥)u(a, )+

ou(a, 1) dg(a, 1)

+ (R4 rcosa)p(a,v) —rsinaz(v) — m(a, ) +

Oa
- 50,0 ), i, ) )

— (u(a, )m(a, ) + M(R + rcos a))pla, )r+
+ (r(a, ) + Mr)p(a, ) (R + rcos a),
i, ) = a()m(a, )pla, ¥) (R + 7 cosa) — 2m(a, )

2
op(a, )
oY

- TT/Y\L(CK, w) 8%5;]/)) +

o
du(e, )
o

—m(a,¥)g(a, ) —m(a, ) (R + rcos )

Finally, the equation for the rear wheel rotation angle is

doL. oL
dt Ox 0
oL

96

(B3,¢+ B3¢+

[

. 0L

Bl &+ Biy)— =
c( 31 32¢) ay
oL
X

(B3,&+ B) — % (B30 + Biyth)
C

C

which becomes

KC(a,¥) + aM(a,¥) + PP (a,¥) + axple, ¥) + ¥xgle, 1)+

s oL Lo (4.7)
+ a2r(a7 1/}) + Oﬂﬂs(aa w) + 1/}21"(047 1/}) =0,
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+ Mﬁ(a, V)p(e, ¥) + plo, ¥)g(a, )
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4.3 Particular solutions

After having written explicitly the equations of motion, we consider two classes of particular
solutions which can be written in closed form. Furthermore, special solutions are the
starting point for studying the stability of a system as well as they are a good source of
computational example.

First of all, we consider the trivial rectilinear motion of the system with constant
velocity, which is obtained by choosing

a(t) =0,
Y(t) =0,
x(t) = xot.

Consequently, equation (4.7) is clearly satisfied, whist equations (4.5) and (4.6) become

= U (a, 1)
2 )
x0f(0,0) = ————
0/10:0) O (0,0
and O ()
2~ «,
xon(0,0) = ———|
’ % o)
respectively. Then, it is easy to check that f(0,0) = 72(0,0) = 0, as well as
O 0,0) o ooy

hence all the equations of motion are satisfied and we have a solution for the system.
Now, using the nonholonomic constraints, we can also determine how the other generalised
coordinates evolve in time. First of all, we note that the only term different from zero in
relation (3.15) is

N R+r
0,0) =
3(0,0) p_—
therefore
. R+r
Xf = , X0-

Furthermore, being o and 1 equal to zero, equation (3.16) becomes
=0 = 6(t) = bp.
Finally, constraints (3.9) for the rear contact point are

& = (R + r)xocosbp,
y = (R4 r)xosinbp,
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that is, the trajectory is linear in time and the direction of the motion depends on the
initial value 6.

The second class of solutions is given by circular motions, which are a generalisation of
the rectilinear motion presented above. In particular, we now choose a solution to be

a(t) = ap,
Y(t) = o,
x(t) = xot,

where v, ¥y and o are constants. Although equation (4.7) is still satisfied, equations (4.5)
and (4.6) become

27 _ U(ey)
Xof (v, o) = R e (4.8)
wnd o0 (0, )
2~ _ Qa,
aten v = S (19)

where the equality does not hold in general. Therefore, fixed either aq, ¥y or xg, we need to
solve these two nonlinear equations together to determine the remaining constants. Then,
from the nonholonomic constraints, we get

Xf = X090
and
6 = xomo = 0(t) = (xommo)t = fot,
where
Jo = g(aw, o)
and

mo = Mm(ao, Yo).
Furthermore, constraints (3.9) become

& = (R + rcos ap)xo cos Opt,
¥ = (R + 7 cos ag)xo sin Oot,

and integrating with respect to time, we have
1
x(t) = G—(R + 7 cos )Xo sin Oot,
0

—0—(R + 7 cos ) xo cos bpt.
0

For instance, let us consider a CPA bicycle defined by the geometric parameters in Table 4.1,

where the parameters not listed are equal to zero. Then, fixed yg = 65rads™! and solving
equations (4.8) and (4.9), we find that the system describes a circular motion if

ap >~ 0.380 725 rad

and
o =~ 0.199 096 rad.

In Figure 4.1 it is shown the trajectory described by the rear contact point on the ground
plane. The initial position of the contact point coincides with the axis origin, and the
initial yaw angle 6(0) is set to zero.

Remark 4.1. As stated before, we note that the rectilinear motion is a particular case of
the circular one whenever ag = 0 and g = 0.
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Figure 4.1: Circular trajectory of the CPA bicycle on the ground plane.

Table 4.1: Geometric parameter values for the example CPA bicycle.

Symbol Meaning Value
w wheelbase 0.750m
A caster angle 20°
r rear wheel crown radius 0.01m
R rear wheel major radius 0.05m
my rear wheel mass 0.35kg
(x2,22)  position of rear frame centre of mass (0.5044m, 0.4279m)
ma rear frame mass 6.425 kg
Iogy rear frame moments of inertia 0.064 60 kgm?
Loy, 2.592 62 kgm?
Iz, 2.546 42 kgm?
Iog 0.23102 kgm2
ms front frame mass 2.412kg
(x3,23)  position of rear frame centre of mass (0.7338 m, 0.3022m)
I3ps front frame moments of inertia 0.037 97 kgm?
I3yy 0.038 07 kgm?
I3 —0.003 93 kgm?
my front wheel mass 0.3kg
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Chapter 5

Numerical solutions and stability
analysis

In the last section of the previous chapter, we determined two classes of particular solutions
for the CPA dynamics which can be expressed in closed form. However, due to their
complexity, in general we need to numerically integrate the equations of motion. All the
numerical solution presented in this chapter will be evaluated by considering the CPA
bicycle characterised by the parameters in Table 4.1. The coefficient of viscous friction p
is assumed equal to zero.

5.1 Numerical integration of equations of motion

In order to integrate the equations of motion derived before, we consider a particular
solution, that is, either rectilinear or circular motion, and perturb the initial conditions.

For example, we can consider a circular motion for yg = 70rads™', and after having
solved the two algebraic equations (4.8) and (4.9), we approximate the other two angle
as ag = 0.2928 rad and vy = 0.1299rad. As shown in Figure 5.1, we note that the roll and
the steering angles are initially constant, that is, the system describes a circular path; then,
due to the perturbation, the solutions oscillate around the rectilinear stable motion. In
Figure 5.2, the path of the rear contact point on the ground clarifies this situation.

Figure 5.1: Evolution of roll angle (purple) and steering angle (red).

Let us now consider the rectilinear motion of the system with perturbed initial condition.
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Figure 5.2: Position of the rear contact point.

First of all, we consider the initial conditions
a(0) = 10°,
P(0) = =5,
x(0) = 70rads™".
In this case, the system is asymptotically stable, as shown in Figure 5.3, and the trajectory

described by the rear contact point tends to be rectilinear after a certain time, as illustrated
in Figure 5.4.

10 0 40

Figure 5.3: Evolution of roll angle (purple) and steering angle (red).

