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Introduction

The bicycle is one of the most common means of transport in the world. In particular, the
history of modern bicycles started in the 19th century in Europe and the shape of this
vehicle, which has changed little since the first chain-driven model was developed around
1885, descends from the so-called safety bicycle. Nevertheless, materials and design have
been improved, especially since the 21st century with the introduction of new technologies.
In addition to this, the invention of the bicycle has had also an enormous effect on society,
changing deeply the culture and favouring the advancement of modern industrial methods:
several components that eventually played a key role in the development of cars were
invented for the bicycle.

Therefore, it is not surprising that since the end of the nineteenth century many
authors have been aiming to find accurate equations to describe the motion of this system
(see [Whi99], [Bou99]). However, due to the complexity of the problem related mainly
to the nonholonomic constraints of the system, the majority of researchers who studied
this argument introduced simplified or linearised models in order to handle the problem,
for instance [LM82], [MS06]. Others considered a nonlinear model, but only considering
particular motions, as in [BMCP07]. A more detailed review of the nonlinear and lin-
earised models developed for studying the bicycle dynamics can be found in [MPRS11]
and [MPRS07], respectively.

Recently, much theoretical research has focused on bicycle self-stability, that is the
capability of the system to reach equilibrium again asymptotically if initially perturbed. It
is common knowledge that the rideability of a bicycle may be related to its self-stability.
The problems behind the self-stability of this system are not very clear, even if it is widely
believed that gyroscopic and caster trail effects play an important role in such stability.
Nevertheless, Kooijmann et al. recently demonstrated that a riderless two-wheeled vehicle
can be self-stable without trail or gyroscopic effects. In order to do this, they introduced
a simplified bicycle model, composed by only two masses and called two-mass-skate
(TMS), [MPRS07].

In this thesis we aim to solve the problem of whether or not a bicycle can be self-stable
considering a sufficiently accurate model. However, as stated above, the complexity of the
system is a hindrance to this achievement. Although a bicycle has a structural simplicity,
its geometry is complicated and presents considerable difficulties in expressing the position
of the front and rear frames. For example, if the front wheel is tilted, a variation in both
the steering angle and the yaw angle can occur. This is the reason most of the models for
bicycle dynamics available in the literature always have a certain number of approximations.

Instead of having considered a linearised model, we have preferred to simplify the model
geometry and take into account the nonlinearity of the bicycle. We believe that bicycle
self-stability is closely related to the nonlinear equations for the system. Thus, we focused
our attention on the element of the general model which causes the equations of motion to
be complex, that is the pitch angle, which is the angle between the local rear frame x-axis
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and the line of intersection of the symmetry plane with the ground. In particular, as shown
in [RF12] and [Cos06], this angle depends on two other angles, and, consequently, finding
the solution of the whole system requires us to evaluate a differential-algebraic equation
(DAE, see [Ric11]). Hence, the pitch angle is usually approximated (see [MS06], [Cos06])
or considered constant.

Figure 0.1: Francis J. W. Whipple (1876-
1943), who proposed one of
the first mathematical mod-
els for a bicycle.

Starting from a model of a general bicycle with
toroidal wheel, the aim of this work is to find the
minimum set of assumptions such that the pitch
angle is constant, and subsequently to study the
dynamics of this new model. It will be shown
that the most particular feature of this model is a
spherical front wheel.

The paper is organized as follows. First we
present a brief review of the main mathematical
notions needed to study the problem. Then, we
turn our attention to the bicycle model. In par-
ticular, we first consider the geometry of a bicycle
with toroidal wheels, by defining the geometric
parameters which characterize the system itself.
After having chosen a proper set of generalised
coordinates, we study the pitch angle and find the
algebraic equation which defines this angle. Sub-
sequently, the hypothesises which guarantee that
this angle does not depend on time are determined.

Therefore, we define a new bicycle model, called
Constant Pitch Angle bicycle, and study its geom-
etry and kinematics. In particular, we derive the
linear and angular velocities for this new system
and introduce the nonholonomic constraints to model the rear and front contact points
of the wheels with the ground plane. By a slightly lengthy calculation, we express the
constraints with respect to the generalised coordinates, but, due to the length of the
equations, we need to define certain nonlinear functions to write all the constraints in a
clear, concise form.

Finally, the dynamics of this system is considered. We write the bicycle’s kinetic energy
and its potential. Moreover, we use the artifice of nonlinear functions to easily handle
both these expressions. Then, following the geometric approach proposed in [BBCM03],
the equations of motion are derived before studying the self-stability of the system and
particular motions, such as the circular one.



Chapter 1

Background from differential
geometry

Modern analytical mechanics is naturally discussed in the mathematical language of
differential geometry. In this chapter we give an introduction to the basic elements of
differential geometry and then we will use them in the study of mechanical systems from a
geometric point of view. However, a more comprehensive introduction to this subject may
be found in [Boo75], [GPV95], [AMR88] and [War71].

1.1 Differentiable manifolds
Roughly speaking, a differentiable manifold is a topological space which locally looks like
an Euclidean space, even if it differs from an Euclidean space globally. In the following, Q
is a paracompact connected Hausdorff space.

Definition 1.1. Let U be an open set of Q and ϕ : U → Rn be a homeomorphism of U
onto ϕ(U) with the induced topology of Q in Rn through F. Then, we call the pair (U,ϕ)
a coordinate chart (or coordinate system) of Q of dimension n.

Definition 1.2. An n-dimensional atlas on Q is given by a collection {(Uj , ϕj)}j∈J of
coordinate charts of dimension n on Q, such that:

i.
⋃
j∈J Uj = Q, that is, {Uj}j∈J is an open cover of Q;

ii. for each nonempty intersection Uj∩Ui, the mapping ϕj◦ϕ−1
i : ϕi(Uj∩Ui)→ ϕj(Uj∩Ui)

is a diffeomorphism.

Remark 1.1. Since the topological space is connected, we do not have atlas with different
dimensions; even if it is not necessary, this assumption results in a well-defined dimension.

Definition 1.3. Let U = {(Uj , ϕj)}j∈J be a differentiable atlas of dimension n onQ. Then,
a coordinate chart (U,ϕ) is said compatible with U if, for each intersection U ∩ Uj 6= ∅,

ϕj ◦ ϕ−1 : ϕ(U ∩ Uj)→ ϕj(U ∩ Uj)

is a diffeomorphism.

Therefore, it is possible to order the atlases by inclusion. In particular, if U and V
are two n-dimensional atlases on Q, where V is obtained adding compatible charts to U ,
then U < V . The notation < represents a partial order, and by Zorn’s Lemma, we can
state that there exists a maximal element of the inclusion sequence which contains an
initial atlas. In other words, we can choose a family of coordinate charts is maximal.
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Definition 1.4 (Differentiable manifold). A differentiable manifold of dimension n is
paracompact connected Hausdorff space Q together with an n-dimensional maximal differ-
entiable atlas. Moreover, the maximal atlas is also called an n-dimensional differentiable
structure on Q.

We note that the definition of differentiable manifold is independent of the choice of
atlas because the collection of coordinate charts is maximal.

Example 1.1. A trivial example of differentiable manifold is given by Q = R together
with the atlas U = {(R, Id)}. Also, the circle S1 is another example of a differentiable
manifold. Indeed, it can be covered with two charts that are each locally R1.

Definition 1.5. Let Q and N be two differentiable manifolds of dimension n and m,
respectively. Then, let U an open set of Q, and consider x ∈ U . We say that the map-
ping f : U → N is differentiable in x ∈ U if there exists a chart (Uj , ϕj) in a neighbourhood
of x in Q and a chart (Vk, ψk) in a neighbourhood of f(x) in N such that

ψk ◦ f ◦ φ−1
j : φj

(
Uj ∩ U ∩ f−1(Vk)

)
→ ψk(Vk) ⊂ Rm

is differentiable in x. Furthermore, if f is differentiable for all x ∈ U , then we say that f is
differentiable in U .

Remark 1.2. We note that the definition above it given by means of the representation of
the manifold in Rn through the coordinates charts. Moreover, it does not depends on the
choice of the chart ϕj and ψk. Indeed, given two other charts ϕi and ψh, we have

ψh ◦ f ◦ φ−1
i = ψh ◦ ψ−1

k︸ ︷︷ ︸
diffeomorphism

◦
differentiable︷ ︸︸ ︷
ψk ◦ f ◦ φ−1

j ◦ φj ◦ φ−1
i︸ ︷︷ ︸

diffeomorphism

,

hence it is well defined.

Definition 1.6. Given two differentiable manifolds as above, a one-to-one and invertible
mapping f : Q→ N is called a diffeomorphism (between manifolds) if f is differentiable
in Q and also the inverse f−1 : N → Q is differentiable.

Definition 1.7. Let Q be a differentiable manifolds. A pair (N, f) is a submanifold of Q
if f : N → Q is injective and its differential is injective for each point in N . If f is also a
homeomorphism, then we say that f is an embedding.

Let Q be a differentiable manifold of dimension n and q ∈ Q is a point in the manifold.
Then we consider the space

C∞(Q, q) = { f ∈ C∞ real-valued function defined in a neighbourhood Uf of q } ,

where the neighbourhood of q depends on function. This is clearly a vector space, and
defining a multiplication as

f · g(q) = f(q) · g(q),

for each function f, g of class C∞ in C∞(Q, q). Therefore, the set C∞(Q, q) is a real
algebra. We consider the equivalence relation ∼ in C∞(Q, q) such that two elements f
and g in C∞(Q, q) are equivalent if they coincide in a neighbourhood of q, that is,

f ∼ g ⇐⇒ f ≡ g in a neighbourhood of q.
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We define the equivalence class of the germs of functions C∞(Q, q)/∼ := C∞q (Q) = C∞q ,
which defines an algebra on R. Then, we consider the dual space

(C∞q )∗ =
{
v
∣∣∣ v : C∞q → R is a linear form

}
,

and its vector subspace

X(q) =
{
v ∈ (C∞q )∗

∣∣∣ v(fqgq) = f(q)v(gq) + v(fq)g(q), ∀ fq, gq ∈ C∞q
}
,

that is, we consider the subspace of the elements of the dual space which follow the product
rule above.

Definition 1.8. The vector subspace X(q) of (C∞q )∗ is called the derivation space in q,
and the linear form v is a derivation of the C∞q algebra.

Let C∞q (0) =
{
fq ∈ C∞q

∣∣∣ fq(q) = 0
}

be the ideal of C∞q . It is possible to prove

that the derivation space X(q) is canonically isomorph to
[
C∞q (0)/(C∞q (0))2

]∗
, which

is n-dimensional.1

Definition 1.9. The vector space X(q) is called the tangent space to Q at q, and it is
denoted by TqQ. Each element v ∈ TqQ is said the tangent vector to Q at q. The dual
space X(q)∗ is called the cotangent space of Q at q, and it is denoted by T ∗qQ.

Once we have defined the notion of differentiable manifold, we can quickly review other
elements of differential geometry we will need later. The tangent bundle of a manifold Q is
the disjoint union of the tangent spaces to Q at the points q ∈ Q; that is,

TM =
◦⋃

q∈Q
TqM.

Thus, a point of TM is a vector v which is tangent to M at some point q ∈ M . The
natural projection on the tangent bundle is the mapping τQ : TQ→ Q which assigns to
each vector its base point. We note that the inverse image τQ(q) of a point q ∈ Q under
the natural projection is the tangent space TqQ. This space is also called the fibre of the
tangent bundle over the point q ∈ Q.

Likewise, the cotangent bundle T ∗Q of a manifold Q is the vector bundle over Q formed
by the collection of all the dual spaces T ∗qQ. Elements ω ∈ T ∗qQ are called dual vectors or
covectors. The cotangent bundle projection, which assigns to each covector its base point,
is denoted by πQ : T ∗Q→ Q.

Let f : Q → N be a diffeomorphism between manifolds Q and N . We define the
differential of f the map Tf : TQ → TN . There are other notations such as f∗ and df .
The set of all diffeomorphism from Q to N will be denoted by C∞(Q,N). When N = R,
we shall denote the set of smooth real-valued functions on Q by C∞(Q).

Example 1.2 (Level sets). For a given set of smooth functions fi(x) : Rn → R, i = 1, . . . , k,
manifolds often arise as level sets Q = { x | fi(x) = 0, i = 1, . . . , k }. If the gradients ∇fi
are linearly independent, or more generally if the rank of {∇f(x)} is a constant r for
all x, then Q is a smooth manifold of dimension n − r. The proof uses the implicit
function theorem to show that an (n − r)-dimensional coordinate chart may be defined
in a neighbourhood of each point on Q. In this situation, the set Q is called an implicit
submanifold of Rn.

1More details about the definition of the derivation space and the results needed to define the tangent
space can be found in [GPV95]
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Definition 1.10. Let Q and N be two differentiable manifolds and f : Q → N be a
differentiable map. The map f is a submersion at a point q ∈ Q if its differential is a
surjective linear map. In this case q is called a regular point of the map f . Moreover,
a point p ∈ N is a regular value of f if all points q in the pre-image f−1(p) are regular
points. A differentiable map f that is a submersion at each point is called a submersion.
Equivalently, f is a submersion if its differential Tf has constant rank equal to the dimension
of N .

Remark 1.3. If we consider the manifold in Example 1.2 and assume that r = k = dimQ,
then the map f : Rn → Q is a submersion.

A vector field X on Q is a smooth mapping X : Q → TQ which assigns to each
point q ∈ Q a tangent vector X(q) ∈ TqQ, or, in other words, τQ ◦X = IdQ. The set of all
vector fields over Q is denoted by X(Q). We note that a vector field is a section of the
tangent bundle. An integral curve of a vector field X is a curve satisfying ċ(t) = X(c(t)).
Given q ∈ Q, let φt(q) denote the maximal integral curve of X, that is, c(t) = φt(q),
with c(0) = q. In this case, “maximal” means that the interval of definition of c(t) is
maximal. It is easy to verify that φ0 = Id and

φt+s = φt ◦ φs,

whenever the composition is defined. The flow of a vector field X is then determined by
the collection of mappings φt : Q→ Q. From the definition, they satisfies

d

dt
(φt(q)) = X(φt(q)), t ∈ (−ε1(q), ε2(q)), ∀ q ∈ Q.

Similarly, a one-form α on Q is a smooth mapping α : Q→ T ∗Q which associates to
each point q ∈ Q a covector α(q) ∈ T ∗qQ, that is, πQ ◦ α = Id. The set of all one-forms
over Q is denoted by Λ1(Q).

Both notions, vector fields and one-forms, are special cases of a more general geometric
object, called tensor field. A tensor field t of controvariant order r and covariant order s is
a C∞-section of T rsQ, that is, it associates to each q ∈ Q a multilinear map

t(q) : T ∗qQ× · · · × T ∗qQ︸ ︷︷ ︸
r times

×TqQ× · · · × TqQ︸ ︷︷ ︸
s times

→ R.

It is common to say that t is a (r, s)-tensor field. The tensor product of a (r, s)-tensor
field t and a (r′, s′)-tensor field t′ is the (r + r′, s+ s′)-tensor field t⊗ t′ defined by

t⊗ t′(q)(ω1, . . . , ωr, µ1, . . . , µr′ , v1, . . . , vs, w1, . . . , ws′) =
= t(q)(ω1, . . . , ωr, v1, . . . , vs) · t′(q)(µ1, . . . , µr′ , w1, . . . , ws′),

where q ∈ Q, while vi, wi ∈ TqQ and ωj , µj ∈ T ∗qQ.
A special subspace of tensor fields is Λk(Q) ⊂ T 0

kQ, the set of all (0, k) skew-symmetric
tensor field . The elements of Λk(Q) are called k-forms. If we consider a (0, k)-tensor
field t, the alternation map A : T 0

kQ→ Λk(Q) is defined by

A(t)(v1, . . . , vk) = 1
k!
∑
σ∈Σk

sign(σ)t(vσ(1), . . . , vσ(k)),

where sign(σ) is the sign of the permutation σ,

sign(σ) =
{

+1, if σ is even,
−1, if σ is odd,
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and Σk is the set of all k-permutations. A permutation is called odd if it can be written as
the product of an odd number of transposition (that is, a permutation that interchanges just
two objects) and otherwise is even. Thus, the operator A skew-symmetrises k-multilinear
maps. It is easy to see that A is linear, A|Λk(Q) = Id and A ◦A = A.

Definition 1.11. The wedge or exterior product between α ∈ Λk(Q) and β ∈ Λl(Q) is the
form α ∧ β ∈ Λk+l(Q) defined by

α ∧ β = (k + l)!
k! l! A(α⊗ β).

We note that the numerical factor in this definition agrees with the convention
of [AMR88] and [Mon02], but not that of [GPV95]. For example, let us consider α
and β one-forms, then

(α ∧ β)(v1, v2) = α(v1)β(v2)− α(v2)β(v1), ∀ v1, v2 ∈ TqQ,

while if α ∈ Λ2(Q) and β ∈ Λ1(Q), we have

(α ∧ β)(v1, v2, v3) = α(v1, v2)β(v3) + α(v3, v1)β(v2) + α(v2, v3)β(v1).

Proposition 1.1. The wedge product has the following properties:

1. α ∧ β is associative, that is, α ∧ (β ∧ γ) = (α ∧ β) ∧ γ;

2. α ∧ β is bilinear in α and β, i.e.,

(aα1 + bα2) ∧ β = a(α1 ∧ β) + b(α2 ∧ β),
α ∧ (cβ1 + dβ2) = c(α ∧ β1) + d(α ∧ β2);

3. α∧β is anticommutative, that is, α∧β = (−1)klβ∧α, where α ∈ Λk(Q) e β ∈ Λl(Q).

The algebra of exterior differential forms Λ(Q) is given by the direct sum
⊕n

k=0 Ωk(Q),
together with its structure as an infinite-dimensional real vector space and with the
multiplication ∧.

When dealing with exterior differential forms, another important geometric object is
the exterior derivative d. In particular, the exterior derivative dα of a k-form α on the
manifold Q is the (k + 1)-form on Q determined by the following proposition:

Proposition 1.2. There exists a unique mapping d from k-forms on Q to (k + 1)-forms
on Q such that:

1. if α is a 0-form, that is, α = f ∈ C∞(Q), then df is the one-form that is the
differential of f ;

2. dα is linear in α; that is,for all real numbers c1 and c2

d(c1α1 + c2α2) = c1dα1 + c2dα2;

3. dα satisfies the chain rule

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ,

where α is a k-form and β an l-form (that is, it is a ∧-antiderivation);
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4. d2 = 0, that is, d(dα) = 0 for any k-form α;

5. d is a local operator; that is, dα(x) depends only on α restricted to any open
neighbourhood of q; in fact, id U ⊂ V ⊂ Q are open, then

d(α|U ) = (dα)|U ,

where α ∈ Ωk(V ). We also say that d is natural with respect to inclusions.

A k-form is called closed if dα = 0 and exact if there exits a (k − 1)-form β such
that α = dβ. By the definition of exterior derivative, it follows that every exact form is
closed, whilst, by Poincaré lemma, a closed form is locally exact.

Definition 1.12. Let f : Q → N be a smooth mapping from the manifold Q to the
manifold N , and let α be a k-form on N . Then we define the pull back f∗α of α by ω to
be the k-form on Q given by

f∗α(q)(v1, . . . , vk) = α(f(q))(Tqf(v1), . . . , Tqf(vk)),

where vi ∈ TqQ. Furthermore, if f is a diffeomorphism between manifolds, we can also
define the push forward f∗ as f∗ = (f−1)∗.

We note that the pull back defines a mapping f∗ : Λk(N)→ Λk(Q).

Proposition 1.3. The pull back has the following properties:

1. (g ◦ f)∗ = f∗ ◦ g∗, where f ∈ C∞(Q,N) and g ∈ C∞(N,W ), with Q, N and W
differentiable manifolds;

2. (Id∗Q)
∣∣∣
Λk(Q)

= IdΛk(Q);

3. the pull back of a wedge product is the wedge product of the pull back, that is,

f∗(α ∧ β) = f∗α ∧ f∗β,

where f ∈ C∞(Q,N), α ∈ Λk(Q) and β ∈ Λl(N);

4. the exterior derivative d commutes with the pull back, that is, for any f ∈ C∞(Q,N)
we have d(f∗α) = f∗(dα), con α ∈ Λk(N). We also say that the d is natural with
respect to the pull back.

There is also another natural operation associated with a vector field X, which allow
us to decrease the dimension of a k-form.

Definition 1.13. Let α ∈ Λk(Q) be a k-form on the manifold Q, and let X be a vector
field. The contraction or interior product is defined by

iXα = X α = Xjαji2...ikdx
i2 ∧ · · · ∧ dxik .

Proposition 1.4. Let α be a k-form and β an l-form on a manifold Q. Then the
contraction is R-linear and satisfies

iX(α ∧ β) = (iXα) ∧ β + (−1)kα ∧ (iXβ),

that is, it is a ∧-antiderivation.
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1.1.1 Lie derivatives and Jacobi-Lie bracket

Tensor field and differential forms can be differentiated with respect to a vector field. The
resulting derivative is known as the Lie derivative and may be defined in two equivalent
ways. We begin with its dynamical definition.

Definition 1.14 (Dynamic definition of Lie derivative). Let α be a k-form on a manifold Q
and let X be a vector field with flow φt on Q. The Lie derivative of α along X is given by

LXα = lim
t→0

1
t

[(φ∗tα)− α] = d

dt

∣∣∣∣
t=0

φ∗tα.

Theorem 1.1 (Lie derivative theorem). Using the above notation, we have

d

dt

∣∣∣∣
t=0

φ∗tα = φ∗tLXα,

which holds also for time-dependent vector fields.

Example 1.3. Let X(x, y) = (x, y) and α = (x2 + y2)dx. The time-t flow of X is given
by φt(x, y) = (etx, ety), so

(φ∗tα)(x, y) =
(
(etx)2 + (ety)2

)
φ∗tdx =

= e2t(x2 + y2)d(x ◦ φt) =
= e2t(x2 + y2)(etdx) =
= e3tα(x, y).

Therefore,
LXα = d

dt

∣∣∣∣
t=0

e3tα = 3α.

The other definition of the Lie derivative is given by following an algebraic approach
and requiring that the Lie derivative is a derivation.

Definition 1.15 (Cartan’s formula for Lie derivative). Cartan’s formula defines the Lie
derivative of a k-form α with respect to a vector field X in terms of the exterior derivative d
and the contraction as

LXα = X dα+ d(X α).

It can be proved by straightforward computation that the two definitions of Lie derivative
given above are equivalent.

Let us consider the case when f is a real-valued function on a manifold Q and X is a
vector field on Q; then, the Lie derivative of f along X is indeed the directional derivative

(LXf)(q) = Xq(f) := dfq(X(q)),

which in coordinates on Q has the expression

LXf = Xi ∂f

∂xi
.

