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SUNTO. Sia ẋ = λf(t, x), λ ≥ 0, una famiglia ad un parametro di equazioni differenziali
su una varietà differenziabile M , dove f è un campo vettoriale continuo, T -periodico,
tangente ad M . Fissato un aperto Ω dello spazio metrico [0,∞)×CT (M), sotto opportune
ipotesi topologiche, si prova l’esistenza di un “ramo globale” di coppie (λ, x) ∈ Ω, con
λ > 0 e x soluzione T -periodica della suddetta equazione, la cui chiusura in Ω interseca
{0}×CT (M) in punti corrispondenti a soluzioni stazionarie. Questo risultato rappresenta
l’analogo infinito-dimensionale di un precedente teorema degli autori, espresso in termini
di punti iniziali di soluzioni T -periodiche.

0. – Introduction.

Consider the following one parameter family of differential equations:

(0.1) ẋ = λf(t, x), λ ≥ 0,

where f : R×M → Rk is a T -periodic (continuous) vector field, tangent to a boundaryless
smooth (not necessarily closed) submanifold of Rk. Let CT (Rk) be the Banach space of
all continuous, T -periodic, Rk-valued real maps, endowed with the standard norm of
uniform convergence, and denote by CT (M) the metric subspace of CT (Rk) consisting of
those maps whose image lies in M . Given an arbitrary open subset Ω of the Cartesian
product [0,∞)×CT (M), let Ω∩M stand for the open subset of M of those points p such
that the pair (0, p̂) is in Ω, p̂ being the constant map p̂(t) ≡ p. Let w:M → Rk be the
average wind velocity associated with the map f ; that is, the tangent vector field given
by

w(p) =
1

T

∫ T

0
f(t, p)dt.

In this paper, under the assumption that the Hopf index (also called Euler characteristic,
or rotation, or degree) of w in Ω ∩M is well defined and nonzero, we prove the existence
of a connected subset Γ of Ω satisfying the following properties:
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• (a) any (λ, x) ∈ Γ is a T -pair of (0.1), that is ẋ(t) = λf(t, x(t)) identically on R;

• (b) any (λ, x) ∈ Γ is nontrivial, i.e. such that λ > 0;

• (c) the closure of Γ in Ω is noncompact and meets the set {(0, p̂) ∈ Ω : w(p) = 0}.

This represents the infinite-dimensional counterpart of a result in [FP3], where the ex-
istence of a global branch was expressed in terms of starting points; that is, of those
elements (λ, p) ∈ [0,∞)×M such that the equation (0.1) has (for such a λ) a T -periodic
solution x: R→M verifying the Cauchy condition x(0) = p.

In order to include the (very natural and important) case where M is an open subset of
Rk, we do not restrict our analysis to the class of closed submanifolds of Rk. Consequently,
the metric space [0,∞)× CT (M) need not be complete. The difficulties due to this fact
make the use of infinite dimensional degree theories not easily applicable to our situation.
Therefore, we avoid such theories and we develop a method which allows us to deduce the
existence of the above “global bifurcating branch Γ of nontrivial solution pairs” directly
from the finite dimensional result in [FP3] or (more conveniently) from a, still finite
dimensional, result recently obtained in [FP4].

For related infinite dimensional results see [CZ], [C1], [C2] and references therein. We
point out, however, that these results agree with our situation only in the case when M is
a compact manifold. In fact, roughly speaking, we assume that our problem degenerates,
for λ = 0, in a sort of resonant condition. We do not require, as in the above mentioned
papers, the compactness in CT (M) of the solution set of the equation for λ = 0 (in fact,
in our case, this set can be identified with M or, more generally, given Ω as above, with
Ω ∩M).

1. – Global branches of fixed points.

