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1. Introduction

In this paper we continue the research of [3], where we obtained qualitative re-
sults for forced oscillations on differentiable (boundaryless) manifolds that cannot
be deduced via variational or implicit function methods. More precisely, in [3] we
considered “small” periodic perturbations of autonomous second order differential
equations on differentiable manifolds and, under suitable assumptions, we estab-
lished the existence of multiple forced oscillations.

In [3] we framed the problem in an abstract topological setting, so that the
results arose from a combination of analytical and topological tools as well as from
local and global results on the set of the so-called T -pairs (see below for a precise
definition). In that framework the key notion was that of ejecting set.

In this paper we focus on some applications of the results of [3] and illustrate,
through some physical examples, how the notion of ejecting set can be used to get
multiplicity results. We treat in some detail the motion problem of a mass point
constrained to a 1-dimensional manifold M and acted on by a periodic force. We
consider therefore the two cases M = S1 and M = R, which are, up to a diffeomor-
phism, the only connected 1-dimensional boundaryless differentiable manifolds.

A particular attention is devoted to the second order scalar equation

ẍ = g(x)− µẋ+ λf(t, x, ẋ), λ ≥ 0,

where g : R → R and f : R3 → R are continuous, f is T -periodic in t (T >
0 is given), and µ ≥ 0. When the parameter λ is small enough, we establish
multiplicity results for the T -periodic solutions of the above equation in two cases:
when the force g vanishes and the frictional coefficient µ is arbitrary, and when g
has isolated zeros and µ is positive. The remaining case when µ = 0 and g does
not vanish identically requires a more careful treatment and will be the subject of
a forthcoming paper.

2. Ejecting sets and T -pairs

Let M be a differentiable manifold embedded in Rk. Given T > 0, we denote by
C1
T (M) the metric subspace of the Banach space C1

T (Rk) of all the T -periodic C1

maps x : R → M with the usual C1 norm. Observe that C1
T (M) is not complete,

unless M is complete (i.e. closed in Rk). Nevertheless, since M is locally compact,
C1
T (M) is always locally complete.
Given q ∈M , TqM ⊂ Rk denotes the tangent space to M at q. By

TM =
{

(q, v) ∈ Rk × Rk : q ∈M,v ∈ TqM
}
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we mean the tangent bundle of M .
We consider second order differential equations on M of the form

(2.1) ẍπ = h(x, ẋ) + λf(t, x, ẋ), λ ≥ 0,

where λ is a parameter, h : TM → R
k and f : R× TM → R

k are tangent to M , in
the sense that h(q, v) and f(t, q, v) belong to TqM for all (t, q, v) ∈ R× TM . Here
the map f is assumed T -periodic in t. A solution of (2.1) is a C2 map x : J →M ,
defined on a nontrivial interval J , such that

ẍπ(t) = h (x(t), ẋ(t)) + λf (t, x(t), ẋ(t)) , ∀t ∈ J,

where ẍπ(t) denotes the orthogonal projection of ẍ(t) ∈ Rk onto Tx(t)M . A solution
of (2.1) is called a forced oscillation if it is periodic of the same period T as that
of the forcing term f .

For a more extensive treatment of second-order ODEs on manifolds from this
embedded viewpoint see e.g. [1].

A pair (λ, x) ∈ [0,∞)× C1
T (M) is called a T -pair for the second-order equation

(2.1) if x is a solution of (2.1) corresponding to λ. In particular we will say that
(λ, x) is trivial if λ = 0 and x is constant. Note that, in general, there may exist
nontrivial T -pairs of (2.1) even for λ = 0, as in the case of the inertial motion on
S1.

One can show that, no matter whether or not M is closed in Rk, the subset X
of [0,∞)×C1

T (M) consisting of all the T -pairs of (2.1) is always closed and locally
compact (see e.g. [2] or [4]). Moreover, by Ascoli’s theorem, when M is closed in
R
k, any bounded closed set of T -pairs is compact.
As in [5], we tacitly assume some natural identifications. That is, we will regard

every space as its image in the following diagram of closed embeddings:

(2.2)

[0,∞)×M −−−−→ [0,∞)× C1
T (M)x x

M −−−−→ C1
T (M),

where the horizontal arrows are defined by regarding any point q in M as the
constant map q̂(t) ≡ q in C1

T (M), and the two vertical arrows are the natural
identifications q 7→ (0, q) and x 7→ (0, x).