Moreover, given two vector fields X,Y ∈ X(Q), we can define the Lie derivative of Y
with respect to X. However, it is useful to introduce the Jacobi-Lie bracket before.
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Definition 1.16 (Jacobi-Lie bracket). The Jacobi-Lie bracket on X(Q) is defined in local
coordinates by

[X,Y ] = (DY ) ·X − (DX) ·Y,

which, in finite dimensions, is equivalent to

[X,Y ] = (X · ∇)Y − (Y · ∇)X.

It is easy to prove that the vector field determined by the Jacobi-Lie bracket is unique
and that the map f 7→ X(Y (f))−Y (X(f)) is a derivation; for further details, see [AMR88],
[HSCS09]. Furthermore, there is and interesting link between the Jacobi-Lie bracket and
the Lie derivative as follows.

Theorem 1.2. Given X,Y ∈ X(Q), the Lie derivative of Y along X is equal to the
Jacobi-Lie bracket of the vector fields, that is,

LXY = [X,Y ].

Thus, theorem 1.1 holds with α replaced by the vector field Y .

Remark 1.4. The Lie bracket of two vector fields has a geometric meaning in terms of
successive applications of the flows of the two vector fields in forward and reverse direction.
The case for two vector fields in Rn is given in [BBCM03].

If a set of vector fields Xi is such that there exist functions γijk such that

[Xi, Xk] = γijkXk

then the set is called involutive. In this case no new directions are generated by bracketing,
and this is an impediment to show controllability.

Proposition 1.5. Given a diffeomorphism φ : Q→ N , the Jacobi-Lie bracket satisfies

[φ∗X,φ∗Y ] = φ∗[X,Y ].

Proposition 1.6. Given a function f ∈ C∞(Q) and two vector fields X,Y ∈ X(Q), the
Lie derivative satisfies

LX(F ·Y ) = LXf ·Y + f · LXY.

Finally, we conclude by stating some relevant properties which involve the exterior
derivative, the contraction and the Lie derivative.

Proposition 1.7. Let us consider X,Y ∈ X(Q) two arbitrary vector fields, f ∈ C∞(Q)
and α ∈ Λk(Q), then we have:

1. dLXα = LXdα;

2. LfXα = fLXα+ df ∧ (X α);

3. [X,Y ] α = LX(Y α)− Y (LXα).
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1.2 Distributions and the Frobenius theorem
We introduce here the notion of distributions. This will be the key notion in the geometrical
modelling of nonholonomic dynamical systems.

Definition 1.17. Let Q be an n-dimensional manifold and let c be an integer such
that 1 ≤ c ≤ n. A c-dimensional distribution D on Q is a family of linear c-dimensional
subspaces { Dq } of the tangent spaces TqQ for each q ∈ Q. A distribution D is called
smooth (or differentiable) if for each q ∈ Q there exists a neighbourhood U of q there are c
vector fields X1, . . . , Xc of class C∞ on U which span D at each point of U .

Likewise, it is possible to define codistributions on Q as a family of linear subspace of
the cotangent spaces T ∗qQ. A more complete exposition can be found in [Mon02].

We define the rank of D at q as the dimension of the linear subspace Dq, that is, the
mapping ρ : Q→ R such that ρ(q) = dimDq. For any q0 ∈ Q, if D is differentiable, it is
clear that ρ(q) ≥ ρ(q0) in a neighbourhood of q0. Therefore, rho is a lower semicontinuous
function. If ρ is a constant function, then D is called a regular distribution. Henceforth we
will consider regular distributions, unless otherwise stated.

For a distribution D, a point q ∈ Q is called regular if q is a local maximum of ρ, that
is, ρ is constant on an open neighbourhood of q. Otherwise, q is called a singular point of D.
The set R of regular point of D is open. Moreover, it is dense, because if q0 ∈ S = Q \R,
and U is a neighbourhood of q0, U necessarily contains regular points of D, because ρ|U
must have a maximum being integer valued and bounded. Consequently, q0 ∈ R. We
observe that in general R will not be connected.

Definition 1.18. A vector field X on Q is said to belong to (or lie in) the distribution D
if X(q) ∈ Dq for each q ∈ Q. A smooth distribution D is called involutive (or completely
integrable) if [X,Y ] ∈ D whenever X and Y are smooth vector fields lying in D.

Definition 1.19. A submanifold N of Q is an integral manifold of a distribution D on Q
if

dψ(TnN) = D(ψ(n)), ∀n ∈ N,
where ψ : Q→ N .

Definition 1.20. Given a distribution D, we define its annihilator Do ⊂ T ∗Q as the
codistribution given by

Do : DomD ⊂ Q→ T ∗Q

q 7→ Doq = (Dq)o =
{
α ∈ T ∗qQ

∣∣∣ α(v) = 0, ∀ v ∈ Dq
}
,

where α is a one-form.

We note that Do is differentiable if and only if D is a regular distribution.
Remark 1.5. We note that an immersed submanifold N of Q is an integral submanifold
of D if TnN is annihilated by Dn at each point n ∈ N . Furthermore, N is an integral
submanifold of maximal dimension if (TnN)o = Dn for all n ∈ N . In particular, this
implies that the rank of D is constant along N .

A leaf L of D is a connected integral submanifold of maximal dimension such that
every connected integral submanifold of maximal dimension of D which intersects L is an
open submanifold of L. The distribution D is said partially integrable if for every regular
point q ∈ R, there exists a leaf passing through q. Moreover, D is called a completely
integrable distribution if there exists a leaf passing through q for every q ∈ Q. In this case,
the collection of all these leaves defines a foliation of Q.
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Proposition 1.8. Let D be a smooth distribution on Q such that through each point of Q
there passes an integral manifold of D. Then D is involutive.

Theorem 1.3 (Frobenius). Let D be a c-dimensional, involutive smooth distribution on Q.
Let q ∈ Q. Then there exists an integral manifold of D passing through q, that is, if D id
involutive then it is also integrable.

1.3 Fibre bundles and connections

In this section we give a brief introduction of fibre bundles and related concepts such
as connections, which will be useful for studying the geometric structure of mechanics.
In particular, fibre bundles provide a basic geometric structure for the understanding of
many mechanical and control problems, in particular for nonholonomic problems. Roughly
speaking, a fibre bundle consists of a given space, named the base, together with another
space, called the fibre, attached at each point, and certain compatibility conditions.

Definition 1.21. A fibre bundle is a space Q for which the following are given: a space B
called the base space, a projection π : Q→ B with fibres π−1(b), b ∈ B, homeomorphic to
a space F , a structure group G of homeomorphisms of F into itself, and a covering of B by
open sets Uj , satisfying

1. the bundle is locally trivial, that is, π−1(Uj) is homeomorphic to the product
space Uj × F ;

2. if hj is the map giving the homeomorphism on the fibres above the set Uj , then hj(h−1
k )

is an element of the structure group G for any x ∈ Uj ∩ Uk 6= ∅.

If the fibres of the bundle are homeomorphic to the structure group, we call the bundle
a principal bundle. If the fibres of the bundle are homeomorphic to a vector space, we call
the bundle a vector bundle.

Example 1.4. A basic example of a vector bundle is TS1, that is the tangent bundle of
the circle. The base is S1, the fibres are homeomorphic to R, and since the tangent space
can be represented by any nonzero real number, the structure group is ratios of nonzero
real numbers and may be identified with R \ {0}.

The frame bundle of a manifold Q has the same structure group as TQ, but the fibres
are the set of all bases for the tangent space. Therefore, for TS1, the fibres of the frame
bundle are homeomorphic to its structure group R \ {0}, and hence the frame bundle is a
principal bundle. In fact, all frame bundles are principal.

An important additional structure on a bundle is a (Ehresmann) connection. Intuitively,
suppose we have a bundle and consider (locally) a section of this bundle, i.e., a choice of a
point in the fibre over each point in the base. We call such a choice a field.

The idea is to single out fields that are “constant”. For vector fields on the plane, for
example, such fields are literally constant. For vector fields on a manifold or an arbitrary
bundle, we have to specify this notion. Such fields are called horizontal and are also key
to defining a notion of derivative, or rate of change of a vector field along a curve.2 A
connection is used to single out horizontal fields, and is chosen to have other desirable
properties, such as linearity. For instance, the sum of two constant fields should still be
constant. As we shall see below, we can specify horizontality by taking a class of fields

2The Lie derivative does not give a way of differentiating vector fields along curves.
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that are the kernel of a suitable form. Note that we do not in general have a metric; given
one, there is a natural choice of connection and horizontality on the tangent bundle.

More formally, let us consider a bundle with projection map π : Q → R, where the
manifold R is the base space, and let Tqπ denote its differential at any point. We call the
kernel of Tqπ at any point the vertical space, which is denoted by Vq.

Definition 1.22. An Ehresmann connection A is a vector-valued one-form on Q such that

1. A is vertical valued, that is, the map Aq : TqQ→ Vq is linear for each point q ∈ Q;

2. A is a projection, that is, A(vq) = vq for all vq ∈ Vq.

The key property of the connection is the following: if we denote by Hq or hor q the
kernel of Aq and call it the horizontal space, the tangent space to Q is the direct sum of
the horizontal and vertical spaces, that is, TqQ = Vq ⊕Hq. For instance, we can project a
tangent vector onto its vertical part using the connection. Note that the vertical space
at Q is tangent to the fibre over q. When nonholonomic systems will be discussed, we shall
choose the connection so that the constraint distribution is the horizontal space of the
connection.

Now define the bundle coordinates qi = (rα, sa) for the base and fibre spaces. The
coordinate representation of the projection π is just projection onto the factor r, and the
connection A can be represented locally by a vector-valued differential form ωa, that is,

A = ωa
∂

∂sa
,

where ωa(q) = dsa + Aaα(r, s)drα. Henceforth, the summation on repeated indices is
understood. In particular, since the tangent space is is the direct sum of Hq and Vq, every
vector vq ∈ TqQ can be written as

vq = ṙβ
∂

∂rβ
+ ṡb

∂

∂sb
;

then ωa(vq) = ṡa +Aaαṙ
α and

A(vq) = (ṡa +Aaαṙ
α) ∂

∂sa
.

This clearly demonstrates that A is a projection, since when A acts again only dsa results
in a nonzero term, and this has a unitary coefficient.

Definition 1.23. Given an Ehresmann connection A, a point q ∈ Q, and a vector vr ∈ TrR
tangent to the base at a point r = π(q) ∈ R, we can define the horizontal lift of vr to be
the unique vector vhr in Hq that projects to vr under Tqπ. If we have a vector Xq ∈ TqQ,
we shall also write its horizontal part as

horXq = Xq −A(q) ·Xq.

Remark 1.6. In coordinates, the vertical projection is given by the map

(ṙα, ṡa) 7→ (0, ṡa +Aaα(r, s)ṙα),

while the horizontal projection is the map

(ṙα, ṡa) 7→ (ṙα,−Aaα(r, s)ṙα).
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Definition 1.24. The curvature of A is the vertical-vector-valued two-form B on Q defined
by its action on two vector fields X,Y ∈ X(Q) by

B(X,Y ) = −A ([horX,horY ]) ,

where the bracket [ · , · ] on the right hand side is the Jacobi-Lie bracket of vector fields.

Remark 1.7. This definition shows that the curvature exactly measures the failure of the
horizontal distribution to be integrable, because the right hand side is equal to zero if
and only if the horizontal subbundle is Frobenius integrable. In particular, the curvature
measures the lack of integrability of a (constraint) distribution.

For the exterior derivative of a one-form α, which could be vector-space valued, on a
manifold Q acting on two vector fields X,Y ∈ X(Q), we have the following useful identity

dα(X,Y ) = X(α(Y ))− Y (α(X))− α([X,Y ])

which shows that in coordinates, the curvature may be evaluated by writing the connection as
a one-form ωa in coordinates, computing its exterior derivative (component by component),
and restricting the result to horizontal vectors, that is, to the constraint distribution. In
other words,

B(X,Y ) = dωa(horX,horY ) ∂

∂sa
,

so that the local expression for curvature is given by

B(X,Y )a = Ba
αβX

αY β,

where the coefficients Ba
αβ are given by

Bb
αβ =

(
∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)
.

Example 1.5 (Connections on TR1). We are going to illustrate the idea of connection
by considering the simplest possible example. Let us consider a connection on the bundle
TQ = TR1 with coordinates (x, ẋ). We may define the horizontal space to be the kernel of
the form

dẋ+A1
1(x, ẋ)dx,

where A1
1 is a smooth function of x and ẋ. More specifically, we can choose a connection

that is linear in the velocities, that is

dẋ+ a(x)ẋdx.

In this case, A is the R-valued form

(dẋ+ a(x)ẋdx) ∂
∂ẋ
,

and elements of TqQ are

vq = ẋ
∂

∂x
+ ẍ

∂

∂ẋ
,

and their projection onto the vertical space is

A(vq) = (dẋ+ a(x)ẋdx) ∂
∂ẋ

(
ẋ
∂

∂x
+ ẍ

∂

∂ẋ

)
= (ẍ+ a(x)ẋ2) ∂

∂ẋ
.
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The kernel of A, i.e., the horizontal vectors, is generated by

Span
{
∂

∂x
− a(x)ẋ ∂

∂ẋ

}
.

Note that the standard choice is a(x) = 0, that is, the standard horizontal space is the
span of the vectors ∂/∂x.
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Chapter 2

Basic of geometric mechanics

In this chapter we develop the basic concepts in the geometric mechanics of holonomic
and nonholonomic systems, which provide the elements for studying the dynamics of the
bicycle in the next chapters. More detail about this subject can be found in [AKN02],
[Hol08a], [Hol08b], [NF67], [BBCM03] and references therein.

2.1 Constrained systems
The affine space E3 where the motion takes place is three-dimensional and Euclidean, that
is, the distance between two elements of the affine space is defined as

ρ(a, b) := ‖a− b‖ =
√
〈a− b, a− b〉, ∀ a, b,∈ E3,

where 〈 · , · 〉 is the metric pairing which defines the scalar (or inner) product on R3. Then,
we fix some point O ∈ E3 called the origin of reference of the reference frame, so that the
affine space E3 inherits a vector space structure. The position of every point S ∈ E3 is
uniquely determined by its position vector −→OS = r, whose initial point is O and end point
is S. The set of all position vectors forms the three-dimensional vector space R3, which is
equipped with the scalar product defined in E3.

Time is one-dimensional and it is denoted by t. The set R = {t} is called the time axis.
A moment in time occurs at t ∈ R.

The motion (or path) of the point S is a smooth map R ⊃ ∆ → E3, where ∆ is an
interval of the time axis. We say that the motion is defined on the interval ∆. If the origin O
is fixed, then every motion is uniquely determined by a smooth vector function r : ∆→ R3.

Definition 2.1. The image of the interval ∆ under the map t 7→ r(t) is called the trajectory
or orbit of the point S.

Given the position of the point S in an inertial reference frame, that is, a coordinate
systems in uniform rectilinear motion relative to absolute space, its velocity v at an
instant t ∈ ∆ is defined as

dr

dt
= ṙ(t) ∈ R3.

Clearly, the velocity is independent of the choice of the origin. Likewise, the acceleration
of the point is by definition the vector a = v̇ = r̈ ∈ R3.

We note that the space E3 can be viewed as a differentiable manifold which is also
called configuration space for a single point, and the velocity of the point is an element of
the tangent space to this configuration manifold.
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Now, let us consider a set of n particles in E3 each having constant mass mi and
located at position ri = (xi, yi, zi), i = 1, . . . , n, where the triple (xi, yi, zi) denotes the
standard Cartesian coordinates. In general, the system of n point masses is moving under
the influence of external and internal forces and it may be that there are certain functional
relations among some of the coordinate components. In this case we say that the motion
of the point masses is subject to certain constraints.

Definition 2.2. Given a set of n particles in the physical space E3, we define a bilinear
and limiting constraint as a relation of the form

f(x1, y1, z1, . . . , zn, ẋ1, ẏ1, . . . , żn, t) = 0, (2.1)

which does not depend on the acceleration of the points. We say the constraint is scleronomic
if it is independent of time, otherwise it is called rheonomic. The general constraint (2.1)
is also called a kinematic constraint, whilst we say a constraint is geometric if it can be
expressed in the form

f(x1, y1, z1, . . . , zn, t) = 0. (2.2)

In general we have a number C of constraints imposed on the n particles.

In the following, we consider only scleronomic constraints. A kinematic constraint is
integrable if the functional relation (2.1) is integrable, that is, it may be expressed as a
geometric constraint. Using the terminology introduced by Hertz in [Her94], we have the
following definition.

Definition 2.3. An integrable kinematic constraint is called holonomic, that is, it is a
functional relation of the form (2.2), while a nonintegrable kinematic constraint is called
nonholonomic.

We are now considering two simple examples to better understand the difference between
holonomic and nonholonomic constraints.

Example 2.1 (Pure rolling). Ideal rolling motion combines rotation and translation of an
object with respect to a surface, such that, the two are in contact with each other without
sliding. In particular, let us consider a disc of radius R which is rolling (without sliding)
smoothly on a horizontal surface along the X-axis of an inertial reference frame such that
its centre of mass translates with a velocity ~v(C) = ẋ~ı.

B

X

Y

~ω

ẋ~ı

R

C

Figure 2.1: Pure rolling of a disc along the X-axis.
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Because the disc is a rigid body, the velocity of the point C can be written with respect
to the velocity of B as

~v(C) = ~v(B) + ~ω ∧ (C −B) = ~ω ∧ (C −B),

where ~v(B) = 0 since the particle at contact has zero instantaneous velocity resulting from
equal and opposite linear velocities due to pure rotation and pure translation. Thus, the
pure rolling motion is characterized by the kinematic constraint

ẋ = Rϕ̇,

where ϕ is the angle subtended by the arc, such that ϕ̇ = ω. However, we note that this
relation is integrable, and we have

x = Rϕ,

that is, the pure rolling constraint is a holonomic.

This example shows that holonomic constraints, given as constraints on the velocity,
may be integrated and expressed as relations on the configuration variables. Therefore,
holonomic constraints impose restrictions on both the positions and the velocities of a
system. On the other hand, nonholonomic constraints restrict types of motion but not
position, that is, they impose no restrictions on the possible values of the coordinates of
the system. This statement should become clearer with the following example.

Example 2.2 (Falling disc). Let us consider a disc of radius R rolling without sliding on
the π-plane. As shown in Figure 2.2, the position of the disc at any time can be determined
by the contact point coordinates (x, y), the self-rotation angle χ, the angle α between the
plane of the disc and the vertical axis, and the heading angle θ.

O

P

α

θ

π

Z

Y

X

Figure 2.2: The geometry for the rolling falling disc.

The condition that the disc rolls without sliding on the plane π means that the
instantaneous velocity of the contact point of the disc is equal to zero at any time. An
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arbitrary small displacement of the disc can be characterised by the variations of all the
coordinates, which we shall denote by dx, dy, dθ, dχ and dα. Let R be the radius of the
disc. Since the system rolls without sliding, the variations of the five coordinates that
determine the position of the disc must satisfy the conditions{

dx = Rdχ cos θ,
dy = Rdχ sin θ.

Thus, the condition of rolling without sliding is a nonintegrable kinematic constraint
expressed by constraints {

ẋ = Rχ̇ cos θ,
ẏ = Rχ̇ sin θ. (2.3)

We note that, although these conditions must be satisfied, the five coordinates may take
all sets of values as the disc rolls on the plane, that is, the disc can take up any position
relative to the plane.

2.1.1 Generalised coordinates

We assume that the number of constraints imposed on the system is equal to C = m+ p,
where the holonomic constraints are m, whilst p is the number of nonholonomic constraints.
Furthermore, we require that the m holonomic constraints are independent, that is, the
Jacobian matrix of the vector function F (x1, y1, . . . , zn) = 0 which defines all the holonomic
constraints

J =


∂f1
∂x1

∂f1
∂y1

. . .
∂f1
∂zn

...
... . . . ...

∂fm
∂x1

∂fm
∂y1

. . .
∂fm
∂zn


satisfies the full rank condition. Consequently, the system can take only configurations
which satisfy these constraints, that is, all the possible positions of the system belong to

Q = { (x1, y1, . . . , zm) | F (x1, y1, . . . , zm) = 0 } , (2.4)

where F (x1, y1, . . . , zm) = 0 is the vector function of the constraints. We note that Q
has a differentiable manifold structure; in particular, since the holonomic constraints
are independent, it is an l-dimensional embedded submanifold of R3n, with l = 3n −m.
Therefore, following the formalism introduced by Lagrange, we introduce a new set of
coordinates, called generalised coordinates, which may be interpreted as coordinates for
the system’s configuration space. Let us formalise these notions.

Definition 2.4. The l-dimensional manifold Q defined by the set (2.4) is called the
configuration space of the system, which is parametrised by a set of l generalised coordinates.
A motion (or trajectory) of the system is given by the curve q(t) ∈ Q parametrised by
time in some interval t ∈ (t1, t2). The tangent vector at any point q ∈ Q defines the
generalised velocity q̇ ∈ TqQ. The phase (or state) space is the tangent bundle TQ with
coordinates (q, q̇).

We note that the generalised coordinates are the smallest number of variables needed
to determine the position of the system at a give moment of time.
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Example 2.3. With reference to Example 2.2, the generalised coordinates for the falling
disc are given by q = (x, y, θ, χ, α). As a result, the corresponding configuration space
is Q = SE(2)× S1 × S1, where SE(2) ' R2 × S1 (as a set) is the Euclidean group in the
plane, that is, the group of rigid motions in the plane.

The introduction of generalised coordinates allows us to consider the constrained motion
of the system in R3n as a free motion a reduced space, namely the configuration space Q.
In this space, we have only the remaining nonholonomic constraints, which can be written
as

fi(q1, . . . , ql, q̇1, . . . , q̇l) = 0, i = 1, . . . , p.

However, in mechanics we usually have nonholonomic constraints which are linear in the
velocity field, that is,

l∑
k=1

aki(qj , t)q̇k + bi(qj , t) = 0, i = 1, . . . , p. (2.5)

If b ≡ 0, then the constraints are called homogeneous, while they are scleronomic whenever
both ak and b do not depend on time. In this thesis, we consider only systems with
scleronomic homogeneous constraints, which are also called Pfaffian constraints, expressed
as

A(q)q̇ = 0,

where A(q) is a p× l linear matrix and q̇ is a column vector. Moreover, we assume that
rank(A) = p, so that also the nonholonomic constraints are linearly independent.

Example 2.4. If we consider constraints (2.3) introduced in Example 2.2, we can easily
prove that these are Pfaffian. In fact, they can be written in the form{

ẋ cos θ + ẏ sin θ = Rχ̇,
ẋ sin θ − ẏ cos θ = 0, (2.6)

which is obtained by requiring that velocity is along the direction of the motion, that is,{
〈vP ,~ı1〉 = Rχ̇,
〈vP ,~1〉 = 0,

where ~ı1 and ~1 are the versors of the local reference frame. In conclusion, we have

(
cos θ sin θ −R
− sin θ cos θ 0

)ẋẏ
χ̇

 = 0, (2.7)

where the matrix A has rank 2.