Let M be a boundaryless m-dimensional smooth manifold embedded in Rk and, for
any p ∈M , let Tp(M) ⊂ Rk denote the tangent space of M at p. Let D ⊂ [0,∞)×M be
an open subset containing {0}×M and ϕ:D →M be of class C1. Consider the equation

(1.1) ϕ(λ, p) = p

and assume that the fixed point problem degenerates for λ = 0; that is, ϕ(0, p) = p for
any p ∈ M . Let us associate to ϕ the continuous tangent vector field v:M → Rk which
assigns to any p ∈M the vector

v(p) =
∂ϕ

∂λ
(0, p) ∈ Tp(M).

For the applications we are going to discuss in the next section, we are interested in pre-
senting conditions detecting those elements p ∈M which, loosely speaking, are emanating
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points of a branch of solutions (λ, q) of (1.1), with λ > 0. It is quite easy to show that
a necessary condition is that the vector field v vanishes at p (see [FP4]). A sufficient
condition can be obtained in terms of the index of v. Therefore, before stating precisely
our result, we recall, for completeness, the notion and the basic properties of the index of
a vector field.

Let v:M → Rk be a continuous tangent vector field on M which is admissible, i.e.
such that the set {p ∈ M : v(p) = 0} is compact. Then, one can associate to v an
integer χ(v), called the index (or Euler characteristic, or rotation, or degree) of v, which,
roughly speaking, counts (algebraically) the number of zeros of v (see e.g. [GP], [H],
[M], [T], andreferences therein). As a consequence of the Poincaré-Hopf theorem, when
M is compact, this integer equals χ(M), the Euler-Poincaré characteristic of M . On
the other hand, in the particular case when M is an open subset of Rm, χ(v) is just
the Brouwer degree (with respect to zero) of the map v:M → Rm. All the standard
properties of the Brouwer degree on open subsets of Euclidean spaces, such as homotopy
invariance, excision, additivity, existence, etc., are still valid in the more general context
of differentiable manifolds. To see this, one can use an equivalent definition of index of
a vector field based on fixed point index theory given in [FP3]. Let us point out that no
orientability of M is required for the index of a tangent vector field to be defined.

In what follows, to emphasize that the index of a tangent vector field v on M , reduces,
in the flat case, to the classical Brouwer degree (with respect to zero), χ(v) will be called
the (global) degree of the vector field v and denoted by deg(v). Since any open subset U
of a manifold M is still a manifold, the degree of the restriction of v to U makes sense
provided that v is admissible on U , i.e. the set {p ∈ U : v(p) = 0} is compact. This
condition is clearly satisfied if U is a relatively compact open subset of M and v(p) 6= 0
for all p ∈ ∂U . The degree of the restriction of v to U , when defined, will be denoted by
deg(v, U).

We are now in a position to state our sufficient condition for the existence of global
branches of nontrivial fixed points. The proof is given in [FP4].

Theorem 1.1. Let D be an open subset of [0,∞)×M containing {0}×M , ϕ:D →M
be a C1 map satisfying ϕ(0, p) = p for all p ∈ M , and v:M → Rk be the tangent vector
field

v(p) =
∂ϕ

∂λ
(0, p).

Given an open subset W of D, assume that v is admissible in the slice

W0 = {p ∈M : (0, p) ∈ W}

and that deg(v,W0) is nonzero. Then, the equation (1.1) admits in W a connected set of
solutions (λ, p), with λ > 0, whose closure (in [0,∞)×M) meets {0}×{p ∈ W0 : v(p) = 0}
and it is not contained in any compact subset of W .
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2. – Periodic orbits.

Let M be a boundaryless m-dimensional smooth manifold in Rk. As in the intro-
duction, let CT (M) denote the metric subspace of CT (Rk) consisting of all T -periodic
continuous maps x: R → M . Observe that this space is not necessarily complete, unless
M is a closed submanifold of Rk. However, due to the fact that M is locally compact,
one can prove that CT (M) is always locally complete. We recall that a metric space Y is
compact if and only if it is totally bounded (i.e. precompact) and complete. Therefore, as
a consequence of Ascoli’s theorem, a subset Y of CT (M) is totally bounded if (and only
if) it is bounded and equicontinuous.