According to these embeddings, if Ω is an open subset of [0,∞) × C1
T (M), by

Ω ∩M we mean the open subset of M given by all q ∈M such that the pair (0, q̂)
belongs to Ω. If U is an open subset of [0,∞)×M , then U ∩M represents the open
set {q ∈M | (0, q) ∈ U}.

We need some basic facts about the topological degree of tangent vector fields
on manifolds.

Let w : M → R
k be a continuous tangent vector field on M , and let U be an

open subset of M in which we assume w admissible for the degree, that is w−1(0)∩
U compact. Then, one can associate to the pair (w,U) an integer, deg(w,U),
called the degree (or characteristic) of the vector field w in U , which, roughly
speaking, counts (algebraically) the number of zeros of w in U (see e.g. [6, 7]
and references therein). When M = R

k, deg(w,U) is just the classical Brouwer
degree, deg(w, V, 0), of w at 0 in any bounded open neighborhood V of w−1(0)∩U
whose closure is in U . Moreover, when M is a compact manifold, the celebrated
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Poincaré-Hopf Theorem states that deg(v,M) coincides with the Euler-Poincaré
characteristic of M and, therefore, is independent of v.

We recall that when q is an isolated zero of w, the index i(w, q) of w at q is
given by deg(w,U), where U is any isolating open neighborhood of q. If w is C1

and q is a non-degenerate zero of w (i.e. the Fréchet derivative w′(q) : TqM → R
k

is injective), then q is an isolated zero of w, w′(q) maps TqM into itself, and
i(w, q) = sign detw′(q) (see e.g. [7]).

The following result of [5] concerns the global structure of the set of T -pairs of
(2.1).
Theorem 2.1. Let Ω be an open subset of [0,∞)×C1

T (M). Assume that deg
(
h(·, 0),

Ω∩M
)

is well defined and nonzero. Then Ω contains a connected set Γ of nontrivial
T -pairs for (2.1) whose closure in Ω meets M in h(·, 0)−1(0) and is not contained
in any compact subset of Ω. Consequently, if M is closed in Rk, then Γ is not
contained in any bounded and complete subset of Ω.
Corollary 2.2. Assume that M is closed in Rk. If q ∈ M is an isolated zero
of h(·, 0) with i

(
h(·, 0), q

)
6= 0, then (2.1) admits a connected set Γ of nontrivial

T -pairs whose closure meets q and is either unbounded or intersects h(·, 0)−1(0) \
{q}. The assertion is true, in particular, if h is C1 and the Fréchet derivative
h(·, 0)′(q) : TqM → R

k of h(·, 0) at q is injective.

Proof. Apply Theorem 2.1 taking as Ω the complement in [0,∞) × C1
T (M) of the

closed set h(·, 0)−1(0) \ {q}, and observe that, being M closed, any bounded and
closed subset of [0,∞)× C1

T (M) is complete. �

We point out that the set Γ might be completely “vertical”. That is, contained
in {0} × C1

T (M), as it happens for the following differential equation in M = R

(with q = 0 and T = 2π):

ẍ = −x+ λ sin t, λ ≥ 0.

In order to find multiplicity results for the forced oscillations of (2.1) it is nec-
essary to avoid such a “degenerate” situation. We tackle this problem from an
abstract viewpoint.

We need some notation. Let Y be a metric space and C a subset of [0,∞)× Y .
Given λ ≥ 0, we denote by Cλ the slice

{
y ∈ Y | (λ, y) ∈ C

}
. In what follows, Y

will be identified with the subset {0} × Y of [0,∞)× Y .
Definition 2.3. Let C be a subset of [0,∞) × Y . We say that a subset A of C0

is an ejecting set (for C) if it is relatively open in C0 and there exists a connected
subset of C which meets A and is not included in C0.

