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Abstract. Given a tangent vector field on a finite dimensional real smooth
manifold, its degree (also known as characteristic or rotation) is, in some sense,

an algebraic count of its zeros and gives useful information for its associated

ordinary differential equation. When, in particular, the ambient manifold is
an open subset U of Rm, a tangent vector field v on U can be identified with

a map ~v : U → Rm, and its degree, when defined, coincides with the Brouwer

degree with respect to zero of the corresponding map ~v.
As is well known, the Brouwer degree in Rm is uniquely determined by three

axioms, called Normalization, Additivity and Homotopy Invariance. Here we

shall provide a simple proof that in the context of differentiable manifolds the
degree of a tangent vector field is uniquely determined by suitably adapted

versions of the above three axioms.

1. Introduction

The degree of a tangent vector field on a differentiable manifold is a very well
known tool of nonlinear analysis used, in particular, in the theory of ordinary
differential equations and dynamical systems. This notion is more often known
by the names of rotation or of (Euler) characteristic of a vector field (see e.g.
[2, 3, 6, 7, 8, 10]). Here, we depart from the established tradition by choosing
the name “degree” because of the following consideration: In the case that the
ambient manifold is an open subset U of Rm, there is a natural identification of
a vector field v on U with a map ~v : U → Rm, and the degree deg(v, U) of v on
U , when defined, is just the Brouwer degree degB(~v, U, 0) of ~v on U with respect
to zero. Thus the degree of a vector field can be seen as a generalization to the
context of differentiable manifolds of the notion of Brouwer degree in Rm. As is well
known, this extension of degB does not require the orientability of the underlying
manifold, and is therefore different from the classical extension of degB for maps
acting between oriented differentiable manifolds.

A result of Amann and Weiss [1] (see also [4]) asserts that the Brouwer degree
in Rm is uniquely determined by three axioms: Normalization, Additivity and
Homotopy Invariance. A similar statement is true (e.g. as a consequence of a result
of Staecker [9]) for the degree of maps between oriented differentiable manifolds
of the same dimension. In this paper, that is closely related in both spirit and
demonstrative techniques to [5], we shall prove that suitably adapted versions of
the above axioms are sufficient to uniquely determine the degree of a tangent vector
field on a (not necessarily orientable) differentiable manifold. We will not deal with
the problem of existence of such a degree, for which we refer to [2, 3, 6, 7, 8].

2. Preliminaries

Given two sets X and Y , by a local map with source X and target Y we mean
a triple g = (X,Y,Γ), where Γ, the graph of g, is a subset of X × Y such that for
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any x ∈ X there exists at most one y ∈ Y with (x, y) ∈ Γ. The domain D(g) of g is
the set of all x ∈ X for which there exists y = g(x) ∈ Y such that (x, y) ∈ Γ; that
is, D(g) = π1(Γ), where π1 denotes the projection of X × Y onto the first factor.
The restriction of a local map g = (X,Y,Γ) to a subset C of X is the triple

g|C =
(
C, Y,Γ ∩ (C × Y )

)
with domain C ∩ D(g).

Incidentally, we point out that sets and local maps (with the obvious composi-
tion) constitute a category. Although the notation g : X → Y would be acceptable
in the context of category theory, it will be reserved for the case when D(g) = X.

Whenever it makes sense (e.g. when source and target spaces are differentiable
manifolds), local maps are tacitly assumed to be continuous.

Throughout the paper all the differentiable manifolds will be assumed to be fi-
nite dimensional, smooth, real, Hausdorff and second countable. Thus, they can be
embedded in some Rk. Moreover, M and N will always denote arbitrary differen-
tiable manifolds. Given any x ∈M , TxM will denote the tangent space of M at x.
Furthermore TM will be the tangent bundle of M , that is

TM =
{

(x, v) : x ∈M,v ∈ TxM
}
.

The map π : TM → M given by π(x, v) = x will be the bundle projection of TM .
It will also be convenient, given any x ∈ M , to denote by 0x the zero element of
TxM .

Given a smooth map f : M → N , by Tf : TM → TN we shall mean the map that
to each (x, v) ∈ TM associates

(
f(x), dfx(v)

)
∈ TN . Here dfx : TxM → Tf(x)N

denotes the differential of f at x. Notice that if f : M → N is a diffeomorphism,
then so is Tf : TM → TN and one has T (f−1) = (Tf)−1.