Consider in M the first order parametrized differential equation

(2.1) ẋ = λf(t, x), λ ≥ 0,

where f : R×M → Rk is a T -periodic continuous tangent vector field (i.e. f(t+ T, p) =
f(t, p) ∈ Tp(M) for all (t, p) ∈ R ×M). An element (λ, x) ∈ [0,∞) × CT (M) will be
called a T -pair (or a solution pair) of the equation (2.1) provided x is a (T -periodic)
solution of (2.1). Denote by X the subset of [0,∞) × CT (M) of all the T -pairs of (2.1).
It is not hard to show that X is closed in [0,∞)×CT (M) (and locally closed in [0,∞)×
CT (Rk)). Consequently, X is locally complete, as a closed subset of a locally complete
space. Therefore, since X is locally made up of equicontinuous functions from [0, T ] to
R × Rk, Ascoli’s theorem implies that X is actually a locally compact space, and this
fact will turn out to be useful in the sequel.

In what follows, it will be convenient to consider the commutative diagram

M −→ [0,∞)×M
↓ ↓

CT (M) −→ [0,∞)× CT (M),

where the horizontal arrows are obtained by associating to p ∈M or, respectively, to x ∈
CT (M) the element (0, p) ∈ [0,∞)×M or (0, x) ∈ [0,∞)×CT (M), and the vertical ones
are defined by regarding any p ∈M as a constant map p̂(t) ≡ p. With this identification,
if A is any subset of [0,∞)× CT (M), A ∩M will denote the set {p ∈M : (0, p̂) ∈ A}.

Since any element p ∈M may be viewed as a constant solution of (2.1) corresponding
to the value λ = 0 of the parameter, the whole manifold M will be regarded as a subset of
the set X of the T -pairs of (2.1). We point out that, despite the fact that [0,∞)×CT (M)
may not be closed in [0,∞)× CT (Rk), M is always closed in [0,∞)× CT (M), as well as
in X. Any p ∈ M (which we regard as (0, p̂)) will be called a trivial T -pair of (2.1) and,
consequently, any (λ, x) ∈ X \M , i.e. with λ > 0, will be a nontrivial T -pair. An element
p ∈M will be called a bifurcation point of (2.1) if it lies in the closure of X \M . Since X
and M are locally closed in [0,∞)×CT (Rk), this definition does not depend on whether
the closure of X \M is taken in [0,∞)× CT (M) or in [0,∞)× CT (Rk).

A necessary condition for p ∈M to be of bifurcation is given by the following
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Theorem 2.1. Let f : R×M → Rk be a continuous T -periodic tangent vector field
and w:M → Rk be the mean value autonomous vector field given by

w(p) =
1

T

∫ T

0
f(t, p)dt.

If p0 is a bifurcation point for the equation (2.1), then w(p0) = 0.

Proof. Let p0 be a bifurcation point for the equation (2.1). Then, there exists a
sequence {(λn, xn)} of nontrivial T -pairs of (2.1) such that λn → 0 and xn(t) → p0

uniformly.
Since we have assumed M to be a manifold in Rk, it makes sense to integrate from 0

to T the equality
ẋn(t) = λnf(t, xn(t)), t ∈ R.

Thus

0 = xn(T )− xn(0) = λn

∫ T

0
f(t, xn(t))dt,

which implies ∫ T

0
f(t, xn(t))dt = 0.

Passing to the limit, we obtain ∫ T

0
f(t, p0)dt = 0,

which means w(p0) = 0, as claimed. 2

Remark 2.2. Let Z = {p ∈M : w(p) = 0}. As a consequence of the above necessary
condition, the set (X \ M) ∪ Z is a closed subset of X. Therefore, since X is locally
compact, (X \M) ∪ Z is locally compact as well.

In what follows, given an open subset Ω of [0,∞) × CT (M), by a bifurcating branch
of (2.1) in Ω we mean a connected component of Ω ∩ (X \M), whose closure in X (or,
equivalently, in [0,∞)×CT (M)) intersects Ω∩M . A global bifurcating branch in Ω, is a
bifurcating branch which is not relatively compact in Ω∩X. In particular, if M is closed
in Rk and Ω = [0,∞)× CT (M), as we shall see later any global bifurcating branch must
be unbounded.