However, this asymptotically stable behaviour of the solution depends on the initial
condition. For instance, if we reduce the initial angular velocity of the rear wheel, that
is, x(0) = 65rads~!, the CPA bicycle has a limit cycle, as shown in Figure 5.5, where is
represented the phase space of the roll angle.

If the initial angular velocity x(0) is further reduced, the system becomes unstable
and the bicycle hits the ground in finite time. We note that the case of the limit cycle is
possible only if the system has no friction, that is, u = 0.

5.2 Considerations about the stability and conclusions

As we have seen above, the bicycle can be either asymptotically stable, simple stable or
unstable. These stability conditions depends on the geometric parameters of the system as
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Figure 5.4: Position of the rear contact point.

a/

Figure 5.5: Roll angle phase space.

well as on the initial conditions. For instance, the example proposed before shows that,
fixed the initial values of roll and steering angles, the system is initially unstable, then
becomes simple stable increasing the initial angular velocity, and finally asymptotically
stable. However, if this velocity is further increased, the system becomes unstable again.

In the future, we want to study the stability of the CPA bicycle by considering the
dependence on the the geometric parameters. In this case, it is necessary a parametric
study of the equations of motion.
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Appendix A

Code

Listing A.1: Example code

Az := {{Cos[\[Theta][t]], Sin[\[Theta][t]], 0}, {—Sin[\[Theta][t]], Cos[\[Theta][t]], 0}, {0, O, 1}}
2 Ax1l := {{1, 0, 0}, {0, Cos[\[Alpha][t]], —Sin[\[Alpha][t]]}, {0, Sin[\[Alpha][t]]. Cos[\[Alpha][t]]}}
Ayl := {{Cos[\[Chi][t]], O, —Sin[\[Chi][t]]}, {O, 1, O}, {Sin[\[Chi][t]]. O, Cos[\[Chi][t]]}}

Aym := {{Cos[\[Phi]], 0, Sin[\[Phi]]}, {0, 1, 0}, {=Sin[\[Phi]], 0, Cos[\[Phi]]}}

5 Aye := {{Cos[\[Lambda]], 0, Sin[\[Lambda]]}, {0, 1, 0}, {—Sin[\[Lambda]], 0, Cos[\[Lambda]]}}

6 Az2 := {{Cos[\[Psi][t]], Sin[\[Psi][t]], 0}, {-Sin[\[Psi][t]], Cos[\[Psi][t]], 0}, {0, O, 1}}

7 Ay2 := {{Cos[\[Chi]a[t]], 0, —Sin[\[Chi]a[t]]}, {0, 1, 0}, {Sin[\[Chi]a[t]], O, Cos[\[Chi]a[t]]}}

9 R1 := Ax1.Az

10 R1r := Ayl.Ax1.Az

11 R2 := Aym.Ax1.Az

12 R3 := Aye.Ax1.Az

13 R4 := Az2.Aye.Ax1.Az

14 Rar := Ay2.Az2.Aye.Ax1.Az

16 i1[t_] := Inverse[R1].{1, 0, 0}
17 j1[t_] := Inverse[R1].{0, 1, 0}
18 k1[t_] := Inverse[R1].{0, O, 1}
1o ilr[t_] := Inverse[R1r].{1, 0, 0O}
20 jlr[t_] := Inverse[R1r].{0, 1, O}
21 klr[t_] := Inverse[R1r].{0, 0, 1}

22 i2[t_] := Inverse[R2].{1, 0, 0}
23 j2[t_] := Inverse[R2].{0, 1, 0}
24 k2[t_] := Inverse[R2].{0, 0, 1}
25 i3[t_] := Inverse[R3].{1, 0, 0}
26 j3[t_] := Inverse[R3].{0, 1, 0}
27 k3[t_] := Inverse[R3].{0, 0, 1}
28 i4[t_] = Inverse[R4].{1, 0, 0}
20 j4[t_] := Inverse[R4].{0, 1, 0}
30 k4[t_] := Inverse[R4].{0, 0, 1}

31 i4r[t_] := Inverse[R4r].{1, 0, 0}
32 jar[t_] := Inverse[R4r].{0, 1, 0}
33 k4r[t_] := Inverse[R4r].{0, O, 1}

36 Angular velocities definition

35 \[Omega]l[t] = Simplify[{D[j1[t], t].k1[t], D[k1[t], t].i1[t], D[i1[t], t].j1[t]}];

30 \[Omega]lr[t] = Simplify[{D[j1r[t], t].k1r[t], D[k1lr[t], t].ilr[t], D[ilr[t], t]. jlr[t]}];
10 \[Omega]2[t] = Simplify[{D[j2[t], t].k2[t], D[k2[t], t].i2[t], D[i2[t], t].j2[t]}];

11 \[Omegal4[t] = Simplify[{D[j4[t], t].k4[t], D[k4[t]. t].i4[t], D[i4[t], t].j4[t]}];

12 \[Omegal4r[t] = {D[j4r[t], t]. kdr[t], D[k4r[t], t].i4r[t], D[idr[t], t].jdr[t]};

13
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5 Auxiliary angles definition

7 senat[t_] := Cos[\[Alpha][t]] Sin[\[Lambda]] Sin[\[Psi][t]] + Sin[\[Alpha][t]] Cos[\[Psi][t]]
s cosat[t_] := Sqrt[l — senat[t] 2]

dota[t_] := D[senat[t], t]/Sqrt[l — senat[t] 2]

50 sentt[t_] := (Cos[\[Theta][t]] Cos[\[Lambda]] Sin[\[Psi][t]] -+ Sin[\[Theta][t]] (Cos[\[Alpha][t]] Cos

\[Psi][t]] — Sin[\[Alpha][t]] Sin[\[Lambda]] Sin[\[Psi][t]]))/Sart[l — senat[t] 2]

51 costt [t_] := (—Cos[\[Lambda]] Sin[\[Theta][t]] Sin[\[Psi][t]] + Cos[\[Theta][t]] (Cos[\[Alpha][t]]

Cos[\[Psi][t]] — Sin[\[Alpha][t]] Sin[\[Lambda]] Sin[\[Psi][t]]))/Sart[l — senat[t] 2]

52 dottt[t_] := D[sentt[t], t]/costt[t]

55 Front wheel angular velocities defined by means of auxiliary angles

57 omegat[t_] := {—dota[t], —dottt[t] senat[t], dottt[t] cosat[t]}
ss omegatr[t_] := {—dota[t] Cos[\[Chi]a[t]] + dottt[t] cosat[t] Sin[\[Chi]a[t]], \[Chi]a'[t] — dottt[t]

senat[t], dottt[t] cosat[t] Cos[\[Chi]a[t]] — dota[t] Sin[\[Chi]a[t]]}

Front contact point coordinates

53 zeta[t_] := x[t] + w Cos[\[Theta][t]]

doppiav[t_] := y[t] + w Sin[\[Theta][t]]

;7 Rear wheel kinetic energy

gl[t_] = Simplify[Inverse[R1]].{0, 0, Rp} + {0, 0, rp};

70 vi[t_] = {x'[t], y'[t], 0} + D[gl[t], t]
71 sigmal := {{Ix1, 0, 0}, {0, lyl, 0}, {0, 0, Ix1}}

