
          

ON THE UNIQUENESS OF THE FIXED POINT INDEX ON

DIFFERENTIABLE MANIFOLDS

MASSIMO FURI, MARIA PATRIZIA PERA, AND MARCO SPADINI

It is well known that some of the properties enjoyed by the fixed point index
can be chosen as axioms, the choice depending on the class of maps and spaces
considered. In the context of finite dimensional real differentiable manifolds, we
shall provide a simple proof that the fixed point index is uniquely determined by
the properties of normalization, additivity and homotopy invariance.

1. Introduction

The fixed point index enjoys a number of properties whose precise statement may
vary in the literature. The prominent ones are those of normalization, additivity,
homotopy invariance, commutativity, solution, excision and multiplicativity (see
e.g. [3, 5, 6, 8, 9, 10]). It is well known that some of the above properties can
be used as axioms for the fixed point index theory. For instance, in the manifold
setting, it can be deduced from [4] that the first four, provided that the first three
are stated as in Section 2, imply the uniqueness of the fixed point index. Actually
the result of [4] is not merely confined to the context of (differentiable) manifold:
it holds in the framework of metric ANRs. In this more general setting, other
uniqueness results based on a stronger version of the normalization property are
available for the class of compact maps (see e.g. [5, §16, Theorem 5.1]).

Our goal here is to prove that in the framework of finite dimensional mani-
folds the fixed point index is uniquely determined by three properties, namely the
Amann-Weiss type properties of normalization, additivity and homotopy invari-
ance as enounced in Section 2. For this reason, these properties will be collectively
referred to as the fixed point index axioms (for manifolds).

The fact that in Rm any equation of the type f(x) = x can be written as
f(x) − x = 0 shows that in this context the theories of fixed point index and of
topological degree are equivalent. Therefore, in this flat case, the uniqueness of the
index could be deduced from the Amann-Weiss axioms of the topological degree
given in [2]. Here we provide a simple proof of the uniqueness in Rm and we extend
this result to the context of finite dimensional manifolds.

Some technical lemmas are well known or belong to the folklore. Their proof is
given for the sake of completeness.

2. Preliminaries

Given two sets X and Y , by a local map with source X and target Y we mean a
triple g = (X,Y,Γ), where Γ, the graph of g, is a subset of X ×Y such that for any
x ∈ X there exists at most one y ∈ Y with (x, y) ∈ Γ. The domain D(g) of g is the
set of all x ∈ X for which there exists y = g(x) ∈ Y such that (x, y) ∈ Γ; namely,
D(g) = π1(Γ), where π1 denotes the projection of X × Y onto the first factor. The
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restriction of a local map g = (X,Y,Γ) to a subset C of X is the triple

g|C = (C, Y,Γ ∩ (C × Y )).

Incidentally, we point out that sets and local maps (with the obvious composi-
tion) constitute a category.

Whenever it makes sense (e.g. when source and target spaces are manifolds),
local maps are tacitly assumed to be continuous.

Throughout the paper M denotes a finite dimensional, smooth, real, Hausdorff,
second countable manifold. Given any x ∈ M , Ix denotes the identity on the
tangent space TxM of M at x.

By a local map in M we mean a local map having M both as source and target
space. A local map in M is said to be smooth on a subset C of M if C ⊆ D(f) and
the restriction f |C admits a smooth extension to an open subset of M containing
C.

Given an open subset U of M and a local map f in M , the pair (f, U) is said to
be admissible (in M) if U ⊆ D(f) and the set

Fix(f, U) :=
{
x ∈ U : f(x) = x

}

of the fixed points of f in U is compact. In particular, (f, U) is admissible if the
closure U of U is a compact subset of D(f) and f is fixed point free on the boundary
∂U of U .

Given an open subset U of M and a (continuous) local map H with source
M×[0, 1] and target M , we say that H is an admissible homotopy in U if U×[0, 1] ⊆
D(H) and the set {

(x, λ) ∈ U × [0, 1] : H(x, λ) = x
}

is compact. Thus, if U is compact and U × [0, 1] ⊆ D(H), a sufficient condition for
H to be admissible in U is the following:

H(x, λ) 6= x, ∀ (x, λ) ∈ ∂U × [0, 1],

which, by abuse of terminology, will be referred to as “H is fixed point free on ∂U”.