By a local tangent vector field on M we mean a local map v having M as source
and TM as target, with the property that the composition π ◦ v is the identity on
D(v). Therefore, given a local tangent vector field v on M , for all x ∈ D(v) there
exists ~v(x) ∈ TxM such that v(x) =

(
x,~v(x)

)
.

Let V and W be differentiable manifolds and let ψ : V →W be a diffeomorphism.
Recall that two tangent vector fields v : V → TV and w : W → TW correspond
under ψ if the following diagram commutes:

TV
Tψ−−−−→ TW

v

x xw
V

ψ−−−−→ W

Let V be an open subset of M and suppose that v is a local tangent vector
field on M with V ⊆ D(v). We say that v is identity-like on V if there exists a
diffeomorphism ψ of V onto Rm such that v|V and the identity in Rm correspond
under ψ. Notice that any diffeomorphism ψ from an open subset V of M onto Rm
induces an identity-like vector field on V .

Let v be a local tangent vector field on M and let p ∈M be a zero of v; that is,
~v(p) = 0p. Consider a diffeomorphism ϕ of a neighborhood U ⊆ M of p onto Rm
and let w : Rm → TRm be the tangent vector field on Rm that corresponds to v
under ϕ. Since TRm = Rm × Rm, then the map ~w associated to w sends Rm into
itself. Assuming that v is smooth in a neighborhood of p, the function ~w is Fréchet
differentiable at q = ϕ(p). Denote by D~w(q) : Rm → Rm its Fréchet derivative and
let v′(p) : TpM → TpM be the endomorphism of TpM which makes the following
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diagram commutative:

(2.1)

TpM
v′(p)−−−−→ TpM

dϕp

y ydϕp

Rm D~w(q)−−−−→ Rm
Using the fact that p is a zero of v, it is not difficult to prove that v′(p) does not
depend on the choice of ϕ. This endomorphism of TpM is called the linearization
of v at p. Observe that when M = Rm, the linearization v′(p) of a tangent vector
field v at a zero p is just the Fréchet derivative D~v(p) at p of the map ~v associated
to v.

The following fact will play an important rôle in the proof of our main result.

Remark 2.1. Let v, w, p and q be as above. Then, the commutativity of diagram
(2.1) implies

det v′(p) = detD~w(q).

3. Degree of a tangent vector field

Given an open subset U of M and a local tangent vector field v on M , the pair
(v, U) is said to be admissible on U if U ⊆ D(v) and the set

Z(v, U) :=
{
x ∈ U : ~v(x) = 0x

}
of the zeros of v in U is compact. In particular, (v, U) is admissible if the closure
U of U is a compact subset of D(v) and ~v is nonzero on the boundary ∂U of U .

Given an open subset U of M and a (continuous) local map H with source
M × [0, 1] and target TM , we say that H is a homotopy of tangent vector fields on
U if U × [0, 1] ⊆ D(H), and if H(·, λ) is a local tangent vector field for all λ ∈ [0, 1].
If, in addition, the set {

(x, λ) ∈ U × [0, 1] : ~H(x, λ) = 0x
}

is compact, the homotopy H is said to be admissible. Thus, if U is compact and
U×[0, 1] ⊆ D(H), a sufficient condition for H to be admissible on U is the following:

~H(x, λ) 6= 0x, ∀ (x, λ) ∈ ∂U × [0, 1],

which, by abuse of terminology, will be referred to as “H is nonzero on ∂U”.

We shall show that there exists at most one function that, to any admissible
pair (v, U), assigns a real number deg(v, U) called the degree (or characteristic
or rotation) of the tangent vector field v on U , which satisfies the following three
properties that will be regarded as axioms. Moreover, this function (if it exists)
must be integer valued.

Normalization. Let v be identity-like on an open subset U of M . Then,

deg(v, U) = 1.

Additivity. Given an admissible pair (v, U), if U1 and U2 are two disjoint open
subsets of U such that Z(v, U) ⊆ U1 ∪ U2, then

deg(v, U) = deg(v|U1 , U1) + deg(v|U2 , U2).

Homotopy Invariance. If H is an admissible homotopy on U , then

deg
(
H(·, 0), U

)
= deg

(
H(·, 1), U

)
.

From now on we shall assume the existence of a function deg defined on the
family of all admissible pairs and satisfying the above three properties, that we
shall regard as axioms.
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Remark 3.1. The pair (v, ∅) is admissible. This includes the case when D(v) is
the empty set (D(v) = ∅ is coherent with the notion of local tangent vector field).
A simple application of the Additivity Property shows that deg(v|∅, ∅) = 0 and
deg(v, ∅) = 0.