K1[t_] = Simplify|
Expand[1/2 m1 v1[t].vl[t] 4+ 1/2 \[Omega]lr[t].(sigmal.\[Omega]lr[t]) ]];

Rear frame kinetic energy

7s g2[t_] := Simplify[Inverse[R2]].{ 12, d2, 0}

[0l

100
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7o v2[t_] := D[g2[t], t] + v1][t]

sigma2 := {{Ixx2, Ixy2, Ixz2}, {Ixy2, lyy2, lzy2}, {Ixz2, lzy2, 1zz2}}
K2[t_] = 1/2 m2 v2[t].v2[t] + 1/2 \[Omega]2[t].(sigma2.\[Omega]2[t]);

Front frame kinetic energy

; g3[t_] := Simplify[Inverse[R4]].{13, d3, h3}
7 v3[t_] := v1i[t] + D[Simplify[Inverse[R3]].{w Cos[\[Lambda]], 0, 0}, t] +

Dg3[t]. t]
sigma3 := {{Ix3, Ixy3, Ixz3}, {Ixy3, ly3, lzy3}, {Ixz3, lzy3, 1z3}}
K3[t_] = 1/2 m3 v3[t].v3[t] + 1/2 \[Omega]4[t].(sigma3.\[Omega]4[t]);

Front wheel kinetic energy

05 Ka[t_] = 1/2 ma (xF[t]"2 + yF[t]2 ) +

1/2 14 (dota[t]"2 + dottt[t]"2 + \[Chi]la'[t]2 —
2 \[Chi]a'[t] dottt[t] senat[t]);

Potentials
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U1[t_] := — m1 grav (rp + Rp Cos|[\[Alpha][t]] )
U2t_] = —
m2 grav (rp + Rp Cos[\[Alpha][t]] + I2 Cos[\[Alpha][t]] Sin[\[Phi]] —
d2 Sin[\[Alpha][t]])
usft_] := —
m3 grav (rp + Rp Cos[\[Alpha][t]] +
w Cos[\[Lambda]] Cos[\[Alpha][t]] Sin[\[Lambda]] +
h3 Cos[\[Lambda]] Cos[\[Alpha][t]] +
I3 (Cos[\[Alpha][t]] Sin[\[Lambda]] Cos[\[Psi][t]] —
Sin[\[Alpha][t]] Sin[\[Psi][t]]) —
d3 (Cos[\[Alpha][t]] Sin[\[Lambda]] Sin[\[Psi][t]] +
Sin[\[Alpha][t]] Cos[\[Psi][t]]))
U4[t_] := — m4 grav (rp)

Utot[t_] = UL1[t] + U2[t] + U3[t] + U4[t];

Ktot[t_] = (K1[t] + K2[t] + K3[t] + K4][t]);

Definition of nonlinear FUNCTIONS

M = D[D[Ktot[t], x[t], x'[t]]] /. {\[Theta][t] —> 0, \[Chi][t] —> O};

25 a[\[Alpha][t]. \[Psi][t]] =

D[Dg;'-cot[t], \[Alpha]'[t], \[Alpha][t]]] /. {\[Theta][t] —> O, \[Chi][t] —>
bb[\[Alpha][t], \[Psi][t] =
D[Dg;'-cot[t], \[Theta]'[t], \[Theta][t]]] /. {\[Theta][t] —> 0, \[Chi][t] —>

dd[\[Alpha][t], \[Psi][t] =
D[D[Ktot[t], \[Psi][t], \[Psi][t]]] /. {\[Theta][t] —> 0, \[Chi][t] —> O};
EE zol}D'[D[Ktot[t], \[ChiT[t], \[Chi]TtTl] /. {\[Theta][t] —> O, \[Chi][t] —>

- F — D[D[Ktot[t], \[Chila'[t], \[Chi]a'[t]]] /. {\[Theta][t] —> 0, \[Chi][t] —>

0};

7 g[\[Alpha][t], \[Psi][t]] =

D[Dg;'-cot[t], \[Theta]'[t], \[Alpha][t]]] /. {\[Theta][t] —> 0, \[Chi][t] —>
h[\[Alpha][t], \[Psi][t] =

D['%[}Ktot[tL \[Psi I t], \[Alphal[t]]] /. {\[Theta][t] —> 0, \[Chi][t] —>
K[\[Alpha][t], \[Psi][t] =

D[E())[}P-(tot[t], \[Chi]a'[t], \[Alpha]'[t]]] /.- {\[Theta][t] —> 0, \[Chi][t] —>
Il [\[Alpha][t], \[Psi][t]] =

D[E())[}P-(tot[t], \[Psi]'[t], \[Theta]'[t]]] /. {\[Theta][t] —> 0O, \[Chi][t] —>

m{\[Alpha][t], \[Psi][t] =
D[D[Ktot[t], \[Psi][t], \[Chi]a'[t]]] /. {\[Theta][t] —> 0, \[Chi][t] —> O};

o1 n[\[Alpha][t]] =
D[D[}Ktot[t], \[Theta][t], \[Chi][t]]] /- {\[Theta][t] —> O, \[Chi][t] —>
0f;
o+ p[\[Alpha][t], \[Psi][t]] =
D[D[}Ktot[t], \[Theta][t], \[Chi]a'[t]]] /- {\[Theta][t] —> 0, \[Chi][t] —>
0f;
7 q[\[Psi][t]] =
D[D[Ktot[t], y'[t], \[Theta]'[t]]] /. {\[Theta][t] —> 0, \[Chi][t] —> 0};

o r[\[Alpha][t], \[Psi][t]] =

D[D[Ktot[t], y'[t], \[Alpha][t]]] /. {\[Theta][t] —> 0, \[Chi][t] —> 0};
s[\[Alpha][t], \[Psi][t]] =
D[D[Ktot[t], y'[t], \[Psi][t]l] /. {\[Theta][t] —> 0, \[Chi][t] —> O};
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u[\[Alpha][t], \[Psi][t]] =
D[D[Ktot[t], x'[t], \[Theta]'[t]]] /.- {\[Theta][t] —> 0, \[Chi][t] —> 0};

5 z[\[Psi][t]] =

D[D[Ktot[t], x'[t], \[Psi][t]]] /- {\[Theta][t] —> 0, \[Chi][t] —> 0};

o ac[\[Alpha][t], \[Psi]|

t]] = —w Sin[\[Lambda]] Sin[\[Alpha][t]] Sin[\[Psi][t]] +
w Cos[\[Alpha][t]] Cos[\[Psi][t]];

= cc[\[Alpha][t], \[Psi][t] =

rp (Cos[\[Alpha][t]] Sin[\[Lambda]] Cos[\[Psi][t]] —
Sin[\[Alpha][t]] Sin[\[Psi][t]])

-5 me[\[Alpha][t], \[Psi][t]] =

1/ac[\[Alpha][t], \[Psi][t] (Rp +
rp Cos[\[Alpha][t]]) Cos[\[Lambda]] Sin[\[Psi][t]];