2.1.2 Virtual displacements and degrees of freedom

As stated before, an arbitrary motion of a system can be represented in its configuration
space by a curve parametrised by time. If the system is holonomic, then the converse is also
true: any curve in the configuration space represents a motion of the system in the physical
space. However, this is not true for nonholonomic systems. In particular, only certain
curves in the configuration space correspond to motions of the system compatible with its
(nonholonomic) constraints, since a point of the configuration space, which represents the
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position of the system at a given instant of time, cannot move in an arbitrary direction.
This is because the generalised velocities, and possibly the time, defining a displacement
must satisfy the linear nonholonomic constraints (2.5).

If we consider scleronomic homogeneous nonholonomic constraints, for each configu-
ration q, all the possible displacement compatible with the constraints lie on the tangent
space TqQ to the configuration space.

Definition 2.5. At any configuration q, the set of all possible virtual displacements is
defined to be the subspace of the tangent space to the configuration manifold at q consisting
of vectors δq that satisfy the constraints, that is, the subspace Dq defined by

Dq = { δq ∈ TqQ | A(q)δq = 0 } .

Thus, the kinematic constraints are described by a distribution D which is the collection
of the linear subspaces Dq ⊂ TqQ, for each q ∈ Q. Then, a curve q(t) ∈ Q is said to satisfy
the constraints if q̇(t) ∈ Dq(t) for all t in a certain interval. In general, this distribution will
be nonintegrable in the sense of Frobenius theorem, that is, the constraints are, in general,
nonholonomic.

Definition 2.6. The number of linearly independent virtual displacements of a system is
called the number of its degrees of freedom.

We note that for a holonomic system the number of degrees of freedom is equal to the
number of generalised coordinates. On the other hand, for a nonholonomic system we
have g = l − p, where l is the number of generalised coordinates, whilst p is the number of
independent nonholonomic constraints.

Example 2.5. If we consider the falling disc of Example 2.2, the system is composed by a
single rigid body whose position in the three-dimensional space is described by means of six
coordinates. By requiring that the disc has a contact point with the plane π, we introduce
a holonomic constraint, hence, we need five generalised coordinates to parametrise the
configuration space. Finally, we have two nonholonomic constraints, and the number of
degrees of freedom is equal to three. For instance, we can naturally choose θ, χ and α as
degrees of freedom, while x and y are determined by constraints (2.3).

2.2 Hamilton’s principle
In this section we give a brief account of the variational principles involved in the derivation
of the equations of motion for holonomic systems. Let Q be the configuration space of
a system with generalised coordinates qi, i = 1, . . . , l. Then, let us consider a family
of C2 curves q(t, s) : [t1, t2] × (−ε, ε) → Q which connect two given point q1 and q2 in
the configuration space, such that q(t, 0) = q(t) for all t ∈ [t1, t2], while q(t1, s) = q1
and q(t2, s) = q2 for all s ∈ (−ε, ε).

Next, we consider a real-valued function L : TQ → R, called Lagrangian. For a
mechanical system, L is often chosen to be

L(q, q̇) = K(q, q̇) + U(q),

where K : TQ→ R is the kinetic energy of the system and U : Q→ R is the potential. The
action S is defined as the integral over the time interval (t1, t2) of the Lagrangian, that is,

S =
∫ t2

t1
L(qi(t), q̇i(t))dt.
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Theorem 2.1 (Hamilton’s principle of stationary action). The Euler-Lagrange equations

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0, i = 1, . . . , l, (2.8)

follow from the stationarity of the action S, that is, Hamilton’s principle singles out
particular curves q(t) by the condition

δS = 0,

where the variation is over smooth curves in Q with fixed endpoints q1 and q2.

Proof. The variational derivative in the statement of Hamilton’s principle is defined as

δS = δ

∫ t2

t1
L(qi(t), q̇i(t))dt := d

ds

∣∣∣∣
s=0

∫ t2

t1
L(qi(t, s), q̇i(t, s))dt.

Differentiating under the integral sign, denoting

δqi(t) := d

ds

∣∣∣∣
s=0

qi(t, s),

and integrating by parts, we have

δS =
∫ t2

t1

(
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i
)
dt =

=
∫ t2

t1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt+

[
∂L

∂q̇i
δqi
]t2
t1

,

where δq̇i = d
dtδq

i. Because the endpoints are fixed, the variations vanish and so the last
term, hence we obtain

δS =
∫ t2

t1

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt

Therefore, the action S is stationary, that is, δS = 0, for an arbitrary C1 function δqi(t) if
and only if the Euler-Lagrange equations (2.8) hold.

Thus, a motion of the Lagrangian system extremises the functional S among all its
possible variations.

A critical aspect of the Euler-Lagrange equations is that they may be regarded as a
way to write Newton’s second law in a way that makes sense in arbitrary curvilinear and
even moving coordinate systems. That is, the Euler-Lagrange formalism is covariant. This
is of enormous benefit, not only theoretically, but for practical problems as well.

In the presence of external forces Fi, i = 1, ,̇l we must consider the total work done by
these forces along the motion, which is given by

W =
l∑

j=1

∫ t2

t1
Fjdt.

We note that if these forces are derivable from a potential U , in the sense that Fi = −∂U/∂qi,
then these forces can be incorporated into the Lagrangian by adding to potential to L.
Thus, this way of adding forces is consistent with the Euler-Lagrange equations themselves.
In general, we derive the equations of motion from a variational-like principle, namely the
Lagrange-d’Alembert principle for system with external forces, which states that

δS = δW,
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where

δW =
l∑

j=1

∫ t2

t1
Fjδq

jdt =
∫ t2

t1
F · δqdt

is the virtual work done by the force field F with a virtual displacement δq as defined
above. Taking the variations as before, the equations of motion are

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Fi, i = 1, . . . , l. (2.9)

An advantage of Lagrangian models of mechanical system dynamics is their manifest
invariance with respect to coordinate changes. Moreover, it is possible to extend these
models to include dissipation by defining a dissipation function D(q, q̇) such that

q̇TDq̇ = rate of dissipation of energy per second.

We generally assume that dissipation functions are quadratic, symmetric, and positive
definite with respect to the generalised velocity variables q̇. This type of rate-dependent
dissipation is often called Rayleigh dissipation. The dissipative equations of motion are
given locally by

d

dt

∂L

∂q̇
− ∂L

∂q
+ ∂D

∂q̇
= 0. (2.10)

Theorem 2.2. If E(q, q̇) is the total energy of the system, then

d

dt
E(q, q̇) = −q̇T ∂D

∂q̇
.

Theorem 2.3. The dissipative Lagrangian system is invariant under a change of coor-
dinates q = Q(q). In particular, if the system dynamics is given by a Lagrangian L(q, q̇)
and dissipation function D(q, q̇), with corresponding equation of motion (2.10), then the
same system dynamics is prescribed in terms of Q-coordinates by a Lagrangian L(Q, Q̇),
dissipation function D(Q, Q̇) and equations of motion

d

dt

∂L
∂Q̇
− ∂L
∂Q

+ ∂D
∂Q̇

= 0.

2.3 Nonholonomic mechanics

An important issue about the equations of motion for nonholonomic systems is whether the
constraints are to be imposed before or after taking variations. Imposing the constraints
on the class of curves considered before taking the variations, we get equations that are
variational in the usual sense, that is, an action functional defined on a space of curves id
extremised. This type of approach is certainly appropriate for optimal control problems.
However, for mechanics, the correct approach is to impose the constraints after taking
variations, that is, the correct equations of motion for nonholonomic mechanical systems
are given by the Lagrange-d’Alembert principle.

Let us consider a mechanical system described by generalised coordinates q = (q1, . . . , ql)
and Lagrangian L = K + U . Then, we assume that the mechanical system is subjected
to p linear nonholonomic constraints which in generalized coordinates can be expressed as

A(q)q̇ = 0,
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where A(q) is a p× l matrix. At any configuration q in the configuration space Q, we know
that the set of all possible virtual displacements is defined to be the subspace Dq ⊂ TqQ of
the tangent space to the configuration manifold at q consisting of vectors δq that satisfy
the constraints, i.e., the subspace Dq defined by

Dq = { δq ∈ TqQ | A(q)δq = 0 } .

Therefore, the nonholonomic constraints are introduced by means of a distribution D on Q.
The (generalized) constraint force, which is regarded as a cotangent vector at q, is assumed
to lie in the annihilator of the distribution D. Thus, F has to be a linear combination of
the rows of A(q):

F = λA(q),

where λ is a row vector whose elements are called Lagrange multipliers. This assumption
is usually named as the nonholonomic principle. We observe that these multipliers are
related to the forces that have to be exerted by the constraints in order that the system
satisfy the nonholonomic constraints. Intrinsically, λ is a section of the cotangent bundle
at the point q(t) which annihilates the constraint distribution. We can summarise this
situation with the assumption: in any virtual displacement consistent with the constraints,
the constraint forces Fi do no work, that is, we assume that the identity

F1δq
1 + F2δq

2 + · · ·+ Flδq
l = 0

holds for all virtual displacements δqi ∈ Dq. In this case, the nonholonomic constraints
are said to be ideal. Therefore, the system is equivalent to a holonomic one with applied
appropriate external forces. Recalling equations (2.9), we have

d

dt

∂L

∂q̇i
+ ∂L

∂qi
= λA(q), A(q)q̇ = 0. (2.11)

In particular, we have l second order differential equations, and p constraint equations.

Definition 2.7. We call equations (2.11) the nonholonomic equations or the Lagrange-
d’Alembert equations for a mechanical system with Pfaffian constraints.

A problem with the above classical derivation of the Lagrange-d’Alembert equations is
that no adequate justification is given for the nonholonomic principle, i.e., the assertion that
the vector of generalized forces always has to annihilate all possible virtual displacements
(in the case of ideal constraints). With this assumption, the total energy of the system is
conserved, and conservation of energy indeed holds for many systems with nonholonomic
constraints. The rate of change of the total energy of the system is equal to the rate
of work done by the generalized forces, which is 〈F, q̇〉, therefore, conservation of energy
requires only that the work done by the generalized forces at each instant be zero, that is,
that 〈F, q̇〉 = 0. The constraints ensure that the vector q̇ does lie in Dq, but conservation
of energy in itself does not explain why the generalized force vector should annihilate all
the possible virtual displacements.

It has long been the general consensus in the mechanics community that the Lagrange-
d’Alembert equations do indeed provide an accurate model of the observed behaviour of
constrained physical systems. However, what the confusion over the equations mentioned
above did do was, quite properly, to highlight the inadequacies in the classical derivation
of the Lagrange-d’Alembert equations.

To solve this situation, we now derive the equations of motion for nonholonomic system
by means of variational problems, although we remark that the equations for nonholonomic
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mechanical systems are not literally variational. This formulation, in general, leads to
equations that are different from the Lagrange-d’Alembert equations (2.11), though in the
case of holonomic constraints, both formulations obviously yield the same equations. Let
us consider again a configuration space Q and a distribution D that describes the kinematic
constraints. A curve q(t) ∈ Q will be said to satisfy the constraints if q̇(t) ∈ Dq(t) for all t.
This distribution will, in general, be nonintegrable in the sense of Frobenius theorem, that
is, the constraints are nonholonomic.

Definition 2.8 (Lagrange-d’Alembert principle). Given a system with nonholonomic
constraints defined by a distribution D and Lagrangian L : TQ → R, the Lagrange-
d’Alembert equations of motion for the system are determined by

δ

∫ t2

t1
L(qi(t), q̇i(t))dt = 0,

where the variations δq(t) of the curve q(t) must satisfy δq(t) ∈ Dq(t) for each t ∈ [t1, t2],
and δq(t1) = δq(t2) = 0.

This principle is supplemented by the condition that the curve q(t) itself satisfy the
constraints.

As explained before, in such a principle we take the variation δq before imposing the
constraints, that is, we do not impose the constraints on the family of curves defining the
variation. The usual arguments in the calculus of variations show that this constrained
variational principle is equivalent to the equations

− δL =
(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
δqi = 0, (2.12)

for all variations δq such that δq ∈ Dq at each point of the underlying curve q(t). To explore
the structure of the equations determined by (2.12) in more detail, let {ωa} be a set of p
independent one-forms whose vanishing describes the constraints on the system, that is, the
constraints on δq ∈ TQ are defined by the p conditions ωa · v = 0, for a = 1, . . . , p. Using
the fact that these p one-forms are independent, it is possible to choose local coordinates
such that the one-forms ω a have the form

ωa(q) = dsa +Aaα(r, s)drα, a = 1, . . . , p, (2.13)

where q = (r, s) ∈ Rn−p × Rp. In other words, we are locally writing the distribution as

D = { (r, s, ṙ, ṡ) ∈ TQ | ṡ+Aaαṙ
α = 0 } .

With this choice, the constraints on δq = (δr, δs) are given by the conditions

δsa +Aaαδr
α = 0. (2.14)

The equations of motion for the system are given by (2.12), where the variations satisfy the
constraints. Substituting (2.14) into (2.12) and using the fact that δr is arbitrary, we get(

d

dt

∂L

∂ṙα
− ∂L

∂rα

)
= Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
, α = 1, . . . , n− p. (2.15)

These equations combined with the constraint equations

ṡa = −Aaαṙα, a = 1, . . . , p, (2.16)

give a complete description of the equations of motion of the system.
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Definition 2.9. We define the constrained Lagrangian by substituting the constraint (2.16)
into the Lagrangian, that is

Lc(rα, sa, ṙα) = L(rα, sa, ṙα,−Aaα(r, s)ṙα).

Consequently, the equations of motion (2.15) can be written in terms of the constrained
Lagrangian in the following way. Let us consider the relations

∂Lc
∂ṙα

= ∂L

∂ṙα
−Abα

∂L

∂ṡb
,

∂Lc
∂rα

= ∂L

∂rα
− ∂L

∂ṡb

(
∂Abβ
∂rα

ṙβ
)
,

∂Lc
∂sa

= ∂L

∂sa
− ∂L

∂ṡb

(
∂Abβ
∂sa

ṙβ
)
.

Substituting the constrained Lagrangian Lc into equation (2.12), we have

d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= d

dt

(
∂L

∂ṙα
−Abα

∂L

∂ṡb

)
− ∂L

∂rα
+ ∂L

∂ṡb
∂Abβ
∂rα

ṙβ+

+Aaα
∂L

∂sa
−Aaα

∂L

∂ṡb
∂Abβ
∂sa

ṙβ =

=
(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
−Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
− d

dt
Abα

∂L

∂ṡb
+

+ ∂L

∂ṡb
∂Abβ
∂rα

ṙβ −Aaα
∂L

∂ṡb
∂Abβ
∂sa

ṙβ =

=
(
d

dt

∂L

∂ṙα
− ∂L

∂rα

)
−Aaα

(
d

dt

∂L

∂ṡa
− ∂L

∂sa

)
+

+ ∂L

∂ṡb

(
∂Abβ
∂rα

− ∂Abα
∂rβ

+Aaβ
∂Abα
∂sa

−Aaα
∂Abβ
∂sa

)
ṙβ.

Therefore, the equations of motion for nonholonomic systems can be written as
d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L
∂ṡb

Bb
αβ ṙ

β, (2.17)

where

Bb
αβ =

(
∂Abα
∂rβ

−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

)
. (2.18)

Remark 2.1. We note that the coefficients Bb
αβ are such that Bb

αα = 0 and Bb
αβ = −Bb

βα.
Letting dωb be the exterior derivative of ωb, we have

dωb = d(dsb +Abαdr
α) =

= ∂Abα
∂rβ

drβ ∧ drα − ∂Abα
∂sa

Aaβdr
β ∧ drα,

and contracting dωb with q̇, we obtain

dωb(q̇, · ) = ∂Abα
∂rβ

ṙβdrα − ∂Abα
∂sa

Aaβ ṙ
βdrα − ∂Abα

∂rβ
ṙαdrβ + ∂Abα

∂sa
Aaβ ṙ

αdrβ =

=
(
∂Abβ
∂rα

− ∂Abα
∂rβ

+Aaβ
∂Abα
∂sa

−Aaα
∂Abβ
∂sa

)
ṙβdrα =

= Bb
αβ ṙ

βdrα.



26 Basic of geometric mechanics

Therefore, the equations of motion for the constrained system have the form
d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

+Aaα
∂Lc
∂sa

= − ∂L
∂ṡb

dωb
(
q̇,

∂

∂rα

)
. (2.19)

This form of the equations isolates the effects of the constraints. In fact, the left-hand side
may be checked to be the variational derivative of the constrained Lagrangian, while the
right-hand side consists of the forces that maintain the constraints. In the special case that
the constraints are holonomic, dωb = 0, since dωb represents the curvature, that is, the
lack of integrability of the constraints.

2.3.1 Intrinsic formulation of the equations

We can now rephrase our coordinate computations in the language of the Ehresmann
connections that we discussed in Chapter 1. Suppose that we have chosen a bundle and
an Ehresmann connection A on that bundle such that the constraint distribution D is
given by the horizontal subbundle associated with A. In other words, we assume that the
connection A is chosen such that the constraints are written as A · q̇ = 0.

Note that this is an intrinsic way of writing the constraints and a way of thinking of the
collection of one-forms that we used in the coordinate description. In those coordinates,
it is possible to choose the bundle Q → R to be given in coordinates by (r, s) 7→ r, and
the connection is, in this choice of bundle, defined by the constraints. It is clear that this
choice of bundle is not unique; sometimes this sort of ambiguity is removed for systems
with symmetry.

Example 2.6. If we consider the physical example of the falling disc given in Example 2.2,
it is natural to choose r = (θ, χ, α) and s = (x, y) Then the connection given by the
constraints can be written as

ω1 = dx− cos θdχ
and

ω2 = dy − sin θdχ.

Definition 2.10. Let L be a Lagrangian on TQ and let FL : TQ → T ∗Q be defined in
coordinates by

(qi, q̇j) 7→ (qi, pj),
where pj = ∂L/∂q̇j . We call FL the fibre derivative of L.

In the language of connections, the constrained Lagrangian can be written as

Lc(q, q̇) = L(q,hor q̇),

and we have the following theorem.

Theorem 2.4. The Lagrange-d’Alembert equations may be written as the equations

δLc = 〈FL,B(q̇, δq)〉,

where 〈 · , · 〉 denotes the pairing between a vector and a dual vector, and where

δLc =
〈
δqα,

∂Lc
∂qα
− d

dt

∂Lc
∂q̇α

〉
,

in which δq is a horizontal variation, that is, it takes values in the horizontal space, and B is
the curvature regarded as a vertical-valued two-form, in addition to the constraint equations

A(q)q̇ = 0.



Chapter 3

Introduction of a new bicycle
model

Once we have quickly introduced the theory of nonholonomic systems, we turn the attention
to the mathematical description of the bicycle model we want to study. It is common
knowledge that in the literature there exist many different models for describing the bicycle
dynamics, although the mechanical system is usually handled introducing approximation
or simplification of the geometric structure. In a general and comprehensive case, we
pointed out that problems arise from the pitch angle, that is, the angle between the local
rear frame x-axis and the line of intersection of the symmetry plane with the ground. In
particular, because this angle depends on other coordinates, the motion of the bicycle is
obtained by solving a set of Differential-Algebraic equations. Therefore, we are going to
define a new model for the bicycle in which this angle remains constant during the motion,
still considering a nonlinear system.

3.1 Geometry of a general bicycle

We start considering a general bicycle model with toroidal wheel. In particular, we refer
to the notation introduced in [RF12]. According to the model in Figure 3.1, we assume
that the the riderless bicycle, which moves on a horizontal plane rolling without slipping,
is composed by the following rigid bodies: the rear and front wheels, the rear frame, and
the front frame.

Furthermore, the rear wheel and the rear frame identify the so-called rear assembly,
while the front wheel and the front frame the front assembly. Introduce a plane of symmetry,
named rear plane, which contains the rear assembly, we can define the contact line as the
intersection between the rear plane and the ground. If the front assembly lies in the front
plane of symmetry, we say the bicycle is in the trivial configuration when the rear and the
front plans of symmetry are parallel and both are normal to the horizontal ground plane.

Referring to the trivial configuration, we define the geometric parameters which charac-
terise the whole bicycle. The major radii of the rear and the front wheel are R and Rf ,
respectively, whereas r and rf are the crown radii.

Moreover, the wheelbase w is defined as the distance between the two contact points in
the trivial configuration, while the caster angle λ is the angle between the vertical axis
and the steering axis. We also identify the segment BC as the length l, the trivial pitch
angle ϕ, the fork lower b and the fork offset d, that is, the perpendicular distance between
the steering axis and the centre of the front wheel. Hence, in the trivial configuration, the
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Figure 3.1: Model for general bicycle.

relation
w = l cosϕ+ b sinλ+ d cosλ

holds. We note that the trivial pitch angle can be set to zero because of its arbitrariness; in
the following, we will choose it such that the centre of mass of the rear frame is characterized
by only one coordinate in a proper reference frame. It is also useful to introduce the reduced
caster angle as ε = λ− ϕ.

With reference to Figure 3.1, we can easily define the trail by means of geometric
considerations. In particular, if the bicycle is in the trivial configuration, the trail is given
by

a = ρf tanλ− d

cosλ,

and the normal trail is
an = ρf sinλ− d,

where ρf = Rf + rf . These two parameters has been widely studied in the literature
because of its stability effects on the bicycle, [Cos06] and [CLM11].

In conclusion, we have fifteen different geometric parameters characteristic of the
bicycle, and, according to the situation, one singles out the nine independent which can be
measured easier in order to define the bicycle geometry.

3.1.1 Reference frames

In order to identify the bicycle in a generic configuration, we define one inertial reference
frame and different local reference frames for each of the bodies which compose the system.
Let Σ = (O;X,Y, Z) be the inertial reference frame, where the Z-axis is perpendicular to
the ground in the direction opposite to gravity, and the X-axis is parallel with the contact
line in the trivial configuration. The right-hand rule is used to determine the direction of
the Y -axis as usual.

The local reference frames are introduced as in [RF12]. The first one is centred in
the rear contact point SA′ = (A′;xA′ , yA′ , zA′), with zA′ normal to the ground, passing
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through A′ and A, while xA′ is parallel with the X-axis in the trivial configuration. Another
moving frame, labelled as SA = (A;xA, yA, zA), is attached in A, being xA always parallel
with X, but zA directed through A and B. The third frame is introduced for the rear
assembly is SB = (B;xB, yB, zB), with origin in the rear wheel centre B and xB passing
through B and C, while zB is normal to xB and lie on the rear symmetry plane. We note
that, due to the hinge, SB is not sensitive to the wheel rotation, therefore it is useful
to introduce an addition frame SBr = (B;xBr, yBr, zBr) which takes such a rotation into
account.

With reference to the front assembly, we have the reference frame SD = (D;xD, yD, zD)
centred in D, with zD directed parallel to the steering axis, whereas xD lying on the
front symmetry plane and normal to the steering axis itself. In addition to this, we
introduce four more reference frames like those used for the rear wheel: SE = (E;xE , yE , zE)
and SEr = (E;xEr, yEr, zEr) attached in E, the former uninfluenced by the wheel rotation,
while the latter sensitive to it; SF = (F ;xF , yF , zF ) with zF passing through F and E,
whilst SF ′ = (F ′;xF ′ , yF ′ , zF ′) with zF ′ passing through F ′ and F , both having the abscissa
directed parallel to X in the trivial configuration.