We shall simply say that q ∈ C0 is an ejecting point if {q} is an ejecting set. In
this case, being {q} open in C0, q is clearly isolated in C0

In [3] we proved the following theorem which relates ejecting sets and multiplicity
results.
Theorem 2.4. Let Y be a metric space and let C be a locally compact subset of
[0,∞)×Y . Assume that C0 contains n pairwise disjoint ejecting sets, n−1 of which
are compact. Then, there exists δ > 0 such that the cardinality of Cλ is greater than
or equal to n for any λ ∈ [0, δ).

In [3] we provided examples showing that in Theorem 2.4 the assumption that
n− 1 ejecting sets are compact cannot be dropped.
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Let q be a zero of h(·, 0). If h is C1, we give a condition which ensures that q
(regarded as a trivial T -pair) is an ejecting point for the subset X of [0,∞)×C1

T (M)
consisting of the T -pairs of (2.1).

We say that a point q ∈ h(·, 0)−1(0) is T -resonant for the equation (2.1) if the
linearized equation

(2.3) ẍ = D1h(q, 0)x+D2h(q, 0)ẋ ,

which corresponds to λ = 0, admits nonzero T -periodic solutions. Here D1h(q, 0)
and D2h(q, 0) denote the partial derivatives at (q, 0) of h with respect to the first
and the second variable. One can check that both D1h(q, 0) and D2h(q, 0) are
endomorphisms of TqM (see e.g. [3]), thus (2.3) is a differential equation on the
subspace Tq(M) of Rk.

If q is non-T -resonant, then there is only one constant solution of (2.3). This
implies det (D1h(q, 0)) 6= 0. That is, q is a non-degenerate zero of h(·, 0). As a
consequence of this fact and of Corollary 2.2 we get the following:
Corollary 2.5 ([3]). If q ∈ h(·, 0)−1(0) is non-T -resonant, then it is an ejecting
point for X.

When the unperturbed force h reduces to a purely frictional force, it is convenient
to substitute X with a more significative subset. In this case we obtain other
examples of ejecting sets. Consider the equation (2.1) with h(q, v) = −µv, µ ≥ 0.
That is

(2.4) ẍπ = −µẋ+ λf(t, x, ẋ), λ ≥ 0.

Define the average force w : M → R
k by

(2.5) w(q) =
1
T

∫ T

0

f(t, q, 0) dt,

and observe that w is a tangent vector field on M .
Consider the set w−1(0) regarded as a subset of [0,∞)×C1

T (M) according to the
diagram (2.2), and denote by Ξ the union of w−1(0) and of the set of the T -pairs
of (2.4) with λ > 0. In other words,

Ξ = w−1(0) ∪ (X \X0),

where, we recall, X denotes the set of T -pairs of (2.4).
In [2] it was shown that, when µ = 0, the closure of X \X0 in [0,∞)×C1

T (M) is
contained in w−1(0). This is true also when µ > 0 since the same argument applies.
Consequently Ξ, being a closed subset of X, is locally compact. As in Corollary
2.3 of [2] one obtains the following result.
Theorem 2.6. Let q be an isolated zero of w such that i(w, q) 6= 0. Then q is an
ejecting point for Ξ. This occurs, in particular, if w is C1 and q is a non-degenerate
zero of w.

3. Application to multiplicity results

This section is devoted to illustrating how the notions and results previously
discussed can be used to prove the existence of multiple forced oscillations. As
before, X will stand for the set of T -pairs of (2.1).

We begin with two physical examples.
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Example 3.1. Consider the following forced pendulum equation:

(3.1) θ̈ = − sin θ + λf(t, θ, θ̇),

where f : R3 → R is continuous, 2π-periodic with respect to θ and T -periodic in t.
Since the right hand side of (3.1) is 2π-periodic in θ, the above equation (which is
in R) can be regarded on the unit circle M = S1 of R2 (the solutions from R to S1

correspond under the transformation θ 7→ (sin θ,− cos θ)). In this way, the “north
pole” N = π and the “south pole” S = 0 are the unique zeros of the tangential
component − sin θ of the gravitational vector field.