»« pe[\[Alpha][t], \[Psi][t]] = cc[\[Alpha][t], \[Psi][t]]/

ac[\[Alpha][t], \[Psi][t]];

de[\[Alpha][t], \[Psi][
t]] = (Rp + rp Cos[\[Alpha][t]]) (Cos[\[Alpha][t]] Cos[\[Psi][t]] —
Sin[\[Alpha][t]] Sin[\[Lambda]] Sin[\[Psi][t]]);

ec[\[Alpha][t], \[Psi][t]] = rp Cos[\[Lambda]] Sin[\[Psi][t]] cosat[t] 2;

5 ge[\[Alpha]t], \[Psi][t]] =

1/(rp cosat[t]™2) (dc[\[Alpha][t], \[Psi][t]] +
w mc[\[Alpha][t], \[Psi][t]] Cos[\[Lambda]] Sin[ \[Psi][t]]);

s hc[\[Alpha][t], \[Psi][t]] = 1/ cosat[t] 2 Cos[\[Lambda]] Sin[\[Psi][t ]];

lc[\[Alpha][t], \[Psi][t]] = (w Cos[\[Lambda]] Sin[ \[Psi][t]]) /(
ac[\[Alpha][t], \[Psi][t]] cosat]
t]"2) (Cos[\[Alpha][t]] Sin[\[Lambda]] Cos[\[Psi][t]] —

Sin[\[Alpha][t]] Sin[\[Psi][t]]):

o5 Acors[\[Alpha][t], \[Psi][t]] =

M rp~2 + a[\[Alpha][t], \[Psi][t]] + F hc[\[Alpha][t], \[Psi][t]]"2 +
2 he[\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psi][t]] +
2 rp r[\[Alpha][t], \[Psi][t]];
Ccors[\[Alpha][t], \[Psi][t]] =
M (Rp + rp Cos[\[Alpha][t]]) "2 +
mc[\[Alpha][t], \[Psi][t]]"2 bb[\[Alpha][t]. \[Psi][t]] + EE +
F gc[\[Alpha][t], \[Psi][t]]"2 +
2 mc[\[Alpha][t], \[Psi][t]] (n[\[Alpha][t]] +
gc[\[Alpha][t], \[Psi][t]] p[\[Alpha][t], \[Psi][t]] + (Rp +
rp Cos[\[Alpha][t]]) u[\[Alpha][t], \[Psi][t]]);
Ecors[\[Alpha][t], \[Psi][t]] =
dd[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]]"2 bb[\[Alpha][t], \[Psi][t]] +
F lc[\[Alpha][t], \[Psi][t]]"2 +
2 pc[\[Alpha][t], \[Psi][t]] I [\[Alpha][t], \[Psi][t]] +
2 Ic[\[Alpha][t], \[Psi][t]] (m[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] p[\[Alpha][t], \[Psi][t]]);
Geors[\[Alpha][t], \[Psi][t]] =
F he[\[Alpha][t], \[Psi][t]] Ic[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] g[\[Alpha][t], \[Psi][t]] +
h[\[Alpha][t], \[Psi][t]] +
lc [\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psi][t]] +
he[\[Alpha][t], \[Psi][t]] m[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] + rp pc[\[Alpha][t], \[Psi][t]] a[\[Psi][t]] +
rp s[\[Alpha][t], \[Psi][t]];

222 Meors[\[Alpha][t], \[Psi][t]] —

Fgc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] +
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1
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.+ DkDp[\[Alpha[t], \[Psi][t]
> DIDa[\[Alpha][t], \[Psi][t]]

mc[\[Alpha][t], \[Psi][t]] g[\[Alpha][t], \[Psi][t]] +
ge[\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] + rp mc[\[Alpha][t], \[Psi][t]] q[\[Psi][t]];
228 Pcors[\[Alpha][t], \[Psi][t]] =
mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][

t], \[Psi][t]] +

Fgc[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] II [\[Alpha][t], \[Psi][t]] +
ge[\[Alpha][t], \[Psi][t]] m[\[Alpha][t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]]

n[\[Alpha][t]] +

mc[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] p[\[Alpha][

t], \[Psi][t]] +

pc[\[Alphal[t], \[Psil[t]] gc[\[Alpha][t], \[Psi][t]] p[\[Alpha][

t] \[Psi][t]] + (Rp +

rp Cos[\[Alpha][t]]) (F_)C[\[Npha][t], \[Psi][t]] u[\[Alpha][t], \[Psi][

t]] + z[\[Psi][t]]);

+ DaDa[\[Alphal[t], \[Psi][t]] = D[a[\[Alphal[t], \[Psi][t]]. \[Alpha][tI};

DaDp[\[Alpha][t], \[Psi][t]] = D[a[\[Alpha][t], \[Psi][t]], \[Psi][t]];

5 DbDal[\[Alpha][t], \[Psi][t]] = D[bb[\[Alpha][t], \[Psi][t]], \[Alpha][t ]];

DbDp[\[Alpha][t], \[Psi][t]] = D[bb[\[Alpha][t], \[Psi][t]], \[Psi][t]];

DgDa[\[Alpha][t], \[Psi][t]] = D[g[\[Alpha][t], \[Psi][t]],
DgDpl[\[Alpha][t], \[Psi][t]] = D[g[\[Alpha][t], \[Psi][t]],

DkDa[\[Alpha][t], \[Psi][t]]

DIDp[\[Alpha][t], \[Psi][t]]

1 DhDa[\[Alpha][t], \[Psi][t]] = D[h[\[Alpha][t], \[Psi][t]],
52 DhDp[\[Alpha][t], \[Psi][t]] = D[h[\[Alpha][t], \[Psi][t]],
D[k[\[Alpha][t], \[Psi][t]].
DIk[\[Alpha][t], \[Psi][t]],
DIII[\[Alpha][t], \[Psi][t]], \[Alpha][t]];
D[II[\[Alpha][t], \[Psi][t]]. \[Psi][t]];

7 DmDal[\[Alpha][t], \[Psi][t]] = D[m[\[Alpha][t], \[Psi][t]],
s DmDp[\[Alpha][t], \[Psi][t]] = D[m[\[Alpha][t], \[Psi][t]],

DnDal[\[Alpha][t]] = D[n[\[Alpha][t]], \[Alpha][t ]];

DpDal\[Alpha][t], \[Psi][t]] = D[p[\[Alpha][t],
DpDpl[\[Alpha][t], \[Psi][t]] = D[p[\[Alpha][t],
262 DaDp[\[Psi][t]] = D[q[\[Psi][t
;3 DrDa[\[Alpha][t], \[Psi][t]] = D[r[\[Alpha][t],
DrDp[\[Alpha][t], \[Psi][t]] = D[r[\[Alpha][t],
65 DsDa[\[Alpha][t], \[Psi][t]] = D[s[\[Alpha][t],
DsDp[\[Alpha][t], \[Psi][t]] = DI[s[\[Alpha][t],
67 DuDa[\[Alpha][t], \[Psi][t]] = D[u[\[Alpha][t],
DuDp[\[Alpha][t], \[Psi][t]] = D[u[\[Alpha][t],

