1 Numeri naturali, interi e razionali

Definizione 1.1. Sia A un sottoinsieme dei numeri reali. Diciamo che A è un insieme induttivo se

- 1. $1 \in A$
- 2. per ogni $x \in A$, si ha $x + 1 \in A$

Definizione 1.2. Chiamo insieme dei numeri naturali, e indico col simbolo \mathbb{N} l'intersezione di tutti gli insiemi induttivi di \mathbb{R} .

Osservazione 1.1. $\mathbb{N} \neq \emptyset$ perché 1 appartiene a tutti gli insiemi induttivi.

Definizione 1.3. Chiamo insieme dei numeri relativi, e indico col simbolo $\mathbb Z$ l'insieme

$$\mathbb{N} \cup \{0\} \cup \{x \in \mathbb{R} \colon -x \in \mathbb{N}\}\$$

e infine chiamo insieme dei numeri razionali, e indico col simbolo $\mathbb Q$ l'insieme

$$\{x \in \mathbb{R} : x = pq^{-1}, \ p \in \mathbb{Z}, \ q \in \mathbb{N}\}.$$

2 Assioma di Dedekind

Le proprietà di \mathbb{R} che abbiamo dato sinora sono soddisfatte anche dai numeri razionali. Abbiamo però visto che i numeri razionali non ci permettono di effettuare alcune operazioni che vorremmo (osserviamo infatti che $2=1+1\in\mathbb{N}\subset\mathbb{R}$ e, la volta scorsa, abbiamo visto che non esiste alcun $x\in\mathbb{Q},\,x>0$ tale che $x^2=2$).

Richiediamo che l'insieme dei numeri reali soddisfi una ulteriore proprietà, detta assioma di Dedekind. Diamo innanzitutto la seguente definizione

Definizione 2.1. Dati A e B sottoinsiemi non vuoti di \mathbb{R} , dico che (A, B) è una sezione di \mathbb{R} se

1. A e B sono una partizione di \mathbb{R} , ovvero

$$A \cap B = \emptyset$$
, $A \cup B = \mathbb{R}$:

2. per ogni $x \in A$ e per ogni $y \in B$ risulta x < y.

Assioma 2.1 (Assioma di Dedekind). Per ogni sezione (A, B) di \mathbb{R} esiste uno ed un solo elemento $L \in \mathbb{R}$ tale che

$$x \le L \le y \quad \forall x \in A, \ \forall y \in B.$$

Il numero L si dice elemento separatore della sezione (A, B).

Mostriamo ora come l'assioma di Dedekind ci assicuri l'esistenza e l'unicità della radice quadrata di 2 in \mathbb{R} . Poiché tale radice non esiste in \mathbb{Q} , questo ci garantisce che stiamo lavorando con un insiemi di numeri diverso da \mathbb{Q} . Definisco

$$A = \{x \in \mathbb{R} : x < 0\} \cup \{x \in \mathbb{R} : x \ge 0, \ x^2 < 2\}, \quad B = \{x \in \mathbb{R} : x \ge 0, \ x^2 \ge 2\}.$$

Sicuramente A e B non sono vuoti ($1 \in A$ e $2 \in B$, per esempio) e, grazie alla proprietà di ordinamento totale di \mathbb{R} , essi sono una partizione di \mathbb{R} .

Siano $x \in A$, $y \in B$. Devo mostrare che x < y. Se x < 0, allora $x < 0 \le y$ e dunque x < y.

Se $x \ge 0$, allora $x^2 < 2 \le y^2$ e dunque $x^2 < y^2$ ovvero (y-x)(y+x) > 0. Poiché x e y sono entrambi positivi, deve allora essere y-x>0, cioè x < y

(A,B) è dunque una sezione in \mathbb{R} . Sia L l'elemento separatore della sezione (la cui esistenza e unicità è garantita dall'assioma di Dedekind). Vogliamo provare che $\sqrt{L}=2$ cioè che L>0 e $L^2=2$.