We can now state our main result on the existence of a global bifurcating branch.

Theorem 2.3. Let f : R×M → Rk be a continuous T -periodic tangent vector field
and w:M → Rk be the mean value autonomous vector field given by

w(p) =
1

T

∫ T

0
f(t, p)dt.

Let Ω be an open subset of [0,∞) × CT (M) and assume that deg(w,Ω ∩M) is defined
and nonzero. Then, the equation (2.1) admits in Ω a connected set Γ of nontrivial T -pairs
whose closure in Ω is noncompact and meets Ω∩M in w−1(0). In addition, if M is closed,
then Γ cannot be contained in a bounded and complete subset of Ω.

5



The connectivity result stated below (see [FP4]) will be crucial in the proof of Theorem
2.3.

Lemma 2.4. Let Y be a locally compact Hausdorff space and let Y0 be a compact
subset of Y . Assume that any compact subset of Y containing Y0 has nonempty boundary.
Then Y \ Y0 contains a not relatively compact component whose closure intersects Y0.

Proof of Theorem 2.3. Assume first that f is smooth. Let us consider the set

D = {(λ, p) ∈ [0,∞)×M : the solution x(·)
of (2.1) satisfying x(0) = p is defined in [0, T ]}

and let ϕ:D → M be the operator which associates to any (λ, p) ∈ D the value x(T )
of the solution x(·) of (2.1) with initial condition x(0) = p. It is a known fact that D is
an open set (clearly containing {0} ×M) and that ϕ is smooth in D. Let us show that

∂ϕ

∂λ
(0, p) = Tw(p).

In fact, given (λ, p) ∈ D, let ψ(λ, p, t) denote the value at time t ∈ [0, T ] of the solution
of (2.1) with initial condition p. As already observed, the integral

ϕ(λ, p) = p+ λ
∫ T

0
f(t, ψ(λ, p, t))dt

makes sense. Thus

ϕ(λ, p)− ϕ(0, p)

λ
=
ϕ(λ, p)− p

λ
=
∫ T

0
f(t, ψ(λ, p, t))dt.

Take any sequence λn → 0, n ∈ N. Then, the sequence of solutions t 7→ ψ(λn, p, t) tends
uniformly in [0, T ] to the constant solution ψ(0, p, t) ≡ p. Consequently,

∂ϕ

∂λ
(0, p) = lim

λ→0

ϕ(λ, p)− p
λ

=
∫ T

0
f(t, p)dt = Tw(p),

as claimed.
Consider the set

S = {(λ, p) ∈ D : ϕ(λ, p) = p},

which is locally compact, since it is clearly closed in the locally compact set D. Moreover,
the fact ϕ(0, p) = p for any p ∈M , implies that any pair (0, p) with p ∈M , belongs to S.
Hence, by recalling the embedding M ↪→ [0,∞)×M of the above commutative diagram,
we will regard M as a closed subset of S.

In the set X of all T -pairs of (2.1), let us consider the map h:X → S given by
h(λ, x) = (λ, x(0)). Clearly h is continuous, onto and, since we are assuming f smooth,
it is also one-to-one. Moreover, the continuous dependence property from the data of the
solutions of differential equations ensures the continuity of its inverse h−1:S → X. Let Ω
be the open subset of [0,∞) × CT (M) considered in the statement of the theorem. Set
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SΩ = h(Ω∩X). Clearly, SΩ is open in S. Thus, there exists an open subset W of D such
that SΩ = W ∩S. Our aim is to apply Theorem 1.1 to the equation ϕ(λ, p) = p in W . To
this end observe that, according to the embeddings M ↪→ X and M ↪→ S, the restriction
of the homeomorphism h to M turns out to be the identity. Hence, the set Ω ∩M and
the slice W0 can be identified, so that the assumption deg(w,Ω∩M) 6= 0 is equivalent to

deg(
∂ϕ

∂λ
(0, ·),W0) 6= 0,

where, as proved above,
∂ϕ

∂λ
(0, p) = Tw(p)