We shall show that there exists at most one function that to any admissible pair
(f, U) assigns an integer ind(f, U), called fixed point index of f in U or index of the
pair (f, U), that satisfies the following three axioms.

Normalization. Let f : M →M be constant. Then ind(f,M) = 1.

Additivity. Given an admissible pair (f, U), if U1 and U2 are two disjoint open
subsets of U such that Fix(f, U) ⊆ U1 ∪ U2, then

ind(f, U) = ind(f |U1 , U1) + ind(f |U2 , U2).

Homotopy invariance. If H is an admissible homotopy in U , then

ind
(
H(·, 0), U

)
= ind

(
H(·, 1), U

)
.

Remark 2.1. The pair (f, ∅) is admissible. This includes the case when D(f)
is the empty set (D(f) = ∅ is coherent with the notion of local map). A simple
application of the additivity property shows that ind(f |∅, ∅) = 0 and ind(f, ∅) = 0.
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As a consequence of the additivity property and Remark 2.1, one easily gets the
following (often neglected) property, which shows that the index of an admissible
pair (f, U) does not depend on the behavior of f outside U .

Localization. If (f, U) is admissible, then ind(f, U) = ind(f |U , U).

Let (f, U) be admissible and let U1 ⊆ U be open and such that Fix(f, U) ⊆ U1.
Then, by the additivity property, Remark 2.1, and localization, one gets

ind(f, U) = ind(f |U1 , U1) + ind(f |∅, ∅) = ind(f, U1).

Thus, we have the following important property of the fixed point index.

Excision. Given an admissible pair (f, U) and an open subset U1 of U containing
Fix(f, U), one has ind(f, U) = ind(f, U1).

From the excision, if Fix(f, U) = ∅, taking U1 = ∅ we get

ind(f, U) = ind(f, ∅) = 0,

and this implies the following property.

Solution. If ind(f, U) 6= 0, then the fixed point equation f(x) = x has a solution
in U .

3. The fixed point index for linear maps

In this section we shall prove that, as a consequence of the properties of nor-
malization, additivity and homotopy invariance, the index of an admissible pair
(A,Rm), where A is a linear operator in Rm, is either 1 or −1.

The Euclidean norm of a vector v ∈ Rm will be denoted by |v|. By L(Rm) we
shall mean the normed space of linear endomorphisms of Rm, and by GL(Rm) we
shall distinguish the group of invertible ones. The identity on Rm is represented
by the symbol I. An operator A ∈ L(Rm) will be called nondegenerate if I − A is
invertible, and N(Rm) will stand for the open subset of L(Rm) of the nondegenerate
operators. Observe that A ∈ N(Rm) if and only if Fix(A,Rm) = {0}. Thus (A,Rm)
is an admissible pair if and only if A ∈ N(Rm).

It is well known (see e.g. [1]) that the open subset GL(Rm) of L(Rm) has exactly
two connected components:

GL+(Rm) = {L ∈ GL(Rm) : det(L) > 0},
GL−(Rm) = {L ∈ GL(Rm) : det(L) < 0}.

Therefore, N(Rm) has two connected components, N+(Rm) and N−(Rm), consist-
ing, respectively, of those A ∈ GL(Rm) for which det(I−A) > 0 and det(I−A) < 0.

Since N+(Rm) and N−(Rm) are open in L(Rm) and connected, they are actually
path connected. Consequently, given A ∈ N(Rm), the homotopy invariance implies
that ind(A,Rm) depends only on the component of N(Rm) containing A. There-
fore, given A ∈ N+(Rm), one has ind(A,Rm) = ind(0,Rm), where 0 is the trivial
operator. Thus, by normalization, we get

(3.1) ind(A,Rm) = 1, ∀A ∈ N+(Rm).