As a consequence of the Additivity Property and Remark 3.1, one easily gets the
following (often neglected) property, which shows that the degree of an admissible
pair (v, U) does not depend on the behavior of v outside U . To prove it, take
U1 = U and U2 = ∅ in the Additivity Property.

Localization. If (v, U) is admissible, then deg(v, U) = deg(v|U , U).

A further important property of the degree of a tangent vector field is the fol-
lowing.

Excision. Given an admissible pair (v, U) and an open subset U1 of U containing
Z(v, U), one has deg(v, U) = deg(v, U1).

To prove this property observe that by Additivity, Remark 3.1, and Localization,
one gets

deg(v, U) = deg(v|U1 , U1) + deg(v|∅, ∅) = deg(v, U1).

As a consequence, we have the following property.

Solution. If deg(v, U) 6= 0, then Z(v, U) 6= ∅.
To obtain it, observe that if Z(v, U) = ∅, taking U1 = ∅, we get

deg(v, U) = deg(v, ∅) = 0.

4. The degree for linear vector fields

By L(Rm) we shall mean the normed space of linear endomorphisms of Rm, and
by GL(Rm) we shall denote the group of invertible ones. In this section we shall
consider linear vector fields on Rm, namely, vector fields L : Rm → TRm with the
property that ~L ∈ L(Rm). Notice that (L,Rm), with L a linear vector field, is an
admissible pair if and only if ~L ∈ GL(Rm).

The following consequence of the axioms asserts that the degree of an admissible
pair (L,Rm), with ~L ∈ GL(Rm), is either 1 or −1.

Lemma 4.1. Let ~L be a nonsingular linear operator in Rm. Then

deg(L,Rm) = sign det ~L.

Proof. It is well known (see e.g. [11]) that GL(Rm) has exactly two connected
components. Equivalently, the following two subsets of L(Rm) are connected:

GL+(Rm) = {A ∈ L(Rm) : detA > 0},
GL−(Rm) = {A ∈ L(Rm) : detA < 0}.

Since the connected sets GL+(Rm) and GL−(Rm) are open in L(Rm), they are
actually path connected. Consequently, given a linear tangent vector field L on
Rm with ~L ∈ GL(Rm), Homotopy Invariance implies that deg(L,Rm) depends only
on the component of GL(Rm) containing ~L. Therefore, if ~L ∈ GL+(Rm), one has
deg(L,Rm) = deg(I,Rm), where ~I is the identity on Rm. Thus, by Normalization,
we get

deg(L,Rm) = 1.

It remains to prove that deg(L,Rm) = −1 when ~L ∈ GL−(Rm). For this purpose
consider the vector field f : Rm → TRm determined by

~f(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, |ξm| − 1).
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Notice that deg(f,Rm) is well defined because ~f−1(0) is compact. Observe also that
deg(f,Rm) is zero, because f is admissibly homotopic in Rm to the never-vanishing
vector field g : Rm → TRm given by ~g(ξ1, . . . , ξm) = (ξ1, . . . , |ξm|+ 1).

Let U− and U+ denote, respectively, the open half-spaces of the points in Rm
with negative and positive last coordinate. Consider the two solutions

x− = (0, . . . , 0,−1) and x+ = (0, . . . , 0, 1)

of the equation ~f(x) = 0 and observe that x− ∈ U−, x+ ∈ U+.
By Additivity (and taking into account the Localization property), we get

(4.1) 0 = deg(f,Rm) = deg(f, U−) + deg(f, U+).

Now, observe that f in U+ coincides with the vector field f+ : Rm → TRm deter-
mined by

~f+(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1, ξm − 1),
that is admissibly homotopic (in Rm) to the tangent vector field I : Rm → TRm,
given by I(x) = (x, x). Therefore, because of the properties of Localization, Exci-
sion, Homotopy Invariance and Normalization, one has

deg(f, U+) = deg(f+, U+) = deg(f+,Rm) = deg(I,Rm) = 1,

which, by (4.1), implies

(4.2) deg(f, U−) = −1.

Notice that f in U− coincides with the vector field f− : Rm → TRm defined by

~f−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm − 1),

which is admissibly homotopic (in Rm) to the linear vector field L− defined by
~L− ∈ GL−(Rm) with

~L−(ξ1, . . . , ξm−1, ξm) = (ξ1, . . . , ξm−1,−ξm).