for all p ∈ M . Consequently, by Theorem 1.1, there exists in W ∩ (S \M) a connected
branch Σ whose closure in [0,∞)×M meets {p ∈ W0 : w(p) = 0} and it is not contained
in any compact subset of W . This means that the closure of Σ in the topological space
SΩ is not compact. Set Γ = h−1(Σ) and observe that Γ is a connected set of nontrivial
T -pairs in Ω, whose closure (in Ω) is noncompact and meets Ω ∩M in w−1(0). Hence,
the existence in Ω of a global branch of T -pairs possessing all the required properties is
completely proved in the smooth case.

Let us now remove the smoothness assumption on f . Let Y0 denote the (compact)
set of zeros of w in Ω ∩ M , i.e. Y0 = Ω ∩ Z, with Z = {p ∈ M : w(p) = 0}. Set
Y = ((Ω ∩ X) \M) ∪ Y0 and observe that Y is locally compact, since it coincides with
Ω ∩ ((X \M) ∪ Z), which is the intersection of an open set with a locally compact set
(recall Remark 2.2). Let us apply Lemma 2.4 to the pair (Y, Y0). In order to verify all the
assumptions of the lemma, we need only to show that any compact subset of Y containing
Y0 has nonempty boundary. Assume the contrary. Thus, there exists a relatively open
compact subset C of Y containing Y0. Consequently, one can find an open subset G of Ω
such that G ∩ Y = C, ∂G ∩ Y = ∅ and the set {(λ, x(t)) ∈ [0,∞) ×M : (λ, x) ∈ G, t ∈
[0, T ]} is contained in a compact subset K of [0,∞)×M . This implies that G is bounded
with complete closure. Without loss of generality, we may also assume the closure of G
contained in Ω. Hence, in particular, G∩M is relatively compact with closure contained
in Ω ∩M .

By a well-known approximation result on manifolds (see e.g. [H]), we may take a
sequence {fn} of T -periodic smooth tangent vector fields uniformly converging to f in
R×M . For any n ∈ N, let

wn(p) =
1

T

∫ T

0
fn(t, p)dt

be the mean value vector field associated to fn. Clearly, the sequence {wn} converges
uniformly to w on M . Moreover, since the zeros of w in Ω∩M lie in a compact subset of
G ∩M , it is easy to see that, for n large enough, the homotopy

(p, τ) 7→ τwn(p) + (1− τ)w(p), 0 ≤ τ ≤ 1,

is admissible for the degree in G ∩ M . Thus, deg(wn, G ∩ M) is well-defined and, by
the homotopy invariance property of the degree, it is equal to deg(w,G ∩M), which, by
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excision, coincides with deg(w,Ω ∩M) and, thus, it is nonzero. Therefore, by the first
part of the proof, for n sufficiently large, any equation

ẋ = λfn(t, x),

has in Ω a connected set of nontrivial T -pairs Γn, whose closure in Ω is noncompact and
meets Ω∩M in w−1(0). Now, since the closure of G is a bounded and complete subset of
Ω, any Γn must intersect the complement of G in Ω, which implies that, for any n, there
exists a pair (λn, xn) ∈ ∂G ∩ Γn.

Now, by the definition of T -pair, any function xn satisfies the condition

ẋn(t) = λnfn(t, xn(t)), for all t ∈ [0, T ].

Therefore, by the compactness of the set K ⊂ [0,∞)×M introduced above, there exists a
constant L > 0 such that |ẋn(t)| ≤ L, for all n ∈ N and t ∈ [0, T ]. Consequently, because
of Ascoli’s theorem, the sequence {xn} is totally bounded. Without loss of generality,
we may assume {(λn, xn)} converging to (λ0, x0) ∈ ∂G. Hence, the sequence {ẋn(t)}
converges to the function λ0f(t, x0(t)) uniformly in R. This implies that x0 is a T -periodic
solution of the differential equation

ẋ = λ0f(t, x).