We will prove that ind(A,Rm) = −1 for any A ∈ N−(Rm). As a distinguished

representative in N−(Rm) we choose the linear operator Â given by

(x1, . . . , xm−1, xm) 7→ (0, . . . , 0, 2xm).
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Lemma 3.1. Let Â be the above operator. Then ind(Â,Rm) = −1.

Proof. Consider the homotopy H : Rm × [0, 1]→ Rm given by

(x1, . . . , xm;λ) 7→ (0, . . . , 0, |xm|+ xm + 2λ− 1).

Clearly, H is admissible and Fix
(
H(·, 1),Rm

)
= ∅. Thus, the solution and homo-

topy invariance properties imply

0 = ind
(
H(·, 1),Rm

)
= ind

(
H(·, 0),Rm

)
.

Since

Fix
(
H(·, 0),Rm

)
=
{
(0, . . . ,+1), (0, . . . ,−1)

}
,

by additivity we get

(3.2) 0 = ind
(
H(·, 0),Rm

)
= ind

(
H(·, 0),Hm+

)
+ ind

(
H(·, 0),Hm−

)
,

where Hm+ and Hm− denote the open half-spaces of Rm with positive and nega-
tive last coordinate. Since the restriction of H(·, 0) to Hm− is constantly equal to
(0, . . . , 0,−1), by normalization we get

ind
(
H(·, 0),Hm−

)
= 1.

Hence, by (3.2),

ind
(
H(·, 0),Hm+

)
= −1.

Notice that in Hm+ the map H(·, 0) coincides with the affine operator

Φ(x1, . . . , xm−1;xm) = (0, . . . , 0, 2xm − 1).

Thus, by localization and excision,

ind
(
H(·, 0),Hm+

)
= ind(Φ,Hm+ ) = ind(Φ,Rm).

Therefore, it is enough to show that ind(Â,Rm) = ind(Φ,Rm), and this is true
since the homotopy

(x1, . . . , xm, λ) 7→ (0, . . . , 0, 2xm − λ).

is admissible. ¤

From the previous discussion and Lemma 3.1 one gets

(3.3) ind(A,Rm) = −1, ∀A ∈ N−(Rm).

Formulas (3.1) and (3.3) can be summarized as follows.

Lemma 3.2. If A ∈ N(Rm), then ind(A,Rm) = sign det(I −A).

We conclude the section with a technical result regarding linearizable maps.

Lemma 3.3. Let f : U → Rm be a continuous map on an open subset of Rm. Given
p ∈ Fix(f, U), assume that f is differentiable at p with nondegenerate Fréchet de-
rivative f ′(p). Then p is an isolated fixed point, and for any isolating neighborhood
V ⊆ U of p one has

ind(f, V ) = ind(f ′(p),Rm).
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Proof. By definition of differentiability we get

f(x) = p+ f ′(p)(x− p) + |x− p|ε(x− p), x ∈ U,
where ε : U−p→ Rm is a continuous map with ε(0) = 0. Thus

|x− f(x)| ≥ |(I − f ′(p))(x− p)| − |x− p||ε(x− p)|

≥ |x− p|
(

inf
|v|=1

∣∣(I − f ′(p)
)
v
∣∣− |ε(x− p)|

)
.

Since f ′(p) is nondegenerate, inf |v|=1

∣∣(I − f ′(p)
)
v
∣∣ > 0, and this implies that p is

an isolated fixed point of f .
Let V ⊆ U be any neighborhood of p such that Fix(f, V ) = {p}, and consider

the homotopy

H(x, λ) = p+ f ′(p)(x− p) + λ|x− p|ε(x− p).
The above argument shows that in some neighborhood W ⊆ V of p one has

|x−H(x, λ)| > 0

for any x ∈ W \ {p} and λ ∈ [0, 1]. Hence H is an admissible homotopy in W . By
the homotopy and the excision properties, we get

ind(f,W ) = ind
(
H(·, 0),W

)
= ind

(
H(·, 0),Rm

)
.

Consequently, by excision,

(3.4) ind(f, V ) = ind(f,W ) = ind
(
H(·, 0),Rm

)
.