After having defined the local reference frames, their orientations can be related to the
inertial frame by means of proper Euler angles and rotation matrices. However, we first
introduce some transformations which relate each local frame to the following one.

Considering the bicycle in a generic configuration, the coordinates of the rear contact
point are A′ = (x, y, 0)T in the inertial reference frame, because we have the holonomic
(geometric) constraint z = 0. On the other hand, the contact line is parallel with X no
more, but they form an angle θ, named yaw angle and taken about the vertical Z-direction.
We adopt the right-hand rule, so the angle is positive for counter-clockwise rotations.
Therefore, the SA′ orientation with respect to the inertial frame is described by the rotation
matrix

RA′ = R1(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 .
Remark 3.1. We choose the alias approach to represent rotation, that is, the change in
vector coordinates is due to a turn of the coordinate system, instead of a turn of the vector
itself.

The orientation of SA with respect to SA′ can be obtained by a rotation about xA′

of the roll angle α, which the bicycle’s rear plane of symmetry makes with the vertical
direction.1 We remark that, due to physical reasons, this angle can assume values in the
open interval (−π

2 ,
π
2 ). Moreover, in this paper we take α positive for clockwise rotations,

in order to have a positive angle when the bicycle leans to the left. Hence, the rotation
matrix becomes

R2(−α) =

1 0 0
0 cosα − sinα
0 sinα cosα

 .
Passing to the rear frame, we note that the hinge B allows a rotation about the yB-axis.

The pitch angle µ takes this rotation into account, being defined as the angle between xB
and the contact line, both belonging to the rear plane of symmetry. As the roll angle, even

1It can be proved that the SA orientation is obtained by means of two rotations, and an additional
rotation about the yA-axis is useless.
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the pitch angle is taken positive for clockwise rotations, thus

R3(−µ) =

 cosµ 0 sinµ
0 1 0

− sinµ 0 cosµ

 .
Remark 3.2. We define the pitch angle such that it includes the constant angle ϕ. In
particular, we write µ(t) = µ(t) + ϕ, where µ(t) is the effective pitch angle.

Furthermore, we introduce the steering angle ψ ∈ (−π
2 ,

π
2 ) as the rotation about zD,

that is, the steering axis, which is tilted backward with respect to zB by the reduced caster
angle ε, therefore we have

R′(−ε) =

 cos ε 0 sin ε
0 1 0

− sin ε 0 cos ε

 ,
and

R4(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 .
We observe that, due to the previous choice about the roll angle, the angles ψ and α have
the same sign.

The overall rotation characteristic of every frame can be expressed as a sequence of
partial rotations, each defined with respect to the preceding one. The frame with respect
to which the rotation occurs is termed current frame. Because we have chosen the alias
approach to describe rotations, composition of successive rotations is then obtained by
multiplication of the rotation matrices following the inverse order of rotations, that is

R0
n = Rn−1

n Rn−2
n−1 . . . R

1
2R

0
1,

where Ri−1
i , i = 1, . . . n, denotes the rotation matrix of frame i with respect to frame i− 1.

Therefore, the direct transformation from Σ to SA is given by the rotation matrix

RA = R2(−α)R1(θ) =

 cos θ sin θ 0
− cosα sin θ cosα cos θ − sinα
− sinα sin θ sinα cos θ cosα

 .
By recalling the meaning of a rotation matrix in terms of the orientation of a current frame
with respect to a fixed frame, it can be recognized that its rows are the direction cosines of
the axes of the current frame with respect to the fixed frame, whilst its columns are the
direction cosines of the axes of the fixed frame with respect to the current frame.

Let χ be the rear wheel rotation angle, which we assume to be zero in the trivial
configuration. Then, the resulting orientation of the SBr frame is obtained by2

RBr = RyB (χ)R2(−α)R1(θ) =

=

cχ cθ + sα sχ sθ cχ sθ − sα sχ cθ − cα sχ
− cα sθ cα cθ − sα

sχ cθ − sα cχ sθ sχ sθ + sα cχ cθ cα cχ

 ,
2The notations c and s are the abbreviations for cos and sin, respectively.
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where the rotation RyB (χ) is taken about the yB-axis. Similarly, for the SB orientation we
have

RB = R3(−µ)R2(−α)R1(θ) =

=

 cµ cθ − sα sµ sθ cµ sθ + sα sµ cθ cα sµ
− cα sθ cα cθ − sα

− sµ cθ − sα cµ sθ − sµ sθ + sα cµ cθ cα cµ

 .
Then, we draw the rotation matrix characteristic of the front assembly, which describes

the SD orientation with respect to Σ. This is given by the composition of four different
matrices, that is,

RD = R4(ψ)R3(−µ− ε)R2(−α)R1(θ) =

=

 cψ(cµ+ε cθ − sα sµ+ε sθ)− cα sψ sθ
sψ(sα sµ+ε sθ − cµ+ε cθ)− cα cψ sθ

− sµ+ε cθ − sα cµ+ε sθ
cψ(cµ+ε sθ + sα sµ+ε cθ) + cα sψ cθ cα sµ+ε cψ − sα sψ
cα cψ cθ − sψ(cµ+ε sθ + sα sµ+ε cθ) − cα sµ+ε sψ − sα cψ

− sµ+ε sθ + sα cµ+ε cθ cα cµ+ε

 .
Now, in order to overcome the complexity of RD, we believe convenient to introduce

three more auxiliary rotation angles which define the same transformation. It is common
knowledge that three independent rotations are sufficient to describe the orientation of a
rigid body in space. Thus, let θ̃, α̃, and µ̃ be the front yaw angle, roll or camber angle,
and pitch angle, taking the signs in accordance with the previous conventions, so we have
the rotation matrix

R̃D = R̃3(−µ̃)R̃2(−α̃)R̃1(θ̃) =

=

 cµ̃ c
θ̃
− sα̃ sµ̃ s

θ̃
cµ̃ s

θ̃
+ sα̃ sµ̃ c

θ̃
cα̃ sµ̃

− cα̃ s
θ̃

cα̃ c
θ̃

− sα̃
− sµ̃ c

θ̃
− sα̃ cµ̃ s

θ̃
− sµ̃ s

θ̃
+ sα̃ cµ̃ c

θ̃
cα̃ cµ̃

 .
Because RD and R̃D describe the same transformation, the two matrices are identical. So
equating the direction cosines we obtain nine expressions of the auxiliary angles, used in
the following, such as

sin α̃ = cosα sin(µ+ ε) sinψ + sinα cosψ, (3.1)

although they are not all independent, due to the orthogonality conditions between the
direction cosines.

Finally, introducing the front wheel rotation angle χf , which is set to zero in the
trivial configuration, the direct transformation from Σ to SEr is given by the rotation
matrix REr = RyE (χf )R̃2(−α̃)R̃1(θ̃), and by analogy with the rear wheel, the SF ′ and SF
orientations are obtained by RF ′ = R̃1(θ̃) and RF = R̃2(−α̃)R̃1(θ̃), respectively.

3.1.2 Configuration space

Once we have geometrically characterised the general bicycle model in its trivial configura-
tion, we need to introduce a certain number of coordinates for describing the behaviour
of the system. We observe that the bicycle is composed by four rigid bodies, therefore,
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without any constraints, it should have 24 degrees of freedom. However, imposing the
holonomic constraints on the system, that is, frames are connected by three hinges and
each wheel has one contact point with the flat ground plane, the minimum number of
generalised coordinates needed to describe the configuration space is equal to seven.

Hence, the motion of the system is characterised by orbits on a 7-dimensional manifold.
We remark that the number of generalised coordinates for nonholonomic systems is different
from the number of degrees of freedom of the system itself. Afterwards, as the nonholonomic
constraints will be imposed on the system, we will see that our bicycle has three degrees of
freedom.

In principle, any set of generalised coordinates is good as another, hence, according
to [RF12], we choose our seven independent generalised coordinates as follows:

1. the triple (x, y, θ), which gives the translational position of the rear contact point
together with its rotational position;

2. the roll angle α;

3. the steering angle ψ;

4. the rear and front wheel rotation angles χr and χf , respectively.

In summary, identifying the Euclidean group in the plane SE(2) as the group of translations
and rotations in the plane, that is, the group of rigid motions in the plane, the configuration
space of the bicycle is given by

Q = SE(2)× S1 × S1 × S1 × S1,

which we parametrize with the coordinate vector q = (x, y, θ, χf , α, ψ, χ)T . We note that,
by definition, all the generalised coordinates are equal to zero in the trivial configuration.

We also remark that the pitch angle, as well as the coordinates xf and yf of the
point F ′, are not independent of the generalized coordinates, therefore it is possible to
express them as a functions of these coordinates. In the next section, we will derive the
relations of both this angle and the front contact point coordinates with respect to the
coordinate vector q.

3.1.3 Pitch angle and front contact point.

We have mentioned that both the pitch angle and the front wheel contact point depend
on the generalized coordinates chosen. Their expressions can be derived by writing the
vector (F ′ − A′) explicitly. It is clear that, in the trivial configuration, this vector has
magnitude w and direction parallel to the X-axis, but in general its length and direction
are not constant. First of all, we observe that

(F ′ −A′) = (F ′ − F ) + (F − E) + (E −D)+
+ (D − C) + (C −B) + (B −A) + (A−A′),

(3.2)

and then we express each of the vectors on the right hand side with respect to the inertial
reference frame. Because the wheels are toroidal, we have

(A−A′) = r~k, (F ′ − F ) = −rf~k,
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where {~ı,~,~k } are the unit vectors of the coordinate system Σ. Then, using the direction
cosines of the rotation matrix RA, the position of the rear hub B in the inertial reference
frame is given by

(B −A)Σ = −R sinα sin θ~ı+R sinα cos θ~+R cosα~k.

Likewise, we proceed with the other vectors. In particular, we have

(C −B) = l(cosµ cos θ − sinα sinµ sin θ)~ı+
+ l(cosµ sin θ + sinα sinµ cos θ)~+ l cosα sinµ~k,

(D − C) = b(sin µ̃ cos θ̃ + sin α̃ cos µ̃ sin θ̃)~ı+
+ b(sin µ̃ sin θ̃ − sin α̃ cos µ̃ cos θ̃)~− b cos α̃ cos µ̃~k,

(E −D) = d(cos µ̃ cos θ̃ − sin α̃ sin µ̃ sin θ̃)~ı+
+ d(cos µ̃ sin θ̃ + sin α̃ sin µ̃ cos θ̃)~+ d cos α̃ sin µ̃~k,

and

(F − E) = −Rf sin µ̃~ıSD
−Rf cos µ̃~kSD

=
= Rf sin α̃ sin θ̃~ı−Rf sin α̃ cos θ̃~−Rf cos α̃~k,

where the auxiliary angles introduced above are used for the vectors characterising the
front assembly. Therefore, from relation (3.2), we obtain three scalar equations. The first
and the second give the coordinates of the front contact point, that is,

xf = x−R sinα sin θ + l(cosµ cos θ − sinα sinµ sin θ)+
+ b(sin(µ+ ε) cos θ + sinα cos(µ+ ε) sin θ)+
+ d cosψ(cos(µ+ ε) cos θ − sinα sin(µ+ ε) sin θ)+
− d cosα sinψ sin θ +Rf sin α̃ sin θ̃

(3.3)

and

yf = y +R sinα cos θ + l(cosµ sin θ + sinα sinµ cos θ)+
+ b(sin(µ+ ε) sin θ − sinα cos(µ+ ε) cos θ)+
+ d cosψ(cos(µ+ ε) sin θ + sinα sin(µ+ ε) cos θ)+
+ d cosα sinψ cos θ −Rf sin α̃ cos θ̃,

(3.4)

whereas the third one provides an algebraic equation for the pitch angle:

(r − rf ) +R cosα+ l cosα sinµ− b cosα cos(µ+ ε)+
+ d(cosα sin(µ+ ε) cosψ − sinα sinψ)−Rf cos α̃ = 0,

(3.5)

where we have used the auxiliary angles for writing these expressions easily.
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3.2 Definition of the CPA bicycle

Because a closed-form solution for equation (3.5) is difficult to be found, now we have
derived the algebraic equation which defines the pitch angle µ we want to find the minimum
conditions such that this angle does not depend on the generalised coordinates, that is, it
is constant in time. Assuming that Rf and d are equal to zero, and r = rf , we obtain

R cosα+ l cosα sinµ− b cosα cos(µ+ ε) = 0,

and dividing by cosα, which is always different from zero, we have

R+ l sinµ− b cos(µ+ ε) = 0. (3.6)

Thus, in this situation, the effective pitch angle is constant and equal to the trivial pitch
angle ϕ. From a physical point of view, the assumptions introduced above correspond to
a zero fork offset and a spherical front wheel, which has the radius equal to the crown
radius r, that is, rf = r, as in Figure 3.2. We will call this particular bicycle as Constant
Pitch Angle (CPA) bicycle.

λ

an

a

w

D

B

r

ϕ

C

r

R

Figure 3.2: Model for the CPA bicycle.

Remark 3.3. Because the trivial pitch angle is arbitrary, we remark that it will be chosen
such that the centre of mass of the rear frame can be characterized by only one coordinate
in the local reference frame.

As a result of this simplification, also the expressions (3.3) and (3.4) for the front wheel
contact point are simpler. In particular, we have

xf = x− [R+ l sinϕ− b cos(ϕ+ ε)] sinα sin θ+
+ [l cosϕ+ b sin(ϕ+ ε)] cos θ =

= x+ w cos θ
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and

yf = y + [R+ l sinϕ− b cos(ϕ+ ε)] sinα sin θ+
+ [l cosϕ+ b sin(ϕ+ ε)] sin θ =

= y + w sin θ,

respectively, where we remind that w = l cosϕ+ b sin(ϕ+ ε) is the wheelbase.
Furthermore, requiring that the pitch angle has to be constant, the wheelbase in a

general configuration becomes constant. Indeed, the distance between the rear and front
contact points is given by√

(xf − x)2 − (yf − y)2 =
√
w2 cos2 θ + w2 sin2 θ = w.

However, even if both the pitch angle and the wheelbase do not depend on the generalised
coordinates, the general configuration of the CPA bicycle is given by means of the rotational
matrices we have introduced in Section 3.1.1.

3.3 Kinematics of the CPA bicycle
We now turn our attention to the kinematics of CPA bicycle. The linear velocities of
each point of the system with respect to the inertial reference frame by differentiating the
expression of its positions with respect to time. We write down the linear velocities of
the four centres of mass in the inertial reference frame, which will be useful in the next
chapter. Therefore, the rear wheel centre of mass has velocity

~v(B) = (ẋ−Rα̇ cosα sin θ −Rθ̇ sinα cos θ)~ı+
+ (ẏ +Rα̇ cosα cos θ −Rθ̇ sinα sin θ)~+
−Rα̇ sinα~k,

(3.7)

while for we rear frame we have

~v(G) = ~v(B) +
[
l2
(
−α̇ cosα sinϕ sin θ − θ̇(sinα sinϕ cos θ + cosϕ sin θ)

)
+

+d2
(
−α̇ sinα sin θ − θ̇ cosα cos θ

)]
~ı+

+
[
l2
(
α̇ cosα sinϕ cos θ + θ̇(cosϕ cos θ − sinα sinϕ sin θ)

)
+

+d2
(
−α̇ sinα cos θ − θ̇ cosα sin θ

)]
~+

+ (l2α̇ sinα sinϕ− d2α̇ cosα)~k,

(3.8)

where (G−B)SB
= (l2, d2, 0)T ; the velocity of the point C is obtain from equation (3.8)

noting that (C −B)SB
= (l, 0, 0)T , hence the front frame centre of mass velocity is

~v(H) = ~v(C) +
[
h3
(
− α̇ cosα cosλ sin θ + θ̇(sinλ sin θ − sinα cosλ cos θ)

)
+

+ d3
(
α̇(sinα cosψ sin θ + cosα sinλ sinψ sin θ)+

+ θ̇(sinα sinλ sinψ cos θ − cosα cosψ cos θ + cosλ sinψ sin θ)+

+ ψ̇(cosα sinψ sin θ + sinα sinλ cosψ sin θ − cosλ cosψ cos θ)
)
+

+ l3
(
α̇(sinα sinψ sin θ − cosα sinλ cosψ sin θ)+
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+ θ̇(− cosλ cosψ sin θ − sinα sinλ cosψ cos θ − cosα sinψ cos θ)+

+ψ̇(sinα sinλ sinψ sin θ − cosα cosψ sin θ − cosλ sinψ cos θ)
)]
~ı+

+
[
h3
(
α̇ cosα cosλ cos θ + θ̇(− sinλ cos θ − sinα cosλ sin θ)

)
+

+ d3
(
α̇(− sinα cosψ cos θ − cosα sinλ sinψ cos θ)+

+ θ̇(sinα sinλ sinψ sin θ − cosα cosψ sin θ − cosλ sinψ cos θ)+

+ ψ̇(− cosα sinψ cos θ − sinα sinλ cosψ cos θ − cosλ cosψ sin θ)
)
+

+ l3
(
α̇(cosα sinλ cosψ cos θ − sinα sinψ cos θ)+

+ θ̇(cosλ cosψ cos θ − sinα sinλ cosψ sin θ − cosα sinψ sin θ)+

+ψ̇(cosα cosψ cos θ − sinα sinλ sinψ cos θ − cosλ sinψ sin θ)
)]
~+

+
[
−h3α̇ cosλ sinα+ d3

(
α̇(sinα sinλ sinψ − cosα cosψ) +

+ ψ̇(sinα sinψ − cosα sinλ cosψ)
)
+

+ l3
(
α̇(− sinα sinλ cosψ − cosα sinψ)+

+ψ̇(− cosα sinλ sinψ − sinα cosψ)
)]
~k,

whilst the velocity of the front wheel is simply

~v(E) = ẋf~ı+ ẏf~ = (ẋ− wθ̇ sin θ)~ı+ (ẏ + wθ̇ cos θ)~.

Moreover, the angular velocities of each body can be easily obtained in the body-fixed
frame by the rule

~ΩS =
〈
d~S
dt
,~kS

〉
~ıS +

〈
d~kS
dt

,~ıS

〉
~S +

〈
d~ıS
dt
,~S

〉
~kS ,

where the pairing 〈 · , · 〉 is the scalar product, while the versors are obtained as the rows of
the rotation matrices introduced above. Therefore, by a slightly lengthy but straightforward
calculation, all the kinematic quantities of interest shall be provided. In particular, we
write down the angular velocities in the local reference frame, that is,

~ω1 = −(α̇ cosχ+ θ̇ cosα sinχ)~ıSBr
+

+ (χ̇− θ̇ sinα)~SBr
+ (θ̇ cosα cosχ− α̇ sinχ)~kSBr

for the rear wheel, considering the proper rotation,

~ω2 = (−α̇ cosϕ+ θ̇ cosα sinϕ)~ıSB
+

− θ̇ sinα~SB
+ (α̇ sinϕ+ θ̇ cosα cosϕ)~kSB

for the rear frame,

~ω3 =
[
−α̇ cosλ cosψ + θ̇(cosα sinλ cosψ − sinα sinψ)

]
~ıSD

+

+
[
α̇ cosλ sinψ − θ̇(cosα sinλ sinψ + sinα cosψ)

]
~SD

+

+
[
α̇ sinλ+ θ̇ cosα cosλ+ ψ̇

]
~kSD
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for the front frame, and, using the auxiliary angles, the angular velocity of the front wheel
is

~ω4 = −( ˙̃α cosχa + ˙̃
θ cos α̃ sinχa)~ıSEr

+

+ (χ̇a − ˙̃
θ sin α̃)~SEr

+ ( ˙̃
θ cos α̃ cosχa − ˙̃α sinχa)~kSEr

,

by analogy with the rear wheel. Then, we have to impose the nonholonomic constraints on
the two contact points.

3.3.1 Nonholonomic constraints

In general, the most interesting aspect of the bicycle is probably related to the nonholonomic
constraints on the velocities of the two contact points. Even for our simplified model, we
require that both the wheels roll on the plane without slipping. It is common knowledge
that this particular constraints are not integrable in the sense of Frobenius’s theorem. For
deriving the constraint equations, we consider the infinitesimal displacement of the wheel,
as shown in Figure 3.3.

Y

Xθ

A′ = (x, y)

ds1

ds2

Figure 3.3: Infinitesimal displacement of the rear contact point.

In fact, an increment of the angle χ by the amount dχ, considering θ and α constant,
corresponds to a displacement of the point A′ through an interval ds1 = (R+ r cosα)dχ,
whereas an increment of the roll angle α by the amount dα, while θ and χ are constant,
corresponds to a displacement of the point A′ through the interval ds2 = rdα. Obviously, if
the yaw angle θ varies, with α and χ constant, the point A does not move. Hence, we have{

dx = ds1 cos θ − ds2 sin θ,
dy = ds1 sin θ + ds2 cos θ,

and differentiating with respect to time, we obtain the kinematic constraints{
ẋ = −rα̇ sin θ + (R+ r cosα)χ̇ cos θ,
ẏ = rα̇ cos θ + (R+ r cosα)χ̇ sin θ. (3.9)

Remark 3.4. Because of the sign conventions for the roll angle, the infinitesimal displacement
are positive as depicted in Figure 3.3.
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We note that the constraint equations (3.9) can also be written in a different way, that
is, {

ẋ cos θ + ẏ sin θ = (R+ r cosα)χ̇,
ẋ sin θ − ẏ cos θ = −rα̇. (3.10)

Moreover, the front contact point constraints shall be expressed by analogy with those
on the point A′. Therefore, using the auxiliary angles, the condition for rolling without
slipping is simply given by {

ẋf cos θ̃ + ẏf sin θ̃ = rf cos α̃χ̇f ,
ẋf sin θ̃ − ẏf cos θ̃ = −rf ˙̃α.

(3.11)

Remark 3.5. As mentioned before, the nonholonomic constraints introduced above reduce
the free velocities of the systems. Indeed, our bicycle model has just three degrees of
freedom. This is a particular feature of nonholonomic systems, which have less degrees
of freedom than the number of generalized coordinates. Furthermore, the choice of the
degrees of freedom is arbitrary and depends on the particular situation studied.

Because equations (3.11) are written by means of the auxiliary angles, we need to
express them with respect to the generalized coordinates. First of all, comparing matrix RD
with R̃D and being µ ≡ ϕ = λ− ε, we note that

sin θ̃ cos α̃ = (cosα cosψ − sinα sinλ sinψ) sin θ+
+ cosλ sinψ cos θ,

and

cos θ̃ cos α̃ = (cosα cosψ − sinα sinλ sinψ) cos θ+
− cosλ sinψ sin θ,

whereas the front contact point velocity can be obtained by taking the derivative respect
to time of (3.3) and (3.4). Moreover, deriving with respect to time equation (3.1), we have

˙̃α cos α̃ = −α̇ sinα sinλ sinψ + ψ̇ cosα sinλ cosψ+
+ α̇ cosα cosψ − ψ̇ sinα sinψ.