Thus, by Homotopy Invariance, Excision, Localization and formula (4.2)

deg(L−,Rm) = deg(f−,Rm) = deg(f−, U−) = deg(f, U−) = −1.

Hence, GL−(Rm) being path connected, we finally get deg(L,Rm) = −1 for all
linear tangent vector fields L on Rm such that ~L ∈ GL−(Rm), and the proof is
complete. �

We conclude this section with a consequence as well as an extension of Lemma
4.1. The Euclidean norm of an element x ∈ Rm will be denoted by |x|.

Lemma 4.2. Let v be a local vector field on Rm and let U ⊆ D(v) be open and
such that the equation ~v(x) = 0 has a unique solution x0 ∈ U . If ~v is smooth
in a neighborhood of x0 and the linearization v′(x0) of v at x0 is invertible, then
deg(v, U) = sign det v′(x0).

Proof. Since ~v is Fréchet differentiable at x0 and D~v(x0) = v′(x0), we have

~v(x0 + h) = v′(x0)h+ |h|ε(h), ∀h ∈ −x0 + U,

where ε(h) is a continuous function such that ε(0) = 0. Consider the vector field
g : Rm → TRm determined by ~g(x) = v′(x0)(x − x0), and let H be the homotopy
on U , joining g with v, defined by

~H(x, λ) = v′(x0)(x− x0) + λ|x− x0|ε(x− x0).

For all x in U we have

| ~H(x, λ)| ≥
(
m− |ε(x− x0)|

)
|x− x0|,
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where m = inf{|v′(x0)y| : |y| = 1} is positive because v′(x0) is invertible. This
shows that there exists a neighborhood V of x0 such that

(
V × [0, 1]

)
∩ ~H−1(0)

coincides with the compact set {x0} × [0, 1]. Thus, by Excision and Homotopy
Invariance,

(4.3) deg(v, U) = deg(v, V ) = deg(g, V ).

Let L : Rm → TRm be the linear tangent vector field given by ξ 7→
(
ξ, v′(x0)ξ

)
.

Clearly, L is admissibly homotopic to g in Rm. By Excision, Homotopy Invariance
and Lemma 4.1, we get

(4.4) deg(g, V ) = deg(g,Rm) = deg(L,Rm) = sign det ~L.

The assertion now follows from (4.3), (4.4) and the fact that ~L coincides with
v′(x0). �

5. The uniqueness result

Given a local tangent vector field v on M , a zero p of v is called nondegenerate if v
is smooth in a neighborhood of p and its linearization v′(p) at p is an automorphism
of TpM . It is known that this is equivalent to the assumption that v is transversal
at p to the zero section M0 =

{
(x, 0x) ∈ TM : x ∈ M

}
of TM (for the theory of

transversality see e.g. [6, 7]). We recall that a nondegenerate zero is, in particular,
an isolated zero.

Let v be a local tangent vector field on M . A pair (v, U) will be called nondegen-
erate if U is a relatively compact open subset of M , v is smooth on a neighborhood
of the closure U of U , is nonzero on ∂U , and all its zeros in U are nondegenerate.
Note that, in this case, (v, U) is an admissible pair and Z(v, U) is a discrete set
and therefore finite because it is closed in the compact set U .

The following result, which is an easy consequence of transversality theory, shows
that the computation of the degree of any admissible pair can be reduced to that
of a nondegenerate pair.

Lemma 5.1. Let v be a local tangent vector field on M and let (v, U) be admissible.
Let V be a relatively compact open subset of M containing Z(v, U) and such that
V ⊆ U . Then, there exists a local tangent vector field w on M which is admissibly
homotopic to v in V and such that (w, V ) is a nondegenerate pair. Consequently,
deg(v, U) = deg(w, V ).

Proof. Without loss of generality we can assume M ⊆ Rk. Let

δ = min
x∈∂V

∣∣~v(x)
∣∣ > 0.

From the Transversality Theorem (see e.g. [6, 7]) it follows that one can find a
smooth tangent vector field w : U → TU ⊆ TM that is transversal to the zero
section M0 of TM and such that

max
x∈∂V

∣∣~v(x)− ~w(x)
∣∣ < δ.