Sicuramente L>0 perché $1\in A$ e dunque $L\geq 1>0$.

Proviamo che $L^2=2$ mostrando che non può essere né $L^2<2$ né $L^2>2$.

a. Supponiamo, per assurdo, che sia $L^2 < 2$. Considero $x := \frac{2-L^2}{2L+1}$. Sicuramente x>0, dunque L+x>L e perció $L+x\in B$.

Inoltre x<1. Infatti $\frac{2-L^2}{2L+1}<1$ è equivalente a $2-L^2<2L+1$, equivalente a sua volta a $L^2-1+2L>0$. Questa disuguaglianza è sicuramente vera perché $1\in A$ e dunque $L^2\geq L\times 1\geq 1\times 1=1$. Di conseguenza $L^2-1+2L\geq 2L>0$. Calcolo

$$(L+x)^{2} = L^{2} + x^{2} + 2Lx < L^{2} + x + 2Lx =$$

$$= L^{2} + (1+2L)x = L^{2} + (1+2L)\frac{2-L^{2}}{2L+1} = 2.$$
(1)

Dato che L + x > 0, la disuguaglianza (1) è in contraddizione con $L + x \in B$.

b. Supponiamo, per assurdo, che sia $L^2>2$. Considero $x:=\frac{L^2-2}{2L}$. Sicuramente x>0, dunque L-x< L e perció $L-x\in A$. Mostriamo che L-x>0. Infatti

$$L - x = L - \frac{L^2 - 2}{2L} = \frac{2L^2 - L^2 + 2}{2L} = \frac{L^2 + 2}{2L} > 0$$

Calcolo

$$(L-x)^{2} = L^{2} + x^{2} - 2Lx > L^{2} - 2Lx =$$

$$= L^{2} - 2L\frac{L^{2} - 2}{2L} = L^{2} - (L^{2} - 2) = 2.$$
(2)

Dato che L-x>0, la disuguaglianza (2) è in contraddizione con $L-x\in A$.

3 Estremo superiore ed estremo inferiore

3.1 Massimo e minimo

Definizione 3.1. Sia $A \subset \mathbb{R}$ insieme non vuoto. Dico che $M \in \mathbb{R}$ è il massimo di A (e scrivo $M = \max A$) se

1.
$$M \in A$$

2.
$$x \le M \quad \forall x \in A$$

Esercizio 3.1.1. Dimostrare che il massimo di un insieme $A \subset \mathbb{R}$, se esiste, è unico.

Soluzione. Siano M_1 ed M_2 due massimi di A. Si ha

$$M_1 \in A \quad x \le M_1 \quad \forall x \in A,$$
 (3)

$$M_2 \in A \quad x \le M_2 \quad \forall x \in A.$$
 (4)

Scegliendo $x = M_2$ nella (3) si ha $M_2 \leq M_1$; scegliendo $x = M_1$ nella (4) si ha $M_1 \leq M_2$. Per la proprietà antisimmetrica della relazione d'ordine " \leq " in \mathbb{R} deve dunque essere $M_1 = M_2$.

Analogamente:

Definizione 3.2. Sia $A \subset \mathbb{R}$ insieme non vuoto. Dico che $m \in \mathbb{R}$ è il minimo di A (e scrivo $m = \min A$) se

1.
$$m \in A$$

2.
$$m \le x \quad \forall x \in A$$

Esercizio 3.1.2. Dimostrare che il minimo di un insieme $A \subset \mathbb{R}$, se esiste, è unico.

Esercizio 3.1.3. Dimostrare che ogni sottoinsieme finito A di \mathbb{R} ammette sia massimo che minimo.

Esempio 3.1. Sia $A = \{x \in \mathbb{R} : 1 \le x < 2\}$. Proviamo che $1 = \min A$ ma che A non ammette massimo.

Sicuramente $1 \in A$ e $x \ge 1$ per ogni $x \in A$, quindi $1 = \min A$.