Thus, (λ0, x0) is a T -pair of (2.1) that, if λ0 > 0, clearly belongs to Y . Otherwise, if
λ0 = 0, then x0 is a constant function, say x0(t) ≡ p0. An argument similar to the one
used in proving the necessary condition for bifurcation (given in Theorem 2.1) shows that
w(p0) = 0, i.e. p0 ∈ Y0. Therefore, in any case, (λ0, x0) ∈ ∂G∩Y , which is a contradiction.
Consequently, a straightforward application of Lemma 2.4 to the pair (Y, Y0) implies the
first part of our assertion.

Assume now that the manifold M is closed and let Γ ⊂ Ω be the global branch obtained
above. Suppose Γ bounded. We need to show that its closure in Ω is not complete. In fact,
since Γ is bounded and M is closed, the set {(λ, x(t)) ∈ [0,∞)×M : (λ, x) ∈ Γ, t ∈ [0, T ]}
is contained in a compact subset of [0,∞)×M . Hence, because of Ascoli’s theorem, Γ is
totally bounded. Consequently, the closure of Γ in Ω is not complete since, otherwise, it
would be compact. 2

We give below some corollaries illustrating the global bifurcation result of Theorem
2.3. We begin with the following Continuation Principle, which is an extension of Theorem
2.4 in [FP3], where the open set Ω0 has the special form Ω0 = {x ∈ CT (M) : x(t) ∈ V for
all t ∈ [0, T ]}, with V a relatively compact open subset of M . An extension of the same
result in a different direction (i.e. in the case where M is a closed Euclidean Neighborhood
Retract in Rk) has been obtained in [CZ], Corollary 2.

Corollary 2.5. Let f and w be as in Theorem 2.3. Let Ω0 be a bounded open
subset of CT (M) with complete closure and such that {f(t, x(t)) ∈ Rk : x ∈ Ω0, t ∈
[0, T ]} is bounded. Assume that deg(w,Ω0 ∩ M) is defined and nonzero. Then, the
equation (2.1) has in [0,∞)× Ω0 a connected branch of nontrivial T -pairs whose closure
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in [0,∞)×CT (M) meets Ω0 ∩M in w−1(0) and it is either unbounded with respect to λ
or intersects [0,∞)× ∂Ω0. In particular, the equation

ẋ = f(t, x)

has a T -periodic solution in Ω0, provided that in addition w(p) 6= 0 for all p ∈ M ∩ ∂Ω0

and the following a priori bound is satisfied:

• (i) if (λ, x) is a T -pair of (2.1) in (0, 1]× Ω̄0, then x /∈ ∂Ω0.

Proof. Apply Theorem 2.3 to the open set Ω = [0,∞)×Ω0. Then, there exists in Ω a
connected bifurcating branch Γ of nontrivial T -pairs whose closure in Ω is noncompact.
Suppose Γ bounded with respect to λ. Hence, as in the last part of the proof of Theorem
2.3, Γ turns out to be totally bounded. Consequently, since Ω0 has complete closure, the
closure Γ̄ of Γ in [0,∞)×CT (M) must be compact. On the other hand, since the closure
of Γ in Ω is not compact, if Γ is bounded with respect to λ, its closure in Ω must contain
a pair (λ, x) ∈ [0,∞)× ∂Ω0, as claimed.

Assume now that Γ̄ does not meet (0, 1] × ∂Ω0. This means that Γ̄ must intersect
either {0} × ∂Ω0 or {1} × Ω0. Because of Theorem 2.1, the assumption w(p) 6= 0 for all
p ∈M ∩ ∂Ω0 implies that the first situation does not occur. 2

Corollary 2.6. Let f and w be as in Theorem 2.3. Let M be a closed manifold
and U an open subset of M . Assume that deg(w,U) is defined and nonzero. Then, the
equation (2.1) admits in [0,∞)×CT (M) a connected branch of nontrivial T -pairs whose
closure meets U in w−1(0) and which satisfies at least one of the following properties:

• (i) it is unbounded;

• (ii) it contains a bifurcation point in M \ U .