Since M0 is closed in TM , the set Z(w, V ) = w−1(M0) ∩ V is a compact subset
of V . Thus, this inequality shows that (w, V ) is admissible. Moreover, at any zero
x ∈ Z(w,U) = w−1(M0) ∩ U the endomorphism w′(x) : TxM → TxM is invertible.
This implies that (w, V ) is nondegenerate.

The conclusion follows by observing that the homotopy H on U of tangent vector
fields given by

~H(x, λ) = λ~v(x) + (1− λ)~w(x)
is nonzero on ∂V × [0, 1] and therefore it is admissible on V . The last assertion
follows from Excision and Homotopy Invariance. �
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Theorem 5.2 below provides a formula for the computation of the degree of
a tangent vector field that is valid for any nondegenerate pair. This implies the
existence of at most one real function on the family of admissible pairs that satisfies
the axioms for the degree of a tangent vector field. We recall that the property of
Localization as well as Lemmas 5.1 and 4.2, which are needed in the proof of
our result, are consequences of the properties of Normalization, Additivity and
Homotopy Invariance.

Theorem 5.2 (Uniqueness of the degree). Let deg be a real function on the fam-
ily of admissible pairs satisfying the properties of Normalization, Additivity and
Homotopy Invariance. If (v, U) is a nondegenerate pair, then

deg(v, U) =
∑

x∈Z(v,U)

sign det v′(x).

Consequently, there exists at most one function on the family of admissible pairs
satisfying the axioms for the degree of a tangent vector field, and this function, if
it exists, must be integer-valued.

Proof. Consider first the case M = Rm. Let (v, U) be a nondegenerate pair in Rm
and, for any x ∈ Z(v, U), let Vx be an isolating neighborhood of x. We may as-
sume that the neighborhoods Vx are pairwise disjoint. Additivity and Localization
together with Lemma 4.2 yield

deg(v, U) =
∑

x∈Z(v,U)

deg(v, Vx) =
∑

x∈Z(v,U)

sign det v′(x).

Now the uniqueness of the degree of a tangent vector field on Rm follows immedi-
ately from Lemma 5.1.

Let us now consider the general case and denote by m the dimension of M . Let
W be any open subset of M which is diffeomorphic to Rm and let ψ : W → Rm
be any diffeomorphism onto Rm. Denote by U the set of all pairs (v, U) which are
admissible and such that U ⊆W . We claim that for any (v, U) ∈ U one necessarily
has

deg(v, U) = deg
(
Tψ ◦ v ◦ ψ−1, ψ(U)

)
.

To show this, denote by V the set of admissible pairs (w, V ) with V ⊆ Rm and
consider the map α : U → V defined by

α(v, U) =
(
Tψ ◦ v ◦ ψ−1, ψ(U)

)
.

Our claim means that the restriction deg |U of deg to U coincides with deg ◦α.
Observe that α is invertible and

α−1(w, V ) =
(
Tψ−1 ◦ w ◦ ψ,ψ−1(V )

)
.

Moreover if two pairs (v, U) ∈ U and (w, V ) ∈ V correspond under α, then the
sets Z(v, U) and Z(w, V ) correspond under ψ. It is also evident that the function
deg ◦α−1 : V → R satisfies the axioms. Thus, by the first part of the proof, it
coincides with the restriction deg |V , and this implies our claim.

Now let (v, U) be a given nondegenerate pair in M . Let Z(v, U) = {x1, . . . , xn}
and let W1, . . . ,Wn be n pairwise disjoint open subsets of U such that xj ∈ Wj ,
for j = 1, . . . , n. Since any point of M has a fundamental system of neighborhoods
which are diffeomorphic to Rm, we may assume that each Wj is diffeomorphic to
Rm by a diffeomorphism ψj . Additivity and Localization yield

deg(v, U) =
n∑
j=1

deg(v,Wj),
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and, by the above claim, we get
n∑
j=1

deg(v,Wj) =
n∑
j=1

deg
(
Tψj ◦ v ◦ ψ−1

j , ψj(Wj)
)
.

By Lemma 4.2, and Remark 2.1

deg
(
Tψj ◦ v ◦ ψ−1

j , ψj(Wj)
)

= sign det
(
Tψj ◦ v ◦ ψ−1

j

)′(
ψj(xj)

)
= sign det v′(xj),

for j = 1, . . . , n. Thus

deg(v, U) =
n∑
j=1

sign det v′(xj).

As in the case M = Rm, the uniqueness of the degree of a tangent vector field is
now a consequence of Lemma 5.1. �
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