Supponiamo, per assurdo, che A ammetta massimo. Indico con M tale massimo.

Deve essere $M \in A$, dunque $1 \le M < 2$. Considero $x = \frac{M+2}{2}$. Sicuramente $x \in A$. Infatti

$$1 \le M < 2 \implies 1 + 2 \le M + 2 \le 2 + 2 \implies \frac{3}{2} \le x < 2.$$

Mostriamo che M non può essere il massimo di A mostrando che M < x. Infatti

$$M < 2 \implies M + M < 2 + M \implies \frac{2M}{2} < \frac{2 + M}{2}$$

cioè
$$M < x$$
.

Anche se 2 non è il massimo dell'insieme A dell'esempio precedente, è chiaro che 2 svolge un ruolo particolare per tale insieme: 2 è maggiore di qualsiasi elemento di A e nessun reale inferiore a 2 è maggiore di tutti gli elementi di A. Diamo ora alcune definizioni e poi usiamo l'Assioma di Dedekind per formalizzare situazioni di questo genere.

Definizione 3.3. Sia $A \subset \mathbb{R}$ e sia $y \in \mathbb{R}$. Dico che $y \in \mathbb{R}$ un maggiorante di A se

$$x \le y \quad \forall x \in A.$$

Proposizione 3.1. Sia $A \subset \mathbb{R}$ e sia $M = \max A$. Allora $M \leq y \ \forall y$ maggiorante di A.

Dimostrazione. Poiché $M \in A$, se y è maggiorante di A, deve in particolare essere $y \geq M$.

Definizione 3.4. Sia $A \subset \mathbb{R}$ e sia $y \in \mathbb{R}$. Dico che $y \in \mathbb{R}$ un minorante di A se

$$x \ge y \quad \forall x \in A.$$

Proposizione 3.2. Sia $A \subset \mathbb{R}$ e sia $m = \min A$. Allora $m \geq y \ \forall y \ minorante \ di \ A$.

Definizione 3.5. Sia $A \subset \mathbb{R}$ insieme non vuoto.

Dico che A è limitato superiormente se esiste almeno un maggiorante di A; dico che A è limitato inferiormente se esiste almeno un minorante di A; dico che A è limitato se è sia limitato inferiormente che limitato superiormente.

Teorema 3.1. Sia $A \subset \mathbb{R}$ insieme limitato superiormente e sia \mathcal{M} l'insieme dei maggioranti di A. Allora \mathcal{M} ammette minimo.

Dimostrazione. Considero \mathcal{M} e $\mathcal{M}' := \mathbb{R} \setminus \mathcal{M}$. Mostriamo che $(\mathcal{M}', \mathcal{M})$ è una sezione di \mathbb{R} . $\mathcal{M} \neq \emptyset$ perché A è limitato superiormente. Sia $a \in A$. Allora sicuramente $a-1 \in \mathcal{M}'$ e dunque $\mathcal{M}' \neq \emptyset$. Sicuramente \mathcal{M} e \mathcal{M}' sono una partizione di \mathbb{R} . Rimane da dimostrare che $x \leq y \ \forall x \in \mathcal{M}', \ \forall y \in \mathcal{M}$.

Sia $x \in \mathcal{M}'$. Poiché x non è un maggiorante di A, esiste $\overline{a} \in A$ tale che $x < \overline{a}$. D'altra parte y è un maggiorante di A, quindi $a \le y \ \forall a \in A$. In particolare $x < \overline{a} \le y$ cosicché x < y.

Per l'assioma di Dedekind 2.1 esiste uno ed un solo $L \in \mathbb{R}$ elemento separatore della sezione $(\mathcal{M}', \mathcal{M})$. Proviamo che L è il minimo di \mathcal{M} . Per definizione di elemento separatore $L \leq y \ \forall y \in \mathcal{M}$. Dobbiamo solo provare che $L \in \mathcal{M}$. Supponiamo, per assurdo, che sia $L \in \mathcal{M}'$. Allora esiste $\overline{a} \in A$ tale che $L < \overline{a}$. Considero il numero $\frac{L + \overline{a}}{2}$.