Proof. Consider the following open subset of [0,∞)× CT (M):

Ω = ([0,∞)× CT (M)) \ (M \ U).

Since Ω ∩M = U , by applying Theorem 2.3 to Ω and by recalling that we have assumed
M closed in Rk, we obtain the existence of a bifurcating branch of T -pairs whose closure
in Ω is not both bounded and complete. Now, since in this case [0,∞) × CT (M) is a
complete metric space, the closure of the branch in [0,∞)×CT (M) is complete. Thus, if
bounded, it must contain a bifurcation point in M \ U . 2

In the flat case, i.e. when M is an open subset of Rm, a result which is in the spirit
of the above Corollary has been obtained in [FP1] as an application of some abstracts
results involving nonlinear compact perturbations of linear Fredholm operators of index
zero.

In Theorem 2.1, we have proved that a necessary condition for p ∈M to be a bifurca-
tion point is that the mean value vector field w vanishes at p. The following consequence
of Corollary 2.6 provides a sufficient condition for a point p ∈M to be of bifurcation.
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Corollary 2.7. Let p be a zero of the mean value vector field w. Assume that w
is differentiable at p and that w′(p):Tp(M) → Rk is one-to-one. Then p is a bifurcation
point of the equation (2.1).

Proof. The assumption w(p) = 0 implies that w′(p) maps Tp(M) into itself (see
e.g.[M]). Consequently, w′(p) is an isomorphism and p an isolated zero. Thus, there
exists an open neighborhood U of p in M such that deg(w,U) = sign detw′(p) 6= 0. 2

Corollary 2.8 below extends to the continuous case a global result obtained in [FP2] and
it represents the infinite dimensional counterpart of Corollary 2.1 in [FP3]. An analogous
result has been recently obtained in [C2], with different methods, in the case when f is
locally Lipschitz and M is a closed Euclidean Neighborhood Retract in Rk.

Let us recall that, if M is a compact manifold with boundary and v:M → Rk is a
continuous tangent vector field on M satisfying v(p) 6= 0 for all p ∈ ∂M , then the degree
of v in M still makes sense. In fact, it suffices to observe that, in this case, v is admissible
in the boundaryless manifold M̊ = M \ ∂M . Hence, one can define deg(v,M) as the
degree of the restriction of v to the interior M̊ of M . The Poincaré-Hopf theorem asserts
that this degree equals the Euler-Poincaré characteristic of M , provided v points outward
along ∂M .

Corollary 2.8. Let M be compact and possibly with boundary. Assume that the
Euler-Poincaré characteristic χ(M) of M is nonzero and that f points outward (or inward)
along ∂M for any t ∈ R. Then, the equation (2.1) has an unbounded bifurcating branch
whose closure intersects M in w−1(0). In particular, since CT (M) is bounded, (2.1) has a
solution for any λ ≥ 0.

Proof. If M is boundaryless, then deg(w) = χ(M) 6= 0, where w is the mean value
tangent vector field associated with f . If ∂M 6= ∅ and f points outward along ∂M for
each t, then w points outward as well, so that again one has deg(w) = χ(M) 6= 0. If
f and, thus, w are inward, then the vector field −w is outward. Therefore, by recalling
that deg(−w) = (−1)mdeg(w), where m = dimM , one can deduce that, still in this case,
deg(w) is defined and nonzero. Hence, Theorem 2.3 applies in the boundaryless manifold
M̊ yielding the existence in [0,∞)×CT (M̊) of a global bifurcating branch whose closure
meets M in w−1(0). Now, if ∂M = ∅, to get the assertion it suffices to observe that, since
M is closed, the branch must be unbounded. Otherwise, if ∂M 6= ∅, the fact that the
vector field f is never tangent to ∂M implies that there are no T -periodic orbits of (2.1)
which may hit ∂M . Therefore, the closure in [0,∞) × CT (M̊) of the obtained branch
coincides with its closure in [0,∞)×CT (M) and thus, it is complete. Consequently, also
in this case the bifurcating branch turns out to be unbounded. 2
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