(3.12)

We now have all the relations needed to express the nonholonomic constraints of the
front contact point with respect to generalized velocities, eliminating the auxiliary angles.
Therefore, starting form the second of (3.11), we write it as

(ẋ sin θ − ẏ cos θ)(cosα cosψ − sinα sinλ sinψ)+
+ (ẋ cos θ + ẏ sin θ) cosλ sinψ + wθ̇(sinα sinλ sinψ − cosα cosψ) =
= −r ˙̃α cos α̃,

and, using equation (3.12) and constraints (3.10), we obtain

(R+ r cosα)χ̇ cosλ sinψ + rψ̇(cosα sinλ cosψ − sinα sinψ)+
+ wθ̇(sinα sinλ sinψ − cosα cosψ) = 0.

(3.13)

Likewise, the first constraint of (3.11) becomes

(ẋ cos θ + ẏ sin θ)(cosα cosψ − sinα sinλ sinψ)+
− (ẋ sin θ − ẏ cos θ) cosλ sinψ + wθ̇ cosλ sinψ = r cos2 α̃χ̇f
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and, using constraints (3.10), we obtain

(R+ r cosα)χ̇(cosα cosψ − sinα sinλ sinψ) + rα̇ cosλ sinψ+
+ wθ̇ cosλ sinψ = r cos2 α̂χ̇f .

(3.14)

As we have stated before, choosing three degrees of freedom we can constrain four
generalized velocities. In particular, riding a bicycle, one controls the roll angle, the steering
angle and the forward velocity, therefore we opt for these as free coordinates. Consequently,
relations (3.14) and (3.13) shall be expressed with respect to χ̇f and θ̇, respectively. For
simplifying the computation, we introduce the nonlinear functions

â(α,ψ) = w(cosα cosψ − sinλ sinα sinψ)

and
d̂(α,ψ) = (R+ r cosα)(cosα cosψ − sinα sinλ sinψ),

therefore, noting that â(α,ψ) > 0 for a bicycle usual geometric parameter values, we can
write (3.14) and (3.13) as

χ̇f = χ̇ĝ(α,ψ) + α̇ĥ(α,ψ) + ψ̇l̂(α,ψ) (3.15)

and
θ̇ = χ̇m̂(α,ψ) + ψ̇p̂(α,ψ), (3.16)

respectively, where

ĝ(α,ψ) = 1
r cos2 α̃

[
d̂(α,ψ) + wm̂(α,ψ) cosλ sinψ

]
,

ĥ(α,ψ) = cosλ sinψ
cos2 α̃

,

l̂(α,ψ) = w

cos2 α̃

[cosα sinλ cosψ − sinα sinψ
â(α,ψ) cosλ sinψ

]
,

and 
m̂(α,ψ) = 1

â(α,ψ)(R+ r cosα) cosλ sinψ,

p̂(α,ψ) = r

â(α,ψ) [cosα sinλ cosψ − sinα sinψ] .

Remark 3.6. It is clear that the explicit expression of constrain (3.15) is obtained substi-
tuting θ̇ with the relation (3.16), as it is not a free generalised velocity.
Remark 3.7. The nonlinear functions introduced in expressions (3.15) and (3.16) are the
same used in [RF12], considering the assumptions r = rf , d = 0, Rf = 0, and relation (3.6).
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Chapter 4

Dynamics of the CPA bicycle

We now turn our attention to the dynamics of the CPA bicycle introduced in the previous
chapter. The equations of motion will be derived by means of the Euler-Lagrange equations
for nonholonomic systems. Because we need to write the Lagrangian for our system, we
start by writing the kinetic energy and the potential associated with the CPA bicycle.

4.1 Kinetic energy and potential

The kinetic energy of the the CPA bicycle is clearly equal to the sum of the kinetic energy
of each of the rigid bodies which compose the system. Each kinetic energy is computed
by König’s theorem, which states that the kinetic energy of each body is the sum of the
kinetic energy associated to the movement of the centre of mass and the kinetic energy
associated to the movement of the particles relative to the centre of mass, that is,

Ki = 1
2m1v

2(Pi) + 1
2〈~ωi, σi(Pi)~ωi〉, i = 1, 2, 3, 4,

where ~ωi are the angular velocities introduced before, mi is the mass of the i-th body, Pi
its centre of mass and σi(Pi) its inertia tensor in the local reference frame of the body.

For example, let us write the kinetic energy for the rear wheel. The velocity of the
centre of mass of the rear wheel is given by equation (3.7), hence

v2(B) = ẋ2 + ẏ2 +R2α̇2 +R2θ̇2 sin2 α+
+ 2Rα̇ cosα(−ẋ sin θ + ẏ cos θ)− 2Rθ̇ sinα(ẋ cos θ + ẏ sin θ),

while the inertia tensor of a torus is

σ1(B) =

I1xx 0 0
0 I1yy 0
0 0 I1xx

 ,
where

I1xx =
(5

8r
2 + 1

2R
2
)
m1 I1yy =

(3
4r

2 +R2
)
m1,

thus we have

〈~ωSBr
, σ1(B)~ωSBr

〉 = I1xx(α̇2 + θ̇2 cos2 α) + I1yy(χ̇+ θ̇ sinα)2.
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In conclusion, the kinetic energy of the rear wheel is

K1 = 1
2m1

[
ẋ2 + ẏ2 +R2α̇2 +R2θ̇2 sin2 α

]
+

+m1R
[
α̇ cosα(−ẋ sin θ + ẏ cos θ)− θ̇ sinα(ẋ cos θ + ẏ sin θ)

]
+

+ 1
2(α̇2 + θ̇2 cos2 α)I1xx + 1

2(χ̇− θ̇ sinα)2I1yy.

Likewise, it would be possible to write down the expression for the kinetic energy of
the other rigid bodies. However their expressions are very complicated. Therefore, we
need to write the total kinetic energy in a more manageable form, which can be readily
used to compute the equations of motion. In particular, we write the kinetic energy in
a general form by means of nonlinear functions which are defined as the Hessian of the
kinetic energy itself, that is, by computing the second partial derivative of the kinetic
energy with respect to the velocities which multiply each of these functions. Furthermore,
we write these functions such that they depend only on the roll and the steering angles, as
this choice will simplify future computations. Thus, it can be easily prove that the kinetic
energy has the following general form:

K(θ, α, ψ, q̇) = 1
2M(ẋ2 + ẏ2) + 1

2 α̇
2a(α,ψ) + 1

2 θ̇
2b(α,ψ) + 1

2 ψ̇
2d(α,ψ)+

+ 1
2 χ̇

2E + 1
2 χ̇fF + α̇θ̇g(α,ψ) + α̇ψ̇h(α,ψ) + α̇χ̇fk(α,ψ)

+ θ̇ψ̇l(α,ψ) + ψ̇χ̇fm(α,ψ) + θ̇χ̇n(α) + θ̇χ̇fp(α,ψ)+
+ θ̇(−ẋ sin θ + ẏ cos θ)q(ψ) + α̇(−ẋ sin θ + ẏ cos θ)r(α,ψ)+
+ ψ̇(−ẋ sin θ + ẏ cos θ)s(α,ψ) + θ̇(ẋ cos θ + ẏ sin θ)u(α,ψ)+
+ ψ̇(ẋ cos θ + ẏ sin θ)z(ψ).

The nonlinear functions are evaluated by means of the Wolfram Mathematica code, reported
in Appendix A. For instance, we have

M = m1 +m2 +m3 +m4.

In the same way, the potential can be written as a general function of the roll and
steering angles, that is, U = U(α,ψ). Assuming that the system is subjected to only the
gravity force acting on the centres of mass, we have

U(α,ψ) = −g [Mr + (m1 +m2 +m3)R cosα+
+m2(l2 cosα sinϕ− d2 sinα+ h2 cosα cosϕ)+
+m3(l cosα sinϕ+ l3(cosα sinλ cosψ − sinα sinψ)+

+ d3(− cosα sinλ sinψ − sinα cosψ) + h3 cosα cosλ)] .
Moreover, we can easily consider the dissipation as a function of the generalised

velocities. Indeed, it is possible to derive purely velocity dependent dissipative forces from
a dissipation function, which we assume to be quadratic, symmetric and positive definite
with respect to the generalised velocities themselves. For example, we can consider the
dissipation due to the steering axis rotation by means of a Rayleigh dissipation such as

F = 1
2νψ̇

2, (4.1)

where ν is the coefficient of viscous friction. In the same way, we could take into account
the presence of suspensions in the CPA bicycle model by considering both the potentials
due to the springs and the dissipative functions due to the dampers. However, for the
purpose of this thesis, we examine only the case of the steering axis dissipation.
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4.2 Equations of motion
According to the theory of nonholonomic systems exposed in Chapter2, we develop the
equations of motion using the Ehresmann connection given by the constraints, and deriving
the constrained Lagrangian. The equations are then written explicitly in terms of the
constrained Lagrangian and the curvature of the connection.

We start writing the classical Lagrangian. This is taken to be of the form kinetic energy
plus potential, that is,

L(θ, α, ψ, ẋ, ẏ, θ̇, χ̇f , α̇, ψ̇, χ̇) = K(θ, α, ψ, ẋ, ẏ, θ̇, χ̇f , α̇, ψ̇, χ̇) + U(α,ψ). (4.2)

Due to the symmetry properties of the wheels, we note that the Lagrangian depends neither
on the position (x, y) of the rear contact point nor on the angles χ and χf .

Then we turn our attention to the nonholonomic constraints to write the constrained
Lagrangian. Without considering the symmetry of the problem, we think of these constraints
as the horizontal space of an Ehresmann connection. In particular, we have to choose a
bundle Q→ R. As we have already remarked in the previous chapter, possible controls
would be added to either the roll angle α, the steering angle ψ or the rear wheel rotation
angle χ; therefore, we are motivated to choose the base R to be S1×S1×S1 parametrised
by (α,ψ, χ), where the projection to R is simply

q = (x, y, θ, χf , α, ψ, χ)T 7→ (α,ψ, χ)T .

Then, identifying the base and the fibre velocities as ṙ = (α̇, ψ̇, χ̇) and ṡ = (ẋ, ẏ, θ̇, χ̇f ),
respectively, such that q = (s, r), the constraints derived in Section 3.3 can be written as

ṡa = −Aaαṙα,

where Aaα are the components of the Ehresmann connection. In particular, these are

A1
1 = r sin θ, A1

2 = 0, A1
3 = −(R+ r cosα) cos θ,

A2
1 = −r cos θ, A2

2 = 0, A2
3 = −(R+ r cosα) sin θ,

A3
1 = 0, A3

2 = −p̂(α,ψ), A3
3 = −m̂(α,ψ),

A4
1 = −ĥ(α,ψ), A4

2 = −l̂(α,ψ), A4
3 = −ĝ(α,ψ).

We now define the constrained Lagrangian by substituting the nonholonomic constraints
into the classical Lagrangian (4.2), hence

Lc(rα, sa, ṙα) = Lc(rα, sa, ṙα,−Aaα(r, s)ṙα) =
= Lc(α,ψ, α̇, ψ̇, χ̇).

We observe that the constrained Lagrangian does not depend on the fibre coordinates,
that is, it is cyclic in the variable s. Furthermore, we observe that the substitution of the
nonholonomic constraints into the Lagrangian influences only the kinetic energy expression,
whilst the potential remains the same. For writing the equations of motion in a concise
form, it is useful to write the constrained kinetic energy by means of a new set of nonlinear
functions, that is,

Kc(α,ψ, α̇, ψ̇, χ̇) = 1
2 α̇A(α,ψ) + 1

2 χ̇C(α,ψ) + 1
2 ψ̇E(α,ψ)+

+ α̇ψ̇G(α,ψ) + α̇χ̇M(α,ψ) + ψ̇χ̇P(α,ψ),



44 Dynamics of the CPA bicycle

where one can easily check that

A(α,ψ) = Mr2 + a(α,ψ) + Fĥ2(α,ψ) + 2ĥ(α,ψ)k(α,ψ) + 2rr(α,ψ),
C(α,ψ) = M(R+ r cα)2 + m̂2(α,ψ)b(α,ψ) + E + F ĝ2(α,ψ)+

+ 2m̂(α,ψ) [n(α) + ĝ(α,ψ)p(α,ψ) + (R+ r cosα)u(α,ψ)] ,
E(α,ψ) = d(α,ψ) + p̂2(α,ψ)b(α,ψ) + F l̂2(α,ψ) + 2p̂(α,ψ)l(α,ψ)+

+ 2l̂(α,ψ) [m(α,ψ) + p̂(α,ψ)p(α,ψ)] ,
G(α,ψ) = Fĥ(α,ψ)l̂(α,ψ) + p̂(α,ψ)g(α,ψ) + h(α,ψ) + l̂(α,ψ)k(α,ψ)+

+ ĥ(α,ψ)m(α,ψ) + p̂(α,ψ)ĥ(α,ψ)p(α,ψ)+
+ rp̂(α,ψ)q(ψ) + rs(α,ψ),

M(α,ψ) = F ĝ(α,ψ)ĥ(α,ψ) + m̂(α,ψ)g(α,ψ) + ĝ(α,ψ)k(α,ψ)+
+ m̂(α,ψ)ĥ(α,ψ)p(α,ψ) + rm̂(α,ψ)q(ψ),

P(α,ψ) = m̂(α,ψ)p̂(α,ψ)b(α,ψ) + F ĝ(α,ψ)l̂(α,ψ) + m̂(α,ψ)l(α,ψ)+
+ ĝ(α,ψ)m(α,ψ) + p̂(α,ψ)n(α) + m̂(α,ψ)l̂(α,ψ)p(α,ψ)+
+ p̂(α,ψ)ĝ(α,ψ)p(α,ψ) + (R+ r cosα)p̂(α,ψ)u(α,ψ)+
+ (R+ r cosα)z(ψ).

From the theory, we know that the equations of motion in terms of the constrained
Lagrangian are given by expression (2.17), thus the equations of motion for the CPA bicycle
are given by

d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

= − ∂L
∂ṡb

Bb
αβ ṙ

β, (4.3)

where

Bb
αβ = ∂Abα

∂rβ
−
∂Abβ
∂rα

+Aaα
∂Abβ
∂sa

−Aaβ
∂Abα
∂sa

, (4.4)

are the coefficients of the curvature of the connection A(r, s). In particular, after a
straightforward computation, we have

B1
12 = −B1

21 = p̂(α,ψ)r cos θ,
B1

13 = −B1
31 = −r sinα cos θ + m̂(α,ψ)r cos θ,

B1
23 = −B1

32 = −p̂(α,ψ)(R+ r cosα) sin θ,

B2
12 = −B2

21 = p̂(α,ψ)r sin θ,
B2

13 = −B2
31 = −r sinα sin θ + m̂(α,ψ)r sin θ,

B2
23 = −B2

32 = p̂(α,ψ)(R+ r cosα) cos θ,

B3
12 = −B3

21 = ∂p̂(α,ψ)
∂α

,

B3
13 = −B3

31 = ∂m̂(α,ψ)
∂α

,

B3
23 = −B3

32 = ∂m̂(α,ψ)
∂ψ

,
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B4
12 = −B4

21 = −∂ĥ(α,ψ)
∂ψ

+ ∂l̂(α,ψ)
∂α

,

B4
13 = −B4

31 = ∂ĝ(α,ψ)
∂α

,

B4
23 = −B4

32 = ∂ĝ(α,ψ)
∂ψ

,

with the remaining Bb
αβ zero.

Therefore, the equation for the roll angle is

d

dt

∂Lc
∂α̇
− ∂Lc

∂α
= − ∂L

∂ẋ

∣∣∣∣
c
(B1

12ψ̇ +B1
13χ̇)− ∂L

∂ẏ

∣∣∣∣
c

(B2
12ψ̇ +B2

13χ̇)+

− ∂L

∂θ̇

∣∣∣∣
c
(B3

12ψ̇ +B3
13χ̇)− ∂L

∂χ̇f

∣∣∣∣∣
c

(B4
12ψ̇ +B4

13χ̇),

which we can write explicitly in the form

α̈A(α,ψ) + ψ̈G(α,ψ) + χ̈M(α,ψ) + 1
2 α̇

2∂A(α,ψ)
∂α

+

+ α̇χ̇ã(α,ψ) + α̇ψ̇b̃(α,ψ) + ψ̇2d̃(α,ψ) + χ̇ψ̇ẽ(α,ψ) + χ̇2f̃(α,ψ) =

= ∂U(α,ψ)
∂α

,

(4.5)

where

ã(α,ψ) = (k(α,ψ) + Fĥ(α,ψ))∂ĝ(α,ψ)
∂α

+

+ (rq(ψ) + g(α,ψ) + ĥ(α,ψ)p(α,ψ))∂m̂(α,ψ)
∂α

,

b̃(α,ψ) = (rq(ψ) + g(α,ψ) + ĥ(α,ψ)p(α,ψ))∂p̂(α,ψ)
∂α

+ ∂a(α,ψ)
∂ψ

+

+ (k(α,ψ) + Fĥ(α,ψ))∂l̂(α,ψ)
∂α

+ Fĥ(α,ψ)∂ĥ(α,ψ)
∂ψ

+

+ ∂ĥ(α,ψ)
∂ψ

k(α,ψ) + 2ĥ(α,ψ)∂k(α,ψ)
∂ψ

+ 2r∂r(α,ψ)
∂ψ

,

d̃(α,ψ) = (z(ψ) + u(α,ψ)p̂(α,ψ))p̂(α,ψ)r + Fĥ(α,ψ)∂l̂(α,ψ)
∂ψ

+ ∂h(α,ψ)
∂ψ

+

+ ∂p̂(α,ψ)
∂ψ

g(α,ψ) + p̂(α,ψ)∂g(α,ψ)
∂ψ

+ ∂l̂(α,ψ)
∂ψ

k(α,ψ)+

+ l̂(α,ψ)∂k(α,ψ)
∂ψ

+ ĥ(α,ψ)∂m(α,ψ)
∂ψ

+ ∂p̂(α,ψ)
∂ψ

ĥ(α,ψ)p(α,ψ)+

+ p̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂ψ

+ r
∂p̂(α,ψ)
∂ψ

q(ψ) + rp̂(α,ψ)∂q(ψ)
∂ψ

+

+ r
∂s(α,ψ)
∂ψ

− 1
2
∂d(α,ψ)
∂α

− 1
2 p̂

2(α,ψ)∂b(α,ψ)
∂α

− p̂(α,ψ)∂l(α,ψ)
∂α

+

− l̂(α,ψ)∂m(α,ψ)
∂α

− p̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂α

,

ẽ(α,ψ) = (u(α,ψ)m̂(α,ψ) +M(R+ r cosα))p̂(α,ψ)r+
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+ (z(ψ) + u(α,ψ)p̂(α,ψ))m̂(α,ψ)r + F
∂ĝ(α,ψ)
∂ψ

ĥ(α,ψ)+

+ ∂m̂(α,ψ)
∂ψ

g(α,ψ) + m̂(α,ψ)∂g(α,ψ)
∂ψ

+ ∂ĝ(α,ψ)
∂ψ

k(α,ψ)+

+ ĝ(α,ψ)∂k(α,ψ)
∂ψ

+ ∂m̂(α,ψ)
∂ψ

ĥ(α,ψ)p(α,ψ) + m̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂ψ

+

+ r
∂m̂(α,ψ)

∂ψ
q(ψ) + rm̂(α,ψ)∂q(ψ)

∂ψ
− m̂(α,ψ)p̂(α,ψ)∂b(α,ψ)

∂α
+

− m̂(α,ψ)∂l(α,ψ)
∂α

− ĝ(α,ψ)∂m(α,ψ)
∂α

− p̂(α,ψ)n(α)
∂α

+

− m̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂α

− p̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂α

+

− (R+ r cosα)p̂(α,ψ)∂u(α,ψ)
∂α

,

f̃(α,ψ) = (u(α,ψ)m̂(α,ψ) +M(R+ r cosα))m̂(α,ψ)r − 1
2m̂

2(α,ψ)∂b(α,ψ)
∂α

+

− m̂(α,ψ)∂n(α)
∂α

− m̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂α

+

− m̂(α,ψ)(R+ r cosα)∂u(α,ψ)
∂α

.

Then, taking into account the dissipative function (4.1) for the steering axis rotation,
the equation for the steering angle becomes

d

dt

∂Lc

∂ψ̇
− ∂Lc
∂ψ

+ ∂F
∂ψ̇

= − ∂L

∂ẋ

∣∣∣∣
c
(B1

21α̇+B1
23χ̇)− ∂L

∂ẏ

∣∣∣∣
c

(B2
21α̇+B2

23χ̇)+

− ∂L

∂θ̇

∣∣∣∣
c
(B3

21α̇+B3
23χ̇)− ∂L

∂χ̇f

∣∣∣∣∣
c

(B4
21α̇+B4

23χ̇),

and writing it explicitly, we have

ψ̈E(α,ψ) + α̈G(α,ψ) + χ̈P(α,ψ) + 1
2 ψ̇

2∂E(α,ψ)
∂ψ

+

+ ψ̇χ̇g̃(α,ψ) + α̇ψ̇h̃(α,ψ) + α̇2 l̃(α,ψ) + α̇χ̇m̃(α,ψ) + χ̇2ñ(α,ψ) =

= ∂U(α,ψ)
∂ψ

− νψ̇,

(4.6)

where

g̃(α,ψ) = (m(α,ψ) + F l̂(α,ψ) + p̂(α,ψ)p(α,ψ))∂ĝ(α,ψ)
∂ψ

+

+ (s(α,ψ) + q(ψ)p̂(α,ψ))p̂(α,ψ)(R+ r cosα)+

+ (l(α,ψ) + p̂(α,ψ)b(α,ψ) + l̂(α,ψ)p(α,ψ))∂m̂(α,ψ)
∂ψ

,

h̃(α,ψ) = ∂d(α,ψ)
∂α

+ p̂(α,ψ)b(α,ψ)∂p̂(α,ψ)
∂α

+ p̂2(α,ψ)∂b(α,ψ)
∂α

+

+ F l̂(α,ψ)∂l̂(α,ψ)
∂α

+ ∂p̂(α,ψ)
∂α

l(α,ψ) + 2p̂(α,ψ)∂l(α,ψ)
∂α

+

+ ∂l̂(α,ψ)
∂α

m(α,ψ) + 2l̂(α,ψ)∂m(α,ψ)
∂α

+ ∂p̂(α,ψ)
∂α

l̂(α,ψ)p(α,ψ)+
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+ p̂(α,ψ)∂l̂(α,ψ)
∂α

p(α,ψ) + 2p̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂α

+

+ (m(α,ψ) + F l̂(α,ψ) + p̂(α,ψ)p(α,ψ))∂ĥ(α,ψ)
∂ψ

+

− (z(ψ) + u(α,ψ)p̂(α,ψ))p̂(α,ψ)r,

l̃(α,ψ) = F
∂ĥ(α,ψ)
∂α

l̂(α,ψ) + p̂(α,ψ)∂g(α,ψ)
∂α

+ ∂h(α,ψ)
∂α

+ l̂(α,ψ)∂k(α,ψ)
∂α

+

+ r
∂s(α,ψ)
∂α

+ ∂ĥ(α,ψ)
∂α

m(α,ψ) + ĥ(α,ψ)∂m(α,ψ)
∂α

+

+ p̂(α,ψ)∂ĥ(α,ψ)
∂α

p(α,ψ) + p̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂α

+

− 1
2
∂a(α,ψ)
∂ψ

− ĥ(α,ψ)∂k(α,ψ)
∂ψ

− r∂r(α,ψ)
∂ψ

,

m̃(α,ψ) = ∂m̂(α,ψ)
∂α

p̂(α,ψ)b(α,ψ) + m̂(α,ψ)p̂(α,ψ)∂b(α,ψ)
∂α

+ F
ĝ(α,ψ)
∂α

l̂(α,ψ)+

+ ∂m̂(α,ψ)
∂α

l(α,ψ) + m̂(α,ψ)∂l(α,ψ)
∂α

+

+ ∂g(α,ψ)
∂α

m(α,ψ) + ĝ(α,ψ)∂m(α,ψ)
∂α

+

+ p̂(α,ψ)n(α)
∂α

+ ∂m̂(α,ψ)
∂α

l̂(α,ψ)p(α,ψ) + m̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂α

+

+ p̂(α,ψ)∂ĝ(α,ψ)
∂α

p(α,ψ) + p̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂α

+

− r sinαp̂(α,ψ)u(α,ψ)+

+ (R+ r cosα)p̂(α,ψ)∂u(α,ψ)
∂α

− r sinαz(ψ)− m̂(α,ψ)∂g(α,ψ)
∂ψ

+

− ĝ(α,ψ)∂k(α,ψ)
∂ψ

− m̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂ψ

− rm̂(α,ψ)∂q(ψ)
∂ψ

+

− (u(α,ψ)m̂(α,ψ) +M(R+ r cosα))p̂(α,ψ)r+
+ (r(α,ψ) +Mr)p̂(α,ψ)(R+ r cosα),

ñ(α,ψ) = q(ψ)m̂(α,ψ)p̂(α,ψ)(R+ r cosα)− 1
2m̂

2(α,ψ)∂b(α,ψ)
∂ψ

+

− m̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂ψ

− m̂(α,ψ)(R+ r cosα)∂u(α,ψ)
∂ψ

.