DzDp[\[Psi][t]] = D[z[\[Psi][t

70 DgeDal[\[Alpha][t], \[Psi][t]]
71 DgeDp[\[Alpha][t], \[Psi][t]]
72 DhcDa[\[Alpha][t], \[Psi][t]]
75 DheDp[\[Alpha][t], \[Psi][t]]
74 DlcDa[\[Alpha][t], \[Psi][t]]
75 DIcDp[\[Alpha][t], \[Psi][t]]
76 DmcDa[\[Alpha][t], \[Psi][t]]
77 DmcDp[\[Alpha][t], \[Psi][t]]
s DpcDa[\[Alpha][t], \[Psi][t]]
7o DpcDp[\[Alpha][t], \[Psi][t]]
so DAcorsDa[\[Alpha][t], \[Psi][t

D[Acors[\[Alpha][t], \[Psi][

D[Ecors[\[Alpha][t], \[Psi][

I A\[Psi][t]];

I, \[Psi][t]];

= Dl[gc[\[Alpha][t],
= Dl[gc[\[Alpha][t],
= D[hc[\[Alpha][t],
= DJhc[\[Alpha][t],
= DJIc[\[Alpha][t],
= DJ[lc[\[Alpha][t],

= D[mc[\[Alpha][t],
= D[mc[\[Alpha][t],

— D[pc[\[Alphalt],
- Dlpc[\[Alphal[t ],
t1], \[Alpha][t I];

t]l, \[Psi][t]];

\[Psi]t]],
\[Psi][t]],

\[Psi][t]],
\[Psi][t]],
\[Psi][t]],
\[Psi][t]],
\[Psi][t]],
\[Psi][t]],

\[Psi][t]],
\[Psi][t]],
\[Psi]t]],
\[Psi][t]],
\[Psi][t]],
\[Psi]t]],
\[Psi][t]],
\[Psi][t]],
\[Psi]t]],
\[Psi][t]],

7 DdDa[\[Alpha][t], \[Psi][t]] = D[dd[\[Alpha][t], \[Psi][t]]. \[Alpha][t]];
¢ DdDp[\[Alpha][t], \[Psi][t]] = D[dd[\[Alpha][t], \[Psi][t]], \[Psi][t]];

\[Alpha][t]];
\[Psi][t ]];
\[Alpha][t]];
\[Psi]t]l;
\[Alpha][t ]];
\[Psi]t]];

\[Alpha][t]];
\[Psi]t]];

\[Alpha][t]];
\[Psi][t]l;

\[Alpha][t]];
\[Psi][t]];
\[Alpha][t ]];
\[Psi][t]];
\[Alpha][t ]I;
\[Psi][t]];

\[Alpha][t ]];
\[Psi][t]];
\[Alpha][t ]];
\[Psi][t]];
\[Alpha][t ]];
\[Psi][t]];
\[Alpha][t ]];
\[Psi][t]];
\[Alpha][t ]];
\[Psi][t]];



62 Code

2o atilde [\[Alpha][t], \[Psi]|
os7 t]] = (k[\[Alpha][t], \[Psi][t]] +

288 F hc[\[Alpha][t], \[Psi][t]]) DgcDa[\[Alpha][t], \[Psi][
289 t]] + (rpaq[\[Psi][t]] + g[\[Alpha][t], \[Psi][t]] +
w0 he[\[Alpha][], \[Psi][t]] pl\[Alphal[t], \[Psi]it]]) DmcDal\[Alphall

291 t], \[Psi][t]]
202 btilde [\[Alpha][t], \[Psi][
208 t]] == (rp q[\[Psi][t]] + g[\[Alpha][t]. \[Psi][t]] +
w0 hel\[Alpha][t], \[Psi][t]] p[\[Alpha][t]. \[Psi][t]]) DpcDal\[Alpha][
s el \IPsiIlE]l + (kD\[Alphal[c], \[Psi][t]] +
296 F hc[\[Alpha][t], \[Psi][t]]) DlcDa[\[Alpha][t], \[Psi][t]] +
207 DaDp[\[Alpha][t], \[Psi][t]] +
208 F he[\[Alpha][t], \[Psi][t]] DhcDp[\[Alpha][t], \[Psi][t]] +
200 DhcDp[\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psil[t]] +
so0 2 he[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t]] +
301 2 rp DrDp[\[Alpha][t], \[Psi][t]]
302 dtilde [\[Alpha][t], \[Psi][
sos  t]] = (z[\[Psi][t]] +
oo u\[Alpha][t], \[Psi][t]] pel\[Alpha][t], \[Psi][t]]) pc[\[Alpha]l
305 t], \[Psi][t]] rp +
306 F he[\[Alpha][t], \[Psi][t]] DlcDp[\[Alpha][t], \[Psi][t]] +
w7 DpcDp{\[Alpha]le], \[PsiJ[t]l g[\[Alphal[t]. \[Psi][t]]
sos pe[\[Alpha][t], \[Psi][t]] DgDp[\[Alpha][t], \[Psi][t]]
300 DhDp[\[Alpha][t], \[Psi][t]] +
310 DlcDp[\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psi][t]]
sit le[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t]]
w2 hel\[Alpha][t]. \[Psi][t]] DmDp[\[Alphal(t], \[Psi][t]
w5 DpcDpl\[Alphallt], \[Psil[t]] hel\[Alpha][t], \[Psi][t]] p[\[Alphall
314 t], \[Psi][t]] +
ss pel\[Alpha][t], \[Psi][t]] he[\[Alpha][t], \[Psi][t]] DpDp[\[Alphal]
o tl \IPSII[t]] + rp DpcDp{\[AIphalel, \[Psi]it]] al\[Psillt] +
17 rp pe[\[Alpha][t], \[Psi][t]] DqDp[\[Psi][t]] +
318 rp DsDp[\[Alpha][t], \[Psi][t]] — 1/2 DdDa[\[Alpha][t], \[Psi][t]] —
310 1/2 pc[\[Alpha][t], \[Psi][t]]"2 DbDa[\[Alpha][t], \[Psi][t]] —
320 pe[\[Alpha][t], \[Psi][t]] DIDa[\[Alpha][t], \[Psi][t]] —

. Ic[\[Alpha][t], \[Psi][t]] DmDal\[Alphal[d], \[Psi][t]] —

> pe[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha]l
323 t], \[Psi][t]]
324 etilde [\[Alpha][t], \[Psi][
o2 t]] = (u\[Alpha][t], \[Psi][t]] mc[\[Alpha][t], \[Psi][t]] +

++

+ 4+

326 M (Rp + rp Cos[\[Alpha][t]])) pc[\[Alpha][t], \[Psi]|

327 t]] rp + (z[\[Psi][t]] +

328 u[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] ) mc[\[Alpha][
329 t], \[Psi][t]] rp +

330 F DgeDp[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] +

s51 DmeDp[\[Alpha][t], \[Psi][t]] g[\[Alpha][t], \[Psi][t]] +

ss2 me[\[Alpha][t], \[Psi][t]] DgDp[\[Alpha][t], \[Psi][t]] +

333 DgeDp[\[Alpha][t], \[Psi][t]] k[\[Alpha][t], \[Psi][t]] +

ss0 ge[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t]] +

535 DmeDp[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
336 t], \[Psi][t]] +

ss7 - me[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
838 t], \[Psi][t]] + rp DmcDp[\[Alpha][t], \[Psi][t]] a[\[Psi][t]] +
330 rp mc[\[Alpha][t], \[Psi][t]] DaDp[\[Psi][t]] —