Since the affine map H(x, 0) = p+ f ′(p)(x − p) is admissibly homotopic in Rm to
its linear part x 7→ f ′(p)x, the homotopy invariance property yields

(3.5) ind
(
H(·, 0),Rm

)
= ind

(
f ′(p),Rm

)
.

The assertion follows from (3.4) and (3.5). ¤

4. The uniqueness result

Given a local map f in M and a relatively compact open subset U of M , the
pair (f, U) will be called nondegenerate if f is smooth on U , fixed point free on
∂U , and the Fréchet derivative of f at any fixed point in U is nondegenerate (as in
the case of Rm, an endomorphism of a vector space is nondegenerate if 1 is not an
eigenvalue). Note that, in this case, Fix(f, U) is necessarily a discrete set, therefore
finite, being closed in the compact set U . In particular (f, U) is an admissible pair.

The following lemma shows that the computation of the fixed point index of any
admissible pair can be reduced to that of a nondegenerate pair.

Lemma 4.1. Let (f, U) be admissible and let V be a relatively compact open subset
of M containing Fix(f, U) and such that V ⊆ U . Then, there exists a local map g in
M which is admissibly homotopic to f in V and such that (g, V ) is a nondegenerate
pair.

Proof. Without loss of generality we may assume that M is embedded in some
Rk. Thus, because of the ε-Neighborhood Theorem (see e.g. [7]) there exist an
open neighborhood Ω of M in Rk and a smooth submersion r : Ω → M such that
|x − r(x)| = dist(x,M) for all x in Ω. In particular, M is a retract of Ω. Since
V is compact, given δ > 0, the Weierstrass Approximation Theorem implies the
existence of a polynomial map fδ : Rk → Rk such that |f(x) − fδ(x)| < δ for all



           

6 M. FURI, M.P. PERA, AND M. SPADINI

x ∈ V . Again by the compactness of V , we may assume that δ is such that the
homotopy

F δ(x, λ) := r
(
(1− λ)f(x) + λfδ(x)

)

is well defined on V × [0, 1] and fixed point free on ∂V (where ∂V is the boundary
of V relative to M ⊆ Rk). Consequently, f is admissibly homotopic in V to the
smooth map h := F δ(·, 1).

It is enough to prove that h is admissibly homotopic in V to some local map
g such that (g, V ) is a nondegenerate pair. Observe first that an admissible pair
(g, V ), with g smooth on V and fixed point free on ∂V , is nondegenerate if and only
if the graph map x 7→ (x, g(x)) is transversal in V to the diagonal ∆ of M ×M .
We apply the Transversality Theorem (see e.g. [7]) to the map

G(x, y) =
(
x, r(h(x) + y)

)
,

defined on V ×B, where B is an open ball about the origin so small that h(x)+y ∈ Ω
for all (x, y) ∈ V ×B and the maps x 7→ r(h(x) + y) are all fixed point free on ∂V .
This is possible since V is compact and h(x) 6= x for all x ∈ ∂V .

Since r is a submersion, given any (x, y) ∈ G−1(∆), the derivative

G′(x, y) : TxM × Rk → TxM × TxM
is surjective, and this implies that G is transversal to ∆ in V × B. Consequently,
the Transversality Theorem ensures the existence of a point ȳ ∈ B such that the
partial map

G(·, ȳ) : x 7→ (x, r(h(x) + ȳ))

is transversal to ∆ in V . This, as pointed out before, means that any fixed point in V
of the smooth map g(x) := r(h(x)+ ȳ) is nondegenerate. The conclusion follows by
observing that the assumption on B ensures that the homotopy H : V × [0, 1]→M
given by H(x, λ) = r(h(x) + λȳ) is fixed point free on ∂V , therefore admissible
because of the compactness of V . ¤

We will show that the properties of normalization, additivity and homotopy
invariance imply a formula for the computation of the fixed point index that is
valid for any nondegenerate pair. Therefore, Lemma 4.1, the excision and the
homotopy invariance properties imply the existence of at most one real function on
the set of admissible pairs that satisfies the fixed point index axioms. Moreover,
since the function defined by this formula is integer valued, so is the fixed point
index.