Sicuramente
$$L < \frac{L + \overline{a}}{2} < \overline{a}$$
. Dunque $\frac{L + \overline{a}}{2} \in \mathcal{M}'$ e $\frac{L + \overline{a}}{2} > L$, una contraddizione. \square

Analogamente si dimostra la seguente:

Proposizione 3.3. Sia $A \subset \mathbb{R}$ insieme limitato inferiormente e sia \mathcal{N} l'insieme dei maggioranti di A. Allora \mathcal{N} ammette massimo.

Diamo allora le seguenti definizioni.

Definizione 3.6. Se $A \subset \mathbb{R}$ è limitato superiormente, il minimo dei maggioranti di A si chiama estremo superiore di A e si indica sup A.

Se $A \subset \mathbb{R}$ è limitato inferiormente, il massimo dei minoranti di A si chiama estremo inferiore di A e si indica inf A.

Esercizio 3.1.4. Sia $A \subset \mathbb{R}$ e sia $M = \max A$. Provare che $M = \sup A$.

Soluzione. Per definizione di massimo $x \leq M \ \forall x \in A$, cioè M è un maggiorante di A. Inoltre, sempre per la definizione di massimo, $M \in A$ e dunque ogni maggiorante y di A deve soddisfare la disuguaglianza $y \geq M$ e dunque M è il minimo dei maggioranti, ovvero l'estremo superiore di A.

Esercizio 3.1.5. Sia $A \subset \mathbb{R}$ e sia $m = \min A$. Provare che $m = \inf A$.

Proposizione 3.4 (Caratterizzazione dell'estremo superiore). Sia $A \subset \mathbb{R}$ insieme limitato superiormente e sia $L = \sup A$. Allora

- 1. $a \leq L \quad \forall a \in A;$
- 2. per ogni $x \in \mathbb{R}$, x < L, esiste $\overline{a} \in A$ tale che $x < \overline{a}$.

Dimostrazione. La prima proprietà dice che L è un maggiorante di A; la seconda che nessun numero minore di L può essere un maggiorante di A e dunque le due proprietà dicono proprio che L è il minimo dei maggioranti.

Analogamente:

Proposizione 3.5 (Caratterizzazione dell'estremo inferiore). Sia $A \subset \mathbb{R}$ insieme limitato inferiormente e sia $\ell = \inf A$. Allora

- 1. $a \ge \ell \quad \forall a \in A$;
- 2. per ogni $x \in \mathbb{R}$, $x > \ell$, esiste $\overline{a} \in A$ tale che $\overline{a} < x$.

È utile poter parlare di estremo inferiore e di estremo superiore anche per insiemi non limitati: se A non è limitato superiormente si dice che l'estremo superiore di A è $+\infty$ e si scrive sup $A=+\infty$; se A non è limitato inferiormente si dice che l'estremo inferiore di A è $-\infty$ e si scrive sup $A=-\infty$.

Osservazione 3.1. $+\infty \ e \ -\infty \ NON \ sono \ numeri \ reali.$

4 Assioma di Archimede

L'Assioma di Archimede in realtà è una conseguenza dell'assioma di Dedekind.

Proposizione 4.1. Dati due numeri reali positivi a e b, esiste $n \in \mathbb{N}$ tale che na > b.

Dimostrazione. Dimostriamo la proposizione per assurdo. Supponiamo esistano a, b reali positivi tali che na < b per ogni $n \in \mathbb{N}$. Allora b è maggiorante dell'insieme $A = \{na : n \in \mathbb{N}\}$. Sia dunque L l'estremo superiore di A. Avremo

$$na < L \quad \forall n \in \mathbb{N}.$$

In particolare

$$(n+1)a \le L \qquad \forall n \in \mathbb{N}$$

cioè

$$na < L - a \qquad \forall n \in \mathbb{N}.$$

Ovvero L-a è un maggiorante di A. Poiché L-a < L e $L = \sup A$, abbiamo una contraddizione.