340 mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] DbDa[\[Alpha]
341 t], \[Psi][t]] —

sa2 mc[\[Alpha][t], \[Psi][t]] DIDa[\[Alpha][t], \[Psi][t]] —

34z gc[\[Alpha][t], \[Psi][t]] DmbDa[\[Alpha][t], \[Psi][t]] —

312 pc[\[Alpha][t], \[Psi][t]] DnDa[\[Alpha][t]] —

w5 me[\[AIphal[t], \[Psi][t]] Ic [\[Alpha][t], \[Psi][t]] DpDal\[Alpha]l



63

t], \[Psi][t]] —

pc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] — (Rp + rp Cos[\[Alpha][t]]) pc[\[Alpha][t], \[Psi][
t]] DuDa[\[Alpha][t], \[Psi][t]]

ftilde [\[Alpha][t], \[Psi][

t]] := (u[\[Alpha][t], \[Psi][t]] mc[\[Alpha][t], \[Psi][t]] +
M (Rp + rp Cos[\[Alpha][t]])) mc[\[Alpha][t], \[Psi][t]] rp —

1/2 mc[\[Alpha][t], \[Psi][t]]"2 DbDal[\[Alpha][t], \[Psi][t]] —

mc[\[Alpha][t], \[Psi][t]] DnDa[\[Alpha][t]] —

mc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] —

mc[\[Alpha][t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) DuDa[\[Alpha][
t], \[Psi][t]]

360 gtilde [\[Alpha][t], \[Psi][
t]] := (s[\[Alpha][t], \[Psi][t]] +
a[\[Psi][t]] pc[\[Alpha][t], \[Psi][t]]) pc[\[Alpha][t], \[Psi][
t]] (Rp + rp Cos[\[Alpha][t]]) + (m[\[Alpha][t], \[Psi][t]] +
F lc[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] p[\[Alpha][t], \[Psi][t]]) DgcDp[\[Alpha][
t], \[Psi][t]] + (IW[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][t], \[Psi][t]] +
lc [\[Alpha][t], \[Psi][t]] p[\[Alpha][t], \[Psi][t]]) DmcDp[\[Alpha][
t], \[Psi][t]]

o htilde [\[Alphal[t], \[Psi][t]] =

DdDa[\[Alpha][t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][t], \[Psi][t]] DpcDa[\[Alpha][
t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]]"2 DbDa[\[Alpha][t], \[Psi][t]] +

F Ic[\[Alpha][t], \[Psi][t]] DlcDa[\[Alpha][t], \[Psi][t]] +

DpcDa[\[Alpha][t], \[Psi][t]] II [\[Alpha][t], \[Psi][t]] +

2 pc[\[Alpha][t], \[Psi][t]] DIDa[\[Alpha][t], \[Psi][t]] +

DicDa[\[Alpha][t], \[Psi][t]] m[\[Alpha][t]. \[Psi][t]] +

2 lc[\[Alpha][t], \[Psi][t]] DmDa[\[Alpha][t], \[Psi][t]] +

DpcDal\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] DlcDa[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

2 pc[\[Alpha][t], \[Psi][t]] Ic[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] — (z[\[Psi][t]] +
u[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]]) pc[\[Alpha][
t], \[Psi][t]] rp + (m[\[Alpha][t], \[Psi][t]] +
F lc[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] p[\[Alpha][t], \[Psi][t]]) DhcDp[\[Alpha][
t], \[Psi][t]]

Itilde [\[Alpha][t], \[Psi][t]] :=

302 F DhcDa[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] DgDal[\[Alpha][t], \[Psi][t]] +

DhDa[\[Alpha][t], \[Psi][t]] +

lc [\[Alpha][t], \[Psi][t]] DkDa[\[Alpha][t], \[Psi][t]] +

DhcDa[\[Alpha][t], \[Psi][t]] m[\[Alpha][t], \[Psi][t]] +

he[\[Alpha][t], \[Psi][t]] DmDa[\[Alpha][t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] DhcDa[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] + rp DsDa[\[Alpha][t], \[Psi][t]] —

1/2 DaDp[\[Alpha][t], \[Psi][t]] —

hc[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t]] —

rp DrDp[\[Alpha][t], \[Psi][t]]

5 mtilde [\[Alpha][t], \[Psi][t]] :=

» DmcDa[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][



407
108
109

410
111
112

413
114

139
140
141
142
143
144
145
146
147
148

149
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t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] DbDa[\[Alpha][

t], \[Psi][t]] +
F DgcDal[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] +
DmcDa[\[Alpha][t], \[Psi][t]] Il [\[Alpha][t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] DIDa[\[Alpha][t], \[Psi][t]] +
DgcDal[\[Alpha][t], \[Psi][t]] m[\[Alpha][t], \[Psi][t]] +
ge[\[Alpha][t], \[Psi][t]] DmDa[\[Alpha][t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] DnDa[\[Alpha][t]] +
DmcDal[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] p[\[Alpha][

t], \[Psi][t] +
mc[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][

t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] DgcDa[\[Alpha]ft], \[Psi][t]] p[\[Alpha][

t], \[Psi][t]] +
pc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][

t], \[Psi][t]] —
rp Sin[\[Alpha][t]] pc[\[Alpha][t], \[Psi][t]] u[\[Alpha][t], \[Psi][

t]] + (Rp + rp Cos[\[Alpha][t]]) pc[\[Alpha][t], \[Psi][

t]] DuDa[\[Alpha][t], \[Psi][t]] — rp Sin[\[Alpha][t]] z[\[Psi][t]] —
mc[\[Alpha][t], \[Psi][t]] DgDp[\[Alpha][t], \[Psi][t]] —
ge[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t]] —
mc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][

t] \[Psi][t]] —
rp mc[\[Alpha][t], \[Psi][t]] DqDp[\[Psi][

t]] — (u[\[Alpha][t], \[Psi][t]] mc[\[Alpha][t], \[Psi][t]] +

M (Rp + rp Cos[\[Alpha][t]])) pc[\[Alpha][t]. \[Psi][

t]] rp + (r[\[Alpha][t], \[Psi][t]] + M rp) pc[\[Alpha][t], \[Psi][

t]] (Rp + rp Cos[\[Alpha][t]])

ntilde [\[Alpha][t], \[Psi][t]] :=
o7 a[\[Psi][t]] mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] (Rp +

rp Cos[\[Alpha][t]]) —

1/2 me[\[Alpha][t], \[Psi][t]]"2 DbDp[\[Alpha][t], \[Psi][t]] —

mc{\][Als[h;][t][]v]]\[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
t], si|[t]] —

mc[\[Alpha][t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) DuDp[\[Alpha][
t], \[Psi][t]]