Finally, the equation for the rear wheel rotation angle is

d

dt

∂Lc
∂χ̇

= − ∂L

∂ẋ

∣∣∣∣
c
(B1

31α̇+B1
32ψ̇)− ∂L

∂ẏ

∣∣∣∣
c

(B2
31α̇+B2

32ψ̇)+

− ∂L

∂θ̇

∣∣∣∣
c
(B3

31α̇+B3
32ψ̇)− ∂L

∂χ̇f

∣∣∣∣∣
c

(B4
31α̇+B4

32ψ̇)

which becomes

χ̈C(α,ψ) + α̈M(α,ψ) + ψ̈P(α,ψ) + α̇χ̇p̃(α,ψ) + ψ̇χ̇q̃(α,ψ)+
+ α̇2r̃(α,ψ) + α̇ψ̇s̃(α,ψ) + ψ̇2ũ(α,ψ) = 0,

(4.7)
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where

p̃(α,ψ) = −M(R+ r cosα)r sinα+ m̂(α,ψ)b(α,ψ)∂m̂(α,ψ)
∂α

+

+ m̂2(α,ψ)∂b(α,ψ)
∂α

+ F ĝ(α,ψ)∂ĝ(α,ψ)
∂α

+ m̂(α,ψ)
∂α

n(α)+

+ 2m̂(α,ψ)∂n(α)
∂α

+ ∂m̂(α,ψ)
∂α

ĝ(α,ψ)p(α,ψ) + m̂(α,ψ)∂ĝ(α,ψ)
∂α

p(α,ψ)+

+ 2m̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂α

+ ∂m̂(α,ψ)
∂α

(R+ r cosα)u(α,ψ)+

− m̂(α,ψ)r sinαu(α,ψ) + 2m̂(α,ψ)(R+ r cosα)∂u(α,ψ)
∂α

+

− (u(α,ψ)m̂(α,ψ) +M(R+ r cosα)m̂(α,ψ)r,

q̃(α,ψ) = m̂(α,ψ)b(α,ψ)∂m̂(α,ψ)
∂ψ

+ m̂2(α,ψ)∂b(α,ψ)
∂ψ

+ F ĝ(α,ψ)∂ĝ(α,ψ)
∂ψ

+

+ ∂m̂(α,ψ)
∂ψ

n(α) + ∂m̂(α,ψ)
∂ψ

ĝ(α,ψ)p(α,ψ) + m̂(α,ψ)∂ĝ(α,ψ)
∂ψ

p(α,ψ)+

+ 2m̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂ψ

+ ∂m̂(α,ψ)
∂ψ

(R+ r cosα)u(α,ψ)+

+ 2m̂(α,ψ)(R+ r cosα)∂u(α,ψ)
∂ψ

− q(ψ)m̂(α,ψ)p̂(α,ψ)(R+ r cosα),

r̃(α,ψ) = F ĝ(α,ψ)∂ĥ(α,ψ)
∂α

+ m̂(α,ψ)∂g(α,ψ)
∂α

+ ĝ(α,ψ)∂k(α,ψ)
∂α

+

+ m̂(α,ψ)∂ĥ(α,ψ)
∂α

p(α,ψ) + m̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂α

,

s̃(α,ψ) = F ĝ(α,ψ)∂ĥ(α,ψ)
∂ψ

+ m̂(α,ψ)∂g(α,ψ)
∂ψ

+ ĝ(α,ψ)∂k(α,ψ)
∂ψ

+

+ m̂(α,ψ)∂ĥ(α,ψ)
∂ψ

p(α,ψ) + m̂(α,ψ)ĥ(α,ψ)∂p(α,ψ)
∂ψ

+ rm̂(α,ψ)∂q(ψ)
∂ψ

+

+ m̂(α,ψ)∂p̂(α,ψ)
∂α

b(α,ψ) + m̂(α,ψ)p̂(α,ψ)∂b(α,ψ)
∂α

+ F ĝ(α,ψ)∂l̂(α,ψ)
∂α

+

+ m̂(α,ψ)∂l(α,ψ)
∂α

+ ĝ(α,ψ)∂m(α,ψ)
∂α

+ ∂p̂(α,ψ)
∂α

n(α) + p̂(α,ψ)∂n(α)
∂α

+

+ m̂(α,ψ)∂l̂(α,ψ)
∂α

p(α,ψ) + m̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂α

+

+ ∂p̂(α,ψ)
∂α

ĝ(α,ψ)p(α,ψ) + p̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂α

+

+ (R+ r cosα)
(
∂p̂(α,ψ)
∂α

u(α,ψ) + p̂(α,ψ)∂u(α,ψ)
∂α

)
+

− (z(ψ) + u(α,ψ)p̂(α,ψ))m̂(α,ψ)r+
− (r(α,ψ) +Mr)p̂(α,ψ)(R+ r cosα),

ũ(α,ψ) = m̂(α,ψ)∂p̂(α,ψ)
∂ψ

b(α,ψ) + m̂(α,ψ)p̂(α,ψ)∂b(α,ψ)
∂ψ

+ F ĝ(α,ψ)∂l̂(α,ψ)
∂ψ

+

+ m̂(α,ψ)∂l(α,ψ)
∂ψ

+ ĝ(α,ψ)∂m(α,ψ)
∂ψ

+ ∂p̂(α,ψ)
∂ψ

n(α)+

+ m̂(α,ψ)∂l̂(α,ψ)
∂ψ

p(α,ψ) + m̂(α,ψ)l̂(α,ψ)∂p(α,ψ)
∂ψ

+
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+ ∂p̂(α,ψ)
∂ψ

ĝ(α,ψ)p(α,ψ) + p̂(α,ψ)ĝ(α,ψ)∂p(α,ψ)
∂ψ

+

+ (R+ r cosα)
(
∂p̂(α,ψ)
∂ψ

u(α,ψ) + p̂(α,ψ)∂u(α,ψ)
∂ψ

)
+

+ (R+ r cosα)∂z(ψ)
∂ψ

− (s(α,ψ)+

+ q(ψ)p̂(α,ψ))p̂(α,ψ)(R+ r cosα).

4.3 Particular solutions
After having written explicitly the equations of motion, we consider two classes of particular
solutions which can be written in closed form. Furthermore, special solutions are the
starting point for studying the stability of a system as well as they are a good source of
computational example.

First of all, we consider the trivial rectilinear motion of the system with constant
velocity, which is obtained by choosing

α(t) = 0,
ψ(t) = 0,
χ(t) = χ0t.

Consequently, equation (4.7) is clearly satisfied, whist equations (4.5) and (4.6) become

χ2
0f̃(0, 0) = ∂U(α,ψ)

∂α

∣∣∣∣
(0,0)

and
χ2

0ñ(0, 0) = ∂U(α,ψ)
∂ψ

∣∣∣∣
(0,0)

,

respectively. Then, it is easy to check that f̃(0, 0) = ñ(0, 0) = 0, as well as

∂U(α,ψ)
∂α

∣∣∣∣
(0,0)

= ∂U(α,ψ)
∂ψ

∣∣∣∣
(0,0)

= 0,

hence all the equations of motion are satisfied and we have a solution for the system.
Now, using the nonholonomic constraints, we can also determine how the other generalised
coordinates evolve in time. First of all, we note that the only term different from zero in
relation (3.15) is

ĝ(0, 0) = R+ r

r
,

therefore
χ̇f = R+ r

r
χ0.

Furthermore, being α and ψ equal to zero, equation (3.16) becomes

θ̇ = 0 =⇒ θ(t) = θ0.

Finally, constraints (3.9) for the rear contact point are{
ẋ = (R+ r)χ0 cos θ0,
ẏ = (R+ r)χ0 sin θ0,
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that is, the trajectory is linear in time and the direction of the motion depends on the
initial value θ0.

The second class of solutions is given by circular motions, which are a generalisation of
the rectilinear motion presented above. In particular, we now choose a solution to be

α(t) = α0,

ψ(t) = ψ0,

χ(t) = χ0t,

where α0, ψ0 and χ0 are constants. Although equation (4.7) is still satisfied, equations (4.5)
and (4.6) become

χ2
0f̃(α0, ψ0) = ∂U(α,ψ)

∂α

∣∣∣∣
(α0,ψ0)

(4.8)

and
χ2

0ñ(α0, ψ0) = ∂U(α,ψ)
∂ψ

∣∣∣∣
(α0,ψ0)

, (4.9)

where the equality does not hold in general. Therefore, fixed either α0, ψ0 or χ0, we need to
solve these two nonlinear equations together to determine the remaining constants. Then,
from the nonholonomic constraints, we get

χ̇f = χ0ĝ0

and
θ̇ = χ0m̂0 =⇒ θ(t) = (χ0m̂0)t = θ0t,

where
ĝ0 = ĝ(α0, ψ0)

and
m̂0 = m̂(α0, ψ0).

Furthermore, constraints (3.9) become{
ẋ = (R+ r cosα0)χ0 cos θ0t,
ẏ = (R+ r cosα0)χ0 sin θ0t,

and integrating with respect to time, we have
x(t) = 1

θ0
(R+ r cosα0)χ0 sin θ0t,

y(t) = − 1
θ0

(R+ r cosα0)χ0 cos θ0t.

For instance, let us consider a CPA bicycle defined by the geometric parameters in Table 4.1,
where the parameters not listed are equal to zero. Then, fixed χ0 = 65 rad s−1 and solving
equations (4.8) and (4.9), we find that the system describes a circular motion if

α0 ' 0.380 725 rad

and
ψ0 ' 0.199 096 rad.

In Figure 4.1 it is shown the trajectory described by the rear contact point on the ground
plane. The initial position of the contact point coincides with the axis origin, and the
initial yaw angle θ(0) is set to zero.
Remark 4.1. As stated before, we note that the rectilinear motion is a particular case of
the circular one whenever α0 = 0 and ψ0 = 0.
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Figure 4.1: Circular trajectory of the CPA bicycle on the ground plane.

Table 4.1: Geometric parameter values for the example CPA bicycle.

Symbol Meaning Value

w wheelbase 0.750m

λ caster angle 20◦

r rear wheel crown radius 0.01m

R rear wheel major radius 0.05m

m1 rear wheel mass 0.35 kg

(x2, z2) position of rear frame centre of mass (0.5044m, 0.4279m)

m2 rear frame mass 6.425 kg

I2xx rear frame moments of inertia 0.064 60 kgm2

I2yy 2.592 62 kgm2

I2zz 2.546 42 kgm2

I2xz 0.231 02 kgm2

m3 front frame mass 2.412 kg

(x3, z3) position of rear frame centre of mass (0.7338m, 0.3022m)

I3xx front frame moments of inertia 0.037 97 kgm2

I3yy 0.038 07 kgm2

I3zz 0.001 85 kgm2

I3xz −0.003 93 kgm2

m4 front wheel mass 0.3 kg
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Chapter 5

Numerical solutions and stability
analysis

In the last section of the previous chapter, we determined two classes of particular solutions
for the CPA dynamics which can be expressed in closed form. However, due to their
complexity, in general we need to numerically integrate the equations of motion. All the
numerical solution presented in this chapter will be evaluated by considering the CPA
bicycle characterised by the parameters in Table 4.1. The coefficient of viscous friction µ
is assumed equal to zero.

5.1 Numerical integration of equations of motion

In order to integrate the equations of motion derived before, we consider a particular
solution, that is, either rectilinear or circular motion, and perturb the initial conditions.

For example, we can consider a circular motion for χ0 = 70 rad s−1, and after having
solved the two algebraic equations (4.8) and (4.9), we approximate the other two angle
as α0 = 0.2928 rad and ψ0 = 0.1299 rad. As shown in Figure 5.1, we note that the roll and
the steering angles are initially constant, that is, the system describes a circular path; then,
due to the perturbation, the solutions oscillate around the rectilinear stable motion. In
Figure 5.2, the path of the rear contact point on the ground clarifies this situation.

Figure 5.1: Evolution of roll angle (purple) and steering angle (red).

Let us now consider the rectilinear motion of the system with perturbed initial condition.
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Figure 5.2: Position of the rear contact point.

First of all, we consider the initial conditions

α(0) = 10◦,
ψ(0) = −5◦,
χ̇(0) = 70 rad s−1.

In this case, the system is asymptotically stable, as shown in Figure 5.3, and the trajectory
described by the rear contact point tends to be rectilinear after a certain time, as illustrated
in Figure 5.4.

Figure 5.3: Evolution of roll angle (purple) and steering angle (red).

However, this asymptotically stable behaviour of the solution depends on the initial
condition. For instance, if we reduce the initial angular velocity of the rear wheel, that
is, χ̇(0) = 65 rad s−1, the CPA bicycle has a limit cycle, as shown in Figure 5.5, where is
represented the phase space of the roll angle.

If the initial angular velocity χ̇(0) is further reduced, the system becomes unstable
and the bicycle hits the ground in finite time. We note that the case of the limit cycle is
possible only if the system has no friction, that is, µ = 0.

5.2 Considerations about the stability and conclusions
As we have seen above, the bicycle can be either asymptotically stable, simple stable or
unstable. These stability conditions depends on the geometric parameters of the system as
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Figure 5.4: Position of the rear contact point.

Figure 5.5: Roll angle phase space.

well as on the initial conditions. For instance, the example proposed before shows that,
fixed the initial values of roll and steering angles, the system is initially unstable, then
becomes simple stable increasing the initial angular velocity, and finally asymptotically
stable. However, if this velocity is further increased, the system becomes unstable again.

In the future, we want to study the stability of the CPA bicycle by considering the
dependence on the the geometric parameters. In this case, it is necessary a parametric
study of the equations of motion.
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Appendix A

Code

Listing A.1: Example code
1 Az := {{Cos[\[Theta][t ]], Sin [\[Theta][t ]], 0}, {−Sin[\[Theta][t ]], Cos[\[Theta][t ]], 0}, {0, 0, 1}}
2 Ax1 := {{1, 0, 0}, {0, Cos[\[Alpha][ t ]], −Sin[\[Alpha][t ]]}, {0, Sin [\[Alpha][ t ]], Cos[\[Alpha][ t ]]}}
3 Ay1 := {{Cos[\[Chi][t ]], 0, −Sin[\[Chi][ t ]]}, {0, 1, 0}, {Sin [\[Chi ][ t ]], 0, Cos[\[Chi ][ t ]]}}
4 Aym := {{Cos[\[Phi]], 0, Sin [\[Phi ]]}, {0, 1, 0}, {−Sin[\[Phi ]], 0, Cos[\[Phi]]}}
5 Aye := {{Cos[\[Lambda]], 0, Sin [\[Lambda]]}, {0, 1, 0}, {−Sin[\[Lambda]], 0, Cos[\[Lambda]]}}
6 Az2 := {{Cos[\[Psi][ t ]], Sin [\[ Psi ][ t ]], 0}, {−Sin[\[Psi ][ t ]], Cos[\[Psi ][ t ]], 0}, {0, 0, 1}}
7 Ay2 := {{Cos[\[Chi]a[t ]], 0, −Sin[\[Chi]a[ t ]]}, {0, 1, 0}, {Sin [\[Chi]a[ t ]], 0, Cos[\[Chi]a[ t ]]}}
8

9 R1 := Ax1.Az
10 R1r := Ay1.Ax1.Az
11 R2 := Aym.Ax1.Az
12 R3 := Aye.Ax1.Az
13 R4 := Az2.Aye.Ax1.Az
14 R4r := Ay2.Az2.Aye.Ax1.Az
15

16 i1 [t_] := Inverse[R1].{1, 0, 0}
17 j1 [t_] := Inverse[R1].{0, 1, 0}
18 k1[t_] := Inverse[R1].{0, 0, 1}
19 i1r [t_] := Inverse[R1r ].{1, 0, 0}
20 j1r [t_] := Inverse[R1r ].{0, 1, 0}
21 k1r[t_] := Inverse[R1r ].{0, 0, 1}
22 i2 [t_] := Inverse[R2].{1, 0, 0}
23 j2 [t_] := Inverse[R2].{0, 1, 0}
24 k2[t_] := Inverse[R2].{0, 0, 1}
25 i3 [t_] := Inverse[R3].{1, 0, 0}
26 j3 [t_] := Inverse[R3].{0, 1, 0}
27 k3[t_] := Inverse[R3].{0, 0, 1}
28 i4 [t_] := Inverse[R4].{1, 0, 0}
29 j4 [t_] := Inverse[R4].{0, 1, 0}
30 k4[t_] := Inverse[R4].{0, 0, 1}
31 i4r [t_] := Inverse[R4r ].{1, 0, 0}
32 j4r [t_] := Inverse[R4r ].{0, 1, 0}
33 k4r[t_] := Inverse[R4r ].{0, 0, 1}
34

35

36 Angular velocities definition
37

38 \[Omega]1[t] = Simplify[{D[j1[t ], t ]. k1[t ], D[k1[t ], t ]. i1 [ t ], D[i1[ t ], t ]. j1 [ t ]}];
39 \[Omega]1r[t] = Simplify[{D[j1r[ t ], t ]. k1r[ t ], D[k1r[t ], t ]. i1r [ t ], D[i1r [ t ], t ]. j1r [ t ]}];
40 \[Omega]2[t] = Simplify[{D[j2[t ], t ]. k2[t ], D[k2[t ], t ]. i2 [ t ], D[i2[ t ], t ]. j2 [ t ]}];
41 \[Omega]4[t] = Simplify[{D[j4[t ], t ]. k4[t ], D[k4[t ], t ]. i4 [ t ], D[i4[ t ], t ]. j4 [ t ]}];
42 \[Omega]4r[t] = {D[j4r[t ], t ]. k4r[ t ], D[k4r[t ], t ]. i4r [ t ], D[i4r [ t ], t ]. j4r [ t ]};
43
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44

45 Auxiliary angles definition
46

47 senat [t_] := Cos[\[Alpha][t ]] Sin [\[Lambda]] Sin[\[Psi ][ t ]] + Sin [\[Alpha][ t ]] Cos[\[Psi ][ t ]]
48 cosat [t_] := Sqrt[1 − senat[t ]^2]
49 dota[t_] := D[senat[t ], t ]/Sqrt[1 − senat[t ]^2]
50 sentt [t_] := (Cos[\[Theta][t ]] Cos[\[Lambda]] Sin[\[Psi ][ t ]] + Sin[\[Theta][t ]] (Cos[\[Alpha][ t ]] Cos

[\[Psi ][ t ]] − Sin[\[Alpha][ t ]] Sin [\[Lambda]] Sin[\[Psi ][ t ]]) )/Sqrt[1 − senat[t ]^2]
51 costt [t_] := (−Cos[\[Lambda]] Sin[\[Theta][t]] Sin [\[ Psi ][ t ]] + Cos[\[Theta][t ]] (Cos[\[Alpha][ t ]]

Cos[\[Psi ][ t ]] − Sin[\[Alpha][ t ]] Sin [\[Lambda]] Sin[\[Psi ][ t ]]) )/Sqrt[1 − senat[t ]^2]
52 dottt [t_] := D[sentt[ t ], t ]/ costt [ t ]
53

54

55 Front wheel angular velocities defined by means of auxiliary angles
56

57 omegat[t_] := {−dota[t], −dottt[t ] senat [ t ], dottt [ t ] cosat [ t ]}
58 omegatr[t_] := {−dota[t] Cos[\[Chi]a[ t ]] + dottt[t ] cosat [ t ] Sin [\[Chi]a[ t ]], \[Chi]a ’[ t ] − dottt[t ]

senat [ t ], dottt [ t ] cosat [ t ] Cos[\[Chi]a[ t ]] − dota[t] Sin [\[Chi]a[ t ]]}
59

60

61 Front contact point coordinates
62

63 zeta [t_] := x[t ] + w Cos[\[Theta][t]]
64 doppiav[t_] := y[t ] + w Sin[\[Theta][t ]]
65

66

67 Rear wheel kinetic energy
68

69 g1[t_] = Simplify[Inverse [R1 ]].{0, 0, Rp} + {0, 0, rp};
70 v1[t_] := {x’[ t ], y ’[ t ], 0} + D[g1[t], t ]
71 sigma1 := {{Ix1, 0, 0}, {0, Iy1 , 0}, {0, 0, Ix1}}
72 K1[t_] = Simplify[
73 Expand[1/2 m1 v1[t].v1[t] + 1/2 \[Omega]1r[t].(sigma1.\[Omega]1r[t]) ]];
74