Proposizione 4.2. Siano x, y numeri reali, con x < y. Allora esiste $q \in \mathbb{Q}$ tale che x < q < y.

Dimostrazione. 1) Consideriamo prima il caso 0 < x < y.

Per l'assioma di Archimede esiste $n \in \mathbb{N}$ tale che

$$n(y-x) > 1. (5)$$

Applicando nuovamente l'assioma di Archimede otteniamo che esiste $\overline{k} \in \mathbb{N}$ tale che $\frac{\overline{k}}{n} \ge x$ e dunque $\frac{k}{n} \ge x \ \forall k \ge \overline{k}$. Sia $K = \max \left\{ k \in \mathbb{N} : \frac{k}{n} \le x \right\}$. Si ha

$$\frac{K}{n} \le x < \frac{K+1}{n}.\tag{6}$$

Dimostriamo che $\frac{K+1}{n} < y$. Infatti

$$\frac{K+1}{n} = \frac{K}{n} + \frac{1}{n} \le$$

$$< \frac{K}{n} + y - x \le$$

$$\text{per (6)} \qquad \le x + y - x = y.$$

Si ha quindi $x < \frac{K+1}{n} < y$.

- 2) Se x < 0 < y non c'è niente da dimostrare, dato che $0 \in \mathbb{Q}$.
- 3) Se x < y < 0, allora 0 < -y < -x, dunque, per il punto 1) esiste $q \in \mathbb{Q}$ tale che -y < q < -x. Di conseguenza x < -q < y, ovvero la tesi poiché $-q \in \mathbb{Q}$.

Osservazione 4.1. Sia $x \in \mathbb{R}$, x > 0. Per il principio di Archimede esiste $\overline{n} \in \mathbb{N}$ tale

 $\begin{array}{l} che \ \overline{n}x > 1 \ e \ dunque \ nx > 1 \ per \ ogni \ n \in \mathbb{N}, \ n \geq \overline{n}. \\ Fissato \ n \geq \overline{n} \ sia \ K \in \mathbb{N} \ tale \ che \ \frac{K}{n} \leq x < \frac{K+1}{n}. \ (Basta \ segliere \ K = \max\{k \in \mathbb{N} : \frac{k}{n} \leq x\}). \ I \ due \ razionali \ \frac{K}{n} \ e \ \frac{K+1}{n} \ approssimano, \ l'uno \ per \ difetto \ e \ l'altro \ per \end{array}$ eccesso, il numero reale x con errore inferiore $a^{\frac{1}{n}}$.

5 Intervalli

Siano a, b numeri reali, con a < b. Chiamiamo

1. Intervallo aperto di estremi a e b, e indichiamo col simbolo (a,b) (o col simbolo [a,b[) l'insieme

$$\{x \in \mathbb{R} \colon a < x < b\}$$

2. Intervallo chiuso di estremi a e b, e indichiamo col simbolo [a, b] l'insieme

$$\{x \in \mathbb{R} : a < x < b\}$$

3. Intervallo semiaperto a sinistra di estremi a e b, e indichiamo col simbolo (a, b] (o col simbolo [a, b]) l'insieme

$$\{x \in \mathbb{R} : a < x \le b\}$$

4. Intervallo semiaperto a destra di estremi a e b, e indichiamo col simbolo [a,b] (o col simbolo [a,b]) l'insieme

$$\{x \in \mathbb{R} : a \le x < b\}$$

In tutti i casi, il numero b-a si chiama lunghezza dell'intervallo.