ptilde [\[Alpha][t], \[Psi][

t]] := —M rp Sin[\[Alpha][t]] (Rp + rp Cos[\[Alpha][t]]) +
mc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][t], \[Psi][t]] DmcDa[\[Alpha][
t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]]"2 DbDa[\[Alpha]t], \[Psi][t]] +
F gc[\[Alpha][t], \[Psi][t]] DgcDa[\[Alpha][t], \[Psi][t]] +
DmcDa[\[Alpha][t], \[Psi][t]] n[\[Alpha][t]] +
2 mc[\[Alpha][t], \[Psi][t]] DnDa[\[Alpha][t]] +
DmcDal[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] DgcDa[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +
2 mc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDal[\[Alpha][
t], \[Psi][t]] +
DmcDal[\[Alpha][t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) u[\[Alpha][
t], \[Psi][t]] —
mc[\[Alpha][t], \[Psi][t]] rp Sin[\[Alpha][t]] u[\[Alpha][t], \[Psi][t]] +
2 mc[\[Alpha][t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) DuDa[\[Alpha][
t], \[Psi][t]] — (u[\[Alpha][t], \[Psi][t]] mc[\[Alpha][t], \[Psi][t]] +
M (Rp + rp Cos[\[Alpha][t]])) mc[\[Alpha][t], \[Psi][t]] rp

5 qtilde [\[Alpha][t], \[Psi][t]] :=
o mc[\[Alpha][t], \[Psi][t]] bb[\[Alpha][t], \[Psi][t]] DmcDp[\[Alpha][

t] \[Psi][t]] +



468
169

170

519

520

65

mc[\[Alpha][t], \[Psi][t]]"2 DbDp[\[Alpha][t], \[Psi][t]] +

F gc[\[Alpha][t], \[Psi][t]] DgcDp[\[Alpha][t], \[Psi][t]] +

DmcDp[\[Alpha][t], \[Psi][t]] n[\[Alpha][t]] +

DmcDp[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] DgcDp[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

2 mc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
t], \[Psi][t]] +

DmcDp[\[Alpha][t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) u[\[Alpha][
t], \[Psi][t]] +

2 mc][\[e[lpha]][[t}]y \[Psi][t]] (Rp + rp Cos[\[Alpha][t]]) DuDp[\[Alpha][
t], Psi][t]] —

al\[Psi][t]] mel\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t] (Rp +
rp Cos[\[Alpha][t]])

s3 rtilde [\[Alpha][t], \[Psi][t]] :=

F gc[\[Alpha][t], \[Psi][t]] DhcDa[\[Alpha][t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] DgDa[\[Alpha][t], \[Psi][t]] +

ge[\[Alpha][t], \[Psi][t]] DkDa[\[Alpha][t], \[Psi][t]] +

me[\[Alpha][t], \[Psi][t]] DhcDa[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]

stilde [\[Alpha][t], \[Psi][t]] :=

22 Fge[\[Alphal[t], \[Psi]{t]] DhcDp[\[Alphal[t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] DgDp[\[Alpha][t], \[Psi][t]] +

ge[\[Alpha][t], \[Psi][t]] DkDp[\[Alpha][t], \[Psi][t] +

mc[\[Alpha][t], \[Psi][t]] DhcDp[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] hc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
t], \[Psi][t]] + rp mc[\[Alpha][t], \[Psi][t]] DaDp[\[Psi][t]] +

me[\[Alpha][t], \[Psi][t]] DpcDa[\[Alpha][t], \[Psi][t]] bb[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] DbDa[\[Alpha][
t], \[Psi][t]] +

F gc[\[Alpha][t], \[Psi][t]] DicDa[\[Alpha][t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] DIDa[\[Alpha][t], \[Psi][t]] +

ge[\[Alpha][t], \[Psi][t]] DmDa[\[Alpha][t], \[Psi][t]] +

DpcDa[\[Alpha][t], \[Psi][t]] n[\[Alpha][t]] +

pc[\[Alpha][t], \[Psi][t]] DnDa[\[Alpha][t]] +

mc[\[Alpha][t], \[Psi][t]] DicDa[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] +

DpcDa\[Alpha][t], \[Psi][t]] gc[\[Alpha][t]. \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDa[\[Alpha][
t], \[Psi][t]] + (Rp + rp Cos[\[Alpha][t]]) DpcDa[\[Alpha][t], \[Psi][
t]] u[\[Alpha][t], \[Psi][t]] + (Rp + rp Cos[\[Alpha][t]]) pc[\[Alpha][
t], \[Psi][t]] DuDa[\[Alpha][t], \[Psi][t]] — (z[\[Psi][t]] +
u[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]]) mc[\[Alpha][
t], \[Psi][t]] rp — (r[\[Alpha][t], \[Psi][t]] + M rp) pc[\[Alpha][
t], \[Psi][t]] (Rp + rp Cos[\[Alpha][t]])

-1 utilde [\[Alpha][t], \[Psi][t]] =

22 me[\[Alpha][t], \[Psi][t]] DpcDp[\[Alpha][t], \[Psi][t]] bb[\[Alpha][

523
524

526

t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] pc[\[Alpha][t], \[Psi][t]] DbDp[\[Alpha][
t], \[Psi][t] +
F gc[\[Alpha][t], \[Psi][t]] DicDp[\[Alpha][t], \[Psi][t]] +
mc[\[Alpha][t], \[Psi][t]] DIDp[\[Alpha][t], \[Psi][t]] +
ge[\[Alpha][t], \[Psi][t]] DmDp[\[Alpha][t], \[Psi][t]] +
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Code

DpcDp[\[Alpha][t], \[Psi][t]] n[\[Alpha][t]] +

me[\[Alpha][t], \[Psi][t]] DlcDp[\[Alpha][t], \[Psi][t]] p[\[Alpha][
t], \[Psi][t]] +

mc[\[Alpha][t], \[Psi][t]] lc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
t], \[Psi][t]] +

DpcDp[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] p[\[Alpha]l
t], \[Psi][t]] +

pc[\[Alpha][t], \[Psi][t]] gc[\[Alpha][t], \[Psi][t]] DpDp[\[Alpha][
t], \[Psi][t]] + (Rp + rp Cos[\[Alpha][t]]) DpcDp[\[Alpha][t], \[Psi][
t]] u[\[Alpha][t], \[Psi][t]] + (Rp + rp Cos[\[Alpha][t]]) pc[\[Alpha][
t], \[Psi][t]] DuDp[\[Alpha][t], \[Psi][t]] + (Rp +
rp Cos[\[Alpha][t]]) DzDp[\[Psil[t]] — (s[\[Alpha][t]. \[Psi][t]] +
a[\[Psi][t]] pc[\[Alpha][t], \[Psi][t]]) pc[\[Alpha][t], \[Psi][
t]] (Rp + rp Cos[\[Alpha][t]])

545 EQUATIONS OF MOTION

546
547 grav := 9.81
548 w = 0.750
19 \[Lambda] := 20 Pi /180
550 Rp := 0.05
551 rp = 0.01
552 ml := 0.35
553 Ix1 == (5/8 rp72 + 1/2 Rp™2) ml
54