75

76 Rear frame kinetic energy
77

78 g2[t_] := Simplify [Inverse [R2]].{ l2 , d2, 0}
79 v2[t_] := D[g2[t ], t ] + v1[t]
80 sigma2 := {{Ixx2, Ixy2 , Ixz2}, {Ixy2, Iyy2 , Izy2}, {Ixz2 , Izy2 , Izz2}}
81 K2[t_] = 1/2 m2 v2[t].v2[t ] + 1/2 \[Omega]2[t].(sigma2.\[Omega]2[t]);
82

83

84 Front frame kinetic energy
85

86 g3[t_] := Simplify [Inverse [R4]].{ l3 , d3, h3}
87 v3[t_] := v1[t ] + D[Simplify[Inverse[R3]].{w Cos[\[Lambda]], 0, 0}, t ] +
88 D[g3[t ], t ]
89 sigma3 := {{Ix3, Ixy3 , Ixz3}, {Ixy3, Iy3 , Izy3}, {Ixz3 , Izy3 , Iz3}}
90 K3[t_] = 1/2 m3 v3[t].v3[t ] + 1/2 \[Omega]4[t].(sigma3.\[Omega]4[t]);
91

92

93 Front wheel kinetic energy
94

95 K4[t_] = 1/2 m4 (xf’[t]^2 + yf ’[ t]^2 ) +
96 1/2 I4 (dota[t]^2 + dottt[t]^2 + \[Chi]a ’[ t]^2 −
97 2 \[Chi]a ’[ t ] dottt [ t ] senat [ t ]) ;
98

99

100 Potentials
101
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102 U1[t_] := − m1 grav (rp + Rp Cos[\[Alpha][t]] )
103 U2[t_] := −
104 m2 grav (rp + Rp Cos[\[Alpha][t]] + l2 Cos[\[Alpha][ t ]] Sin [\[Phi ]] −
105 d2 Sin [\[Alpha][ t ]])
106 U3[t_] := −
107 m3 grav (rp + Rp Cos[\[Alpha][t]] +
108 w Cos[\[Lambda]] Cos[\[Alpha][t ]] Sin [\[Lambda]] +
109 h3 Cos[\[Lambda]] Cos[\[Alpha][t ]] +
110 l3 (Cos[\[Alpha][ t ]] Sin [\[Lambda]] Cos[\[Psi][ t ]] −
111 Sin [\[Alpha][ t ]] Sin [\[ Psi ][ t ]]) −
112 d3 (Cos[\[Alpha][ t ]] Sin [\[Lambda]] Sin[\[Psi ][ t ]] +
113 Sin [\[Alpha][ t ]] Cos[\[Psi ][ t ]]) )
114 U4[t_] := − m4 grav (rp)
115

116 Utot[t_] = U1[t] + U2[t] + U3[t] + U4[t];
117

118

119 Ktot[t_] = (K1[t] + K2[t] + K3[t] + K4[t]);
120

121

122 Definition of nonlinear FUNCTIONS
123

124 M = D[D[Ktot[t], x’[t ], x ’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
125 a [\[Alpha][ t ], \[Psi ][ t ]] =
126 D[D[Ktot[t], \[Alpha ]’[ t ], \[Alpha ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
127 0};
128 bb[\[Alpha][ t ], \[Psi ][ t ]] =
129 D[D[Ktot[t], \[Theta ]’[ t ], \[Theta ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
130 0};
131 dd[\[Alpha][ t ], \[Psi ][ t ]] =
132 D[D[Ktot[t], \[Psi ]’[ t ], \[Psi ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
133 EE = D[D[Ktot[t], \[Chi ]’[ t ], \[Chi ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
134 0};
135 F = D[D[Ktot[t], \[Chi]a ’[ t ], \[Chi]a ’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
136 0};
137 g[\[Alpha][ t ], \[Psi ][ t ]] =
138 D[D[Ktot[t], \[Theta ]’[ t ], \[Alpha ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
139 0};
140 h[\[Alpha][ t ], \[Psi ][ t ]] =
141 D[D[Ktot[t], \[Psi ]’[ t ], \[Alpha ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
142 0};
143 k[\[Alpha][ t ], \[Psi ][ t ]] =
144 D[D[Ktot[t], \[Chi]a ’[ t ], \[Alpha ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
145 0};
146 ll [\[Alpha][ t ], \[Psi ][ t ]] =
147 D[D[Ktot[t], \[Psi ]’[ t ], \[Theta ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
148 0};
149 m[\[Alpha][t ], \[Psi ][ t ]] =
150 D[D[Ktot[t], \[Psi ]’[ t ], \[Chi]a ’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
151 n[\[Alpha][ t ]] =
152 D[D[Ktot[t], \[Theta ]’[ t ], \[Chi ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
153 0};
154 p[\[Alpha][ t ], \[Psi ][ t ]] =
155 D[D[Ktot[t], \[Theta ]’[ t ], \[Chi]a ’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −>
156 0};
157 q[\[Psi ][ t ]] =
158 D[D[Ktot[t], y ’[ t ], \[Theta ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
159 r [\[Alpha][ t ], \[Psi ][ t ]] =
160 D[D[Ktot[t], y ’[ t ], \[Alpha ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
161 s [\[Alpha][ t ], \[Psi ][ t ]] =
162 D[D[Ktot[t], y ’[ t ], \[Psi ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
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163 u[\[Alpha][ t ], \[Psi ][ t ]] =
164 D[D[Ktot[t], x ’[ t ], \[Theta ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
165 z [\[ Psi ][ t ]] =
166 D[D[Ktot[t], x ’[ t ], \[Psi ]’[ t ]]] /. {\[Theta][t ] −> 0, \[Chi][t ] −> 0};
167

168

169 ac [\[Alpha][ t ], \[Psi ][
170 t ]] = −w Sin[\[Lambda]] Sin[\[Alpha][t]] Sin [\[ Psi ][ t ]] +
171 w Cos[\[Alpha][t ]] Cos[\[Psi ][ t ]];
172 cc [\[Alpha][ t ], \[Psi ][ t ]] =
173 rp (Cos[\[Alpha][ t ]] Sin [\[Lambda]] Cos[\[Psi][ t ]] −
174 Sin [\[Alpha][ t ]] Sin [\[ Psi ][ t ]]) ;
175 mc[\[Alpha][t ], \[Psi ][ t ]] =
176 1/ac[\[Alpha][ t ], \[Psi ][ t ]] (Rp +
177 rp Cos[\[Alpha][ t ]]) Cos[\[Lambda]] Sin[\[Psi ][ t ]];
178 pc[\[Alpha][ t ], \[Psi ][ t ]] = cc[\[Alpha][ t ], \[Psi ][ t ]]/
179 ac [\[Alpha][ t ], \[Psi ][ t ]];
180

181 dc[\[Alpha][ t ], \[Psi ][
182 t ]] = (Rp + rp Cos[\[Alpha][t ]]) (Cos[\[Alpha][ t ]] Cos[\[Psi ][ t ]] −
183 Sin [\[Alpha][ t ]] Sin [\[Lambda]] Sin[\[Psi ][ t ]]) ;
184 ec [\[Alpha][ t ], \[Psi ][ t ]] = rp Cos[\[Lambda]] Sin[\[Psi ][ t ]] cosat [ t ]^2;
185 gc[\[Alpha][ t ], \[Psi ][ t ]] =
186 1/(rp cosat [ t]^2) (dc[\[Alpha][ t ], \[Psi ][ t ]] +
187 w mc[\[Alpha][t ], \[Psi ][ t ]] Cos[\[Lambda]] Sin[ \[Psi ][ t ]]) ;
188 hc[\[Alpha][ t ], \[Psi ][ t ]] = 1/ cosat[t]^2 Cos[\[Lambda]] Sin[\[Psi ][ t ]];
189 lc [\[Alpha][ t ], \[Psi ][ t ]] = (w Cos[\[Lambda]] Sin[ \[Psi ][ t ]]) /(
190 ac [\[Alpha][ t ], \[Psi ][ t ]] cosat [
191 t]^2) (Cos[\[Alpha][ t ]] Sin [\[Lambda]] Cos[\[Psi][ t ]] −
192 Sin [\[Alpha][ t ]] Sin [\[ Psi ][ t ]]) ;
193

194

195 Acors [\[Alpha][ t ], \[Psi ][ t ]] =
196 M rp^2 + a[\[Alpha][t ], \[Psi ][ t ]] + F hc[\[Alpha][ t ], \[Psi ][ t ]]^2 +
197 2 hc[\[Alpha][ t ], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
198 2 rp r [\[Alpha][ t ], \[Psi ][ t ]];
199 Ccors [\[Alpha][ t ], \[Psi ][ t ]] =
200 M (Rp + rp Cos[\[Alpha][t]])^2 +
201 mc[\[Alpha][t ], \[Psi ][ t ]]^2 bb[\[Alpha][ t ], \[Psi ][ t ]] + EE +
202 F gc[\[Alpha][ t ], \[Psi ][ t ]]^2 +
203 2 mc[\[Alpha][t ], \[Psi ][ t ]] (n[\[Alpha][ t ]] +
204 gc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]] + (Rp +
205 rp Cos[\[Alpha][ t ]]) u[\[Alpha][ t ], \[Psi ][ t ]]) ;
206 Ecors [\[Alpha][ t ], \[Psi ][ t ]] =
207 dd[\[Alpha][ t ], \[Psi ][ t ]] +
208 pc[\[Alpha][ t ], \[Psi ][ t ]]^2 bb[\[Alpha][ t ], \[Psi ][ t ]] +
209 F lc [\[Alpha][ t ], \[Psi ][ t ]]^2 +
210 2 pc[\[Alpha][ t ], \[Psi ][ t ]] ll [\[Alpha][ t ], \[Psi ][ t ]] +
211 2 lc [\[Alpha][ t ], \[Psi ][ t ]] (m[\[Alpha][t ], \[Psi ][ t ]] +
212 pc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) ;
213 Gcors [\[Alpha][ t ], \[Psi ][ t ]] =
214 F hc[\[Alpha][ t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] +
215 pc[\[Alpha][ t ], \[Psi ][ t ]] g [\[Alpha][ t ], \[Psi ][ t ]] +
216 h[\[Alpha][ t ], \[Psi ][ t ]] +
217 lc [\[Alpha][ t ], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
218 hc[\[Alpha][ t ], \[Psi ][ t ]] m[\[Alpha][t ], \[Psi ][ t ]] +
219 pc[\[Alpha][ t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
220 t ], \[Psi ][ t ]] + rp pc[\[Alpha][ t ], \[Psi ][ t ]] q[\[Psi ][ t ]] +
221 rp s [\[Alpha][ t ], \[Psi ][ t ]];
222 Mcors[\[Alpha][ t ], \[Psi ][ t ]] =
223 F gc[\[Alpha][ t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] +
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224 mc[\[Alpha][t ], \[Psi ][ t ]] g [\[Alpha][ t ], \[Psi ][ t ]] +
225 gc[\[Alpha][ t ], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
226 mc[\[Alpha][t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
227 t ], \[Psi ][ t ]] + rp mc[\[Alpha][t ], \[Psi ][ t ]] q[\[Psi ][ t ]];
228 Pcors [\[Alpha][ t ], \[Psi ][ t ]] =
229 mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] bb[\[Alpha][
230 t ], \[Psi ][ t ]] +
231 F gc[\[Alpha][ t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] +
232 mc[\[Alpha][t ], \[Psi ][ t ]] ll [\[Alpha][ t ], \[Psi ][ t ]] +
233 gc[\[Alpha][ t ], \[Psi ][ t ]] m[\[Alpha][t ], \[Psi ][ t ]] +
234 pc[\[Alpha][ t ], \[Psi ][ t ]] n[\[Alpha][ t ]] +
235 mc[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
236 t ], \[Psi ][ t ]] +
237 pc[\[Alpha][ t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
238 t ], \[Psi ][ t ]] + (Rp +
239 rp Cos[\[Alpha][ t ]]) (pc[\[Alpha][ t ], \[Psi ][ t ]] u[\[Alpha][ t ], \[Psi ][
240 t ]] + z[\[Psi ][ t ]]) ;
241

242

243 DaDa[\[Alpha][t ], \[Psi ][ t ]] = D[a[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
244 DaDp[\[Alpha][t ], \[Psi ][ t ]] = D[a[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
245 DbDa[\[Alpha][t ], \[Psi ][ t ]] = D[bb[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
246 DbDp[\[Alpha][t], \[Psi ][ t ]] = D[bb[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
247 DdDa[\[Alpha][t ], \[Psi ][ t ]] = D[dd[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
248 DdDp[\[Alpha][t], \[Psi ][ t ]] = D[dd[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
249 DgDa[\[Alpha][t ], \[Psi ][ t ]] = D[g[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
250 DgDp[\[Alpha][t], \[Psi ][ t ]] = D[g[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
251 DhDa[\[Alpha][t ], \[Psi ][ t ]] = D[h[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
252 DhDp[\[Alpha][t], \[Psi ][ t ]] = D[h[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
253 DkDa[\[Alpha][t ], \[Psi ][ t ]] = D[k[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
254 DkDp[\[Alpha][t], \[Psi ][ t ]] = D[k[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
255 DlDa[\[Alpha][t ], \[Psi ][ t ]] = D[ll [\[Alpha][ t ], \[Psi ][ t ]], \[Alpha][ t ]];
256 DlDp[\[Alpha][t ], \[Psi ][ t ]] = D[ll [\[Alpha][ t ], \[Psi ][ t ]], \[Psi ][ t ]];
257 DmDa[\[Alpha][t], \[Psi ][ t ]] = D[m[\[Alpha][t], \[Psi ][ t ]], \[Alpha][ t ]];
258 DmDp[\[Alpha][t], \[Psi ][ t ]] = D[m[\[Alpha][t], \[Psi ][ t ]], \[Psi ][ t ]];
259 DnDa[\[Alpha][t]] = D[n[\[Alpha][t ]], \[Alpha][ t ]];
260 DpDa[\[Alpha][t ], \[Psi ][ t ]] = D[p[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
261 DpDp[\[Alpha][t], \[Psi ][ t ]] = D[p[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
262 DqDp[\[Psi][t ]] = D[q[\[Psi ][ t ]], \[Psi ][ t ]];
263 DrDa[\[Alpha][t ], \[Psi ][ t ]] = D[r[\[Alpha][ t ], \[Psi ][ t ]], \[Alpha][ t ]];
264 DrDp[\[Alpha][t ], \[Psi ][ t ]] = D[r[\[Alpha][ t ], \[Psi ][ t ]], \[Psi ][ t ]];
265 DsDa[\[Alpha][t ], \[Psi ][ t ]] = D[s[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
266 DsDp[\[Alpha][t ], \[Psi ][ t ]] = D[s[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
267 DuDa[\[Alpha][t ], \[Psi ][ t ]] = D[u[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
268 DuDp[\[Alpha][t], \[Psi ][ t ]] = D[u[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
269 DzDp[\[Psi][t ]] = D[z[\[Psi ][ t ]], \[Psi ][ t ]];
270 DgcDa[\[Alpha][t ], \[Psi ][ t ]] = D[gc[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
271 DgcDp[\[Alpha][t], \[Psi ][ t ]] = D[gc[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
272 DhcDa[\[Alpha][t ], \[Psi ][ t ]] = D[hc[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
273 DhcDp[\[Alpha][t], \[Psi ][ t ]] = D[hc[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
274 DlcDa[\[Alpha][t ], \[Psi ][ t ]] = D[lc[\[Alpha][ t ], \[Psi ][ t ]], \[Alpha][ t ]];
275 DlcDp[\[Alpha][t ], \[Psi ][ t ]] = D[lc[\[Alpha][ t ], \[Psi ][ t ]], \[Psi ][ t ]];
276 DmcDa[\[Alpha][t], \[Psi ][ t ]] = D[mc[\[Alpha][t], \[Psi ][ t ]], \[Alpha][ t ]];
277 DmcDp[\[Alpha][t], \[Psi ][ t ]] = D[mc[\[Alpha][t], \[Psi ][ t ]], \[Psi ][ t ]];
278 DpcDa[\[Alpha][t], \[Psi ][ t ]] = D[pc[\[Alpha][t ], \[Psi ][ t ]], \[Alpha][ t ]];
279 DpcDp[\[Alpha][t], \[Psi ][ t ]] = D[pc[\[Alpha][t ], \[Psi ][ t ]], \[Psi ][ t ]];
280 DAcorsDa[\[Alpha][t ], \[Psi ][ t ]] =
281 D[Acors[\[Alpha][ t ], \[Psi ][ t ]], \[Alpha][ t ]];
282 DEcorsDp[\[Alpha][t ], \[Psi ][ t ]] =
283 D[Ecors[\[Alpha][ t ], \[Psi ][ t ]], \[Psi ][ t ]];
284
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285

286 atilde [\[Alpha][ t ], \[Psi ][
287 t ]] := (k [\[Alpha][ t ], \[Psi ][ t ]] +
288 F hc[\[Alpha][ t ], \[Psi ][ t ]]) DgcDa[\[Alpha][t ], \[Psi ][
289 t ]] + (rp q[\[Psi ][ t ]] + g[\[Alpha][ t ], \[Psi ][ t ]] +
290 hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) DmcDa[\[Alpha][
291 t ], \[Psi ][ t ]]
292 btilde [\[Alpha][ t ], \[Psi ][
293 t ]] := (rp q[\[Psi ][ t ]] + g[\[Alpha][ t ], \[Psi ][ t ]] +
294 hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) DpcDa[\[Alpha][
295 t ], \[Psi ][ t ]] + (k[\[Alpha][ t ], \[Psi ][ t ]] +
296 F hc[\[Alpha][ t ], \[Psi ][ t ]]) DlcDa[\[Alpha][t ], \[Psi ][ t ]] +
297 DaDp[\[Alpha][t ], \[Psi ][ t ]] +
298 F hc[\[Alpha][ t ], \[Psi ][ t ]] DhcDp[\[Alpha][t], \[Psi ][ t ]] +
299 DhcDp[\[Alpha][t], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
300 2 hc[\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] +
301 2 rp DrDp[\[Alpha][t ], \[Psi ][ t ]]
302 dtilde [\[Alpha][ t ], \[Psi ][
303 t ]] := (z [\[ Psi ][ t ]] +
304 u[\[Alpha][ t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]]) pc[\[Alpha][
305 t ], \[Psi ][ t ]] rp +
306 F hc[\[Alpha][ t ], \[Psi ][ t ]] DlcDp[\[Alpha][t ], \[Psi ][ t ]] +
307 DpcDp[\[Alpha][t], \[Psi ][ t ]] g [\[Alpha][ t ], \[Psi ][ t ]] +
308 pc[\[Alpha][ t ], \[Psi ][ t ]] DgDp[\[Alpha][t], \[Psi ][ t ]] +
309 DhDp[\[Alpha][t], \[Psi ][ t ]] +
310 DlcDp[\[Alpha][t ], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
311 lc [\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] +
312 hc[\[Alpha][ t ], \[Psi ][ t ]] DmDp[\[Alpha][t], \[Psi ][ t ]] +
313 DpcDp[\[Alpha][t], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
314 t ], \[Psi ][ t ]] +
315 pc[\[Alpha][ t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
316 t ], \[Psi ][ t ]] + rp DpcDp[\[Alpha][t], \[Psi ][ t ]] q[\[Psi ][ t ]] +
317 rp pc[\[Alpha][ t ], \[Psi ][ t ]] DqDp[\[Psi][t ]] +
318 rp DsDp[\[Alpha][t ], \[Psi ][ t ]] − 1/2 DdDa[\[Alpha][t], \[Psi ][ t ]] −
319 1/2 pc[\[Alpha][ t ], \[Psi ][ t ]]^2 DbDa[\[Alpha][t ], \[Psi ][ t ]] −
320 pc[\[Alpha][ t ], \[Psi ][ t ]] DlDa[\[Alpha][t ], \[Psi ][ t ]] −
321 lc [\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] −
322 pc[\[Alpha][ t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
323 t ], \[Psi ][ t ]]
324 etilde [\[Alpha][ t ], \[Psi ][
325 t ]] := (u[\[Alpha][ t ], \[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] +
326 M (Rp + rp Cos[\[Alpha][t]]) ) pc[\[Alpha][ t ], \[Psi ][
327 t ]] rp + (z[\[Psi ][ t ]] +
328 u[\[Alpha][ t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] ) mc[\[Alpha][
329 t ], \[Psi ][ t ]] rp +
330 F DgcDp[\[Alpha][t], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] +
331 DmcDp[\[Alpha][t], \[Psi ][ t ]] g [\[Alpha][ t ], \[Psi ][ t ]] +
332 mc[\[Alpha][t ], \[Psi ][ t ]] DgDp[\[Alpha][t], \[Psi ][ t ]] +
333 DgcDp[\[Alpha][t], \[Psi ][ t ]] k [\[Alpha][ t ], \[Psi ][ t ]] +
334 gc[\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] +
335 DmcDp[\[Alpha][t], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
336 t ], \[Psi ][ t ]] +
337 mc[\[Alpha][t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
338 t ], \[Psi ][ t ]] + rp DmcDp[\[Alpha][t], \[Psi ][ t ]] q[\[Psi ][ t ]] +
339 rp mc[\[Alpha][t ], \[Psi ][ t ]] DqDp[\[Psi][t ]] −
340 mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] DbDa[\[Alpha][
341 t ], \[Psi ][ t ]] −
342 mc[\[Alpha][t ], \[Psi ][ t ]] DlDa[\[Alpha][t ], \[Psi ][ t ]] −
343 gc[\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] −
344 pc[\[Alpha][ t ], \[Psi ][ t ]] DnDa[\[Alpha][t]] −
345 mc[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
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346 t ], \[Psi ][ t ]] −
347 pc[\[Alpha][ t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
348 t ], \[Psi ][ t ]] − (Rp + rp Cos[\[Alpha][t ]]) pc[\[Alpha][ t ], \[Psi ][
349 t ]] DuDa[\[Alpha][t ], \[Psi ][ t ]]
350 ftilde [\[Alpha][ t ], \[Psi ][
351 t ]] := (u[\[Alpha][ t ], \[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] +
352 M (Rp + rp Cos[\[Alpha][t]]) ) mc[\[Alpha][t ], \[Psi ][ t ]] rp −
353 1/2 mc[\[Alpha][t ], \[Psi ][ t ]]^2 DbDa[\[Alpha][t ], \[Psi ][ t ]] −
354 mc[\[Alpha][t ], \[Psi ][ t ]] DnDa[\[Alpha][t]] −
355 mc[\[Alpha][t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
356 t ], \[Psi ][ t ]] −
357 mc[\[Alpha][t ], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) DuDa[\[Alpha][
358 t ], \[Psi ][ t ]]
359