Dato $a \in \mathbb{R}$ chiamiano

1. Semiretta sinistra aperta di estremo a, e indichiamo col simbolo $(-\infty, a)$ (o col simbolo $]-\infty, a[)$ l'insieme

$$\{x \in \mathbb{R} \colon x < a\}$$

2. Semiretta destra aperta di estremo a, e indichiamo col simbolo $(a, +\infty)$ (o col simbolo $[a, +\infty)$) l'insieme

$$\{x \in \mathbb{R} \colon x > a\}$$

3. Semiretta sinistra chiusa di estremo a, e indichiamo col simbolo $(-\infty, a]$ l'insieme

$$\{x \in \mathbb{R} \colon x < a\}$$

4. Semiretta destra chiusa di estremo a, e indichiamo col simbolo $[a, +\infty)$ l'insieme

$$\{x \in \mathbb{R} \colon x \ge a\}$$

In particolare la semiretta dei reali positivi $(0, +\infty)$ si indica col simbolo \mathbb{R}^+ , la semiretta dei reali negativi $(-\infty, 0)$ si indica col simbolo \mathbb{R}^- .

6 Assioma di continuità

Vediamo un procedimento per calcolare, approssimativamente, $L = \sqrt{2}$. Siano $a_1 := 1$, $b_1 := 2$. Poiché L > 0, $1^2 = 1$ e $2^2 = 4$, sicuramente $a_1 \le L \le b_1$. Calcolo il punto medio m_1 dell'intervallo $[a_1, b_1] = [1, 2]$:

$$m_1 = \frac{a_1 + b_1}{2} = \frac{3}{2}.$$

Poiché $m_1^2 = \frac{9}{4} > 2$, avremo $m_1 > L$ e dunque $a_1 = 1 \le L \le m_1 = \frac{3}{2}$.

Pongo $a_2=a_1,\,b_2=m_1,$ cioè l'intervallo $[a_2,b_2]=\left[a,\frac{3}{2}\right]$ e ne considero il punto medio

$$m_2 = \frac{a_2 + b_2}{2} = \frac{5}{4}.$$

Poiché $m_2^2 = \frac{25}{16} < 2$ avremo $m_2 < L$ e dunque $m_2 = \frac{5}{4} \le L \le b_2 = \frac{3}{2}$.

Pongo $a_3 = m_2$, $b_3 = b_2$, cioè l'intervallo $[a_3, b_3] = \left[\frac{5}{4}, \frac{3}{2}\right]$ e ne considero il punto medio

Ovvero procediamo in questo modo:

$$a_1 := 1, \quad b_1 := 2$$

per $k \ge 1$
 $m_k := \frac{a_k + b_k}{2}$
se $m_k^2 < 2$ pongo $a_{k+1} = m_k, \quad b_{k+1} = b_k,$
se $m_k^2 > 2$ pongo $a_{k+1} = a_k, \quad b_{k+1} = m_k.$

In questo modo si definisce una famiglia di intervalli $[a_k, b_k]$ con le proprietà

$$a_1 \le a_2 \le \ldots \le a_k \le a_{k+1} \le \ldots \sqrt{2} \ldots \le b_{k+1} \le b_k \le \ldots \le b_2 \le b_1,$$

$$b_{k+1} - a_{k+1} = \frac{1}{2}(b_k - a_k)$$

L'intuizione ci suggerisce che dovrebbe essere $\{\sqrt{2}\} = \bigcap_{k=1}^{\infty} [a_k, b_k]$. Questo fatto non è ovvio. Per dimostrarlo è necessario applicare l'assioma di Dedekind, assioma 2.1.

Definizione 6.1 (Intervalli dimezzati). Dico che una famiglia numerabile di intervalli $\{[a_k, b_k], k \in \mathbb{N}\}\$ è una famiglia di intervalli dimezzati se

$$a_1 \le a_2 \le \ldots \le a_k \le a_{k+1} \le \ldots \le b_{k+1} \le b_k \le \ldots \le b_2 \le b_1,$$

$$b_{k+1} - a_{k+1} = \frac{1}{2}(b_k - a_k).$$

Teorema 6.1. Data una famiglia di intervalli dimezzati $\{[a_k, b_k], k \in \mathbb{N}\}$ esiste uno ed un solo numero reale L che appartiene a tutti gli intervalli.