Theorem 4.2 (Uniqueness of the fixed point index). Let ind be a real function
on the set of admissible pairs satisfying the properties of normalization, additivity
and homotopy invariance of the fixed point index. If (f, U) is a nondegenerate pair,
then

ind(f, U) =
∑

x∈Fix(f,U)

sign
(
det
(
Ix − f ′(x)

))
.

Consequently, there exists at most one function on the set of admissible pairs sat-
isfying the fixed point index axioms, and this function is integer-valued.

Proof. Consider first the case M = Rm. Let (f, U) be a nondegenerate pair in Rm
and, for any x ∈ Fix(f, U), let Vx be an isolating neighborhood of x. Since Fix(f, U)
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is finite, we may assume that the neighborhoods Vx’s are pairwise disjoint. The
additivity property, Lemma 3.3 and Lemma 3.2 yield

ind(f, U) =
∑

x∈Fix(f,U)

ind(f, Vx) =
∑

x∈Fix(f,U)

ind(f ′(x),Rm)

=
∑

x∈Fix(f,U)

sign
(
det
(
I − f ′(x)

))
.

Now the uniqueness of the fixed point index on Rm follows immediately from Lemma
4.1, taking into account the properties of excision and homotopy invariance.

Let us now consider the general case and denote by m the dimension of M . Let
W be an open subset of M which is diffeomorphic to the whole space Rm and let
ψ : W → Rm be any diffeomorphism onto Rm. Denote by U the set of all pairs
(f, U) which are admissible and such that U ⊆ W , f(U) ⊆ W . These pairs may
be regarded as admissible in W , and the restriction of the index function to U
still satisfies the fixed point index axioms. We claim that for any (f, U) ∈ U one
necessarily has

ind(f, U) = i
(
ψ ◦ f ◦ ψ−1, ψ(U)

)
,

where (for the moment) i denotes the (unique) fixed point index on Rm. To show
this, denote by V the set of pairs (g, V ) which are admissible in Rm and consider
the one-to-one correspondence ω : U → V defined by

ω(f, U) =
(
ψ ◦ f ◦ ψ−1, ψ(U)

)
.

We need to prove that ind = i ◦ω. Observe that

ω−1(g, V ) =
(
ψ−1 ◦ g ◦ ψ, ψ−1(V )

)
,

and if two pairs (f, U) ∈ U and (g, V ) ∈ V correspond under ω, then the sets
Fix(f, U) and Fix(g, V ) correspond under ψ. It is also evident that the function
ind ◦ω−1 satisfies the fixed point index axioms. Thus, i and ind ◦ω−1 coincide on
V, and this implies ind = i ◦ω, as claimed.

Let now (f, U) be a given nondegenerate pair in M . Let Fix(f, U) = {x1, . . . , xn}
and let W1, . . . ,Wn be n pairwise disjoint open subsets of U such that xj ∈ Wj ,
for j = 1, . . . , n. Since any point of M has a fundamental system of neighborhoods
which are diffeomorphic to the whole space Rm, we may assume that each Wj is
diffeomorphic to Rm under a diffeomorphism ψj . For any j, let Uj be an open
subset of Wj such that f(Uj) ⊆Wj . The additivity property yields

ind(f, U) =

n∑

j=1

ind(f, Uj),

and, by the above claim, we get

n∑

j=1

ind(f, Uj) =

n∑

j=1

i
(
ψj ◦ f ◦ ψ−1

j , ψj(Uj)
)
.

By the excision property, Lemma 3.2, and the chain rule for the derivative one has

i
(
ψj ◦ f ◦ ψ−1

j , ψj(Uj)
)

= i
(
ψj ◦ f ◦ ψ−1

j ,Rm
)

= sign
(
det
(
Ixj − f ′(xj)

))
,
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for j = 1, . . . , n. Thus

ind(f, U) =

n∑

j=1

sign
(
det
(
Ixj − f ′(xj)

))
.

As in the case when M = Rm, the uniqueness of the fixed point index is now a
consequence of Lemma 4.1. ¤
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