554 lyl :== (3/4 rp72 + Rp™2) ml
555 xb 1= 0.5044

;5 zb := 0.4279

557 \[Phi] := ArcTan[(zb — (Rp + rp))/xb]
558 \[Epsilon] := \[Lambda] — \[Phi]

550 | := —(Rp /Cos[\[Epsilon]]) Sin[\[Lambda]] + w Cos[\[Lambda]]/Cos[\[Epsilon]]
560 b := 1/Cos[\[Epsilon]] (Rp Cos[\[Phi]] + w Sin[\[Phi]])

561 m2 := 6.425

562 Ixx2 := 0.06460

563 lyy2 = 2.59262

564 1zz2 = 2.54642

565 Ixz2 := 0.23102

566 Ixy2 =0

567 lzy2 == 0
8 12 := xb/Cos[\[Phi]]

d2:=0

570 m3 := 2.412
571 xh := 0.7338
572 zh := 0.3022

272 ws := w Cos[\[Lambda]]

ks := Rp + rp + ws Sin[\[Lambdal]]

575 bs := ws Cos[\[Lambda]]

276 13 = (xh — bs) Cos[\[Lambda]] + (zh — ks) Sin[\[Lambdal]

577 d3:=0

578 h3 := —(xh — bs) Sin[\[Lambda]] + (zh — ks) Cos[\[Lambda]]
579 Ix3 := 0.03797

580 ly3 := 0.03807

581 1z3 := 0.00185

582 Ixz3 := —0.00393

583 Ixy3 =0

584 lzy3 : =0

585 m4 := 0.3

586 14 :=2/5rp"2 m4
ss7 trail := rp Sin[\[Lambda]]/Cos[\[Lambda]]
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500 Conditions for circular motion

591

502 \[Chi]0 := 70

600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619

620

€

€

€

€

625
€

€

628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

647

FindRoot[{\[Chi]0"2 Evaluate|

ftilde [\[Alpha][t]. \[Psi][
t]] /. {\[Alpha][t] —> \[Alpha]0, \[Psi][t] —> \[Psi]0}] ==
Evaluate[(D]|
Utot[t], \[Alpha][t]]) /. {\[Alpha][t] —> \[Alpha]0, \[Psi][
t] —> \[Psi]0}], \[Chi]0"2 Evaluate|
ntilde [\[Alpha][t], \[Psi][
t]] /. {\[Alpha][t] —> \[Alpha]0, \[Psi][t] —> \[Psi]0}] ==
Evaluate[(D]|
Utot[t], \[PsiJ[t]]) /. {\[Alpha][t] —> \[Alpha]0, \[Psil][
t] —> \[Psi]0}]}, {{\[Alpha]0, 0.5}, {\[Psi]O, 0.5}},

Maxlterations —> 100]

ODE = { \[Alpha]"'[t] Acors[\[Alpha][t], \[Psi][t]] + \[Psi]"[

t] Geors[\[Alpha][t], \[Psi][t]] + \[Chi]"[
t] Mcors[\[Alpha][t], \[Psi][t]] +
1/2 \[Alpha]'[t]"2 DAcorsDa[\[Alpha][t], \[Psi][t]] + \[Alpha]’|
t] \[Chi]'[t] atilde [\[Alpha][t], \[Psi][t]] + \[Alpha]'[t] \[Psi]
t] btilde [\[Alpha][t], \[Psi][t]] + \[Psi]'[t]"2 dtilde [\[Alpha][
t], \[Psi][t]] + \[Chi]'[t] \[Psi][
t] etilde [\[Alpha][t], \[Psi][t]] + \[Chi]'[t] 2 ftilde [\[Alpha][
t], \[Psi][t]] == D[Utot[t], \[Alpha][t]],
\[Alpha ][ t] Gcors[\[Alpha][t], \[Psi][t]] + \[Psi]"[
t] Ecors[\[Alpha][t], \[Psi][t]] + \[Chi]"[
t] Pcors[\[Alpha][t], \[Psi][t]] +
1/2 \[Psi ]'[ t]"2 DEcorsDp[\[Alpha][t], \[Psi][t]] + \[Chi]'[t] \[Psi]|
t] gtilde [\[Alpha][t], \[Psi][t]] + \[Alpha]'[t] \[Psi]'[
t] htilde [\[Alpha][t], \[Psi][t]] +
\[Alpha]'[t]"2 Itilde [\[Alpha][t], \[Psi][t]] + \[Alpha][t] \[Chi][
t] mtilde [\[Alpha][t], \[Psi][t]] + \[Chi]'[t]"2 ntilde [\[Alpha][
t], \[Psi][t]] == D[Utot[t], \[Psi][t]],
\[Alpha ][ t] Mcors[\[Alpha][t], \[Psi][t]] + \[Psi]"[
t] Pcors[\[Alpha][t], \[Psi][t]] + \[Chi]"[
t] Ceors[\[Alpha][t], \[Psi][t]] + \[Alpha]'[t] \[Chi]'[
t] ptilde [\[Alpha][t], \[Psi][t]] + \[Psi]'[t] \[Chi][
t] qtilde [\[Alpha][t], \[Psi][t]] + \[Alpha]'[t]"2 rtilde [\[Alpha][
t], \[Psi][t]] + \[Alpha]'[t] \[Psi]'[
t] stilde [\[Alpha][t], \[Psi][t]] + \[Psi][t] 2 utilde [\[Alpha][
t], \[Psi][t]] ==0,
«[t] == - rp \[Alpha] |
t] Sin[\[Theta][t]] + (Rp + rp Cos[\[Alpha][t]]) \[Chi][
t] Cos[\[Theta][t]],
y'[t] ==
rp \[Alpha]'[t] Cos[\[Theta][t]] + (Rp + rp Cos[\[Alpha][t]]) \[Chi][
t] Sin[\[Theta][t]],
\[Chi]a'[
t] == \[Chi]'[t] gc[\[Alpha][t], \[Psi][t]] + \[Alpha][
t] hc[\[Alpha][t], \[Psi][t]] + \[Psi]'[t] Ic[\[Alpha][t], \[Psi][t]],
\[Theta]'[
t] == \[Chi]'[t] mc[\[Alpha][t], \[Psi][t]] + \[Psi][
t] pc[\[Alpha][t], \[Psi][t]]};

645 Needs[" DifferentialEquations ‘NDSolveProblems"];
640 Needs[" DifferentialEquations * NDSolveUtilities ‘" |;
650 Needs["FunctionApproximations'"];
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Code

Needs[" DifferentialEquations ‘InterpolatingFunctionAnatomy'" ];

sol = NDSolve[{ODE, \[Alpha][0] == 10 Pi/180, \[Alpha]'[0] ==
0 Pi/180, \[Psi][0] == —5 Pi/180, \[Psi]'[0] == 0, \[Chi]'[0] ==
65, \[Chi][0] == 0, x[0] == 0,
y[0] == 0, \[Theta][0] == 0 Pi/180, \[Chi]a[0] ==
0}, {\[Alpha], \[Psi], \[Chi], \[Chi]a, \[Theta], x, y}, {t, 0, 40},
Method —> "Automatic", SolveDelayed —> True]
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