Osservazione 6.1. Il teorema precedente è anche noto come Assioma di continuità perché è equivalente all'assioma di Dedekind.

Dimostrazione. Considero

$$A = \{x \in \mathbb{R} : \exists k \in \mathbb{N} \text{ tale che } x \leq a_k\}, \qquad B = \mathbb{R} \setminus A.$$

Sicuramente $a_1 \in A$, quindi $A \neq \emptyset$ e $b_1 \in B$, quindi $B \neq \emptyset$. Inoltre, per definizione A e B sono una partizione di \mathbb{R} . Mostriamo che (A, B) è una sezione in \mathbb{R} . Siano $x \in A$, $y \in B$; devo mostrare che $x \leq y$.

Poiché $x \in A$, esiste \overline{k} tale che $x \leq a_{\overline{k}}$. D'altra parte $y \in B$, quindi $y > a_k$ per ogni $k \in \mathbb{N}$. In particolare $y > a_{\overline{k}}$ e dunque $x \leq a_{\overline{k}} < y$, da cui x < y.

Poiché (A, B) è una sezione di \mathbb{R} , per l'assioma di Dedekind 2.1, esiste uno ed un solo reale L elemento separatore della sezione.

Vogliamo provare che

- 1. $L \in [a_k, b_k]$ per ogni $k \in \mathbb{N}$,
- 2. non esiste nessun reale $\lambda \neq L$ tale che $\lambda \in [a_k, b_k]$ per ogni $k \in \mathbb{N}$.
- 1. Supponiamo, per assurdo, che esista $\overline{k} \in N$ tale che $L \notin [a_{\overline{k}}, b_{\overline{k}}]$. Ci sono due casi

a)
$$L < a_{\overline{k}}$$
. Considero il numero $x = \frac{L + a_{\overline{k}}}{2}$. Si ha

$$L < x < a_{\overline{k}}$$
.

Poiché x > L, per definizione di elemento separatore, deve essere $x \in B$. Poiché $x < a_{\overline{k}}$, è $x \in A$ e dunque $x \in A \cap B$. Siamo caduti in contraddizione perché $A \cap B = \emptyset$.

b)
$$L > b_{\overline{k}}$$
. Considero il numero $y = \frac{L + b_{\overline{k}}}{2}$. Si ha

$$b_{\overline{k}} < y < L$$
.

Poiché y < L, per definizione di elemento separatore, deve essere $y \in A$. Poiché $y > b_{\overline{k}}$, abbiamo anche $y > a_k$ per ogni $k \in \mathbb{N}$ e dunque $y \in B$. Quindi $y \in A \cap B$. Siamo caduti in contraddizione perché $A \cap B = \emptyset$.

2. Supponiamo per assurdo che esista un reale $\lambda \neq L$, che appartiene a tutti gli intervalli $[a_k, b_k]$.

Poiché $\lambda \neq L$, dovrà essere $\lambda > L$ o $\lambda < L$. Supponiamo $\lambda > L$. Allora,

$$a_k < L < \lambda < b_k \qquad \forall k \in \mathbb{N}$$

dunque

$$\lambda - L \le b_k - a_k = \frac{b_1 - a_1}{2^{k-1}} \qquad \forall k \in \mathbb{N}$$

 $\mathrm{da}\ \mathrm{cui}$

$$2^{k} (\lambda - L) \le 2 (b_1 - a_1) \quad \forall k \in \mathbb{N}.$$

Poiché $k \leq 2^k,$ come si può facilmente dimostrare per induzione, si ha

$$k(\lambda - L) \le 2(b_1 - a_1) \quad \forall k \in \mathbb{N}.$$

Per la proposizione 4.1 (assioma di Archimede) siamo caduti in contraddizione. Nel caso $\lambda < L$ la dimostrazione è del tutto analoga.