360 gtilde [\[Alpha][ t ], \[Psi ][
361 t ]] := (s [\[Alpha][ t ], \[Psi ][ t ]] +
362 q[\[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]]) pc[\[Alpha][ t ], \[Psi ][
363 t ]] (Rp + rp Cos[\[Alpha][t ]]) + (m[\[Alpha][t ], \[Psi ][ t ]] +
364 F lc [\[Alpha][ t ], \[Psi ][ t ]] +
365 pc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) DgcDp[\[Alpha][
366 t ], \[Psi ][ t ]] + ( ll [\[Alpha][ t ], \[Psi ][ t ]] +
367 pc[\[Alpha][ t ], \[Psi ][ t ]] bb[\[Alpha][ t ], \[Psi ][ t ]] +
368 lc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) DmcDp[\[Alpha][
369 t ], \[Psi ][ t ]]
370 htilde [\[Alpha][ t ], \[Psi ][ t ]] :=
371 DdDa[\[Alpha][t ], \[Psi ][ t ]] +
372 pc[\[Alpha][ t ], \[Psi ][ t ]] bb[\[Alpha][ t ], \[Psi ][ t ]] DpcDa[\[Alpha][
373 t ], \[Psi ][ t ]] +
374 pc[\[Alpha][ t ], \[Psi ][ t ]]^2 DbDa[\[Alpha][t ], \[Psi ][ t ]] +
375 F lc [\[Alpha][ t ], \[Psi ][ t ]] DlcDa[\[Alpha][t ], \[Psi ][ t ]] +
376 DpcDa[\[Alpha][t], \[Psi ][ t ]] ll [\[Alpha][ t ], \[Psi ][ t ]] +
377 2 pc[\[Alpha][ t ], \[Psi ][ t ]] DlDa[\[Alpha][t ], \[Psi ][ t ]] +
378 DlcDa[\[Alpha][t ], \[Psi ][ t ]] m[\[Alpha][t ], \[Psi ][ t ]] +
379 2 lc [\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] +
380 DpcDa[\[Alpha][t], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
381 t ], \[Psi ][ t ]] +
382 pc[\[Alpha][ t ], \[Psi ][ t ]] DlcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
383 t ], \[Psi ][ t ]] +
384 2 pc[\[Alpha][ t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
385 t ], \[Psi ][ t ]] − (z[\[Psi ][ t ]] +
386 u[\[Alpha][ t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]]) pc[\[Alpha][
387 t ], \[Psi ][ t ]] rp + (m[\[Alpha][t ], \[Psi ][ t ]] +
388 F lc [\[Alpha][ t ], \[Psi ][ t ]] +
389 pc[\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][ t ], \[Psi ][ t ]]) DhcDp[\[Alpha][
390 t ], \[Psi ][ t ]]
391 ltilde [\[Alpha][ t ], \[Psi ][ t ]] :=
392 F DhcDa[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] +
393 pc[\[Alpha][ t ], \[Psi ][ t ]] DgDa[\[Alpha][t ], \[Psi ][ t ]] +
394 DhDa[\[Alpha][t ], \[Psi ][ t ]] +
395 lc [\[Alpha][ t ], \[Psi ][ t ]] DkDa[\[Alpha][t ], \[Psi ][ t ]] +
396 DhcDa[\[Alpha][t ], \[Psi ][ t ]] m[\[Alpha][t ], \[Psi ][ t ]] +
397 hc[\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] +
398 pc[\[Alpha][ t ], \[Psi ][ t ]] DhcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
399 t ], \[Psi ][ t ]] +
400 pc[\[Alpha][ t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
401 t ], \[Psi ][ t ]] + rp DsDa[\[Alpha][t ], \[Psi ][ t ]] −
402 1/2 DaDp[\[Alpha][t], \[Psi ][ t ]] −
403 hc[\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] −
404 rp DrDp[\[Alpha][t ], \[Psi ][ t ]]
405 mtilde [\[Alpha][ t ], \[Psi ][ t ]] :=
406 DmcDa[\[Alpha][t], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] bb[\[Alpha][
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407 t ], \[Psi ][ t ]] +
408 mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] DbDa[\[Alpha][
409 t ], \[Psi ][ t ]] +
410 F DgcDa[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] +
411 DmcDa[\[Alpha][t], \[Psi ][ t ]] ll [\[Alpha][ t ], \[Psi ][ t ]] +
412 mc[\[Alpha][t ], \[Psi ][ t ]] DlDa[\[Alpha][t ], \[Psi ][ t ]] +
413 DgcDa[\[Alpha][t ], \[Psi ][ t ]] m[\[Alpha][t ], \[Psi ][ t ]] +
414 gc[\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] +
415 pc[\[Alpha][ t ], \[Psi ][ t ]] DnDa[\[Alpha][t]] +
416 DmcDa[\[Alpha][t], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
417 t ], \[Psi ][ t ]] +
418 mc[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
419 t ], \[Psi ][ t ]] +
420 pc[\[Alpha][ t ], \[Psi ][ t ]] DgcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
421 t ], \[Psi ][ t ]] +
422 pc[\[Alpha][ t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
423 t ], \[Psi ][ t ]] −
424 rp Sin [\[Alpha][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] u[\[Alpha][ t ], \[Psi ][
425 t ]] + (Rp + rp Cos[\[Alpha][t ]]) pc[\[Alpha][ t ], \[Psi ][
426 t ]] DuDa[\[Alpha][t ], \[Psi ][ t ]] − rp Sin [\[Alpha][ t ]] z [\[ Psi ][ t ]] −
427 mc[\[Alpha][t ], \[Psi ][ t ]] DgDp[\[Alpha][t], \[Psi ][ t ]] −
428 gc[\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] −
429 mc[\[Alpha][t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
430 t ], \[Psi ][ t ]] −
431 rp mc[\[Alpha][t ], \[Psi ][ t ]] DqDp[\[Psi][
432 t ]] − (u[\[Alpha][ t ], \[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] +
433 M (Rp + rp Cos[\[Alpha][t]]) ) pc[\[Alpha][ t ], \[Psi ][
434 t ]] rp + (r [\[Alpha][ t ], \[Psi ][ t ]] + M rp) pc[\[Alpha][t ], \[Psi ][
435 t ]] (Rp + rp Cos[\[Alpha][t ]])
436 ntilde [\[Alpha][ t ], \[Psi ][ t ]] :=
437 q[\[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] (Rp +
438 rp Cos[\[Alpha][ t ]]) −
439 1/2 mc[\[Alpha][t ], \[Psi ][ t ]]^2 DbDp[\[Alpha][t], \[Psi ][ t ]] −
440 mc[\[Alpha][t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
441 t ], \[Psi ][ t ]] −
442 mc[\[Alpha][t ], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) DuDp[\[Alpha][
443 t ], \[Psi ][ t ]]
444

445 ptilde [\[Alpha][ t ], \[Psi ][
446 t ]] := −M rp Sin[\[Alpha][t ]] (Rp + rp Cos[\[Alpha][t ]]) +
447 mc[\[Alpha][t ], \[Psi ][ t ]] bb[\[Alpha][ t ], \[Psi ][ t ]] DmcDa[\[Alpha][
448 t ], \[Psi ][ t ]] +
449 mc[\[Alpha][t ], \[Psi ][ t ]]^2 DbDa[\[Alpha][t ], \[Psi ][ t ]] +
450 F gc[\[Alpha][ t ], \[Psi ][ t ]] DgcDa[\[Alpha][t ], \[Psi ][ t ]] +
451 DmcDa[\[Alpha][t], \[Psi ][ t ]] n[\[Alpha][ t ]] +
452 2 mc[\[Alpha][t ], \[Psi ][ t ]] DnDa[\[Alpha][t]] +
453 DmcDa[\[Alpha][t], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
454 t ], \[Psi ][ t ]] +
455 mc[\[Alpha][t ], \[Psi ][ t ]] DgcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
456 t ], \[Psi ][ t ]] +
457 2 mc[\[Alpha][t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
458 t ], \[Psi ][ t ]] +
459 DmcDa[\[Alpha][t], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) u[\[Alpha][
460 t ], \[Psi ][ t ]] −
461 mc[\[Alpha][t ], \[Psi ][ t ]] rp Sin [\[Alpha][ t ]] u[\[Alpha][ t ], \[Psi ][ t ]] +
462 2 mc[\[Alpha][t ], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) DuDa[\[Alpha][
463 t ], \[Psi ][ t ]] − (u[\[Alpha][ t ], \[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] +
464 M (Rp + rp Cos[\[Alpha][t]]) ) mc[\[Alpha][t ], \[Psi ][ t ]] rp
465 qtilde [\[Alpha][ t ], \[Psi ][ t ]] :=
466 mc[\[Alpha][t ], \[Psi ][ t ]] bb[\[Alpha][ t ], \[Psi ][ t ]] DmcDp[\[Alpha][
467 t ], \[Psi ][ t ]] +
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468 mc[\[Alpha][t ], \[Psi ][ t ]]^2 DbDp[\[Alpha][t], \[Psi ][ t ]] +
469 F gc[\[Alpha][ t ], \[Psi ][ t ]] DgcDp[\[Alpha][t], \[Psi ][ t ]] +
470 DmcDp[\[Alpha][t], \[Psi ][ t ]] n[\[Alpha][ t ]] +
471 DmcDp[\[Alpha][t], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
472 t ], \[Psi ][ t ]] +
473 mc[\[Alpha][t ], \[Psi ][ t ]] DgcDp[\[Alpha][t], \[Psi ][ t ]] p[\[Alpha][
474 t ], \[Psi ][ t ]] +
475 2 mc[\[Alpha][t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
476 t ], \[Psi ][ t ]] +
477 DmcDp[\[Alpha][t], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) u[\[Alpha][
478 t ], \[Psi ][ t ]] +
479 2 mc[\[Alpha][t ], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]]) DuDp[\[Alpha][
480 t ], \[Psi ][ t ]] −
481 q[\[Psi ][ t ]] mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] (Rp +
482 rp Cos[\[Alpha][ t ]])
483 rtilde [\[Alpha][ t ], \[Psi ][ t ]] :=
484 F gc[\[Alpha][ t ], \[Psi ][ t ]] DhcDa[\[Alpha][t ], \[Psi ][ t ]] +
485 mc[\[Alpha][t ], \[Psi ][ t ]] DgDa[\[Alpha][t ], \[Psi ][ t ]] +
486 gc[\[Alpha][ t ], \[Psi ][ t ]] DkDa[\[Alpha][t ], \[Psi ][ t ]] +
487 mc[\[Alpha][t ], \[Psi ][ t ]] DhcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
488 t ], \[Psi ][ t ]] +
489 mc[\[Alpha][t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
490 t ], \[Psi ][ t ]]
491 stilde [\[Alpha][ t ], \[Psi ][ t ]] :=
492 F gc[\[Alpha][ t ], \[Psi ][ t ]] DhcDp[\[Alpha][t], \[Psi ][ t ]] +
493 mc[\[Alpha][t ], \[Psi ][ t ]] DgDp[\[Alpha][t], \[Psi ][ t ]] +
494 gc[\[Alpha][ t ], \[Psi ][ t ]] DkDp[\[Alpha][t], \[Psi ][ t ]] +
495 mc[\[Alpha][t ], \[Psi ][ t ]] DhcDp[\[Alpha][t], \[Psi ][ t ]] p[\[Alpha][
496 t ], \[Psi ][ t ]] +
497 mc[\[Alpha][t ], \[Psi ][ t ]] hc[\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
498 t ], \[Psi ][ t ]] + rp mc[\[Alpha][t ], \[Psi ][ t ]] DqDp[\[Psi][t ]] +
499 mc[\[Alpha][t ], \[Psi ][ t ]] DpcDa[\[Alpha][t], \[Psi ][ t ]] bb[\[Alpha][
500 t ], \[Psi ][ t ]] +
501 mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] DbDa[\[Alpha][
502 t ], \[Psi ][ t ]] +
503 F gc[\[Alpha][ t ], \[Psi ][ t ]] DlcDa[\[Alpha][t ], \[Psi ][ t ]] +
504 mc[\[Alpha][t ], \[Psi ][ t ]] DlDa[\[Alpha][t ], \[Psi ][ t ]] +
505 gc[\[Alpha][ t ], \[Psi ][ t ]] DmDa[\[Alpha][t], \[Psi ][ t ]] +
506 DpcDa[\[Alpha][t], \[Psi ][ t ]] n[\[Alpha][ t ]] +
507 pc[\[Alpha][ t ], \[Psi ][ t ]] DnDa[\[Alpha][t]] +
508 mc[\[Alpha][t ], \[Psi ][ t ]] DlcDa[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
509 t ], \[Psi ][ t ]] +
510 mc[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
511 t ], \[Psi ][ t ]] +
512 DpcDa[\[Alpha][t], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
513 t ], \[Psi ][ t ]] +
514 pc[\[Alpha][ t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDa[\[Alpha][
515 t ], \[Psi ][ t ]] + (Rp + rp Cos[\[Alpha][t ]]) DpcDa[\[Alpha][t], \[Psi ][
516 t ]] u[\[Alpha][ t ], \[Psi ][ t ]] + (Rp + rp Cos[\[Alpha][t ]]) pc[\[Alpha][
517 t ], \[Psi ][ t ]] DuDa[\[Alpha][t ], \[Psi ][ t ]] − (z[\[Psi ][ t ]] +
518 u[\[Alpha][ t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]]) mc[\[Alpha][
519 t ], \[Psi ][ t ]] rp − (r [\[Alpha][ t ], \[Psi ][ t ]] + M rp) pc[\[Alpha][
520 t ], \[Psi ][ t ]] (Rp + rp Cos[\[Alpha][t ]])
521 utilde [\[Alpha][ t ], \[Psi ][ t ]] :=
522 mc[\[Alpha][t ], \[Psi ][ t ]] DpcDp[\[Alpha][t], \[Psi ][ t ]] bb[\[Alpha][
523 t ], \[Psi ][ t ]] +
524 mc[\[Alpha][t ], \[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]] DbDp[\[Alpha][
525 t ], \[Psi ][ t ]] +
526 F gc[\[Alpha][ t ], \[Psi ][ t ]] DlcDp[\[Alpha][t ], \[Psi ][ t ]] +
527 mc[\[Alpha][t ], \[Psi ][ t ]] DlDp[\[Alpha][t ], \[Psi ][ t ]] +
528 gc[\[Alpha][ t ], \[Psi ][ t ]] DmDp[\[Alpha][t], \[Psi ][ t ]] +
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529 DpcDp[\[Alpha][t], \[Psi ][ t ]] n[\[Alpha][ t ]] +
530 mc[\[Alpha][t ], \[Psi ][ t ]] DlcDp[\[Alpha][t ], \[Psi ][ t ]] p[\[Alpha][
531 t ], \[Psi ][ t ]] +
532 mc[\[Alpha][t ], \[Psi ][ t ]] lc [\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
533 t ], \[Psi ][ t ]] +
534 DpcDp[\[Alpha][t], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] p[\[Alpha][
535 t ], \[Psi ][ t ]] +
536 pc[\[Alpha][ t ], \[Psi ][ t ]] gc [\[Alpha][ t ], \[Psi ][ t ]] DpDp[\[Alpha][
537 t ], \[Psi ][ t ]] + (Rp + rp Cos[\[Alpha][t ]]) DpcDp[\[Alpha][t], \[Psi ][
538 t ]] u[\[Alpha][ t ], \[Psi ][ t ]] + (Rp + rp Cos[\[Alpha][t ]]) pc[\[Alpha][
539 t ], \[Psi ][ t ]] DuDp[\[Alpha][t], \[Psi ][ t ]] + (Rp +
540 rp Cos[\[Alpha][ t ]]) DzDp[\[Psi][t ]] − (s[\[Alpha][ t ], \[Psi ][ t ]] +
541 q[\[Psi ][ t ]] pc[\[Alpha][ t ], \[Psi ][ t ]]) pc[\[Alpha][ t ], \[Psi ][
542 t ]] (Rp + rp Cos[\[Alpha][t ]])
543

544

545 EQUATIONS OF MOTION
546

547 grav := 9.81
548 w := 0.750
549 \[Lambda] := 20 Pi /180
550 Rp := 0.05
551 rp := 0.01
552 m1 := 0.35
553 Ix1 := (5/8 rp^2 + 1/2 Rp^2) m1
554 Iy1 := (3/4 rp^2 + Rp^2) m1
555 xb := 0.5044
556 zb := 0.4279
557 \[Phi] := ArcTan[(zb − (Rp + rp))/xb]
558 \[Epsilon ] := \[Lambda] − \[Phi]
559 l := −(Rp /Cos[\[Epsilon]]) Sin [\[Lambda]] + w Cos[\[Lambda]]/Cos[\[Epsilon]]
560 b := 1/Cos[\[Epsilon ]] (Rp Cos[\[Phi]] + w Sin[\[Phi ]])
561 m2 := 6.425
562 Ixx2 := 0.06460
563 Iyy2 := 2.59262
564 Izz2 := 2.54642
565 Ixz2 := 0.23102
566 Ixy2 := 0
567 Izy2 := 0
568 l2 := xb/Cos[\[Phi]]
569 d2 := 0
570 m3 := 2.412
571 xh := 0.7338
572 zh := 0.3022
573 ws := w Cos[\[Lambda]]
574 ks := Rp + rp + ws Sin[\[Lambda]]
575 bs := ws Cos[\[Lambda]]
576 l3 := (xh − bs) Cos[\[Lambda]] + (zh − ks) Sin[\[Lambda]]
577 d3 := 0
578 h3 := −(xh − bs) Sin[\[Lambda]] + (zh − ks) Cos[\[Lambda]]
579 Ix3 := 0.03797
580 Iy3 := 0.03807
581 Iz3 := 0.00185
582 Ixz3 := −0.00393
583 Ixy3 := 0
584 Izy3 := 0
585 m4 := 0.3
586 I4 := 2/5 rp^2 m4
587 trail := rp Sin [\[Lambda]]/Cos[\[Lambda]]
588

589
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590 Conditions for circular motion
591

592 \[Chi]0 := 70
593

594 FindRoot[{\[Chi]0^2 Evaluate[
595 ftilde [\[Alpha][ t ], \[Psi ][
596 t ]] /. {\[Alpha][ t ] −> \[Alpha]0, \[Psi ][ t ] −> \[Psi]0}] ==
597 Evaluate[(D[
598 Utot[t ], \[Alpha][ t ]]) /. {\[Alpha][ t ] −> \[Alpha]0, \[Psi ][
599 t ] −> \[Psi]0}], \[Chi]0^2 Evaluate[
600 ntilde [\[Alpha][ t ], \[Psi ][
601 t ]] /. {\[Alpha][ t ] −> \[Alpha]0, \[Psi ][ t ] −> \[Psi]0}] ==
602 Evaluate[(D[
603 Utot[t ], \[Psi ][ t ]]) /. {\[Alpha][ t ] −> \[Alpha]0, \[Psi ][
604 t ] −> \[Psi]0}]}, {{\[Alpha]0, 0.5}, {\[Psi ]0, 0.5}},
605 MaxIterations −> 100]
606

607

608 ODE = { \[Alpha]’’[t] Acors [\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’’[
609 t ] Gcors [\[Alpha][ t ], \[Psi ][ t ]] + \[Chi ]’’[
610 t ] Mcors[\[Alpha][ t ], \[Psi ][ t ]] +
611 1/2 \[Alpha ]’[ t]^2 DAcorsDa[\[Alpha][t ], \[Psi ][ t ]] + \[Alpha]’[
612 t ] \[Chi ]’[ t ] atilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[ t ] \[Psi ]’[
613 t ] btilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’[ t]^2 dtilde [\[Alpha][
614 t ], \[Psi ][ t ]] + \[Chi ]’[ t ] \[Psi ]’[
615 t ] etilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Chi ]’[ t]^2 ftilde [\[Alpha][
616 t ], \[Psi ][ t ]] == D[Utot[t], \[Alpha][ t ]],
617 \[Alpha ]’’[ t ] Gcors [\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’’[
618 t ] Ecors [\[Alpha][ t ], \[Psi ][ t ]] + \[Chi ]’’[
619 t ] Pcors [\[Alpha][ t ], \[Psi ][ t ]] +
620 1/2 \[Psi ]’[ t]^2 DEcorsDp[\[Alpha][t ], \[Psi ][ t ]] + \[Chi ]’[ t ] \[Psi ]’[
621 t ] gtilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[ t ] \[Psi ]’[
622 t ] htilde [\[Alpha][ t ], \[Psi ][ t ]] +
623 \[Alpha ]’[ t]^2 ltilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[ t ] \[Chi ]’[
624 t ] mtilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Chi ]’[ t]^2 ntilde [\[Alpha][
625 t ], \[Psi ][ t ]] == D[Utot[t], \[Psi ][ t ]],
626 \[Alpha ]’’[ t ] Mcors[\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’’[
627 t ] Pcors [\[Alpha][ t ], \[Psi ][ t ]] + \[Chi ]’’[
628 t ] Ccors [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[ t ] \[Chi ]’[
629 t ] ptilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’[ t ] \[Chi ]’[
630 t ] qtilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[ t]^2 rtilde [\[Alpha][
631 t ], \[Psi ][ t ]] + \[Alpha]’[ t ] \[Psi ]’[
632 t ] stilde [\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’[ t]^2 utilde [\[Alpha][
633 t ], \[Psi ][ t ]] == 0,
634 x ’[ t ] == − rp \[Alpha ]’[
635 t ] Sin [\[Theta][t ]] + (Rp + rp Cos[\[Alpha][t ]]) \[Chi ]’[
636 t ] Cos[\[Theta][t ]],
637 y ’[ t ] ==
638 rp \[Alpha ]’[ t ] Cos[\[Theta][t ]] + (Rp + rp Cos[\[Alpha][t ]]) \[Chi ]’[
639 t ] Sin [\[Theta][t ]],
640 \[Chi]a ’[
641 t ] == \[Chi ]’[ t ] gc [\[Alpha][ t ], \[Psi ][ t ]] + \[Alpha]’[
642 t ] hc[\[Alpha][ t ], \[Psi ][ t ]] + \[Psi ]’[ t ] lc [\[Alpha][ t ], \[Psi ][ t ]],
643 \[Theta ]’[
644 t ] == \[Chi ]’[ t ] mc[\[Alpha][t ], \[Psi ][ t ]] + \[Psi ]’[
645 t ] pc[\[Alpha][ t ], \[Psi ][ t ]]};
646

647

648 Needs[" DifferentialEquations ‘NDSolveProblems‘"];
649 Needs[" DifferentialEquations ‘ NDSolveUtilities ‘" ];
650 Needs["FunctionApproximations‘"];
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651 Needs[" DifferentialEquations ‘InterpolatingFunctionAnatomy‘" ];
652

653 sol = NDSolve[{ODE, \[Alpha][0] == 10 Pi/180, \[Alpha]’[0] ==
654 0 Pi/180, \[Psi ][0] == −5 Pi/180, \[Psi]’[0] == 0, \[Chi ]’[0] ==
655 65, \[Chi ][0] == 0, x[0] == 0,
656 y [0] == 0, \[Theta][0] == 0 Pi/180, \[Chi]a[0] ==
657 0}, {\[Alpha], \[Psi ], \[Chi ], \[Chi]a, \[Theta], x, y}, {t , 0, 40},
658 Method −> "Automatic", SolveDelayed −> True]
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