We want to show that for λ small enough equation (3.1), if regarded on S1, admits
at least two forced oscillations (observe that a solution of (3.1) on S1 produces
infinitely many solutions on R). Corollary 2.5 implies that N, being non-T -resonant,
is ejecting (for X). Thus, our claim follows from Theorem 2.4 if we prove that
X0 \ {N} is an ejecting set, which means that there exists a connected subset of
T -pairs intersecting the relatively open subset X0 \ {N} of X0 and not included in
X0.

Corollary 2.2 implies that there exists a connected set Γ of nontrivial T -pairs
whose closure Γ meets S ∈ X0 \ {N} and is either unbounded or contains N. Let us
show that Γ 6⊂ {0} × C1

T (S1). If this were not the case, then Γ = {0} × Γ0. Since
Γ0 cannot meet the relatively open subset {N} of X0, it would be unbounded. But
this is false since, given any x(·) =

(
sin θ(·),− cos θ(·)

)
∈ X0, the T -periodicity of

x(·) implies
‖ẋ(t)‖ = |θ̇(t)| ≤ T for any t ∈ [0, T ].

Example 3.2. Consider the so-called parametrically excited pendulum. That is,
a pendulum moving in a vertical plane and whose pivot is subject to a vertical
periodic driving. The motion equation can be written in the form

θ̈ + µθ̇ +
(
1 + λω(t)

)
sin θ = 0,

where ω is a T -periodic function and µ ≥ 0. As in the example above, this equation
can be seen on S1 and, from this viewpoint, we show that it admits at least two
forced oscillations for small values of λ ≥ 0. In fact, in the case when the frictional
coefficient µ 6= 0, both the north and the south poles are non-T -resonant and,
consequently, ejecting points. When µ = 0, the equation is of the form considered
in the previous example.

In what follows we will be concerned with the scalar equation

(3.2) ẍ = g(x)− µẋ+ λf(t, x, ẋ), λ ≥ 0,

where g : R → R and f : R3 → R are continuous, f is T -periodic in t, and µ ≥ 0.
Observe that, as in the above examples, when the functions g and f are 2π-periodic
in x, the equation (3.2) can be interpreted on S1.

In the case when g vanishes we get the following multiplicity result.
Theorem 3.3. Consider in R the equation

(3.3) ẍ = −µẋ+ λf(t, x, ẋ), λ ≥ 0.

Assume that the average force w, defined as in (2.5), changes sign in n isolated
zeros. Then there exists δ > 0 such that (3.3) has at least n forced oscillations for
λ ∈ [0, δ).
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Proof. Let q be an isolated zero in which w changes sign. The homotopy property
of the degree implies that i(w, q) = ±1. The assertion follows from Theorems 2.4
and 2.6. �

In the case when g does not vanish, the average force plays no role. Clearly, if
the frictional coefficient µ is nonzero, g is C1 and changes sign in n non-degenerate
zeros, then it is clear that, for λ sufficiently small, the equation (3.2) admits at
least n forced oscillations. In fact, all those zeros turn out to be non-T -resonant
and, in particular, ejecting points.

Actually, still when the frictional coefficient is non-zero, a better result can be
obtained.
Theorem 3.4. Assume that in equation (3.2) the frictional coefficient µ is non-
zero and the force g changes sign in n isolated zeros. Then there exists δ > 0 such
that (3.2) has at least n forced oscillations for λ ∈ [0, δ).

Proof. Let q1, . . . qn be isolated zeros in which g changes sign. For any i ∈ {1, . . . n},
the homotopy property of the degree yields i(g, qi) = ±1. Thus, by Corollary 2.2,
for i = 1, . . . n, there exists a connected set Γi of nontrivial T -pairs for (3.2) whose
closure Γi meets qi and is either non-compact or intersects g−1(0) \ {qi}.

Clearly, due to the presence of friction, only constant periodic solution to (3.2)
may exist for λ = 0. Therefore the connected component of

(
Γi
)

0
containing qi

reduces to {qi}. This means that, for i = 1, . . . n, the points qi are ejecting.
The assertion now follows from Theorem 2.4. �
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